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ON THE NECESSARY CONDITIONS OF OPTIMAL CONTROLS FOR
STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS"

XUN YU ZHOU'

Abstract. This paper concerns optimal control of systems governed by stochastic partial differential equations
. which drift and diffusion terms are second- and first-order differential operators, respectively. Necessary
conditions for an optimal control are derived for hoth nondegenerate and degenerate systams, and all the coefficients
appearing in the equations are allowed to depend on the control vanables. Furthermore, the results obtained in
the paper can also be used to derive necessary conditions of optimality for partially observed diffusions with

correlation between the signals and the observation NOISES.
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1. Introduction. Let us consider a stochastic control problem, in which the state equa-
tion is a linear stochastic partial differential equation (SPDE):

dg(t,z) = [B:la"(t.x, U(t))d;q(t, z)) + b (¢, z. U(t)8iqlt. x) +clt,z, U(:))q(t, z)
(1) +f(t.z. U(t)]dt + [o**(t, z, U(t))Fq(t, ) + he(t,z,U(t))q(t. x)
' +g*(t.z, U(t))|dWi(t), ze€ R tel0,1],
g(0,z) = qlz), TE R4,

where W = {H-'h‘[«l*’z,...*'ﬂ-’]g] is a d'-dimensional standard Brownian motion with
W) =0, {U(t) : 0t < 1} is an admissible control (the precise deanition will be
given later) and J; := 0/8x;,i = 1.2.....d. Throughout the paper, the conventional

repeated indices for summation are used. ;
The optimal control problem is to minimize a given cost functional over the set of

admissible controls.

The purpose of this paper is to study necessary conditions of an optimal control for
the controlled system (1.1). It is well known that the so-called adjoint equations play a Key
role in dealing with the problem. Adjoint equations are, in general, backward equations
with given terminal states. In stochastic problems, adjoint equations cannot be obtained
simply by inversing the time, because the adaptness must be considered. For stochastic
differential equations (SDEs), Bismut (5] introduced an adjoint equation with ar, additional
martingale term. His method is based on the invertibility of certain fundamen:al matrices
in finite dimensions and cannot be carried over to SPDEs whose state spaces are infinite
dimensions. Using a finite-dimensional approximation method, Bensoussan [3] derived an
adjoint equation of a nondegenerate SPDE (in a form more abstract than (}.1)) with its
diffusion being a bounded operator. In the present paper, We solve the adjoint equation of
(1.1) with o** # 0 (i.e., the diffusion operator is unbounded), which is important in both
theory and application. To handle the problem, the basic aproach we empley is still the
finite-dimensional approximation. It should be noted that, while this is a very natural ap-
proach to infinite-dimensional problems, the difficulty is how to obtain certain compaciness
of the approximate solutions, which may vary from case to case. For explicit equations like
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(1.1), some delicate estimates of differential operators, originally due to Krylov and Ro-
zovskii [8]-[10], will be used in this paper to show the compactness. Therefore, an adjoint
equation of (1.1) as well as existence and uniqueness of its solutions will be derived.

Having obtained the adjoint equation, we derive necessary conditions of optimality for
system (1.1) in which all the coefficients are allowed to depend on the control variable.
Furthermore, the results obtained can be applied directly to a general model of partially ob-
served diffusions with correlation between the signals and the observation noises. Therefore
the existing results of Bensoussan [3], [4], Haussmann [7], and Baras, Elliott, and Kohlmann
L1] are improved and extended considerably.

It should be mentioned that, in addition to the finite-dimensional approximation ap-
proach, there is a “time change” technique, which Bensoussan [4] used to solve the adjoint
equation and study the necessity of optimality for the SPDE (1.1) with ¢** = 0. Its main_
idea is to turn (1.1) into a P-almost surely deterministic PDE. basing on a transformation
eM"Wilt) where M* represents the diffusion operator (see (2.2), below). When o' £ 0,
transformations of the same kind are also available, provided that the Brownian motion
involved is one-dimensional; see [6], [15]. However, this method fails to work in general
when o' # 0 and the Brownian motion is multidimensional; refer to [15, §5.1] for a
detailed discussion on this point.

The paper is organized as follows. In §2 we formulate our problem and introduce
some basic notation and assumptions. In 3 we state a few fundamental results of SPDEs
in the form convenient for us to use in the paper. Sections 4 and 5 are the main part
of the paper. In §4 we derive an adjoint equation and prove existence and uniqueness of
its solutions, and in §5 we investigate necessary conditions of optimality for system (1.1).
The resuits in these two sections are valid. assuming that the system is nondegenerate

(le.. S := (a" — {‘Efzr o*ai®) is uniformly positive definite). In §6 we discuss the
degenerate case (i.e., S is nonnegative definite) and apply the main results to partially

observed diffusions. Finally, §7 concludes the paper.

