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ON THE EXISTENCE OF OPTIMAL RELAXED CONTROLS OF
STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS*

XUN YU ZHOU*t

Abstract. This paper is concerned with control problem of systems governed by stochastic partial
differential equations, the drift and diffusion terms of which are second- and first-order differential operators,
respectively. The existence of an optimal relaxed control is studied in both cases where the systems are
degenerate and nondegenerate. It is shown that the higher regularity conditions on the initial state, as
required in the existing results, can be dispensed with if the Wiener process is one-dimensional. Some special
cases of multidimensional Wiener process are also discussed, which in particular leads to an improvement
of a recent result of Bensoussan and Nisio. The method is based on an analysis of the group generated by
the first-order differential operator. As an application, an existence theorem of the optimal relaxed control
is proved for partially observed diffusions with correlation between the controlled states and the observation

noises.
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1. Introduction. In this paper we consider an optimal control problem of the
following kind of stochastic partial differential equations (SPDE):
dq(r, x)=[8;(a”(x, u(1))a,q(1, x))+b'(x, u(r))aq(t, x)
+elx, u(n)g(r, x)+£(x, u(1))] di
+[o'(x)a.q(t, x)+h(x)g(r, x)+g(x)] dW(1),
xeRY te[o0, T],

(1.1)

(0, x) = go(x), x€R",

where W is a one-dimensional Wiener process with W(0) =0, {u(r): 0=r=T} is an
admissible control (in the usual sense), and d,:=4d/dx;, i=1,2, - -, d. Note that here
and in the following we always use the conventional repeated indices for summation.

The optimal control problem is to minimize a given cost functional over the totality
of admissible controls. SPDE (1.1) occurs in many areas of science, especially in
physics (see [8]-[10] and [13] and the references therein). From the mathematical
point of view, the most important example is perhaps the filtering problem. More
precisely, the control problem of partially observed diffusions can be reduced to the
control problem of SPDE (1.1) (Zakai's equation), with the o' in (1.1) corresponding
to the correlation between the controlled state and the observation noises ([12], [13],
and [15]). :

The existence of an optimal control in the usual sense seems to be a very difficult
problem and remains open in general. Many authors turned to studying the relaxed
control problem ([1], [4], [6] and [13]). For system (1.1), when &' =0, Bensoussan
and Nisio [1] have proved the existence of an optimal relaxed control, assuming (a’)
is uniformly positive definite and goe H*(R?) (H*(R"):=Sobolev space W3(R)).
When o' # 0, the situation is much more complicated. For this case, the recent delicate
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work of Nagase and Nisio [13] shows that the existence theorem still holds when
(a"—3/2¢'c”) is nonnegative definite and gy & H(R“). Both [1] and [13] have applied
a similar method to that of Nagase [12], the key point of which is to employ a compact
embedding lemma, see [12, Remark 3.1]. These results, however, require the higher
regularity on the initial point go.

The purpose of the present paper is to establish the existence of an optimal relaxed
control of SPDE (1.1), with some natural regularity conditions on the initial state qo.
Different from that of [1], [12], and [13], our method depends on an analysis of the
group generated by the first-order differential operator, inspired by Da Prato, lannelli,
and Tubaro [3]. This frees us from the set-up of [1], [12], and [13], allowing us to
eliminate the higher regularity restriction on g,. The main results of this paper, roughly
speaking, are as follows: Either

(i) (a”—1/20'c") is nonnegative definite and g€ H'(R?), or

- (i) (a@”=1/2¢'a”) is uniformly positive definite and go€ HR?)(=L*(R"))
will ensure the existence of an optimal relaxed control.

An apparent defect of our method, however, is that the Wiener process W is
required to be one-dimensional. For multidimensional cases, the method applies only
to some special cases. In particular, we will show that our method s effective to the
setting of Bensoussan and Nisio [1]; therefore, their result may be considerably
improved.

It is also worth noting that this work benefits so much by the delicate and deep
results of Krylov and Rozovskii [8]-[10] concerning the SPDE theory, and in particular,
the a priori estimate of differential operators (Lemma 3.1 below).

The paper is organized as follows: In § 2, we will give a precise definition of the
relaxed system of (1.1) as well as some basic notation and facts. Sections 3 and 4 are
the main parts of the paper, in which the existence theorems are proved for degenerate
case (i.e., (a’—1/20'c’) is nonnegative definite) and nondegenerate case (i.e., (a”—
1/2¢'a?) is uniformly positive definite), respectively. In § 5, we discuss the cases when
the Wiener process is multidimensional, as well as the application of the main results
to the partially observed diffusions.

