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Abstract

This paper is concerned with a continuous-time mean—variance portfolio se-
lection problem in a (possibly incomplete) market with multiple stocks and a
bond. Only the past price movements of the stocks and the bond are the infor-
mation available to the investors. A separation principle is shown to hold in this
setting. Efficient strategies based on the aforementioned partial information are
derived, which involve the optimal filter of the stock appreciation rate processes.
The main methodological contribution of the paper is to employ the particle sys-
tem representation to develop analytical and numerical approaches in obtaining
the filter as well as solving the related backward stochastic differential equation.
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1 Introduction

In the Nobel-Prize-winning work [19], Markowitz proposed the mean—variance portfolio

selection model for a single investment period, where an agent seeks to minimize the
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risk of his investment, measured by the variance of his return, subject to a given mean
return. The dynamic extension of the Markowitz model, especially in continuous
time, has been studied extensively in recent years; see, e.g., Li and Ng [15], Zhao and
Ziemba [30], Zhou and Li [31], Lim [16], Bielecki et al [2], and Xia [25] (In particular,
refer to Steinbach [23] and Bielecki et al [2] for elaborative discussions on the history
of the mean—variance model.) In many of these works, explicit, analytic forms of
efficient portfolios have been obtained. However, in all these works it is assumed
that the driving Brownian motions are completely observable by an investor, which
in reality is more an exception than a rule. Practically, the investor can only observe
the stock prices (including past and present) based on which he will have to make his
investment decisions. This leads to the so-called partially observed portfolio selection
problem, and this paper aims to solve the problem in the realm of mean—variance. An
important finding in this paper is that the separation principle (for separating filtering
and optimization) turns out to hold in the mean—variance setting, which in turn greatly
simplify the problem. Another main contribution of the paper is to employ the particle
system representation, which has been developed quite recently for solving stochastic
PDEs, to develop analytical and numerical approaches in obtaining the filter as well
as solving the related backward stochastic differential equation.

Asset allocation and asset pricing based on partial information under various setups
have been studied extensively in the financial economics literature; see, to name a few,
Lakner [14], Brennan and Xia [3], Xia [26], Rogers [22], Nagai and Peng [20], Yang
and Xiong [27]. Detemple [4], Dothan and Feldman [5] and Gennotte [7] established
a separation principle. However, all these works are predominantly done within the
expected utility framework. (Refer to [2, 23, 30] for discussions on crucial differences
between the utility and mean—variance models.) Pham [21] considered a mean—variance
hedging problem for a general semimartingale model, and proved a separation principle
for a diffusion model (though it is not a multi-dimensional geometric Brownian motion
as in the present paper). Although in theory a mean-variance problem a ld Markowitz
can be formulated as a mean—variance hedging problem, there are subtleties such as
the feasibility and the determination of the Lagrange multiplier (see [2, 16]). Moreover,
the analysis in [21] is rather involved due to the martingale method employed, whereas
here we will give a very direct, clean and short proof for a separation principle.

The rest of this article is organized as follows: In Section 2, we formulate the

mean—variance portfolio selection model under partial information. In Section 3, we



derive the innovation process associated with the filtering problem, which leads to
the separation principle. Section 4 studies the optimal filter in details for two cases.
Section 5 is devoted to the optimization part as well as the final solution to the partially
observed mean—variance problem. A numerical solution to a related backward SDE is

presented, which is of independent interest.

2 The Model

We consider a market consisting of d stocks and a bond whose prices are stochastic pro-
cesses S;(t), 1 =0,1,---,d, governed by the following stochastic differential equations
(SDEs):

ASi(t) = Si(t) (pt)dt + Sy 55 (AW, (1)), i=1,2,- d,
dSo(t) = So(t)uo(t)dt, t >0,

where W := (W4, -+, W,,)* is a standard Brownian motion defined on a filtered com-
plete probability space (2, F, P;{Fi}i>0), pi(t), i = 1,2,--- ,d, are the appreciation
rate processes of the stocks, pg(t) is the interest rate process, and the d x m matrix
valued process 3(t) := (5;;(t)) is the volatility process. Here and throughout the paper
A* denotes the transpose of a matrix A.

Let

gt ::O'(SZ'(S)I SSt, 7;:0,1’2:”"d)’ t>0.

In our model G;, rather than Ftw (the filtration generated by W), is the only informa-
tion available to the investors at time .

By It6’s formula, we have
1 ”. . .
dlog S;i(t) = (ui(t) - Eaii(t)> dt+ Y 6 (H)dW;(t), i=1,2,--- ,d, (2.1)
j=1

where

a;;(t) = Z6ik(t)6jk(t), ij=1,2,---,d.
k=1

The following assumptions on the market coefficients will be in force throughout

this paper.