2. Problem formulation. Let I" be a Borel set in some Euclidean space RM, We -
define a family of second-order differential operators {A(t,u) : t & 0,1],u € T'} and a
family of first-order differential operators {M*(r,u) : t € [0,1],u € T,k = 28’}
by

(2.1) At u)o(x) := d;(a™ (L, z. u)d;ox)) + 0'(t, z, u)did(z) + cft, z, u)d(z)
and
(2.2) M*(t,u)p(z) := o™ (t.2,u)did(x) + h*(t.z,u)p(z) forz € R%. b€ C(R%),

where a',b',c, o', and h* are given real-valued functions, i,7 = 1.2.....d and k =
L2, ... &
We also consider the formal adjoints of the operators A(t,u) and M*(¢t,u)

A*(t, w)e(x) = Oi(a (. z, u)B;b(x)) — b(t, 2, u)Bi ()

(2.3) -|-{.-:{r. I, u) — o bt (Le, “-}I"if’(I)*

(2.4) M* (¢, u)o(z) 1= -a'*(t, z. w)dio(x) + [h*(t, z,u) — ﬂ.-crik(t,r, u)|o(z).

Let us now recall the definition of the Sobolev spaces. For m = 0,1.2.. ... define
H™ :={@: D% € L*(R?) forany o := (a,...,ay) with |a| := loy |+ +|ag| < m},
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with the norm

| /2
6llm =4 D D”rb{'-ﬂldx} -
{anmf”“

Form = —1,—2,..., define H™ = (H~™)*. The Hilbert space H™ for any integer m
i called a Sobolev space. For any integer . let us consider the Gelfand triple H™" —
gm s H™='. We denote by {-,}m the duality pairing between g™=' and H™*!, and

by (-,)m the inner product in H™.
For any second-order differential operator L that has the same form as (2.1, if we
write (L@, 1) m., then L 18 understood to be an operator from gm+! o H™' by formally

using Green's formula. For example, for the operator A(t,u) defined by (2.1), we have

(2.5) (A(t, u)@, ¥)m = —(a¥(t.-,u)0;@. 0ith)m + (b(t,+, u)0i®, ¥)m
' 4 [c{.t! *y U-]ﬂ}- wjm for o,y € H'm+l+

Remark 2.1. It is clear that [A(t,w)p, V)0 = (& A*(t, u))p and (M(t,u)e, Yo =
(b, M*(t, u)¥)o hold for ¢, v € H'. However, neither (A(t,u)o. ¥)m = b, A*(t, u)P)m

nor (M(t, w)@. ¥)m = (@ M*(t.u)y); holds when m = L. -'%
For a. 3 € (—0oc., +2¢) with a < 8, we are given 2 filtered probablity space Q.7 F =

'i

|

F,:a <t < (3) and a Hilbert space X. For p € [1,+0]. define L%a.B,X) =19:9
s an X -valued, F;-adapted process of la, 3], and ¢ € LP([e, B] X {1: X)}. We identify o
and ¢ in L5(a.3:X) whenever D j; lo(t) — @' (t)||2dt = 0.

Now we recall the definition of admissible controls. By the set [/,s of admissible con-
trols. we mean the collection of (i) standard probability spaces (Q, F, P) and d'-dimensional
Brownian motions {W(t) : 0 = t < 1} with w(0) = 0; (n) [-valued, F;-adapted mea- 3
surable processes [Ut): 0t < |}, where F; := a{W(s):0<s < t}. We denote j
(Q,F,PWU)E [].4, but on occasion we will only write U € Uy 1f 00 ambiguity anses.

