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Abstract

This paper concerns the continuous-time, mean—variance portfolio selection problem in a
complete market with random interest rate, appreciation rates and volatility coefficients. The
problem is tackled using the results of stochastic linear—quadratic (LQ) optimal control and
backward stochastic differential equations (BSDEs), two theories that have been extensively
studied and developed in recent years. Specifically, the mean—variance problem is formulated as
a linearly constrained stochastic LQ control problem. Solvability of this LQ problem is reduced,
in turn, to proving global solvability of a stochastic Riccati equation. The proof of existence
and uniqueness of this Riccati equation, which is a fully nonlinear and singular BSDE with
random coefficients, is interesting in its own right and relies heavily on the structural properties

of the equation. Efficient investment strategies as well as the mean—variance efficient frontier



are then analytically derived in terms of the solution of this equation. In particular, it is
demonstrated that the efficient frontier in the mean-standard deviation diagram is still a
straight line or, equivalently, risk-free investment is still possible, even when the interest rate

is random. Finally, a version of the Mutual Fund Theorem is presented.

Key words— Dynamic mean—variance portfolio selection; stochastic linear—quadratic op-
timal control; backward stochastic differential equation; stochastic Riccati equation; efficient

frontier.

1 Introduction

Mean—variance portfolio selection is concerned with the allocation of wealth amongst a basket
of securities (consisting of one bond and several stocks) so as to achieve a satisfactory trade-off
between the return of the investment and the associated risk. In this paper, we consider the
dynamic mean—variance portfolio selection problem under the assumptions that the market
is complete and security trading takes place in continuous time. An important feature of
this problem is that the interest rate of the bond and the appreciation and volatility rates
of the stocks are allowed to be random processes. This contrasts with the model that is
usually adopted in which these quantities are taken as deterministic (and in many cases,
time-invariant); see for example Duffie and Jackson (1990), Duffie and Richardson (1991) and
Follmer and Sondermann (1986).

The mean—variance problem was pioneered by Markowitz in the single-period setting; see
Markowitz (1952, 1959). In the seminal paper Markowitz (1952), the variance of the final
wealth, Var z(T), is used as a measure of the risk associated with a given portfolio and the
problem of finding a satisfactory trade-off between risk and the expected return is posed as a
quadratic programming problem; see also Merton (1972) where this single-period problem is
solved analytically under the assumptions that the stock covariance matrix is positive definite
and shorting is allowed.

On the other hand, work on the multi-period portfolio selection problem has taken, in
general, a somewhat different, though related, tack to Markowitz’s original formulation of
the single-period problem. Rather than treating the Varz(T) and Ex(T) of a portfolio as
separate quantities and finding the relationship between them, as done in Markowitz (1952),
Merton (1972), and Perold (1984) for the single-period problem, a single quantity, the expected
utility of terminal wealth EU (z(T')), is considered instead. The conflicting ‘profit-seeking yet
risk-averse’ nature of the investor is captured by the utility function U, which is commonly a
power, log, exponential, or quadratic form. It should be noted that mean—variance analysis and

expected utility approach are two different tools in dealing with portfolio selection, accounting



for different degrees of risk-aversion. For example, the former enjoys a better performance when
the market is less volatile, while the latter performs better when the outcome of the stock prices
occurs at the tails of the distribution. (For this and a more detailed comparison between the
two, see Zhao and Ziemba (2000)). As a consequence, optimal portfolios determined by utility
functions are usually not mean—variance efficient (as understood in the Markowitz framework).
One exception is the case of the quadratic utility function; see Duffie and Richardson (1991)
where this relationship is shown in the setting of the related mean—variance hedging problem.

In a recent paper by Li and Ng (1999), the discrete-time multi-period mean—variance prob-
lem is studied in the framework of multi-objective optimization, where Var z(T") and Ez(T)
are viewed as competing objectives. They are combined to give the following single-objective

cost: For every u > 0 (representing the weights imposed by the investor on the two objectives),
J(u(-)) := —Ez(T) + pVar z(T). (1)

One feature of this paper is an embedding technique, introduced to deal with (1). This is
required since dynamic programming can not be used when the cost functional contains the
term Varz(T). By the above embedding, dynamic programming can be applied and the
mean—variance efficient frontier is explicitly obtained.

In the paper by Zhou and Li (2000), the continuous-time mean—variance problem (with de-
terministic coefficients) is formulated, for the first time, as a stochastic linear-quadratic (LQ)
optimal control problem. The solution of this problem is obtained using the embedding tech-
nique introduced in Li and Ng (1999) and results from stochastic LQ control. It is important
to recognize, however, that the solution of this problem could also have been obtained (after
embedding) via dynamic programming and the associated Hamilton-Jacobi-Bellman (HJB)
partial differential equation because the coeflicients are assumed to be deterministic. Never-
theless, there are many advantages of using the framework of stochastic LQ control to study
dynamic mean—variance problems. First, powerful results from the theory of stochastic con-
trol can be used to gain further insights into this problem. For example, recent results on the
optimal control of indefinite/singular stochastic LQ problems (see, e.g., Chen, Li and Zhou
(1998), Yong and Zhou (1999)) reveals the crucial role of uncertainty in stochastic control
problems. This, in turn, has important implications in finance applications. Second, a unified
study of various mean—variance type problems in finance can be undertaken in the framework
of stochastic LQ control. For example, in addition to the portfolio selection problem, a Black—
Scholes model with mean—variance hedging is naturally formulated as a stochastic L(Q problem
and solved using the LQ framework in Kohlmann and Zhou (2000). Thirdly, constraints on
the state and/or control variable and randomness in the parameters are part of the natural
language of stochastic control; such considerations in turn have important interpretations in

the setting of finance. Finally, we will show in this paper that the LQ approach, unlike the



HJB equation, can be applied to the mean-variance problem even when the parameters are
random.