2. Preliminaries. We define a family of second-order differential operators
{A(u): ue'= R™} and a first-order differential operator M by

(2.1) Alu)d(x)=a,(a’(x, u)a,p(x))+b'(x, w)aip (x) +e(x, u)&(x),
(2.2) M (x):=c'(x)ab(x)+h(x)d(x), forxe R

where a”, b, ¢, o', and h are real-valued functions for i, j=1, 2,*-*, d.

Let H* be the Sobolev space W(R?) with the norm |||l (k=0, £1,%2,--*).
(-,*)x denotes the duality pairing between H*' and H*"' under (H*)*=H*, and
(-, ), is the inner product in H". For r=0, define

L¥:={¢: ¢ is a real-valued Borel function on R
and (1+|-])?¢()e H',

with the norm [|@lo, = (J g« |(1 4 |x) 72 (x)[ dx)"*.
Let H* be the subspace of L} consisting of functions whose generalized derivatives

r

up to the order k belong to L2. It becomes a Hilbert space with the norm

lo=( 2 il

Jer|= K a‘l- bl ad!

see [10, § 2].
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For any second-order differential operator L, when we write {Ld, /)y, then L is
understood to be an operator from H**' to H*"' by formally using Green’s formula.
For example, for the operators A(u) defined by (2.1), we have

(A(u), ) =—(a"(", u)a,b, 3 )kt (b' (-, w)did, V)i
(e, ), @) ford,pe H'".

Now we recall the definition of relaxed controls, according to [1], [4], and [13].
By A we denote the set of all measures A on [0, T]xT such that

(2.3)

(2.4) A([0, s]1xT)=s, fors= T.

If [ is a compact set, then A is compact when endowed with the weak convergence
topology ([1] and [13]).

Set o,(A):=the o-field generated by {A: A([0, s]xA)E B(R™), s=1, A€ B(T))
and o(A)=or(A). Let @:=P(A) be the space of probabilities on (A, o(A)), then
Prohorov's theorem yields that P is a compact metric space when endowed with the

weak convergence topology.

By (2.4), A is represented by Aldr, du)=A'(1, du) di, where A'(t, +) is a probability
on I' for almost all 1 and determined uniquely expect r-null set. For any bounded and
uniformly continuous function p on R4 xT, set p(t, x, )i.)1=]|-p{.\’, w)A'(t, du). Define

a family of operators {A(,A): 1[0, T), A€ Al
A ) (x)=a,(a"(1, x, )a(x) +b'(1, x, 1) (x)

5
(2.3) +é(r, x, A)p(x), forxe R%

Now we introduce the relaxed system.

DeriNiTION 2.1, &=(Q, & P, ¥\, W, ) is called a relaxed system if
(2.6) (0, %, P, F)isa standard probability space with filteration {F,:0=1= T},
(2.7) W is an #,-adapted one-dimensional Wiener process with W(0)=0;

(2.8) u is an F,-adapted A-valued random variable (A-r.v.), i.e., p(B;xB;) is
% -measurable whenever B, e B([0, 1]) and B;& B(I).

For simplicity, we put & =( W, ) if no confusion arises, and sometimes we simply
call p a relaxed control.

R denotes the totality of relaxed controls. For & =(W, u), m(9) denotes the
image measure of (W, ) on C(O, T; R')x A. Again, by endowing the space M=
{m(R): R € R} with the weak convergence topology, we have the following proposition
(1], (13].

ProposiTION 2.1. T1 is a compact metric space.

DeriNITION 2.2. We say &, converges to @R, writing &, R, if a(R,) = 7(R)

weakly.
Given #=(Q, %, P, #., W, ), consider the following SPDE:

dq(1) = (AL, (1) +F(t, w) dr+(Mg(1)+¢) dwi(t),
q(0)= go-

An H'-valued % -adapted process g = q” (-, qo) is called a solution of (2.9) or a
response for the relaxed control & if

(2.9)

.
(2.10) E J lig(nlF dr <+,

0

and for any m € C“J(R") (smooth function on RY with compact support) and almost
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all (1, w)e [0, T]Xx1,

(g(1), 7)o= (40, ’?)u"’J (A(s, w)gq(s), Mo de (f(s, ), 1o ds
[ 0

(2.11) i
+J (Mg(s)+g m)odW(s).
0

For each initial gy, we are given a cost functional
(2.12) J(qo, R) = E{F(g"(-,q)+G(q"(T. )}, AR €R.
The optimal relaxed control problem is to minimize J(qq, - ) over R, for each gy.

Remark 2.1. Since we will mainly consider the relaxed control in the following,

we will simply write A(r, u)= A(1, ), etc., if no confusion arises.