Given (2, F,P,W. ) € Uy, we rewrite (1.1) in the following form, omitting the

vanable r:

dq(t) = [A(t, U(t))q(t) + f(t, U(t))ldt
(MR, U(E)a(t) + g"( UM)dWi(t), €€ [0, 1],

q(0) = qo-

(2.6)

A process ¢ = q" € [%(0,1; H') is called a solution of (2.6) or a response for the

control U if, for each n € C§°(R*) and almost all (t,w) € [0, 1] x &,

(q(t),m)o = (qo: Mo +/ﬂ (A(s,U(s))q(s) + f(s.U(s)),nods

(2.7) .t
-l—ﬁ (PVIE(S*U[S))Q{S}+gﬁ(S,U(5]]!n}nde(5)_

The optimal control problem is to choose (O, F,P,W,U) € [/,4 to minimize the

following cost functional:
|
2.8) J(U) = E [ f (F(t.U (), a" (B))odt + {G,q“m)ﬂ} .
0

where F: [0,1] xT' — H-' and G € H" are given.
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Remark 2.2. The cost functional (2.8) includes the following one as a special case:

|
JU) = E { /ﬂ (FO(,U(1). 4% (8))o + (F*(t, U(2)), 81" (£) o}t + (G,q”m}u}_-

Let us fix an integer m > 0 and two positive constants K and 5. We introduce the
following conditions:

(ADma', b c,0™,h* : [0,1] x R¥xT — R are measurable i (¢, z,u) and continu-
ous in u. Furthermore, the functions a', %, ¢, oi* gk d;o**, and 8;A* and their derivatives
in z up to the order max(2,m) do not exceed K in absolute value; -

(A2) @ =a?*i,j=1,2,...,d, and the matrix S '= (a®— 1 Zi, a** g%y > 0 for
all (¢, z, u): | A
(A2)a¥ =@t i, =1,2.....d. and the matrix S is uniformly positive definite:
ETSf > §lE)*  for any (¢,z,u) and any € € RY:

(A3) F(t.u)€ H™' G € H' and |F(t, u)|_, + |Cllo < K
(A9) £,9" : [0,1] x R xT — R' are measicable in (¢, z,u) and continuous in
u.k=1,2,....d", Furthermore. f(t,-.u) € H' g%(t,-,u) € H2, and

|flt,x,u)| + |g¥(t. 2, u)| +- LFCE )|l + lg®(t, - u)ll, < K. k= i LN i
(AS) = H'

3. Fundamental theory of SPDEs. In this section, we recall some fundamental facts
about SPDEs, which are originally due to Krylov and Rozovskii [8]-[10]. We state the
results and give some variants thar are convenient to our later discussion.

PROPOSITION 3.1. (Krylov and Rozovskii [9]). Ler A be any second-order differential
operator having the same form as (2.1). and let M* be any first-order differential operator
having the same form as (2.2). Assume that the coefficients of A and M* satisfy (Al),,
and (A2). Then there is a constant Ny that depends only on K and m such that

v )

d’ d’
2((A0. @)in + (f, D) m] + Z M5 + g¥(13, < N, (”'?5“351 + 1 £l + Z 13" (74
= | k=1
for any ¢ € H™t! f ¢ H™ and 3" EH™ m=0,....m.
(3.1)

Remark 3.1. Estimate (3.1) is slightly different in form from the original result of
Krylov and Rozovskii [9]. We may consult-Nagase and Nisio [12, §3 and Appendix] for
an explicit proof of (3.1), i

COROLLARY 3.1. In Proposition 3.1., let us assume, in addition, that the operator M*
ts of order zero. Then there is a constant Ny that depends only on K and m such that

f

d d
2((A0. O + (£, B)ml + D IM*6 + 3|13, < Ny [ [1]13, + IFI1Z + > lIg* I3
k=] k=1
forany ¢ € H™*! and f. G* € H™ m = O L ... m.
(3.2)

Proof. From (3.1), it follows that

(3.3) 2[(A0, d)im + (£, 0)ml < Ni(lll12, + IFIZ,).
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By the hypotheses of the corollary, M* becomes a bounded operator on H™. Hence
(3.4) 3% + 117 < 20K I8l + 15°115).

Therefore, estimate (3.2) follows from (3.3) and (3.4). 0
COROLLARY 3.2. In Proposition 3.1, let us assume, in addition, that (A2)" is satisfied.
Then there is a constant N5 that depends only on K, m, and 6 such that

d-hl
2((Ad. Oy + (i 0hm] + ) 1 M* + 55|15
k=1
- dr
(3.5) < =8|8llzsy + N3 | 0l + 1 llsms + Z (a5
k=] )

foroe H" fe H* 'and * e H®*,m =0,1,...,m.

Proof. The result can be easily derived by applying Proposition 3.1 to the operator
A - 0A, where A is the Laplacian. O

Remark 3.2. When m = 0 (3.3) holds even if all the coefficients of A and MF are
only bounded measurable in z-vanable; see Pardoux [13].