In this paper, we consider the continuous-time mean—variance portfolio selection prob-
lem with random coefficients. We emphasize, however, that this generalization to random
coefficients is by no means routine and does give rise to difficulties not encountered in the
deterministic coefficient case. Firstly, the embedding technique can not be used and dynamic
programming is difficult to apply when the coefficients are not deterministic. In particular,
the usual HJB equation is not valid when the coefficients are random. (To be specific, the HIB
equation involves a terminal boundary condition and for this reason, will become a backward
stochastic partial differential equation in the case when coefficients are random. Such equa-
tions are complicated and difficult to handle). If one is to employ the LQ approach as done in
Zhou and Li (2000), then the key difficulty is the necessity of proving global solvability of the
so-called stochastic Riccati equation (SRE) associated with this problem. This brings us to the
second, and crucial, difference between the mean—variance problem with random coefficients,
and that with deterministic coefficients. When the coefficients are deterministic, the SRE re-
duces to a linear deterministic ordinary differential equation (ODE); existence and uniqueness
follows immediately from standard results. When the coefficients are random, however, the
SRE is a fully nonlinear, singular backward stochastic differential equation (BSDE) for which
the usual assumptions (such as the Lipschitz and linear growth conditions; see Pardoux and
Peng (1990) or Yong and Zhou (1999)) are not satisfied. For these reasons, global solvability of
this equation can not be established using standard techniques and must be proved by exploit-
ing the special structure of the SRE arising in the setting of mean—variance portfolio problem.
It is worth emphasizing that studying such a nonlinear BSDE is interesting in its own right.
(In recent years, BSDE theory has been developed extensively and enjoys profound applica-
tions in many areas, especially in finance; see Ma and Yong (1999) or Yong and Zhou (1999)
for the latest accounts of the theory and applications). Afterwards, the efficient frontier and
the optimal investment policy of the original mean—variance problem are derived analytically
in terms of the solution to the above SRE, by employing results from convex optimization
and stochastic LQ control. A rather interesting implication of our result is that the efficient
frontier in the mean—-standard deviation diagram is still a straight line or, equivalently, risk-
free investment is still possible, even when the interest rate is random. This, however, can
be explained by the fact that the risk arising from the random interest rate can be perfectly
hedged by composing an appropriate portfolio of the stocks, under the basic assumptions of
this paper that the interest rate is adapted to the stocks and the market is complete. Finally,
we show that the Mutual Fund theorem is still valid in the continuous-time, random parameter
setting, namely, any efficient portfolio can be constructed through the risk-free portfolio and

another pre-specified efficient portfolio.



It is worth mentioning that Korn (1997) considers a continuous-time mean—variance port-
folio selection problem with non-negativity constraints on the terminal wealth under the as-
sumption that all coefficients are deterministic and time-invariant. Basically the Lagrange
multiplier method is employed to tackle the problem. What is interesting is the way of dealing
with the non-negativity constraint: the initial wealth is decomposed into two parts; one part is
invested in a European put option to ensure the non-negativity of the terminal wealth, while
the other is invested in the market without constraints. Certainly the problem studied in Korn
(1997) is different from the one in this paper; also it is not clear how to extend the idea there
to the case where all the market coefficients, including the interest rate, are random. Finally,
duality methods play an important role in the problem of utility maximization as studied in
Cox and Huang (1989, 1991) and Karatzas, Lehoczky and Shreve (1987). (For a summary of
these results as well as generalizations to problems with portfolio constraints (e.g. Cvitanic
and Karatzas (1992)), we direct the reader to the book Karatzas and Shreve (1998)). In these
papers, convex duality is used to obtain the random terminal condition that must be satisfied
by the wealth process under the optimal investment strategy. Through this, a linear partial
differential equation for the optimal wealth and an expression for the optimal investment policy
are obtained. On the other hand, duality methods are used in this paper to reduce the mean
variance problem into an unconstrained stochastic LQ control problem that can be studied via
BSDEs.

The outline of this paper is as follows. In Section 2, we introduce the mean—variance
problem and formulate it as a stochastic optimization problem with linear equality constraints.
In Section 3, we treat the mean—variance problem as a linearly constrained stochastic LQ
problem. In particular, we show that global solvability of a singular Riccati BSDE is sufficient
for the solvability of the LQ problem. In Section 4, we prove existence and uniqueness of
solutions to the singular Riccati BSDE. In Section 5, we use these results to derive the mean—
variance efficient frontier and optimal policy. In Section 6, we end with some summarizing

comments.

2 Formulation of mean—variance portfolio selection

Let (Q, F, {Fi}t>0, P) be a complete filtered probability space such that Fy is augmented
by all the P-null sets of F (and hence {F;};>¢ is right continuous on [0,T")). Let W(t) =
(Wi(t), -+, W™(t))' be an R™-valued standard Brownian motion (with W (0) = 0) on this
space, and assume that {F;};>0 is generated by W (-). Throughout this paper, for any 1 < ¢ <
oo we denote the set of {F;};>0-adapted processes f on [0, T'] such that EfOT |f(t)|?dt < o0
by L%(0, T; R™), the set of {F;}s>o-adapted processes which are uniformly bounded by
LF(0, T; R™), the set of continuous {F; }+>0 adapted processes such that E{sup¢[o 1 If@)?} <



oo by L%_-(Q; C(0,T;R™)), and the set of all {F;};>o-adapted, uniformly bounded continuous
processes by LE(2; C(0,T;R™)). Finally, the set of bounded, R™-valued, Fr-adapted random
variables will be denoted by L% (£2, R™).

Consider a market with m + 1 securities, consisting of a bond and m stocks. The bond

price Py(t) satisfies the (stochastic) ordinary differential equation:

dPy(t) = r(t) Py(t) dt, te€ [0, T,
(2)
PO (O) =po > 07

where the interest rate r(t) > 0 is a uniformly bounded, {F;};>o-adapted, scalar-valued

stochastic process. The price of each of the stocks, Pi(t),---, Py(t), satisfies the stochastic
differential equation (SDE):

aPi(t) = P(O){bit) dt + X7, o3t aWI ()}, ¢ € [0, T,
(3)

where b;(t) > 0 and 04(t) = [041," -, oim(t)] are the appreciation rate and dispersion (or
volatility) rate of the " stock, respectively. Once again, we assume that b;(t) and oy;(t)
are scalar-valued, {F;};>0-adapted, uniformly bounded stochastic processes. Note that the
assumption that r(¢) > 0 and b;(¢) > 0 is made simply because this matches what happens in

practice. However, the main results in this paper do not rely on this assumption. Denoting

o1(t)
oty=| : |emmm )

om(t)

we assume throughout that o(t) is uniformly non-degenerate: that is, there exists § > 0 such

that
ot)o(t) >d61, Vte|0,T], P—a.s.. (5)

In particular, o(¢) must be non-singular a.e. t € [0, T'], P-a.s..
Suppose that the total wealth of an agent at time ¢ > 0 is denoted by z(t). If transaction
costs and consumption are ignored, and share trading takes place in continuous time, then we

obtain:
da(t) = {r()o(t) + T [bit) — r()] ui(t) } dt
+ Z;nzl Z;il O35 (t) Uj (t) AW (t)a te [07 T]a (6)

z(0) = =z >0,



where u;(t) is the total market value of the agent’s wealth in the i asset. If u;(t) < 0
(i = 1,---, m) then the agent is short selling the i stock. If ug(t) < 0, then the agent
is borrowing the amount |ug(t)| at rate r(t). We refer to u(t) = (ui(t), -, un(t))" as the
portfolio of the agent. Note that ug(t) has been excluded from a portfolio since it is completely
determined by the allocation of stocks and the total wealth z(t).