3. Degenerate case. Let us fix a positive constant K. We introduce the following

conditions on the functions appearing in (1.1):
(A1) a’ b, ¢: R*xI'>R', o, h: R‘> R" are continuous functions; these
functions and their derivatives in x up to second order do not exceed K
in absolute value;
(A2) a’=a" i, j=1,2,-++,d, and (a’—1c'o’); is a nonmegative definite
matrix;
(A3)  f(-,u)e H' ge H? theabsolute values of , g together with the H '"_norm
of f(+, u) and the H*-norm of g do not exceed K;
(A3), Forsomer=>0,f(-,u)e L2, ge H!, the absolute values of f, g together
with the L3-norm of f{+, u) and the H-norm of g do not exceed K.
The following lemma of a prior estimate is a special case of [9, Lemma 2.1].
LeMMA 3.1. Let A and M be any second-order and first-order differential operators
that have the forms of (2.1) and (2.2), respectively, and whose coefficients satisfy (A1)
and (A2). Then there exists a constant N depending only on K in (A1) such that
2((Ad, dh+(f &)} + I M + gl = NI+ IF1E+ 1217+,
@.1) forany e H*'', fe H* ge H*"' k=0, 1.
COROLLARY 3.1. Let M be a first-order differential operator that has the form of
(2.2) and whose coefficients satisfy (Al). Then there exists a constant N depending only
on K such that
(32) [(NMo+g o}lsNUIE+8I3D), foranyde H ™ ge HY k=0,1.

The following result concerning the solution of SPDE is known from Krylov and
Rozovskii [9] and [10].

PROPOSITION 3.1. Assume (A1)-(A3) and qy€ H'; then for any ReR, (2.9) has a
unique solution g™ (-, go)e L*([0, T1xQ; H')N L(Q; C(0, T; H®)) and there exists a
constant C, depending only on K and T, such that

(33) sup E||q"‘(r_.qa)||i-ér:f{uquuﬁjo [nfcs,m||i+ugui+,1ds}, k=0,1.

0sI1sT

Moreover, for any p=2, there exists a constant C(p) such that

sup Ellq*(r.qo)lliéc(p)E{lqullﬁj /(s )%+ glken] dS].
(3.4) o=i=1 0 _

k=0,1.

The main idea of the present paper is based on the fact that the first-order
differential operator M generates a strongly continuous group on H°. The following
proposition states the detailed properties of M, with the proof provided in the Appendix.
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PrROPOSITION 3.2. On the Hilbert space H', define an operator M by (2.2) with the
domain D(M )= H', then
(i) M can be extended to a closed operator (still denoted by M) that generates a
strongly continuous group {eM': —o< t<+0c} on H°. Moreover, H' is an invariant
subspace of e™" for each t, and there exists a constant N (the same as the constant in

(3.2)), such that
(3.5) le™ || coneanry = !
(3.6) le™ | coptwpny = €™, forany re (=0, +x);
(ii) Denote by M* the adjoint operator of M on H°, then H'< D(M*) and M*

also generates a strongly continuous group {eM"" = (e“’)* —o<t<+x} on H.
Moreover, H' is an invariant subspace of e™"' for each 1, and with the same constant N,

we have
6N €™ oy S €™,
(3.8) e™*|| Lot =uty =™, forany te(~co, +x);
(iii) Define two operators M>, M** from H' to H™" by the following formula:
(3.9) (Mo, )o= (Mo, M*Y)o=(d, M**§);, ford,deH',

then M? and M** are bounded linear operators from H' 1o H™'.

From now on, when we write M, M* M’ and M*’ it is always understood to
be in the sense of that in Proposition 3.2,

The following lemma will play an essential role in this paper.

LemMmA 3.2. Let D be a set in R such thar

(3.10) D is bounded, open, and with smooth boundary.

Define Wp[0, T]:={¢: ¢ € L*(0, T; H'(D)), d/dte L*(0, T; H™'(D))} with the norm
T T 1/2

ERTR P 600 dov | lag(/ait?par)
] 0

where H*(D) is the Sobolev space W5(D) with the Sobolev norm |-||i.p. Then the
embedding W,[0, T]- L(0, T; H(D)) is compact.
Proof. Since the embedding H'(D)— H°(D) is compact, the result follows from