Let F.G*:[0.1] x R* x Q — R',& : R* x 2 — R' be given. We now consider the
following SPDE on an interval [, 3] C [0, 1]:

dE(t) = [A(t. U(t))E(t) + F(t)|dt
(3.6) +[ME(t, D(t}]&[ﬂ + G*(t)|dWi(t), 't € [a. 8],
f[ﬂl} — ""h

PROPOSITION 3.2 {Krylov and Rozovskii [9], [10]). Asswme that (Al)m and (A2)
[m > 1) are satisfied and that F € L3 =0, 1L H™), G* € L5-(0,1; H‘“‘H} and & .€
L3, F,, P; H™). Then (3.6) has a unique solution £ € L%(a,3: H™) N L*(Q: C(a, 8
H™="Y), and there is a constant Ny that depends only on K and m such that

g [ ; d I
E( sup IIEH}H?;.) Ef‘f-tE{Eann"‘ f |E®F + D IG )7 dt},

ast<p

- B

m=01....m.
(3.7)

COROLLARY 3.3. Assume that (Al),, and (A2) (m = 1) are satisfied with o'* = 0 and

that F,G* € L%(0,1; H™) and & € L*(Q, Fo, P; H™). Then (3.6) has a unique solution
e L}(u,_ﬁ; 0 LA Cla, 3; H™')), and estimate (3.7) can be strengthened to

ast<j

\ | ¢ ]
E( sup ||s(t3|l$h) iNsE{ifnllf-‘n+ff IE@)3 + Y IG*@)I% dt},

— R

=) b, m:
(3.8)

Proof. Note that estimate (3.2) is available as o** = 0; hence the result can be proved
in a way analogous to that in Krylov and Rozovskii [9]. a
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PROPOSITION (3.3) (Krylov and Rozovskii [8]). Assume that (Al),, and (A2)'(m > 0)
are satisfied and that F € Lf,_—(ﬂ, I; ) e Lj}(ﬂ, LH™), and & € L*(Q), F., P:
H'™). Then (3.6) has a unique solution & € Le(a, B: H™) L*(©%; Cla, 8 H™)), and
there is a constant Ng that depends only on K ym, and & such that ¢

s _ i |
E ( sup HE{f}Hﬁi) < NgE {llfﬂlfﬁ. +f IE )7, + Z IG*@®)|I%, ffi} .
o k=

a<t<A

- -

(3.9)

4. Adjoint equation. In this section, we derive an adjoint equation and study existence
and uniqueness of its solutions. We fix an admissible control (§2, 7, P, W,U) throughout
this section. <

THEOREM 4.1. Assume that (Aldy, (A2), and (A3) are satisfied. Then there exists a
unique solution pair (A, r) € Lz(0,1; H') x [L}-(O, & H‘ﬂ)]d*. where T := (r! r*, ... ),
of the following backward SPDE:

- ; -
dA(t) = - .4'(r,U(t)},x(:J+ZM‘“@,U[:})T‘=(¢)+F(¢,U{zJ) it
= |
: )
(4.1) + 3 ¥ (t)dWi(t), telo,1],

k

A1) =G.

I

Moreover, there is a constant N+ that depend only on K and 6 such tha

| d !
(42) E ]ﬂ INOIE + 3 I (e) 3] de < Ny [ / nF(r.Utmni.dr+|.'Gu§].
k=

Remark 4.1. Solutions of (4.1) are defined in a way ghnilar to those of the SPDE (2.6;.
More precisely, (A,r) € L3(0, 1: H') x [L%(0, 1; H%)]? is called a solution pair of (4.1)
if, for each 7 € C5°(R?) and almost all (¢,w) € [0,1] x 0, .

=

| d’
(A(), 7)o = (G.m)o +f (Als), Als, U(s))mo + D _(r*(s), M*(3,U(<))m)o
k ' k=l -

d .
+HE U)o ds =3 [ (r*(s), mhodbi(s).
k=] Yt

il

S0 (4.1) can be regarded as in the H~' space. -
~ Proof of Theorem 4.1. To avoid notational complexity, we prove the thecrem for ¢’ = 1|
(there is no essential difficulty when d’ > 1). Thus the index “k” will be dropped. On the
other hand, we also omit to write the control U(t) since it is fixed.
Uniqueness. Suppose that (A.r) € L%(0, 1; H') x L2(0, 1; H°) satisfies

dA(t) = —[A*(E)A(t) + M*(t)r(t)]dt + r(t)dW (t), t €0,1],

(4.3) A1) =0.
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Consider the following auxiliary SPDE, which admits a unique solution p € L}{{], 1; HYN
L3(; C(0, 1; H")) by virtue of Proposition 3.3:

dp(t) = [A(t)a(t) + M)t + [M(£)p(t) + r(&)dW (6), ¢ € [0,1],
p(0) = 0.