Assumption (ND): For any ¢t > 0, the d x d matrix A(t) := (a;;(t)) is of full rank
almost surely.

Assumption (BC): There exists a finite constant C' such that V ¢ > 0, Vi, 7,
l6i; (1) < C,  as.
Assumption (IC): ]EfOT(uo(t)2 + [u(t)?)dt < .

Remark 2.1. In this article, we allow d < m as long as the condition (ND) is satisfied;
in other words, the market itself is allowed to be incomplete. It is interesting to note
that, unlike the full information case, the incompleteness of the market does not impose
essential difficulty in the partial information case. This can be explained as follows.
In the classical model of incomplete market (with full information), there are vast
amount of information available. Namely, one has to seek optimal portfolios in the
class of all .7-',5W -adapted portfolios. When m > d, the number of available stocks is
less than that of the (independent) random factors and hence, some of the market
risks can not be completely eliminated by composing an appropriate stock portfolio.
As a result, portfolio selection problems become harder than the case with a complete
market because some contingent claims cannot be replicated. In our current setup, the
available information comes only from the stocks themselves, and any other information
is not observable anyway. Therefore, the model is essentially “complete”, as also will be
evident in what follows, although the market is indeed incomplete in the conventional

sense.

It is easy to show that the quadratic covariation process between logS;(t) and
log S;(t) is given by f(f a;;j(s)ds. Therefore, the matrix valued process (a;;(t)) is G-
adapted. Let 3(t) = (0y;(t)) be the square root of A(t). Then, 0;;(t) is Gi-adapted,
i.e., it is completely observable. As we shall see in (3.5) below the stock price S;(t)
satisfies an equivalent SDE which depends on o;;(t) instead of 7;;(¢). Moreover, jo(t) =
%log So(t) is also G;-adapted. Therefore, we do not need to consider the filtering
problem for the stochastic interest rate and volatility processes.

*

However, the stochastic process pu(t) := (p1(t), -+, pa(t))* is not necessarily G-
adapted and hence, its value is not available to the investors. Note that u(t), being a
very general process, does not need to be even ]-"tW -adapted.

Denote by LZ(0,7;R") the set of R*-valued, G,-adapted processes f(t) with

]EfOT |f(t)]?dt < oo. (Similar notation L3,(0,T;®") can be defined for any filtration
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H,.) LZ(0,T;R") becomes a Hilbert space endowed with the norm || f ||L2,<0,T;Rn)::

(27 1F0Pat).

We now define the class of admissible portfolios (investment strategies).

Definition 2.2. A d-dimensional process u(t) = (uy(t),---,uq(t))* is an admissible
portfolio if u(t) € LE(0,T;R%).

In the preceding definition, u;(t) represents the worth of an agent’s wealth (dollar
amount) in the ith stock, i = 1,2,---,d. It is well known that under a so-called

self-financed portfolio, the wealth process of an agent, starting with an initial wealth
xo, satisfies the following wealth equation (see, e.g., [11]):

{ da(t) = (o) + S, (i) — pol®)i(t)) dt + ey S, &35 (s (W (1), 120,
z(0) = =zo.
’ (2.2)

The partially observed mean-variance portfolio selection model is formulated as

the following optimization model:

Minimize Var(z(T)) = E(z(T) — Ez(T))?,

u(t) is self-financed and admissible, (2.3)
subject to (x(t), u(t)) satisfies equation (2.2) with initial wealth z,
Ex(T) = z,

where xy, 2 € R are given constants.

3 Separation Principle

In this section, we consider the filtering problem associated with our model (2.3) and
establish a separation principle. Specifically, we define the innovation process for the
filtering problem. Based on this process, we will derive a G;-adapted representation
for the wealth process corresponding to any self-financed admissible portfolio.

Theorem 3.1. Under any self-financed admissible portfolio u(t), the corresponding
wealth process x(t) satisfies the following SDE:

{ da(t) = ((Opo®) + Sy (5(t) — po(®)us(t) ) dt + S0y o3 (s (v (1), £ > 0,
z(0) = g,
’ (3.1)



where ,uz( ) :=E(u; (t)|Gy) is the optimal filter of p;(t), the innovation process v(t) =

(v1(t), -+ ,vq(t))* is a d-dimensional Brownian motion given by
dv(t) == 3(t) 'dlog S(t) — X(t)~* (u( ) — %fl( )) dt, (3.2)

S(t) = (S1(t),-++, Sa(t))*, log S(t) := (log S1(t), -+ ,log Sa(t))*, p(t) := (1 (t),- -+, pa(t))*,
and A(t) := (a11(t),- -+ , aaa(t))*.