[11, Thm. 5.1, p. 58]. O
PROPOSITION 3.3. Assume (A1)-(A3), goe H', and ReR. Let q(-)=g" (-, q;) be

the solution of (2.9). Set p(1):=e """q(1), then p satisfies
d(p(1), o= 1AL, w)=IM?)q(1), e ™ M),
(3.12) + (e MY f(1, u) — Mg), d)o} dit+ (e g, $)o dW(1),
forany ¢ H'.
Proof. Take ¢, Y€ H'. Define p(1)=(e "¢, ¥)o. By Proposition 3.2,
dp(1)/dt=—(M* e ™" ¢, dr)o=—(e™™""¢, M),
d*p(1)fdi*=(M* e™"' ¢, My)o=(M** ™", §)o.
Hence by Itd's formula, we have
(3.13)  dp(W(1))=XM*? ™™ Vg, y), dt—(M* ”M'wm@ Yo dW(1);
namely, we have the following formula in the space H™":
(3.14) d(e ™MWy =IM*? M WO gt — M* MM G dW(1).
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Therefore, again by 1t6’s formula,
d(p(1), d)o=d(q(r),e ™ "),
=(A(L, wg()+ 1t p), e ™M M), dr
+(Mg(1)+g e ™ " "p)g dW(1)
+(g(1), IM* e M Vg, dr—(q(1). M* e M), dW(1)
—(Mg(1)+g M* e M "), dr
={((A(1, u) —3M?)gq(1), e ¥ "),
+(e” MM f(r, p)—Mg), &)} dt
+(e "™ g ¢)g dW(1).

This proves (3.12). O

We need an additional lemma for technical reasons.

LEMMA 3.3. For some r>0, we assume (A1)-(A3), (A3),, and go€ H'NL:. For
ReR, let g(1,x)= q"”(r, X, qy) be the solution of (2.9), then there exists a constant C,

independent of R, such that

(3.15)

(3.16) E j ]q(r,x)|:d.\‘§C,’(l+p:}', forany p=>0.
|xj=p
Proof. By Krylov and Rozovskii [10], we have a constant C' such that

T
oS C’E[Ilfa'oliﬁ.ﬁj’ (e s+ el dr] —
it

sup Elq(1)]

O=1=T

hence
E J lg(r, x)|* dx = E|lg(n]|3,./(1+p") =C/(01 + p3)". 0
|xl=p
THEOREM 3.1. Assume (A1)-(A3), (A3),, and g, H'N L] for some r> 0. Denote
by q" (-, qo) the solution of (2.9) for R €R. If R, > R, then
(3.17) g™ (+, qo)= g7 (+, o) in law, as L*(0, T; HY-rv;
(3.18) g™ (T, o)~ q" (T, qo) in law, as H'-r.v.

Proof. Suppose &, =(W,, p,) and & =(W, ). We write g,()= g™(+, qo) for
simplicity. Define p,(1)=e"*"""q,(1), paa(t) =g e MM g dW, (s), and p,(1)=
()= pna(1). Then, by Propositions 3.1 and 3.2, we have

T T
EI np,.cr)lﬁdfé’ff Rl PROVE
0 0 i

-
(3.19) 5_5( sup e*NIWatrl j llg.(Ol3 dr)
(1]

0=)aT
1/2 T /3
E(E sup e"”'w-“”) (EJ- ||q,,(!}||]'dr) i e
O=I=T o

It is known from Fernique's lemma [5] that sup, (E supo=,=7 e*NIWally < +00; hence
(3.19) yields

5
(3.20) sup E J Ipa(t)|)F di < +c0.
” 0
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Similarly, we have
e

T '
(3.21) sup E J’ Ipas(D); dt =sup E I -[ NN o |13 ds dit < +00.
n L a ]

0

Combining (3.20) and (3.21) gives
&
(3.22) sup E J [ a0} dt <20
n L]

On the other hand, by virtue of Proposition 3.3,
d(p,a(1), d)o= (A ) =1M7)g, (1), e V)
(3.23) + (e MU o) — Mg), d)o} dt,
forany ¢ € H'.

Hence
(dps(1)/ dt, &Yl = (AL, ) =3M)gu ()] [l
+eMW (1, wn) — Mglloll o
= const e™™N(lg (D[, + DIl
forany e H'.
This yields

3

sup E j‘ | dpa(2)/dt||, di
n 0

3.24 ¥ i 3
aa4) §constsupEJ. MW, (DT +1) dr

1]
<+,
Equations (3.22) and (3.24) imply that there exists a constant C, that is independent
of n such that, for any Dc R” with the property (3.10),

(3.25) B HPn.: Izwb[o,‘r] =G,
Let D, ={xe R’:|x| <k} for k=1,2, - -. Define a metric d on L*(0, T; H’) by
= @ 1 . T 1/2
(3.26) d(o, )= kz ;mm{l,(j ()= w(n)i,o, df) }
=] 0