The agent’s objective is to find a portfolio u(-) such that the expected terminal wealth
satisfies Ez(T) = d, for some d € R, while the risk measured by the variance of the terminal

wealth
Var z(T) := E(z(T) — Ez(T))? = E(z(T) — d)? (7)

is minimized. The problem of finding such a portfolio u(-) is referred to as the mean—variance

portfolio selection problem.

Definition 2.1 A portfolio u(-) is said to be admissible if it is R™-valued, integrable (i.e.,
EfOT |u(t)|dt < +00), {F:}i>0-adapted and the SDE (6) has a unique solution z(-) correspond-

ing to u(-). In this case, we refer to (z(-), u(-)) as an admissible pair.

Therefore, the mean—variance problem can be formulated as a linearly constrained stochastic
optimization problem:

,

min Jyy (u()) == E 5 (2(T) — d)?,
subject to:

Ez(T) =d,

| () is admissible.

Finally, an optimal portfolio to the above problem is called an efficient portfolio corre-
sponding to d, the corresponding (Var z(T'),d) is called an efficient point, whereas the set of

all the efficient points is called an efficient frontier.

3 A stochastic LQ framework

It is clear from (8) that the mean—variance problem may be formulated as a linearly constrained
LQ optimal control problem. In this section, we derive a sufficient conditions for the solvability
of (8). In the first step of this derivation, the constrained problem (8) is reduced to an
unconstrained problem through the introduction of a Lagrange multiplier. Next, basic results
from convex optimization are used to show that solvability of this unconstrained problem is
sufficient for solvability of the constrained problem. In Section 3.1, a sufficient condition for
solvability of this unconstrained problem is derived using ideas from stochastic LQ control.

In particular, it is shown that the mean-variance problem boils down to proving existence

7



and uniqueness of solutions of an equation known in the literature as the stochastic Riccati
equation (SRE). In Section 3.2, expressions for the optimal solution of the constrained problem
(8) are obtained in terms of the SRE. The issue of solvability of the SRE is addressed in Section
4.

3.1 An unconstrained mean—variance problem

Rewrite the dynamics (6) as
de(t) = [r(t)z(t) + B(¢) u(t) ] dt +u(t)'o(t)dW (t), te€ [0, T],
z(0) = =z,

where B(t) = [bi(t) — r(t),---,bn(t) — r(t)]. Consider the cost functional:

T(u() = E%{Hw(T)Q +2ea(1)}, (10)

where the parameters H and ¢ are Fp-measurable random variables. Clearly J(u(:)) and
Jvv(u(-)) (see (8)) are equivalent, in terms of the minimization problem, with H = 1 and
¢ = —d. However, we choose to parameterize J(u(-)) since in the sequel we need to handle
different problems with different parameter values. Moreover, our analysis applies to a class
of problems more general than the mean-variance problem (for instance, H and ¢ may be
random variables). Since this is of independent interest, we shall use the notation as stated in
(9) and (10) and specialize to the mean—variance case later in the paper.

The class of admissible controls is the set
U= { € L%(0, T; R™) | (9) has a unique solution under u()}

Clearly U is a convex set. If u(-) € U and z(-) is the associated solution of (9), then we refer
to (z(-), u(-)) as an admissible pair.

Throughout this section, we shall assume the following:
Assumption (Al): H, c€ LE (Q; R), H > ¢ for some ¢ > 0.

Note in particular that H and ¢ may be random. The (unconstrained) stochastic LQ

problem associated with (9)-(10) is as follows:

min J (u()),
subject to: (11)
(z(-), u(-)) admissible for (9).

The problem (11) is said to be finite if there exists some finite constant K € R such that

J(u(-)) 2 K, Vu() €U,

8



and solvable if there exists a control u*(-) € U such that
J(W() < J(u(), Vu()eU.

In this case, the control u*(+) is referred to as the optimal control. We say that (11) is uniquely
solvable if it is solvable and the optimal control is unique. Note that a finite LQ problem is
not necessarily solvable.

Before stating the main result in this subsection, we introduce the following BSDEs (the

argument ¢ is suppressed):
( o nN—1nt -1y 1Az
dp——{[QT—B(aa) B]p—2B(a )A—;AA}dt

+A'dw, telo, T],

L p(t) >0, Vtelo, T],
dh = {Th + B(a’l)'n} dt + 1 dW

(13)
W) = 5,
and the forward SDE:
dz = { [r — B(oo')™! (B' + a%)] z — B(od')™! [(B' + a%)h + 077] } dt
o8+ 8] @+h) +n} aw, (14)

z(0) = zg.

The BSDE (12) is a special case of the SRE. A solution of the SRE is a pair of square-
integrable, adapted processes (p, A) € L¥(Q, C(0, T)) x L%_-(O, T; R™) which satisfies the
system of equations (12). Note that the inequality p > 0 is part of this system of equations
and needs to be verified when proving solvability. Similarly, a solution of the BSDE (13)
is a pair of square-integrable, adapted processes (h, n) € L%(Q, C(0, T)) x L%(0, T; R™)
that satisfies the SDE and terminal condition in (13). The SRE (12) and BSDE (13) play
a fundamental role in the solution of the LQ problem (11) (and hence, the mean—variance
problem (8)).