Proof: From (2.1), we see that

logSi(t)—logSi(O)—/Ot (Nz’() Sai(s )ds—Z/ Gij(s i=1,2,---,d

are martingales with quadratic covariation process fo s)ds = fo s)%ds. By the
martingale representation theorem, there exists a standard Brownian motion W =
(Wh, -+, Wy) on (92, F, P) such that

Thus,

Equivalently, the stock prices satisfy the following modified SDE:
d
dS;(t) = Si(t) (,ui(t)dt + Zaij(t)de(t)> L i=1, e, d. (3.5)
7j=1

Note that Y(t) is invertible. Let S(t) be defined by
dS(t) := 2(t)"*dlog S(t).

We can write the observation equation (3.4) into the classical form (cf. (8.1.1) in [10]):

- - t 1~

S(t) = S(0) —|—/ »(s)™! (u( ) — EA( )) ds + W(t) (3.6)
0

with the observation o-field G;. By Theorem 8.1.3 and Remark 8.1.1 in Kallianpur [10],

(v(t),G;) is a d-dimensional Brownian motion such that o(v(u) —v(s): u>s>1t)is

independent of G;.



By (3.6) and (3.2), we get
Y(t)dW (t) = Z(t)dv(t) + (B(t) — p(t))dt. (3.7)
The desired form of wealth equation (3.1) then follows from (2.2), (3.3) and (3.7). O

Remark 3.2. A notorious difficulty in tackling general stochastic optimization prob-
lems with partial information is that one usually cannot separate the filtering and
optimization, except for some very rare situations. The significance of Theorem 3.1 is
that for the specific mean—variance portfolio selection problem, the separation princi-
ple happens to hold: one can simply replace the appreciation rate by its filter in the
wealth equation, and then solve the resulting optimization problem as in the complete

information case.

4 Filtering

In this section, we study the filtering problem (for the appreciation rate process) by
considering two cases associated with the volatility processes. The aim is to study the

optimal filter U(¢) given by
U®), f) =E(f(u(t)IG:), Y f € Cy(®?).

4.1 Case 1: Non-random ¥

In this subsection we consider the case when the original volatility process X(t) is a
deterministic matrix-valued function of ¢ and u(t) a d-dimensional Markov process
(with a generator L) independent of W. By the definitions of X(¢) and W, where W
is defined via (3.3), it is clear that 3(¢) is also non-random and p(t) is independent
of W. Then the filtering problem becomes a classical one with the signal u(t) and
observation S(t) given by (3.6). In this case, G, = .7-',:5 i

Remark 4.1. By Theorem 8.3.1 in [10], every square integrable ff—martingale (and

hence, every G;-martingale in the present case) Y; can be represented as

Y, = B(Yy) + / B(s)"dv(s) (4.1)

where ®(s) € L2;(0,7;R?). This fact will be useful in Proposition 5.5 below in
establishing an optimal portfolio since H = AC(G) in this case (cf. Definition 5.1).

Namely, the market is complete in the sense of Definition 5.2.
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In Kurtz and Xiong ([12], [13]), a large class of stochastic partial differential equa-
tions, with the filtering equations as a special case, and their numerical solutions are
studied based on a technique called the particle system representation. In this sub-
section, we demonstrate that the particle system representation itself can be used to
derive the filtering equations directly. Note that the generator L of the appreciation
rate process u(t) is not required to be a second-order differential operator. In fact,
even the continuity of u(t) in ¢ needs not to be assumed. It is also worth mentioning
that the results in this and the next subsections are not covered by those of [12], [13].

Introduce the following integrability condition:

/

Applying Girsanov’s formula to (3.6) and noting that x4 and W are independent,

2
ds < oo, a.s. (4.2)

(1te) = 340607 ) =66)

under the probability P defined below, we get that S(t) is a Brownian motion inde-
pendent of y(t), where dP = M(T)dP with

M) = e [ (o = 3A6r) 206030

1/t 2
——/ ds).
2 Jo

By Kallianpur-Striebel’s formula, we can represent the optimal filter U(t) as

0N
V(o)1)

(1tor = 340677 =66)

U ), f) (1.3)

where for f € Cy(R?),

V1), f) = E(M(1) f(u(t))|Gr)

is the unnormalized filter. Here E refers to the expectation under the new probability

measure P.