Applying Ito’s formula, we obtain

d(p(t). At))o = [IMDIF + lIr(®)I3]at |
+{(M(t)p(t) +r(t), Alt))o + (p(t), 7(t))o|dW (E).

Hence, EJ;,' IA(E)IZ + lIr(¢)[I5]dt = 0. This implies the uniqueness.

Before proceeding to the proof of the existence. we introduce an adjoint equation In
finite dimension, which was originally obtained by Bismut [5]; see also [2], [3].

LEMMA 4.1. Let n be a fixed positive integer. Suppose that we are given A,, My, €
EE(0, L RP ") Iy, € L%(0,1; R"), and G, € R". Then there exists uniquely a pair
(AniTa) € L%(0, 1;8™) % L%(0, 1; R™) satisfving the following backward SDE:

agy Dalt) = =[ATOA() + MT(Ora(t) + Fu(t)]dt +ra(O)dW (D), ¢ € [0,1)
An(1) =G
Let us now continue proving Theorem 4.1.
Existence. Consider the Gelfand triple H' — H’ — H~'. Letej,€3,....€n,..., be
a Hilbert basis of H'. which is orthonormal as a basis of H".
Fix a positive integer n. By Lemma 4.1, there is a unique pair

j‘-'r.l. = (Anil ' }‘nll . v 1}“ﬂﬂ)T = L:’_:-F(ﬁ'r 1: Rn]

and
P i= (Trids Tz oos .r"“}T - Lz}-{{}, I; R™)
satisfying
dAni(t) = — E{Ejrﬂ(tlﬂt)u}tn;{f} +Z(EJ1M{tJEi]ﬂTnj(t}
_;=I -2
(4.5) | +{F(t],ei}n] dt + ros(8)dW(t), te€ [0, 1],

Ani(l:]:Gn;‘, p-=2 I,2,...,n.
where 5 ._, Gnigi '= G, — G in H® as n — oo. Define

(4.6) Api= 3 Aniei € LE(0, 1, H')

and

(4.7) == rai= Y rmigy € LE(0, 1: H").

i=|
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Applying Ito’s formula to (4.5) and adding up in i from 1 to n, we have

a8y WAn(llo = =2[(An(t), 4(?‘%\ (D)o + (rn(t): M()Aa())o + (F(£), Aa(t))o]dt
. + 2(ra(t). An(£))odW (8) + [[ra (2)][3lt.

Hence,
EAu ()13 .
= E|Gul} +2E f ( A(s}).ﬂf.s] An(8))o + (ra(s), M(5)An(5))o
HF(s), An(8))o = 5 - lIra(s) 3] ds
< E|IGal3 + E f P(Arsu.t (3), An(8))0 + [M(8)An(8)]3 + 2(F(5), An(s))o]ds
< E|Gal} + E f [=8l1Aa(3)I + NsllAn(s)I +2/6 - | F()I2s + 6/2- 0 (s)P1ds

< -5/2- f IAn(s)3ds + E||Gal + NoE / An(8)I2 + 1P (s)I2, Jds.

f
(4.9)
So Gronwall's inequality yields

I |
(4.10) sup E|A, [t}[|ﬂ+§X2-Efﬂ [An(t)l|idt < NoE Uﬂ IIF(t}Hildt+HGuHé)1

p<i<1

where Ny depends only on K and §.
Now let g, <= (PariPuz;sins o) B L}(O, I; A™) be the solution of the following

SDE in R™:

dpni(t) = Z(*‘ut}f’jﬁﬂi:}ﬂpﬂj{”dt ¥ [Z(hf{t}ejaei)ﬂﬂnj(t) + Tni(t) aw(t),
je=| 3=l
p“i[U'J =U1 § = I,l....,ﬂ.
(4.11)
Define p, := 3 ._| pni€i € L3(0, 1; H'). By a calculation similar to the above. we have