In Proposition 3.2, it will be shown that existence of solutions of the equation (12) is
sufficient for solvability of the LQ problem (11). When the coefficients r, B, o, H and ¢, are
all deterministic, we have A = 0 and 7 = 0. Hence, (12)-(13) become linear (backward) ODEs
and (14) is a linear SDE in z(-) with bounded coefficients. In this situation, the existence and

uniqueness of solutions of (12)-(14) follows immediately from the standard theory; see Yong and



Zhou (1999) or Zhou and Li (2000) for example. In the case of random parameters the equation
(13) is a linear BSDE with a bounded terminal condition. Standard theory, once again, applies
and guarantees the existence and uniqueness of a solution (h, 7) € L%(0, T; R) x L% (0, T; R");
see Yong and Zhou (2000). On the other hand, existence and uniqueness for (12) and (14) is
by no means trivial when coefficients are random. In this case, the SRE (12) is a complicated
nonlinear BSDE. In particular, the right hand side of this equation is not globally Lipschitz
continuous nor linearly growing (due to the term A’A/p) and hence, the standard results on
existence and uniqueness of solutions can not be applied. In the case of the SDE (14), the
term A € L%,-(O, T; R™) associated with the Riccati equation (12) appears in the coefficient of
the state x in both drift and diffusion. Although linear, the question of existence of solutions
of (14) no longer lies in the domain of standard theory, which requires the coefficients of z to
be uniformly bounded. In this section, we prove that existence and uniqueness of solutions of
(14) is implied by the existence and uniqueness of solutions of the SRE (12). The proof of the

existence and uniqueness for (12) will be deferred to the next section.

Proposition 3.1 Suppose that (A1) holds. If (12) has a unique solution (p, A) € L¥(Q; C(0, T;R)) x
LZ(0, T; R™), then (14) has a unique strong solution x. Moreover, for every 1 < g < oo,
z € LIL(Q; C(0, T; R)).
Proof: Consider the following linear SDE:
dX = —rXdt—XB(oc ') dW
(15)
X(0) = p(0)zo + p(0)(0).
By standard theory, there exists a unique strong solution X € LL(Q; C(0, T; R)) (1 < ¢ < 00)
of the SDE (15); see Yong and Zhou (1999). Define

X
2= —h€LH(® CO,TiR), 1<q<ox. (16)

(In particular, the right hand side of (16) is well defined since solvability of (12) implies p > 0).
Using Ito’s formula, it can be shown that z is a solution of the SDE (14). Uniqueness follows
immediately from the relation (16) as well as the uniqueness for the equations (12), (13) and
(15). [

The following result shows that solvability of the SRE (12) is a sufficient condition for solv-
ability of the LQ problem (11).

Proposition 3.2 Assume that (A1) holds and the BSDE (12) has a unique solution (p, A) €
LE(Q, C(0, T; R)) x LZ(0, T; R™). Then the associated stochastic LQ problem (11) is solv-

able. The unique optimal feedback control is given by

u(t) = —(e(o(t)) ™ [ (BE) + (1) %) (2(t) + h(t)) + o (t) n(2)] (17)

10



and the associated optimal cost is

62

7= 0@+ h0) - 5($)). (18)

Proof: It will be convenient to use the following equivalent expression for the BSDE (12):

dp = —[21"—(B'—i—a%)l(oa')’l(B'—I—a%)]pdt—I-A’dW, te o, T,
p(T) = H, (19)
p > 0.

Applying Tto’s formula to the expression (z(t) + h(t))?, it can be shown that:
d(z(t) + h(t))
= {u'aa'u + 2u’ (B'(ac +h)+ 077) +2r(z +h)2 +2(z+h)B' (o )n+ n'n}dt
+2(z + h)(n'o + n')dW.
Applying Tto’s formula to p(¢)(z(t) + h(t))?, using the BSDE (19), we obtain:
p(T)(2(T) + M(T))* = p(0)(z(0) + A(0))*
T '
-1 ! 20 o
+F /0 p{u+ (@) [(BW' +o(t) ~0) (@) + A1) +o(t)n(t)] }
)

Since

it follows that:

1 c?
Tu()) = 2p(0)(=(0) +h(0))* — B(%)
O o) + ht)) + o) )] }

xa(t)a(t)'{u + (o(t)o(t)) ! [(B(t)' +o(t) %) (z(t) + h(t)) + o() n(t)] }dt.

It follows immediately that (17) is the unique optimal control and (18) is the optimal cost. m

Before concluding this subsection, we present a result on the convexity properties of the
cost functional J(u(-)), defined by (9)-(10), which will be required later.

Proposition 3.3 Suppose that (A1) holds. Then the functional J(u(-)) defined by (9)-(10)

18 strictly convex.

Proof: This is an immediate consequence of the linearity of the dynamics (9) and the fact
that H > § > 0 for some constant § € R. n

11



3.2 Constrained mean—variance problem

We are now in the position to study the original mean—variance portfolio selection problem (8),
based on the results of the previous subsection on the unconstrained version of the problem.
We will keep the same setup, notation and assumptions of the previous subsection, with an

additional constraint represented by the following functional:
Ti(u() = E{q x(T)}, u(’) € U. (20)
We shall make the following assumptions:

Assumption (A2): H and c satisfy (A1) and ¢; € LE (2, R).

Let d € R be given and fixed. Consider the following linearly constrained L() problem:

[ J* = inf J(u(")),
subject to:
Ji(u() = d,

(z(-), u(+)) admissible for (9).

(21)

\

The problem is equivalent to the original mean—variance problem (8) with B(t) = [bi(t) —
r(t), -, bm(t) —r(t)], H =1, c = —d and ¢; = 1. However, as before, we keep the general
notation to ease the exposition as well as to see more general properties of the solution.

An admissible control u(-) € U is said to be a feasible control for (21) if it satisfies the
constraint in (21). If there exists a feasible control, then the problem (21) is said to be
feasible. Note that by convention, if (21) is not feasible, then J* = oco. We refer to (21) as
being finite if it is feasible and J* > —oo. Finally, if (21) is finite and the optimal cost is
achieved by a feasible control u*(-), then (21) is said to be solvable and u*(-) is an optimal
control.

As in the previous subsection, we shall assume throughout this subsection that the SRE
(12) has a unique solution (p, A) € L¥(Q, C(0, T; R)) x L%(0, T; R™). It follows from the
linearity of (13) and the boundedness of the coefficients in this equation that the BSDEs (13)
and

dh = {r h+ B(o~ly 77} dt + i dw, telo, T),
(22)
hT) = %.

have unique solutions (h, 1), (h, 7) € LL(Q; C(0, T; R)) x L%(0, T; R™), respectively, and

12



from Proposition 3.1 that the SDEs (14) and
(4 = { [r — B(oo")7! (B' + 0%)]5
—B(od')™ [(B' +o2 )h + 077] } dt

—{ [0_13' + %] (Z+h)+ r‘;}'dW, te o, T,

| 2(0) = 0.
have unique solutions z, T such that z, T € Lg_-(Q; C(0, T; R)) for every 1 < g < oo, respec-
tively. We have the following result on the feasibility of (21).