Lemma 4.2. Suppose that u(t) is a d-dimensional Markov process (with generator L)
independent of W satisfying (4.2). Then, V(t) is represented as

V0, ) = Jim > M) 1 (0) (4.4)

=1



where pt(t), p?(t), --- are independent copies of u(t) and

W) = e ([ (6 - 346)) 6)71450)

1 t
2 /0
Proof: Note that
dM*(t) = M*(t) </ﬁ'(t)* — fl(t)*) Y (t)~1dS(¢). (4.6)

Denote by X the collection of all those processes j(t) satisfying (4.2) and by Y the

2 ds). (4.5)

collection of all measurable R?*¢-valued random vectors. Then X and ) are measurable
spaces. For ¢ € X, the SDE (4.6) has a unique strong solution. Therefore, for each
fixed ¢ € [0, 7] there is a measurable functional F; : C([0,T],R?) x X — Y such that
(ui(t), Mi(t)) = F,(S, ii'). As a consequence, under the conditional probability P (| F5)

(14 (t), M(t)) is completely determined by pf, s = 1,2,---. Since S, !, p?, --- are
independent, the strong law of large numbers yields
1 i i _ S
tim 0 32004 (0) = B (M) f ()1 FF) (4.7)
Since F° = G,, we obtain (4.4). O

Now we derive via It6’s formula and (4.4)-(4.5) a stochastic partial differential
equation (SPDE) for the unnormalized filter V' (¢). Let p(t), i = 1,2,---, be as in
Lemma 4.2, which are independent Markov processes with generator L. It is well-
known (see the standard textbooks Ethier and Kurtz [6] or Stroock and Varadhan
24]) that there are independent martingales N}(t) such that

df (u'(t)) = Lf (u'(t))dt + dNp(t), f € D(L), (4.8)

where D(L) is the domain of L.
Applying It6’s formula to (4.6) and (4.8), we get

AOLWFEE) = M) (LFGHD)d+ AN} (D)
w0 o) ( (0 - A0 ) £ 050 )

Taking average for ¢ = 1,2,--- |k, letting £ — oo, and applying Lemma 4.2, we see
that V' (t) satisfies the following Zakai equation:

d(V(t), f) = (V(1), Lf) dt + (V(2),Gef) dS(?) (4.9)



where

A(t)*) ()L

N —

Guf () = 10 (-
Making use of (4.3), by It6’s formula, we have

AU, f) = (U, Lf)dt
+ (U, Guf) = (U(1), G U ), ) (d5(0) — (U), Gl dt)

Note that

U),Ge1) =

Hence (3.2) can be rewritten as
dS(t) — (U(t), G41) dt = dv(t).
Therefore, U(t) satisfies the following Fujisaki-Kallianpur-Kunita (FKK) equation:

d(U(t), f) = (U(), Lf) dt + (Us, Gof) — (U(2), Ge1) (U (1), f)) dv(2). (4.10)

Remark 4.3. Since L is not necessarily a second-order differential operator which
was used heavily in [12] in proving that SPDE of the form (4.10) has a unique strong
solution, we cannot establish such a property for a general L by the same argument
in [12]. However, by Theorem 9.1 in Bhatt et al [1], under suitable conditions, the

solution to (4.10) is indeed unique.

Next, let us discuss the numerical implementation of the preceding filter. Recall
that u'(t), wp%(t), --- are independent copies of u(t). For § > 0, let n;(t) := j§ for
jo<t<(j+1)5,j=0,1,---. We approximate M'(t) by the Euler scheme:

M) = e [ t (o) = 3Am(o)" ) 3()71a5)

t 2
—1/ ds).
2 Jo

(1o = 3As(6))° ) 565




We then combine both approximations by using V" := V™! nt2 o approximate the
unnormalized filter, where o > 0 is given in (4.11) below.

Although we did not assume the sample path continuity of u(t), we need some kind
of continuity in the sense of moments. We assume that |2(¢)~!| < K and with some
a >0,

E (|u(t) — u()?) < [t — | (4.11)

For example, if p(t) is a compound Poisson process, then (4.11) holds with a = 1.
Let R? be the one-point compactification of R¢. Then Cy(R?) is a separable Banach

space. Let My(R?) be the space of finite Borel measures on R?, and d be a distance

defined on My(R?) whose topology coincides with the weak convergence topology.

More precisely, let {fx} C C}(R?) be a dense subset of Cy(R?). We define

o0

| 141 _Z/Zafk ‘ =d
1/ ,1/ = , U,V € Mp(R?),
o= L g e M
where
flz) = f(y _
1l o= sup |7 (@) + sup LE IO £ o o gy,
rER4 z,yc€R4 |$— |

Theorem 4.4. Suppose that |S(t)™'| < K and (4.11) holds. Then, for each fized t,
there exists M > 0, such that for all n,

- _ M
E (d(V™(t 1)) < — 4.12
(@7 (0. V) < 2. (112)
Proof: By the conditional independence, it is easy to show that V f € Cy(R?),
N c1(T)?]| f|?
B (<V”(t) _ V(t),f)Q) < 1( )n”f”oo

Next we note that

]E{‘]ogM‘s’i(t) — logMi(t)|2}

<2 TE\' (1o = A0 ) £ = (w6 = 5A0) ()™ s
o1 [ gl (mm( )" — 5 Als(s) ) o) - \(ms)* _ %A(s)*) g
< o(T)5
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Let d be the Waserstein metric on M p(&?), namely,

d(v1,v5) = inf {|{v1 = vs, )]+ |f(2)| <1Vz, [f(z) = f(y)] < |z —y| Va,y}.
Then
d(V™(e), V() < — Y (MP(0) v MY(#)) (| (1) — 1 ()] + [log MP(t) — log M'(2)]) -
Thus
Ed(V™ (), V(1)) < e3(T)se.