We denote by L*(0, T; H’) the completion of L(0, T; H°) by d. For A>0,
B,={¢ e [*0, T; H°): | ¢l wy o= (2"N)%, k=1,2,--}
is compact in L*(0, T; H°) due to Lemma 3.2. Now (3.25) yields

oo

.27 P n.2 B, = =5
(3.27) (p 2€ L) kglzkf\
hence, { p, .} is tight as L3(0, T; H®)-r.v. (cf. [7, Def. 2.2, p. 7]). Noting the compactness
of A, {(W,,f,, Pa2)} is tight as C(0, T; R')x Ax L*(0, T; H)-r.v. Hence by
Skﬁorohod's theorem, we can choose a subsequence {n'} and have (W, ., Pu2)s
(W, i, p2) on a suitable probability space (€2, #, P), such that

C,=C,/A, foranyA>0;

(328) IRW of ( Wn’ s ﬁﬂ'? ﬁn'.!) =law Of( Wn' s Hats pn'.l‘)'
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and P-almost surely

A A

(3.29) W, =W uniformly on [0, T],
(3.30) L= i weakly on A,
(3.31) Doz P2 in L2(0, T; H"),as n'> +,
Define
ﬁ",‘l(f)ZZJ e‘““i'n-“'gd‘i’".(s), ﬁl(f}:=J’ e MV )g dW(s).
0 0

By virtue of (3.29) and the strong continuity of the group {e™}, we have for fixed
(s, @), e ™% g—e MV g |35 0 as n' - . By Fernique's lemma, it is easy to check

that

5
supfj e~ MWutslg — =MW g |8 ds < +00,
- 0

which means that {He‘mit'""g—e"""i"”g|[f.} is uniformly integrable on [0, T]x{;
hence

(3.32) e~ MWaltlg 5 =MWl i L3([0, T1xQ; H®), asn’'>x.
Combining (3.32) with (3.29), by a similar argument to thatin [12, Lemma 3.3], we get
T
(3.33) . EJ [P () =pi(0)]5 dt -0, asn'—=o0.
0
Define

ﬁn'{f] = ﬁn‘.l( l} +p“u'.1( r]! ﬁ(f} = ﬁl( f)+ﬁ2(f):
then (3.31) and (3.33) yields and there exists a subsequence of {n'} (still denoted by
{n'}) such that

(3.34) po=p in L0, T; H°), asn'»>wx, P-as.
Define
Gult)= MY p (1), G) =M B
Observing (3.28), we have
(3.35) law of (W, f,, o) =1aw of (W, pu, Gu)-

Now we want to show
T

(3.36) E"j G ()=G(1)||5 d1 -0, asn'-+co.
0

Indeed, for any D < R? that satisfies (3.10), we have

.
éj G, (1) = G(0)13.0 dt

I

T - -
EJ e b, (1) — M F(0) 6.0 di
0

A

y _
ZEJ (RO R O RS TOMN Pl
0

T -
(3.37) +2EI (€M%t = MYV i) 3 o dt = I+ L, say,
Q
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- T {71
f;‘éZEJ NS ()= B()|IF.5 dt
0

.
525‘( sup e:N'“”~"”*J I2.A0) =B |l5.0 d!)
o

O=1=T

Econst{ (J. | a2) - p(t}llnpdr) ]m.

By (3.4), it is easy to see that {(Ja 1Bat2) —p(r]Ha_D dr)’} is uniformly integrable on
(Q, #, P). Thus (3.34) derives I;,»>0 as n'-»00. Moreover, since for fixed (1, @),

H{e”“’ ke e““"”)p(””uu—'O as n'=o, so by the unlformly integrability of
{ll(e MW,itn) — ™Y 5(0)|I3.5) on [0, T]1xQ, we have 1,0, as n'-»+00, Now we arrive
at

(3.38) - EA”@H'_q!”f:t{I_T:H"I—'O, as n'- +0.

By (3.38) and (3.16), we can write

W T
EJ J (1, %) dxdr = lim lim EI J g.-(t, x)]? dx di
(3.39) 0 Jix=p fff ‘ R0 n!es0 0 Jp<iy<k lq |

=CT/(1+p°) >0, asp-+c.

Hence §e L*([0, T1xQ; H®), and (3.36) follows from (3.38), (3.39), and (3.16).

By virtue of (3.38), we can prove that § is just the response for R -{W /) by a
standard argument (cf. [1], [12], and [13]). Noting (3.28)-(3.36), we have proved
(3.17). For (3.18), we can apply entirely the same argument, observing the compactness
of the embedding: H'(D)- H"(D). The proof is now complete. O

Remark 3.1. Condition (A3), and g, € L; are required to ensure (3.36) from (3.38).
If we drop these conditions, (3.38) still holds, and therefore q is still the response of
R by the above proof. Thus we have the following corollary.