Proposition 3.4 Suppose that (A2) holds. Let (¢, &) € L%(Q; C(0, T; R)) x L%(0, T; R™)
denote the unique solution of the BSDE

dp(t) = —r(t)p(t)dt+ £ dW (), te o, T],
(24)
P(T) = .
Then the LQ problem (21) is feasible for every d € R if and only if
E/ +&@1t) o(t) Zdt > 0. (25)

Proof: To prove sufficiency, let u(t) = B(t)"1)(t) + o(¢)€(t) and 4(t) = Au(t), where A € R.
Denote by Z(t) the corresponding state under (-) for the system (9). Then it follows that
&(t) = y(t)+ A z(t), where y(-), z(-) € LL(Q; C(0, T; R)) (1 < g < 00) are the unique solutions
of the SDEs

dy(t) = r(t)y(t)dt, tel0, T,

y(0) = o,

dz(t) = [r(t)2(t) + Bu®)]dt +u(t)'ot)dW(t), te 0, T),
2(0) = 0,

respectively. Therefore, E[c1Z(T)] = E[c1y(T)]+AE[c12(T)] and (21) is feasible if for any d € R
there exists a A € R such that E[c;Z(T')] = d. Equivalently, (21) is feasible if E[c;z(T)] # 0.

Our result follows from the observation that

Ele12(T)] = E / ey oty at de (26)

(see p. 353 of Yong and Zhou (1999)) and the definition of %(t).
Conversely, suppose that (21) is feasible for every d € R. Then, for each d € R, there is a
u(t) = au(t) such that E[ciz(T)] = Elc1y(T)] + Elc12(T)] = d. Since E[c,y(T)] is independent
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of u(-), this implies that there exists 4(-) such that E[c12(T")] # 0. Hence, it follows from (26)
that (25) is true. n

From Proposition 3.4 and the condition (25), we obtain certain minimum requirements for
the LQ problem (21) to be feasible for every d € R. In particular, it is necessary that ¢; # 0
(since (v, &) = (0, 0) is the unique solution of (24) when ¢; =0) and B # 0 or o # 0. In view
of (21), these requirements for feasibility are as expected. On the other hand, if (v, &) # (0, 0)
(which is the case when c¢; # 0), then (25) is easily satisfied since (1, £) is independent of
B and o. In particular, if (¢, &) # (0, 0) but (25) does not hold, then there are ‘arbitrarily
small’ perturbations of B and ¢ that will give rise to a new problem that is feasible for every
d. Hence, assuming feasibility of (21) for every d € R (or equivalently, that (25) holds) is very
mild.

We have the following result.

Proposition 3.5 Assume that (A2) and (25) are satisfied. Let d € R be given and fized.
Then (21) is finite for every d € R. Moreover, if the BSDE (12) has a unique solution
(p, A) € L (Q, C(0, T; R)) x L%(0, T; R™), then the inequality

2

p(0) 7(0)2 < E(%) (27)

is satisfied, and the optimal cost of (21) is

z{p ) (0 + B(0 ))ﬂ%}
1 (P(O)B(O) [0 + h(0)] — E(%) B d>2

+5 5 — (28)
2 B(3) — p(0)h(0)?
Furthermore, if (21) is solvable, then its optimal feedback control is
‘ A)Y, »
W) = ~e®o@)) ! [(BO + o)) @) +h(0) + o)) n(t)
) A(?)
(B + o) )h) +o0a) | (29)
and the corresponding optimal state trajectory is
z*(t) = z(t) + A*z(¢), (30)
where z(-) and z(-) are the solutions to (14) and (23), respectively, and
o PORO) o + )] - B() —d -
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Proof: Let
X = {(:v, u) € L:(0, T; R) x L%(0, T; R™)) | (z, u) is admissible}.

Clearly, X is a convex subset of Lz(0, T; R) x Lx(0, T; R™). Hence, we may treat J(:)
either as a function of u(-) € U, or equivalently, as a function of (z(-), u(-)) € X. (In this
case, we shall often write J(z(-), u(-))). Similarly, treating J;(-) as a function of (z(-), u(-)),
it follows that Ji(z(-), u(-)) is linear on L%(0, T; R) x L%(0, T; R™). Moreover, it follows
from Proposition 3.3 that J(z(-), u(-)) is convex over X. Therefore, (21) is equivalent to the

following optimization problem with convex cost and linear constraints:
J* :=inf J(z(-), u(+))
Subject to:
Ji(z(-), u(")) =4,
(z(-), u(*)) € X.

Now, by assumption and Proposition 3.4 the constrained LQ problem (21) is feasible. More-

(32)

over, it follows from Proposition 3.2 that existence for (12) implies that the unconstrained LQ
problem (11), with cost J(u(-)) = E(1/2)(Hz(T)? + 2cx(T)), is solvable with a finite optimal
cost. Therefore, (21) is finite. Hence it follows from Luenberger (1968) that

J* = r/{1eaﬁ§(u(n)1£u J(u(-); A), (33)

where
J(u(-); A) == J(u(-)) + A(J1(u(-) —d).
By Proposition 3.2, for every fixed A € R, the unconstrained L(Q) problem

TO) = nf T((): )

is solvable with optimal cost

J*(A)
= L) [a+ 1) + 2h0)] - B(EE2ADN g
- o) 5(5))
+%{2)\ [p0) A(0)fz0 + ()] ~ B(S2) ~ d]
22 [E(%) ~ p(0)R(0)*] }, (34)
and optimal control
u = —(o0')! [(B’ + a%) (x+h)+on+ A((B’ + a%)ﬁ + aﬁ)]. (35)
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Since (21) is feasible for every d € R, the right hand side of (33) is bounded and equal to J*, and
this maximum is achieved by some \*. Hence it follows from (34) that E(c?/H)—p(0)h(0)2 > 0.
However, since the right hand side of (33) is bounded, it follows that if E(c?/H)—p(0)h(0)2 = 0,

we must have
cCy

p(0) R (0)[zo + R(0)] — E(f) —d=0

for every d € R, which is a contradiction. Therefore, (27) must hold and A* is given by (31)
and J* by (28). Furthermore, if (21) is solvable, then it follows from (35) that the optimal
control is given by (29). Substituting (29) into (9), it follows that the optimal state trajectory
is given by (30). n