It is clear that d < d. So

E(d(V"(0), V(1) < Bd(V™, VI (1)) + RV (1), V()
< (D) () + Cl\%) = Ciﬁ?,

4.2 Case 2: Random 3.

In this subsection we discuss a case when the volatility is a random process with the

following structure: o(t) is a function of p(t) plus a white noise, namely,
doij(t) = h" (u(t))dt + dBY(t),  1<i<j<d, (4.13)

where BY(t), 1 < i < j < d, are independent Brownian motions. Note that the

independence assumption is imposed for the ease of presentation only. In fact, the

d(d+1)
2

(B(t), 1 <i < j<d) by a linear transformation of this process.

arguments below remain valid if we replace the -dimensional Brownian motion

In this case, we have a classical filtering problem with observations S(t) and X(t) =
(045(t)) given by (3.6) and (4.13) respectively. Then

Bz’j = 01] / <U hZ]> ds

are Brownian motions adapted to G; and are independent of v(t). Namely, o(t) :=
(By;(t), v(t); 1 < i< j <d) forms the ( @+l) 4 d) -dimensional innovation process
for the filtering problem. The FKK equation can be derived similar to the argu-

ments as in Subsection 4.1 leading to (4.10). Namely, we only need to replace v(t) and

12



(u(t) = 34@)) o) by #(t) and (hy (1), () - 3A@®) T 1<i<j <d)
respectively. The numerical scheme can also be given by employing a similar method

in Subsection 4.1. We leave the details to the interested reader.

Remark 4.5. The condition (4.1) does not hold for the present model. In fact, By;(t)
is a G;-martingale independent of v(t); hence it cannot be represented as the stochastic

integrals with respect to v(t).

5 Optimization

In this section, we derive the optimal strategy of the partially observed mean—variance
problem (2.3) in three steps. First, we derive from (3.1) a constraint on the terminal
wealth z(7). Then, we solve a static optimization problem under this constraint to
find the best terminal wealth, 2*(7). After that, we show that there is a portfolio such
that x*(T) is its terminal wealth. Finally, we give a numerical scheme in solving the
backward SDE involved in deriving the optimal portfolio and prove the convergence

of the proposed scheme.

5.1 The optimal value of z(T)

Let

ZU&I(S)(M(S) — to(s))

1.
_53.;/0

where, with an abuse of notation, ai;l(s) denotes the ijth element of ¥(s)~!. Denote

05(t) 1= D o ()(s(t) — mo(8): (-1
By It6’s formula, we get
dp(t) = —p(t)po(t)dt — Zp(t)% (t)dv;(t), p(0) = 1. (5-2)

13



Applying It6’s formula to (5.2) and (3.1), we have

d
d(z (1) ZUW u; (t)dv;(t) Zp (t)dv;(t). (5.3)

3,j=1 j=1

Therefore, z(t)p(t) is a Gi-martingale and hence,

E(p(T)z(T)) = x(0) = zo. (54)
Definition 5.1. A contingent claim v € H := L*(Q, Gr, P) is called attainable if there
is ®(s) € LZ(0,T;R?) such that

vp(T) = E(vp(T)) —l—/o O(s)*dv(s).

Denote the collection of all attainable contingent claims by AC(G). It is easy to
see that AC(G) is a subspace of H. Denote by Hj the closure of AC(G).

Definition 5.2. The market is complete if AC(G) = H.

Remark 5.3. If X(¢) is non-random as in Subsection 4.1, then the market is complete.

Now we seek

. N2
%hlol]E(v z) (5.5)
subject to constraints
Ev =z and E(p(T)v) = . (5.6)

Theorem 5.4. Let o and (3 be the orthogonal projections on Hy of 1 and p(T) respec-
tively. Then the optimal solution to the optimization problem (5.5) and (5.6) is given
by

( <5 ﬁ) _330< 5)H)oz+(—z(a,ﬁ)H—i-xO(a,a)H)ﬁ
(@, @)y (B, B)y — (o, B

v= (5.7)

14



Proof: Note that
E(v — 2)* = E(v — za)® + 2°E(1 — a)”.
So, the optimization problem becomes
min [jv — ze3
subject to constraints
(v,a)y =2 and (v, )y = Xo. (5.8)
Using Lagrange multipliers, we define
F, A1, 29) = |lv — 2ol — 201 ((v, @)y — 2) — 2X2({v, By — T0), (v, A1, A9) € H X R°.
Taking Fréchet derivative and setting it to be zero, we have
2(v — za) — 2Ma — 206 = 0.
This implies
v =z + A+ Af.