COROLLARY 3.2. If we only assume (A1)-(A3) and g, H', then whenever R, — R,
we have

(3.40) g™ (., q0)=q"(+, qo) inlaw, asw—L*(0, T; H')-r.v.
(3.41) g™ (T, go)= g™ (T, qo) inlaw, asw—H'-rv,

where “w— X" denotes the space X endowed with the weak topology.
Now we are in the position to prove the existence of optimal relaxed control for
system (2.9) with the cost functional (2.12).
TueOREM 3.2. In addition to the same assumptions as in Theorem 3.1, we assume
(3.42) F, G are continuous mappings from L*(0, T; H®) and H" 10 R’, respectively,
and there exists K >0, such that

|F()= K+l corny)  1GW)|=K(1+[|¢lo).

Then there exists an optimal relaxed control for the system (2.9) with the cost functional

(2.12).
Proof. By Theorem 3.1, J(qo, ") is continuous. However, I1 is a compact metric
space, which yields the existence of an optimal relaxed control. 0

CoroLLARY 3.3. In addition to the assumptions of Corollary 3.2, we assume

(3.43) F, G are weakly continuous mappings from L*(0, T; H') and H' to R',
respectively, and satisfy linear growth conditions as in (3.42).
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Then there exists an optimal relaxed control.
Proof. The result is a direct consequence of Corollary 3.2. 0

4, Nondegenerate case. In this section we consider the optimal relaxed control
problem (2.9) and (2.12) under the assumption that (a - %cr'crjh_i is uniformly positive
definite. It will be proved that the existence of an optimal relaxed control still holds

even when goe H”.
The following assumptions remain in force throughout this section:

(B1) Same as (Al) in § 3;
(B2) a’=d’,i,j=1,2,--,d, and there exists a > 0 such that
(a%(x, u)~do'(x)o’ (x) &€ Z alél, forany (x,u £)€ R xTx R,

(B3) f(-,u)e H', g H® the absolute values of f, g together with the H '-norm
of (-, u) and the H’-norm of g do not exceed K.
The following proposition is an easy variant of the results in Krylov and Rozovskii

[8] and Pardoux [14].
PrOPOSITION 4.1. Suppose q,€ H', then for any # €R, (2.9) has a unique solution

g* (-, g0) € L*([0, T]x (; H)YN LX(Q; C(0, T; H")) and there exisis a constant c
depending only on K, T, and a, such that

T
(4.1) sup Ellg” (1, q)lls= CE[!I%IIHL CILFCs, ) 120+ 112112 a‘s},

osi=T

(42) E(j " alide) = cs[||qnu:+L (s )1+l ds .

Moreover, for any p =2, there exists a constant C(p) such that

;
@3)  sup E||qﬂcr,qunlsé<r<p>s[||quus+f (G iz +gl2) ds}.
(1]

0=1sT
THEOREM 4.1. Assume go€ H". Denote by g™ (-, qo) the response for R=(W, n)
of the system. Then whenever R, = R, we have
(4.4) g% (-, q0)>q" (-, qo) inlaw, asw-— L0, T; H')-rv;
(4.5) q™(T, go)=» q™ (T, g) inlaw, asw—H"-r.v.

Proof. For simplicity, we denote g,(+)= g™ (-, q0), q(+)=q" (", o), for R, =
(W, ptn), B=(W, p).
Define p,(1):=e M"""g,(1), then

T T
E_[ Ilp..(r)ll?d!éEJ‘ MWl g ()7 di

(4.6) éE( sup ezN'“'~"J'J ||q,,{r)|]‘,‘dr)

0s1=T 0

1/2 T 2y 1/2
é(s i e"""wﬂ‘”') {E(J nq,,mn%dr)} :
o=raT 1}

So by (4.2), sup, E [o lpa (0|7 dr <+e0. Now by applying entirely the same argument
as that in the proof of Theorem 3.1 and Corollary 3.2, we obtain (4.4). Noting (4.1),
we also get (4.5). (But we no longer have g.(T)=q(T) as w— H'-random variable.)
The proof is complete. [
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Now we establish the existence of an optimal relaxed control for the system (2.9)

with the cost functional (2.12).
THEOREM 4.2. Suppose go€ H® and F, G are weakly continuous mappings from

L3(0, T; H') and H®, respectively, to R', and they satisfy linear growth conditions. Then
there exists an optimal relaxed control.

5. Discussions and applications.

5.1. Multidimensional Wiener process cases. The method employed in the previous
sections is somewhat similar to the rime change technique in stochastic analysis. This
method, however, fails to be effective in general for the system as follows:

”
(5.1) dg(1) = (Al p)g()+f(1, ) dt+ ¥ (Mg (1) +g) dW (1),
\ K=

q(0) = go,
where W:=(W', <o+, W) is a d'-dimensional Wiener process, and A, M, have the

same forms as (2.1) and (2.2).
- However, in some special cases, we can still treat (5.1) by a similar argument to

the one-dimensional Wiener process cases. .
THEOREM 5.1. Assume the coefficients of A, My (k=1,2, - -, d’) satisfy (A1) and
(A2) of § 3 (respectively, (B1) and (B2) of §4). Assume further that

(5.2) MM; = MM,, fork#]j,

then Theorem 3.2 and Corollary 3.3 (respectively, Theorem 4.2) hold for the system (5.1).