To conclude this section, we remark that the results of Section 3.1, in particular Proposition

3.2, can be extended to a more general stochastic LQ problem where the dynamics is

dz(t) = [A(t)z(t) + B(t)u(t)]dt
+ 3084 [C() z(t) + Dj(t) u(®)] dWI(t), te 0, T], (36)

z(0) = =,

and the cost functional is

T(u()) :E%{ /0 (2(tY Q)= (t) +u(t) R(tyu(t)) dt + o(T) Ha(T) +2¢5(T)}.  (37)

Here A, B, C}, Dj, Q and R are {F;};>0-adapted, matrix-valued processes, o € R" is non-

random, and H and c¢ are Fr-random variables. Assuming that the following SRE
(4P = —{PA +AP+YR (A Cj+CiA+CLPCH) +Q

- [pB + kL (CLP + Ay) Dj] K1 [B'P + ok DL (PCy + A]-)] } dt
9 +YF A AW, te o, T), (38)

P(T) = H,

k
\ K = R+Zj:1D}PDj > 0
has a solution (P, A), the optimal feedback control and optimal cost can be obtained explic-
itly based on a completion-of-square argument similar to the one employed in the proof of

Proposition 3.2. Details are left to the interested readers.

4 Solvability of stochastic Riccati equation

An immediate consequence of Proposition 3.5 is that the mean—variance problem (8) is solvable
if the SRE (12) has a unique solution. The one remaining gap in our solution of the mean—

variance problem is a proof of global solvability of the SRE (12). The SRE (12) is a special
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case (corresponding to the mean—variance problem (8)) of the multi-dimensional SRE (38)
associated with the general stochastic LQ optimal control problem (36)—(37). This general
SRE (38) is a highly nonlinear, matrix-valued BSDE, and very little is known about the
solvability properties of the equation. Chen and Yong (2000) proved some results on local
solvability of (38). For global solvability of (38), partial results have been obtained in certain
special cases (e.g. Bismut (1976), Peng (1992) and Kohlmann and Tang (2000)) though none of
these results cover the situation (8) that we are interested in. In particular, in Kohlmann and
Tang (2000) the coefficients are random processes adapted to only certain components of the
underlying Brownian motion, while the coefficients D;’s corresponding to these components
are assumed to be zero. This is essentially equivalent to the case when the random coefficients
are independent of the Brownian motion. As a consequence, the corresponding SRE in the
context of the mean—variance problem in Kohlmann and Tang (2000) is a linear BSDE. On
the other hand, we are interested in the situation where the coefficients are adapted to the
Brownian motion and, in the mean—variance problem (8), the SRE remains nonlinear (12).

Fortunately, the SRE (12) studied in this paper has a special structure due, in particular,
to the fact that the state variable z(t) is scalar-valued and the cost J(u(-)) depends only on
the terminal wealth z(7T). In this section, we shall prove existence and uniqueness of solutions
of (12) by fully exploiting these special features. Note that the proof is by no means trivial
even though it is a scalar BSDE; in fact the approach to the SRE (12) is interesting in its own
right.

To begin, consider the following linear scalar BSDE:

dY = —{FY +G'Z}dt+ Z'dW, te o, T,
(39)
Y(T) = ¢

A solution (Y, Z) of (39), where Z € L%(0, T; R™), is said to be a bounded solution if
(Y, Z) € L¥(Q, C(0, T; R)) x L%(0, T; R™). Also, if Y1, Y, € LP (% C(0, T;R))) are pro-
cesses satisfying Y7 (t) > Y5(t) for all ¢ € [0, T'], P-a.s., then we write Y7 > Ya.

Proposition 4.1 Let F € LP(0, T; R), G € L¥(0, T; R™) and £ € LE (2 R) such that
& >0 P-a.s. for some constant 6 > 0. Then the BSDE (39) has a unique solution (Y, Z) €
LE(Q; C(0, T;R)) x L%(0, T; R™). Moreover, there is a constant k > 0 such that Y > k.

Proof: Since (39) is a linear BSDE with bounded coefficients, it has a unique square inte-
grable solution (Y, Z) € L%(Q; C(0, T;R)) x L%(0, T; R™); see Theorem 2.2, p. 349 of Yong
and Zhou (1999). To show that ¥ € LE(€; C(0, T;R)), note that Y has the representation:

Y(t) = B{ge i T

3 (40)
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where E is the expectation with respect to another probability measure P with Radon-
Nikodym derivative:

Z_ﬁ b I GG dr Gy aw (),

see Proposition 2.2 of El Karoui, Peng and Quenez (1987). (Note that Novikov’s condition
is satisfied since G is uniformly bounded; see Theorem 5.1, p. 191 and Corollary 5.13, p.
199 of Karatzas and Shreve (1988)). It follows now from the assumptions on ¢ and F that
Y € L¥(0, T; R) and Y > k for some k > 0. ]

Theorem 4.1 Suppose all the parameters involved satisfy (A1l). Then there exists a unique
solution (p, A) € L (2, C(0, T; R)) x L%(0, T; R™) of the stochastic Riccati equation (12).

Proof: C(learly, the existence and uniqueness of solutions of the BSDE
dp = —{Fp+G'A- %A'A} dt + AN'dw, telo, T],
p(T) = M, (41)

p(t) > 0, Vtel0,T],

for arbitrary F' € L¥(0, T; R), G € L¥(0, T; R™) and M € L% (Q; R) such that M > 0
and M~! € L% (2; R) implies existence and uniqueness for (12). To prove existence for (41),
consider the following BSDE:
dY = —{-FY+G'Z}dt+Z'dW, tel0, T,
(42)
Y(T) = 4.