Plugging the above into the constraints (5.8), we obtain the values of \; and Ay, which
lead to (5.7). O

5.2 Replicate v

In this subsection, we seek the wealth process z(t) which satisfies (3.1) and z(T") = v,
where v € Hy is given by (5.7). Namely, we seek a solution to the following backward
SDE:
da(t) = (w(B)po(t) + Sy (75(1) — po(®))us (1)) dt + 4, o (Hus(B)dv; (1), 0 <t < T,
z(T) =v.
(5.9)

Let

Z;(t) = Z o5 () ui(t).
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Then
wi(t) =Y o' (6)Z;(1) (5.10)

and (5.9) becomes
{ dﬂ(c%) = (2(®)no(®) + i, 6:(02;(1)) dt + X, Z;(8)dwi(), 0 <t < T, (5.11)

If 7/ = G, then (5.11) is the usual backward SDE (BSDE) whose solution exists,
assuming that () and 6;(t) are essentially bounded (cf. [28]). However, it is well-
known that, in general, F} # G;.

Now we give a proof to the existence of a unique square integrable solution to the
BSDE (5.11), under the following additional condition:

Assumption (UB): For some § > 0, A(t) > 61 a.s., a.e.t > 0, and po(t) and p(t) are
essentially bounded.

Under this assumption, 6;(¢) is also essentially bounded.

Proposition 5.5. If v € Hy, then (5.11) has a unique Gi-adapted, square integrable
solution (x(t), Z;(t), j =1,2,---,d).

Proof: If (x(t), Z;(t),  =1,2,---,d) is a Gi-adapted, square integrable solution to
(5.11), as in (5.3), we have

z(t)p(t) = o + Z /0 p(s) (Z 0ij(s)uals) — fv(S)@j(S)) dv;(s)

is a Gi-local martingale. Hence there is an increasing sequence of G;-stopping times

{7} with 7, = T as n — oo such that for each n,
z(tAT)p(t ATn) =E(x(T A7) p(T A1) |Gr)-
For any fixed t € [0, T,

z(tAT)p(t AT,) < sup z(s) sup p(s),
0<s<T 0<s<T

whereas the right hand side of the above is a square integrable random variable by

virtue of the Cauchy-Schwartz inequality and the standard L? estimation on the super
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norm of the solutions to SDEs. Hence we obtain by dominated convergence theorem
that

z(t)p(t) = EB(z(T)p(T)|G:)-
Namely,
2(t) = p(t) "Bvp(T)[G1). (5.12)

This implies the uniqueness of the solution.
To prove the existence we first assume that v € AC(G). We show that x(¢) given
by (5.12) is a solution to (5.11). As v € AC(G), vp(T) is square integrable in view of

Definition 5.1, and we have the representation
d t
B(0p(T)|G0) = B(wp(T)) + 3 [ @ (5)ivy(o) (513
j=1"0

where each ®’ is square integrable. Define
Zj(t) = x(t)0;(t) + p(t) '@ (), 0<t<T. (5.14)

By Ito’s formula, it is easy to show that (z(t), Z(t)) = (z(¢), Z;(t), j = 1,2,---,d)
satisfies (5.11). Moreover, a stopping time argument exactly as in [28, pp. 352-353]
establishes the square integrability of (z(t), Z(t)).

Next, let v € Hy. Then there is a sequence {v,} C AC(G) such that v, — v in H.
By the above proof there is a unique square integrable solution (z,(t), Z,(t)) to (5.11)

with z,(T) = v,. Moreover,

n

T
Sup]E/ (2a(®)] + | Za(®)2)dt < K sup Elv, 2 < +o0:
0 n

see p. 349, Theorem 2.2 in [28]. This implies that (z,(t), Z,(t)) is a bounded sequence
in LZ(0,T; R*""). Hence there is a subsequence (still denoted as (z,(t), Z,(t))), along
with (z(t), Z(t)) € L%(0,T;R1), so that

(Ta(t), Zn(t)) = (2(t), Z(t)) weakly in LZ(0,T;R*™).