Proof. We will show this for d'=2 for simplicity. By the proofs in the previous
sections, it suffices to prove that we can construct a transformation g: - p, such that
p satisfies an SPDE whose diffusion term is independent of the state (refer to Proposition
3.3). To this end, define p,(1):=e ™" "q(1), then a similar calculation to that of
Proposition 3.3 gives that p, satisfies the following differential formula in H™' space:

dp, (1) = e ™Y YA ) =M g(1) + (1 w) = Mg} dt
+e MW g, dW (1) +{e MY (Mg (1) + )} dW(1).
Put p(t)= e MWy (1), then, for any ¢ € H',
d(p(1), d)o=d(py(1), e ™" "¢)q
= (e M™OU(A(L w) —IMD(1) +£(1, w) = My}, e MV ), di
3 (e""*w'“'gh e-M;W:IIJ&)D dW'(1)
(e MY Mag(1)+ga), €™MV g)o AW (1)
+(pa(1), M2 e M3V ), di—(py(1), ME 7MY ) dW3(1)
+ (MO (Maq(n) + g2), ~M¥ e MV ) di
= ((A(t, w) - M3 =M q(1), e MWD e~ MIV O ), di
+ (e~ MV oMW f(1, ) — Mgy~ Mags), é)o dt
+ (MM MV g )y dW'(1)
+(e-M:w3u] e-MI w‘mgh ‘Ef’)u dWJ(.r).

Note that in the above calculation, we have repeatedly employed the fact that
eM! Ma| 1= M, e™ |1, which is an easy consequence of the fact that M, M>= MM, .
Now (5.4) has a similar form to (3.12), which allows us to apply the same argument
as those in §§ 3 and 4 to obtain the desired results. ]

(5.3)

(5.4)
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Remark 5.1. Equation (5.2) holds when the coefficients of {M,} are constants or

satisfy some linear dependence conditions.
Remark 5.2. In particular, (5.2) holds for the following kind of systems:

=
pm dg(1) = (A(t, £)g(0)+f(1, ) di+ T (hug(n)+g) AW (1),

q{o) = 4o,
where h,.: R? = R'. The above system has been studied by Bensoussan and Nisio [1]
(with f = g, =0). Their resultis [1, Thm. 5.2]: if (a”) is uniformly positive definite and
Go € H*(R"), then there exists an optimal relaxed control. Now we know the condition
“go€ H*(R?)" can be weakened to "¢, L*(R“)"; on the other hand, if we assume
go€ H'(R"), then the result is valid even if (a”) is degenerate.

5.2. Stochastic control with partial observation. First, let us remark that the results
in §§ 3 and 4 are easily extended to the following kind of system:

: dg(t)=(A(1, W(1), w)q(0)+7(t, W(1), n)) dit +(Mg(1)+g(W(1))) dW(1),
(5.6)
q{o) = ‘?m
where
At w, ) d(x)=a,(a" (1, x, w, 1)3,6(x))+B'(1, x, w, w)a,¢(x)
S E('rl X, W, }L)(b(.\‘),
Ma(x):=o'(x)d,b(x) + h(x)d(x),
a'(t,x,w,p)= J a’(x, w,u)u'(t, du), etc.
;
Let B and B be independent Wiener processes on a probability space (0, #, P),
with values in R' and RY respectively. Consider the following SPDE in R

ax(t)=y(X(t), Y(r), U(n) dr+a(X(1), Y(1), U(1)) dB(1)+o(X (1)) dB(1),

B x(0)=,
with the observation
(5.8) dY(1)=x(X(t)) dt+dB(1), Y(0)=0,

where U is an admissible control, Note that ¢ is the correlation between the state and
the observation.
Let = and L: R* x R' = R'. The problem is to minimize the cost functional defined

by
"
(5.9) J(U)¢=E” Z(X (1), Y(1) dt+ L(X(1), Y(r))],

over the totality of admissible controls.

By the well-known relationship between the control problem for partially observed
diffusions and that for SPDEs (cf. [12]-[15]), we may interpret the problem (5.7)-(5.9)
to the one we have treated in the previous sections. Thus we have the following theorem,
appealing to Corollary 3.3 and Theorem 4.2.