Since M € L%OT(Q; R) and M > 0, there is a finite constant § > 0 such that % > 4, P-a.s..
By Proposition 4.1, (42) has a unique solution (Y, Z) € L¥(%, C(0, T; R)) x L%(0, T; R™)
and k£ <Y < K, P-a.s., for some constants 0 < k < K < oo. Therefore, (p, A) = (%, —%)
is well defined and (p, A) € LE(Q, C(0, T; R)) x L%(0, T; R™) with 0 < & < p < +. It can
be directly verified, using Ito’s formula, that (p, A) is a solution of the BSDE (41). To prove
uniqueness, observe that if (p, A) is a solution of (41), then (Y, Z) = (%, —Z%) is a solution of

(42). Uniqueness follows from the fact that (42) has a unique solution. n

5 Efficient portfolios and efficient frontier

Finally we are at the stage of solving the original mean—variance problem (8). The problem is

a special case of the constrained LQ problem (21) with system parameters
B(t) = [b1(t) = 7r(8), -, bm(t) —r(¥)], H=1, c=—d, c1 =1, (43)
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(which we shall assume throughout this section). Denoting
p(t) = B(t)(o(t) o(t)) " B(t)',
the SRE (12) can be rewritten as
dp = —{(21" —p)p—2B(c1)A - %A’A} dt + A'dW, €0, T),
p(T) = 1
Cousider the following BSDE:
dg = {rg + B(o—l)'g} dt +¢'dW, telo,T),
9(T) = 1

Then the solutions to (13) and (22) (with parameters (43)) are

(h(t), n(t)) = (=dg(t), —d((),

(r(®), () = (g(t), C(t))-

Finally, the SDEs (14) and (23) respectively become
[ dr = { [r — B(oo")! (B' + 0%)]:1:

+dB(oo’) ! [(B’ - U%)g - o(] } dt

—{ [ale' n %] (z—dg) — dg}'dw, telo, T,

z(0) = =z
dz = {[T—B(oa’)*1<B'+0%)]§:

_B(oo')! [(B’ + 0%)9 + ag] } dt

—{ [0_13' + %] (Z+g)+ C}'dW, te o, T,

We have the following result.

(44)

(46)

Theorem 5.1 (Efficient portfolios and efficient frontier) Assume that (25) holds (with

the parameters (43)). Then

p(0)g(0)2 <1 and ¢(0) > 0.

19

(49)



Moreover, the mean—variance problem (8) is finite for every d € R and the optimal value of

Var z(T'), amongst all the wealth processes x(-) satisfying Ex(T) = d, is

007 [,
Vor o0 = 120, o7 1~ 50 o0

Furthermore, if there exists a policy u*(-) that results in a wealth process x*(-) that achieves
Ex*(T) =d and (50), then

2 (t) = o(t) + \'z(8) (51)
and the optimal portfolio is
w(t) = —(o(t)o(t)')1[(B<t>'+o<t>%)<x*(t)—dg(t))—do(t)@(t)
: ' A(?)
+x((BW +olt) Sy )9t +o(t)¢())] (52)
where
. p0)g0)? [
X =T me0r ) )

Proof:  Since the terminal condition of (45) satisfies g(T") = 1, it follows from Lemma 4.1
that there exists a finite constant & > 0 such that g(¢t) > k for all ¢t € [0, T], P-a.s.. This

implies g(0) > 0. The remaining claims are an immediate consequence of Proposition 3.5. m

In the case when r(t) is deterministic, we have the following result.

Corollary 5.1 Suppose that r(t) is deterministic. Then the mean—variance problem (8) is
finite for all d € R if and only if B # 0. In this case

(9(8), C(1)) = (eI 7%, 0) (54)
and the optimal variance associated with the return Ex*(T) =d is

—2 fT r(s)ds 2
Var z*(T) = pOe " = [d — 10 elo 7(5) ds] : (55)
1 p(O)e—Z Jo r(s)ds

In addition, if B(t) and o(t) are also deterministic, then
(p(t), A(t) = (el @rOplN s ). (56)

Proof: If r(¢) is deterministic, then (54) is the only solution of (45) due to the uniqueness

of its solutions. Similarly, (24) becomes an ODE with a (unique) solution

(1), &) = (b, 0).
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Since 7(t) is uniformly bounded, there are constants 0 < d; < d2 such that

T T T
61E/ |B(t)| dt < E/ | B+ ¢€'o'|2dt < 52E/ |B(t)|? dt.
0 0 0

Hence, it follows from Proposition 3.4 that (8) is finite for every d € R if and only if B # 0.

The remaining claims are immediate from Theorem 5.1. m

We emphasize once again that the condition (25) for finiteness of the mean-variance prob-
lem is very mild, even in the case when all the parameters are random; see the comments
after Proposition 3.4. In particular, we see from Corollary 5.1 that if r(¢) is deterministic and
B(t) # 0 (which is a sensible assumption as the appreciation rates of stocks are supposed to
be different from the bond rate), then the condition (25) is automatically satisfied and the
associated mean—variance problem is finite. Hence, when r(t) is deterministic and B(t) # 0,
the efficient point associated with the mean—variance problem exists for every d € R. This
resolves an open issue from Theorem 6.1 in Zhou and Li (1999) where the existence of an
efficient point for any d € R is assumed but not proven. On the other hand, if r(¢) is random
and B(t) = 0, then the unique solution of (24) is (¢, £) € L%(Q; C(0, T; R)) x L%(0, T; R™)

with £ # 0 in general. Hence, in this situation, it is generally the case that

T T T
E/ |¢B+§’a’|2dt:E/ 10" 2 dt > 6E/ €% dt > 0. (57)
0 0 0

Therefore, if r(¢) is random, the mean-variance problem may still be feasible for every d € R,
even in the pathological case when B = 0. In fact, when r(¢) is random, it is generally feasible.
This is quite contrary to the case when r(¢) is deterministic and B = 0 for which we are
generally unable to realize a given expected terminal wealth Fz(T) = d. This shows one
fundamental difference that is brought about by the additional uncertainty.

We have seen that the process g(t) plays a central role in the solution to the mean—variance
problem; see Theorem 5.1. It has a clear financial interpretation which we now elaborate.
When r(t) is deterministic, it follows from (54) that g(¢) is nothing but the discount rate
between the current time ¢ and the terminal time 7. When r(¢) is random, then the equation
(45) suggests that g(t) is the price process of a contingent claim with a unit terminal payoff,
while (o(t) 1)'¢((t) is the replicating portfolio of the claim; see Proposition 6.1, p. 394 of Yong
and Zhou (1999). Thus, g(t) is the risk-adjusted discount rate between t and T'; in particular,
g(0) is the risk-adjusted discount rate for the entire horizon [0,7]. Quantitative properties
of this discounting process follow immediately from the Comparison Theorem for nonlinear
BSDEs (Theorem 5.1, p. 199 of El Karoui, Peng and Quenez (1997)).