By Mazur’s theorem there is a sequence (Z,(t), Z,(t)), each element of which is a

convex combination of those in {(z,(t), Z,(t))}, so that
(#n(t), Za(t)) — (2(t), Z(t)) (strongly) in L%(0, T;R4).
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Since (5.11) is a linear equation, by a standard technique we conclude that (x(t), Z(t))
is a square integrable solution to (5.11). O

Summarizing, we get

Theorem 5.6. For every z, there exists an optimal portfolio to the mean—variance
problem (2.3), which is a self-financed, admissible portfolio replicating v given by (5.7).
Moreover, this optimal portfolio u(t) is given by (5.10) and the corresponding optimal
wealth process is x(t), where (x(t), Z;(t), j = 1,2, -+ ,d) is the square integrable solu-
tion to (5.11).

So solving our partially observed mean-variance problem boils down to solving
the BSDE (5.11). Numerical solutions to some classes of nonlinear BSDEs have been
developed lately [29, 8]. However, in those works the drift coefficients of the BSDEs
are assumed to be deterministic functions. In our model, the coefficients po(t) and
6,(t) are random in general. It is to the best of our knowledge that how to solve such
a BSDE numerically remains open. In the next subsection, we shall give a numerical

solution to this BSDE based upon the constructive proof of the last theorem.

5.3 Numerical solution

In this subsection, we assume that the market is complete (see Definition 5.2) and
seek a numerical solution to (5.11). By virtue of the constructive proof of Proposition
5.5 the solution is given by (5.12) and (5.14). We now propose a numerical scheme to
approximate (5.12) and (5.14).

To start with, note that as the market is complete, « = 1 and 8 = p(T). By (5.7),

we get

zo — zEp(T)

As in the proof of Proposition 5.5, the key to solving (5.11) is the martingale repre-
sentation of the G;-martingale E(p(T)v|G;). We will establish a particle representation
for this martingale.

Let (6%,v'), (0% v?), --- be independent copies of (6, ) which appeared in (5.2).
Now we define p*(t,t'), t,#' > 0, in two steps. First, for t < #', let p'(¢,t') := p(t) which
is given by (5.2). Second, for t > t', let p'(t,t') be given by (5.2) with (b,v) replaced

18



by (b, v):

dp'(t,t') = —p'(t, 1) po(t)dt — Z Pt )0 (1) dvi(1), Pt t) = p(t). (5.16)
Let v*(T,t) be given by (5.15) with p(T) replaced by p*(T,t):
v (T, t) = 2 + %(pi(ﬂ t) — Ep(T)). (5.17)

Theorem 5.7. Let v be given by (5.15). Then
RS i
E(p(T)v|G:) = lim ; P (T, )0 (T, 1). (5.18)

Proof: Note that the SDE (5.16) has a unique strong solution. Therefore, there

exists a measurable functional F;r such that

(pi (T’ t)’ Ui (Ta t)) = Ft,T(e

0, V|10, 01> Vi1 -

Note that (z(t), v(t)) are G-measurable. Further, as discussed in Section 2 o7 (t) and
o(t) are also Gi-measurable. Thus, 6(t) defined by (5.1) is G;-measurable and we have,

(0"(T,1),v") = G (S0, 010, V' 1,11)
for a measurable functional Gy r. By the independence of S|y, (6|17, V' |it11), @ =
1,2, - -, it follows from the strong law of law numbers under the conditional probability
(given G;) that (5.18) holds. O

For notational simplicity, we now assume d =T = 1. Denote the process in (5.18)
by N(t). By (5.13), we have

which can be approximated by (cf. Jacod and Shiryaev [9], Theorem 1.4.47)

m

D (N () = N(te-1) (v(tr) — v(ty1)-

k=1
Based on the above, we now approximate ® by piecewise constants, i.e., approximate
® on (&, EH) by

n’> n

(1) = R (T - ()
(u(k:;1+min>_y(k;1+%>) (519
1,2,---

X
n =
19




where m = m,, is to be chosen late.

Lemma 5.8. For 1 < p < 2, we have

k " !
E|®" (—) —n/ d(s)ds
n k=1
k 5

< c¢(mP+ np/Qm—ph) (E/ (D(t)th) ,

k=1

for any € > 0, where ¢ depends only on p.
Proof: Let
k-1 j—-1 k—1 45—-1 k-1
7(t) = + j—, for 1T <y

n mn n mn n

Apply Ito’s formula, we have

o (%) _ n/i B(s)ds

k
n

= n [ AW @() —v(n(t)) + (N() = N(7(t)))} dv(?).

k

n

For p € (1,2), by Doob’s inequality, we have

| )

E
n

o (%) _ n/_ B(s)ds

IN

SIS

IN

3|

oK ( / v - N(w(t)))2dt)

n

IA

cpn? (]E /kn1 <I>(t)2dt) (E sup (v(t) —v(m(t)))>>

cpn’E (/k; {o@)*(v(t) — v(x(t))* + (N(t) = N(x(t)))*} dt)

PR (( /_ <I>(t)2dt> s (v16) - u(w(t)))p>

[SIS]

(5.20)