o

t
Elon(t)l} = B fﬂ [2(A(3)n(8), £n(8))o + 1M (5)pn(s) + ra(s)[21ds

(4.12) : .:
< —6E / lpa(s)|[3ds + N E f llon(8)I2 + ra(s)[2)ds.
0 0

Applying again Gronwail’s inequality, we obtain

I I
(4.13)  sup Elpa(t)|§ + 6E /ﬂ len(t)[ITdt < Nyexp(Na)E A lImn (t) 15t

0<t<|

On the other hand, Ito’s formula gives

dZAm ()prni(t) —Z{ (A" ()An(2), e5)o + (M (E)ra(t), ex)e

(4. ]4} +{F(3) Et} ]pn:(t] o Am(t)(‘q(t)aﬂ‘n( J Et:}ﬂ'
'|"Tm(f}[(M(tJPn (t),ei)o -i—r,,,(t)]}dt*-l-{ }dw(t]
= [llra()I5 = (F(2), pn(t))o]dt + {- - -}dW (2).
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Integrating from O to | and taking expectation, we have

| |
B fu urnmnsdtﬂ[ fu (Fu),pntt)}ndw(smpﬂfmu}

-s(E [ 'umjuilzzf:) ( f loa(®)I dt)

(4.15) +H(E|Gall3) P (Ello(DII5) '

| /2
::(NmE /ﬂ nrn(z)nﬁdt)
| V-
{(Efn IIF(f_}IIi.dt) +{E||G,,||§)‘f3},

where Ny = max{Naexp(Ns3), 1/6 - Naexp(N3)}. Consequently,

I l
(4.16) E /. ”T-n(f]”:jf_ff < 2Npk [f IlF{ﬁ)[iJ;'df + “Gn”ﬁ] :
| Jo 0

By (4.10) and (4.16), there exist a subsequence {n'} of {n} and a pair (A,7) €
L3(0,1: H') x L3(0, |; HY) such that

(4.17) Ay — Aweakly in L*([0, 1] x @ H')
and
(4.18) rnr — 7 weakly in L*([0, 1] x 0: H')as n' — co.

We show that (\,r) satisfies (4.1). To this end, let v be an absolutely continuous
function from [0.1] to R' with 4 := dv/dt € L*[0, 1] and v(0) = 0. Set vi(t) := 7(t)e:.
Multiplying (4.5) by 7i(t) and using Ito’s formula, we have

f (An(8), 46(8))odt + [ (P (), % (8))odW (1)

e W f O (8), A7)0 + (ra(8), MEVW())o + (F (), %:(8))oldt

(4.19)
Letting n’ go to infinity and observing (4.17) and (4.18), we conclude that

f (M), B (t)dt + f (r(£), S)or(E)dW (8
(420) = (G, g)or(1 f [(A(t), A(E)P)o + (T(f) M(t)p)o + (F(t), d)oly(t)dt
for any & € H'.

For any t € (0, 1), let

0 fs<t—e/2,
-'h.{,g} - IfE-{S—f-l-E;"Z} ift'—sﬁ-:':s«::t+s/’2.
1 if s >t+¢e/2
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Substituting (4.20) with 4. and letting £ — 0, we arrive at
|
(1B + [ (r(5), 90dW () = (G, 0o
t

|
+ / [(A(s), A(8)@)o + (r(s), M(5)o)s

+ (F(s), @)o]ds
forany g € H', ae. t e 0, 1].

This implies that (A, r) satisfies (4.1). Finally, (4.2) is obtained by letting n’ — oo in (4.10)
and (4.16). 0 ]

COROLLARY 4.1. Let the same assumptions as in Theorem 4.1 be satisfied. Given
fe L3(0,1; H™") and §* € L=(0,1; HY, k= 1,2,....d" suppose that

§€ Lx(0, 1 H') N L(Q;C(0, 1; HY))
satisfies

d5(t) = [A(L. U(6)E(8) + f(t)]dt + [M*(8, U(2)E(2) + §*(2)|dWi (t),
t €0, 1,
(4.21)
and that (A, v} satisfies (4.1). Then, for any [a. 5] C [0, 1],

E U (F(t,U(t)),&(t))odt + {A{.HLE{_B}M]
(4.22) ” 5

d’ : ]
=E{ [ [0, S0 + 340,950 dt+(*(ﬂh€fﬂ))n}*
s k=l

— o

Proof. The result is easily derived by applying Ito’s formula to (A(2),E(2))o. 0

Remark 4.2. In Theorem 4.1 and Corollary 4.1, condition (Al)p can be weakened by
assuming that all the coefficients a*/, and so forth, are only bounded measurable in z.
However, under such a weaker condition, the adjoint operators A* and M ¥* can be no
longer written explicitly as (2.3) and (2.4), respectively. Instead, as operators mapping H'
into ', they can be determined by the following formulae:

(A%(t,u)o, ¥)o := (¢, A(t, u)1))g and

(M**(t,u)p, )0 := (@, M*(t, u)w)o for 6,9 € H'.