Proposition 5.1 Ifr(t) > 0 a.e. t € [0, T], P-a.s., then 0 < g(0) < 1. If r(t) > 0 for some
§>0 ae. tel0,T], P-a.s., then 0 < g(0) < 1. Moreover, if (h, n) and (h, 7j) are solutions
of (45), corresponding to interest rates of r(t) and 7(t), respectively, then r(t) < 7(t) implies

h(t) < h(t).
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We note that the optimal variance (50) involves a perfect square. In particular, choosing

Zo
3(0) (58)

the associated optimal variance is Var z{(T") = 0. Substituting (58) into (53), it follows that

d=dy

the associated optimal investment policy corresponds to A§ = 0. Substituting this into (52),

we obtain the corresponding optimal control
A
* n—1 ! - * _
uy = —(o0’) [(B +Up)($o dog) dOUC]- (59)

By (45), (46) and (47), we obtain

d(wg—dog) = [A—Bloo")" (B +0b)] (a5 - dog) dt

!
—(a} — dog) [0 B + A] aw, e o, 7], (60)

25(0) — dog(0) = 0,

and hence,
my(t) — dog(t) =0, Vte[0,T], P—a.s.. (61)
Therefore, (59) becomes
up(t) = —= (o (t) )¢ (). (62)

If r(t) is deterministic, then ((¢) = 0 and hence, u§(t) = 0, meaning that the risk-free in-
vestment corresponds to putting all the wealth in the bond and nothing into stocks, which is
precisely the result obtained in Zhou and Li (1999). On the other hand, if r(¢) is random,
then ((t¢) is generally non-zero and hence ufj(t) # 0. Note that as discussed earlier, the part
(o(t)"1)'¢ () in (62) is nothing but the replicating portfolio for the contingent claim as speci-
fied in (45). In other words, if the interest rate is random, then a risk-free investment is still
possible, and uses the above replicating portfolio to perfectly hedge the risk arising from the

random interest rate. This leads to the following theorem.

Theorem 5.2 (Risk-free portfolio) A risk-free investment is given by the portfolio (62)

with the deterministic terminal wealth given by (58).

Note that if r(¢) > § for some § > 0, then it follows from Proposition 5.1 that g(0) < 1
and hence in view of (58) an increase of initial wealth is therefore guaranteed. Moreover, it is
seen that the agent can expect a terminal wealth of at least dy = %. Hence it is reasonable
to restrict the parameter d in the problem (8) to be d > dy. (This is why in many literatures

the efficient frontier is limited to the portion where d > dj.)
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If we denote by o,(7) the standard deviation of the terminal wealth, then (50) gives (taking

into consideration the above discussion)

o 1-p(0)g(0)? 1 _
9(0) p(0)  g(0)”*"r

Hence the efficient frontier in the mean—standard deviation diagram is still a straight line,

(63)

which is also termed the capital market line (see, e.g., Luenberger (1998)). The slope of this

1-p(0) g(0)* 1 _
p(0)  9(0)’

The so-called Mutual Fund Theorem, originally due to Tobin (1958) for single-period in-

line, k = is called the price of risk.

vestment, is a natural consequence of the mean—variance theory, and is the foundation of the
CAPM (Capital Asset Pricing Model) (Sharpe (1964)). It turns out that a version of the

Mutual Fund Theorem also holds in the continuous-time, random coefficient setting.

Theorem 5.3 (Mutual Fund Theorem) Suppose an efficient portfolio ui(-) is given by
(52) corresponding to d = dy > ﬁ(%- Then a portfolio uw*(-) is efficient if and only if there is
o > 0 such that

w(t) = (1 - a)ug(-) +aui(t), t€[0,T], (64)
where uj(-) is the risk-free portfolio defined in (62).

Proof: We first prove the “if” part. Since both u{(-) and uj(-) are efficient, by the explicit
expression of any efficient portfolio given by (52), u*(t) = (1 — a)ug(-) + auj(t) must be in the
form of (52) corresponding to d = (1 — a)dy + ad; (also noting that z*(-) is linear in u*(-)).
Hence u*(t) must be efficient.

Conversely, suppose u*(+) is efficient corresponding to a certain d > 90 = dy. Write

d = (1 — a)dy + ad;. Multiplying

wy(t) = ~(e(Wo(t)) ™|~ doo]
by (1 — «), multiplying
wi(t) = —(e@ot)) [ (BO) +0t)58) @) - dig(t) — dio ()¢
— 20805 1 — do) ((B(t) + o)A ) g(t) + o) (1))

by @, summing them up, and noticing that a(d —dp) = d — dp, we obtain that (1 — a)ug(t) +
auj(t) is represented by (52) with z*(t) = (1 — a)z{(t) + azi(t) and d = (1 — a)dy + ad;. This
leads to (64). ]

In the classical single-period setting, the mutual fund theorem asserts that any efficient

portfolio is a combination of the risk-free asset and a fund consisting of only stocks (called the
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tangent fund). As a consequence, for any efficient portfolio the allocations among the stocks
must have constant proportions independent of the total wealth of the agent. In the present
case, however, the efficient portfolio obtained in (52) does not have the above feature. This
suggests that the version of the mutual fund theorem in the single-period is no longer valid in
the current setting. This is not surprising, though, for even the risk-free portfolio now has to

include stocks (Theorem 5.2).

6 Conclusion

In this paper, we have studied the continuous-time mean—variance portfolio selection problem
with random interest rate, appreciation rates and volatility coefficients. By treating this
as a linearly constrained stochastic LQ problem and using results from the theory of convex
optimization, the efficient frontier and associated optimal portfolio are explicitly derived. A key
part of our analysis involves proving existence and uniqueness of solutions of a certain nonlinear
BSDE. Although of independent interest, these existence results imply the solvability of the
unconstrained LQ problems that arise with the introduction of Lagrange multipliers and plays
a fundamental role in our derivation. The mean—variance efficient frontier for this problem is
a perfect square, suggesting that risk-free investment is still possible when interest rates are
random. This paper again demonstrates that the stochastic LQ control can serve as a powerful

framework for dealing with certain financial application problems.
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