Note that for i.i.d. normal random variables & with mean 0 and variance o2, we have

€ m €
E sup & < (]E sup ff/6> < (Efo/€> < emfoP
i=1

1<i<m 1<i<m

for any € > 0. Thus

K / (N(t) — N(r(®)2dt = & /_ /ﬂ :t)tb(s)stdt

m E‘FL t
= E (s)?dsdt
7 L
] E
< —E (t)%dt.
nm  Je-1
(5.20) then follows easily. O
Next we need to approximate N (ké), k = 0,1,---,mn, where §j = % To this end,

we need to approximate p(t,%') by time-discretization. Recall that p’(t,t') is given by
(5.2) for t < ¢ and (5.16) for ¢t > ¢'.
For j <k, let
P (50,k8) = p'((5 —1)8,k8) — p'((j — 1), k8)o((j — 1)8)0
= ((7 = 1)8,k8)0((7 — 1)) (v(48) — v((j — 1)d)),
with p%(0, kd) := 1. For j > k, let
P (56,k8) = p'((5 —1)8,k8) — p'((j — 1), k&) o((j — 1)8)0
—p (7 = 1)8,k8)0((7 — 1)) (+*(j6) — v'((5 — 1)9)).
Let

xo — zEp(T)

V(T kS) 1= 2+ o)

(0"°(T, k) — Ep(T)),
and

N (k) 1= % S p (T, k6T, ko). (5.21)
=1
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Now, in view of (5.14), we define

() (e () o () e ()

where § = - (with m, suitably chosen), ®™° is defined as in (5.19) for ®" with N
replaced by N™?, the approximate #” and p" of # and p can be defined by the same
method as in Section 4.1 such that V § > 1,

Eégrw(%?)1W<%?>NM<%?>—MﬂAMWWﬂﬂ%O (5.23)
and
Eozltlé)T o" (@) B —p(t)™! ﬂ — 0. (5.24)

Finally, we define the approzrimate portfolio by
u(t) == N(t) 71 Z2M(¢).

Since we do not know the continuity of ®(s), we cannot obtain ®"(s) — ®(s)
(cf. (5.23)). Therefore, it is not clear whether u™(t) — u(t). However, we have the

convergence of their corresponding terminal wealths.

Theorem 5.9. Suppose that E(|vp(T)|?) < co. Then
Elz"(T) —z(T)| >0 asn— oco. (5.25)

Proof: For simplicity of notation, we assume po(t) = 0. Then by (5.11), we have

Elz"(T) — 2(T)| < c]E/O 0"(t)Z"(t) — 0(t) Z(t)|*dt

+m(ATM%w—ZUWﬁ)

We only estimate the second term (the first can be evaluated similarly). Note that by

(5.22) and (5.19),
o (M) o (1) e () - s oo

1/2

1Z2"(t) = Z2(1)] <

n n n

o (20) o (1) — py-ta)

22

+




By (5.23), the first term on the right hand side of the above inequality tends to 0.
Note that

(0 (o (2) - )
| [ () e () (20) g
+E- </ 4 <M> s (@)dt) 2
o o (5) - f a0 1/2
o 32 ot [ 0] s o0 .

The convergence of the first term follows from the similar arguments as in Subsection
4.1, that of the second term from (5.24), and that of the fourth term from the same
arguments as in the proof of Lebesgue’s continuity theorem, namely, first approximate
® by uniformly continuous functions and then prove the conclusion for such functions.
Finally, the third term is dominated by

E max |®" <E> —/kn ®(s)ds| sup p(t)~"

1<k<n k=1 0<t<T

n p\ 1/p p—=1
k P P
< |E " [ —) — P(s)d E t) »-1
i (Z () J-. “”) (2, 2m, 00077

< ¢n (m“p + np/Qm’p)

which converges to 0 if we take m = n® with 8 > max (%, %) O

Remark 5.10. It follows from (5.25) that Ex" (T') — Ex(T'). However, it is not clear
whether Var(z"(T")) — Var(z(T')). To achieve this, we need a higher moment (in p)
in (5.20) for which we require fOT ®(s)%ds to have a higher moment. To be precise, if

we assume that vp(T) has a moment of order p' > 2, then

E [( /0 T<I>(s)2ds>p’/2] < 0.

23



The proof of (5.20) can be adapted for 2 < p < p’ and, hence, (5.25) can be strengthen
to

E (|z"(T) — z(T)[) — 0.
In this case we get the convergence of both Ex"(7") and Var(z"(7)).

Remark 5.11. If the market is not complete, the numerical approximation of this
section remains valid if we replace 1 and p*(T,t) by their projections o and 8 on
Hy (i.e., use the formula (5.7) instead of (5.15)). However, it remains open how to

calculate o and 3° numerically.
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