It should be also noted that the definition of solutions of (4.1) does not require explicit
expressions of A” and A**; see Remark 4.1.

3. Necessary conditions of optimality. We study in this section necessary conditions
of an optimal control for the general system (2.6) with the cost functional (2.8).

THEOREM 5.1. Assume that (Al),, (A2), (A3), (A4), and (AJ) are sarisfied and rthat
(Q,F,P,W.U) is an optimal control along with the corresponding optimal state §. Then,
for almost every t € [0, 1], we have the maximum condition

(5.1) H{(t, q(t), [}(t],}\{t], yit}) = E‘lea]:f H{(t,g(t), u, A(t),r(t)), P —as.
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where (A.r) is the solution pair of (4.1) with U(t) = U(t). and the Hamiltonian H is
defined by

H(t, o,u,(,n) = —{Hlt w)e, Cho — (f(t. u), (o

—Z M ru}qb?}}ﬂ ( H)’?)u]—{Ftﬂ ), @)o.

for (t,¢,u,(,n) €[0,1] x H' xI' x H' x (H)?
(5.2)

Proof. We assume that d = | and set A(t) := A(¢t,U(t)), and so on, for simplicity.
From Pmpmmun 3.3, it follows that ¢ € L%(0, 1; H*) N L* (2, C(0, 1; H')). Hence §(t) €
L*(S2: H?) for almost every t € € [0.1]. Fix a time £ € [0, 1) such that g(f) € L3*(Q; H?),
along with a ["-valued, .?-',—-m:asurahtﬂ random variable u. For any £ € (0, | — t), define
U, € Uy b}'

e ] Ak b€ [t L +],
Uelt) '*{ U(t), te [0, 1\E L+

Let g- be the response for U., namely,

(5.3) q:(t) = q(t), te 0,4,

r :
Ge(t) = G(t) + [ [Als.u)g.(s) + fls, u)|ds +/ (M (s, u)g=(s) + g(s, u)|dW(s),
¢ ¢

t € [t.t+z],
(5.4)
and

i

[A(s)ae(s) + f(s)|ds + ]t E(3)a.() + 3(s)1dW (5,
} te [f+e 1]

{

ge(t) = QE(E+E} +}:

:

(5.5)
It follows from Proposition 3.3 that ¢. € L2(Q; C(F, 1; H?)) and

f4=
(56 = ( P "'-?sf”lf%) ENsE{Hé(ﬂH%Jr f [r|f<r,u1||%+ily{t.unr%Jdt}

t<ti<t4e
< Ne 5 + ZKIE).

Define £.(¢) = q.(t) — 4(t) for t € [0. 1]. Then &; satisfies

dec(t) = [A(t)E:(t) + (A(t,u) — A(t))g-(t) + F(t.u) — f(t)]dt
(5.7) HM(8)E(E) + (M(t.u) — M(1))ge(t) + g(t,u) — g(t)|dW (),
t€[t,t+z]
and

(5.8) dE.(t) = A(t)E.(t)dt + N(1)E(t)dW (t),  te [f+=1].



ON NECESSARY CONDITIONS OF OPTIMAL CONTROLS FOR SPDEs

Since U is optimal, we have

0<J(U:) - J(U)=E {ft [(F(t, Uc(t)), ge(t))o — (F'(2),4(t))o]at
'H:G_v'?a“) —q(1))o }

t4£ = .
['59} = E/_. [{F(Lu] - F{t)in{t)}n -+ (F(t)l'ss(t]}ﬂ]dt

; i
+E U (F(t),E.(t))odt + (G, ch]))u‘ =1 + L.
t+&
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Applying Corollary 4.1 to (5.8) and (4.1), we have I, = E(A(t+¢€),&(t +€))o. Thus

we can rewrite (5.9) as

E+E
0<E f (F(t,u) — £(t), g (t))odt
(5.10) :

t4= . J
+E / (F(t),&(t))odt + (At +€),E(t+ E])u] .
t

Applying Corollary 4.1 again to (5.7) and (4.1), we obtain

L+E . "
0< Eff [(F(t,u) — F(t),qe(t))o + (A(2), (A(t, u) = A(t))qe(£))o

+(A(), f(t,u) = f(t))o
+(r(t), (M(t.u) — M(2))qe(t) + g(t, u) — §(t))ojdt.