TueoreMm 5.2. We make the following assumptions: :

(C1) a:RY%xR'xI'+ R ¢:R*>R? y:R*%xR'xI'> R’ k:R? > R' are con-
tinuous functions. a, o and their derivatives in x up to fourth order do not
exceed a constant K in absolute value; vy, k, and their derivatives in x up to
third order do not exceed K in absolute value;
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(C2) E, L:R*xR'> R are Lipschitz continuous and bounded by K.

Then there exists an optimal relaxed control of the problem (5.7)-(5.9), if we assume,
in addition, either of the following iwo conditions:

(i) & has a density goe H';

(ii) £ has a density go€ H', and aa*(x, y, u) is uniformly positive definite.

Remark 5.3. In [12] and [13], in addition to the higher regularity condition on
go, it is required that (aa™—200™) be nonnegative definite, which means the correlation
cannot be “too large.” In this paper, this restriction is removed.

Let us conclude the paper by two remarks.
Remark 5.4. The relaxed controls turn out to be (usual) admissible controls when

assuming some convex conditions (Roxin's conditions) on the coefficients a”, etc. The
£ s

reader may refer to [1], [13] for details.
Remark 5.5. The aim of this paper is to reduce the regularity on the initial state.

In the viewpoint of filtering problems, it is more natural to consider the Dirac initial
state, although it seems to be a rather difficult problem since the SPDE theory itself
with the Dirac initial condition has not been well established.

Appendix. In this appendix, we prove Proposition 3.2.
On the space H’, consider the following densely defined operator:

M: [D(M) (=the domain of M):= H'

gk Ma(x)=o'(x)a,d(x)+h(x)d(x), forde H', xeRY

M thus defined is not a closed operator, but it is clearly closable. Denote by M the
closed extension of M (i.e., the graph of M is the closure of the graph of M). On the
other hand, M*, the adjoint operator of M on H", is given by

D(M*)={¢ e H" —a,(0'd)+hde H'},

M*é(x) = —3,(c"(x)6(x)) + h(x)(x), forpeD(M*),  xeR"
Since HY is reflexive, so M = M**, which is given by

(A3) M {D(M) ={pecH" c'a,p+hpeH,

: A\ Mo (x) =o' (x)aid(x)+h(x)d(x), foréeD(M), xeR"

Moreover, M* = M*** = M*.
LEMMA A.l. There exists a constant N, which is given in Corollary 3.1, such that

(A.4) [(Mg, &)= N| |3, fordeD(M);
(A.5) (M*6, ¢)dl = N5, for ¢ D(M™).

Proof. Since M is the closed extension of M, for ¢ € D(M), there exist {¢,} = H',
such that ¢, —H5 & Mo, —H% Nié. Hence (A.4) follows from Corollary 3.1. On the
other hand, M* is the closed extension of K¢ = —d,(c'$)+ he with D(K)=H', so
(A.5) is proved by a similar argument. 0

Proof of Proposition 3.2. Let A€ R' such that [A|> N. For é € D(M), set §=
(AI — M), then

(A.6) (0 &) Z AL B 13- 1M, &) = (1A= NS5,

which yields Al — M is one-to-one, and Range (A1 — M) is a closed set in H°. However,
by virtue of (A.5), A — M* isalso one-to-one; thus Range (A — M)=Ker(AI-M*)*=
H°. Then, by (A.6), A is in the resolvent set of M, and

(A.7) N = M) | eno= oy = (1A= N) .

(A.2) M*: {
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By [2. Cor. 17, p. 628], M generates a strongly continuous group {eM: —0< 1 < +o0)

on H" and (3.5) holds.
On the space H', consider the following densely defined operator M,:

M .{D(M.):= H’,

M,d(x):=a'(x)ap(x)+h(x)d(x), deH>, xeR%
There is also a closed extension M, of M,. By virtue of Corollary 3.1,
|(M,6, ¢)i|= N|o|3, forde D(M,).

So by a similar argument as above, M, generates a strongly continuous group
{eM': —0<1<+} on H', and

(A.8)

(A.9) le™ vt =pty= €™, for re(—co, +co).
For ¢ € H2c D(M,), since obviously M = M, on D(M,),
(A.10) d(e™'¢)/dt=M,e™' ¢ = Ne™'¢,
where “d/dt™ is in H' topologv Consequenlly, (A.10) holds on H®, which means
eV'¢ = ™' ¢ for any ¢ € H>. However, H is dense in H', so e = = e™i_ Now (3.6)

f‘ollows from (A.9). This proves (i) of Proposition 3.2.
Note M* is also a closed extension of a first-order differential operator K, so (ii)

of Proposition 3.2 is proved in a completely analogous way to (i). Moreover, since H'
is reflexive, "= (e™)*.
Finally, (iii) of Proposition 3.2 is clear. ]
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