On the other hand, we have

(35.11)

(1/¢) f B, (At u) — A)(q:(t) — d(8)odt
(5.12) v :

£ consi (i18) f BNl Bl de.

Recall that &, satisfies (5.7) on [t + =] with £-(£) = 0. Hence Proposition 3.3 gives

E ( sup Iiés(t}il?)
t<t<t+e

<N [ IIA(t ) A®)ac(t) + £(t.) - FOIS
t .
(513 (M (8, u) — M())ge(t) + glt, u) — §(t)|[F)dt

t+e

< const E f (lae (&)1 + 1)t
< const (Bllg(®)|3 + e (by (5.6))

< const = (Note that we have fixed ¢ such that E||¢(Z||3 < +o0).
Thus, (5.12) reduces to

t4+e d
(1/e) [ B, (At u) = AO)acle) - ale))od
51y Seomst/0 [ (EPDENOR+ /e PIEIG Ol
< const [s'ﬁ-(us) qm E|A@®)|3dt + (1/e)e(1/e')e

t
— Das £ — 0,
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provided that ¢ is a Lebesgue point of the function t — EJ||A(t)|3. Similarly, we have

t+e ‘
(1/6)E j (F(t,u) = F(),q(8) — a(O))e

(3.13) +(r(t), (M(t,u) — ﬂ'-f“”{qf[” — ﬁtf}})ﬂ]dt

-—-Uﬂj.l_-‘_‘—rﬂ!

provided that ¢ is a Lebesgue point of the function ¢ — E||7(¢)||3. Thus (5.11) becomes

e
0< E-/_ t,u) — F’H} qit))a + (AlL), (A(t,u) — 4[1’}].’;“}}
(5.16) :

HA@), ft,u) = F(£))o + (r(t), (M(t,u) — M (8))i(t)
+g(t, u) — glt))oldt + o(z).

Dividing (5.16) by = and letting = — 0, we obtain
(5.17) EH(E,q(f). U(£), A(),r(F)) = EH(E,4(E), u, ME), 7(D))

Therefore, the desired result (5.1) follows from a standard argument; see, for example, [11].
This concludes the theorem. 0

" Remark 5.1. In Theorem 3.1, all the coefficients appearing in the control problem are
allowed to depend on the control variable.

Remark 5.2. By the above proof (especially the argument between (5.12) and (5.17)).

It is easy to see that. if a" and o‘* contain no control variable, then the assumptions
of Theorem 5.1 can be considerably relaxed. More precisely, (A1), can be replaced by -
the assumption that all the coefficients a*/, and so forth, are bounded measurable in z,
and {.ﬂu4] and (A5) togetner can be replaced by the assumptions that gy € H", f(t,u) €
H='. ¢g"(t.u) € HY and that their respective norms are bounded. Therefore, all the
rEgulanly restrictions imposed in Bensoussan [4] can be removed. It should be alsu noted
that M* is allowed to be unbounded in our results, compared with [4].

6. Discussion and application.

6.1. Degenerate cases. The main results in §§4 aid 5 are derived under assumption
(A2)": namely, system (2.6) is nondegenerate. There seems to be some essential difficulties
in treating possibly degenerate systems, and the adjoint equation (4.1) may no longer admit
a solution pair, no matter how high regularity assumptions to be imposed on the functions
F and G. At least the method of proving Theorem 4.1 no longer applies. Indeed, the basic
idea behind the proof of Theorem 4.1 is to approximate the infinite-dimensional equation by
certain finite-dimensional equations and to use estimate (3.5) to prove that the approximate
solutions are weakly compact. However, when the systems are possibly degenerate, we
have only estimate (3.1) available, which could not ensure the above compactness. On the
other hand, estimate (3.1) is the "best one” in that it cannot be further improved.

However, our approach still works in the degenerate case if M¥* is of order zero, for
which a stronger estimate (3.2) is available.

Let us now introduce the following assumptions:

(B1) F(t.u)e H'.G € H', and ||F(t,u)|; + |G|, < K

(B2) f.g* : [0,1] x R* x ' — R' are measurable in (f,z.u) and continuous in
u,k=1,2,...,d. Furthermore, f(t.- u),g"%(t,-.u) € H*; and
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f (2 u)l + |g* (2, u)] + £ (L w)lls + (gt - ulls <K, k=1,2,....d"

(B3) qu € H?.

THEOREM 6.1. Assume tha (B1), (Al)y, and (A2) are satisfied with a'* = 0. Then.
Jor any (0, F,P,W,U) € U,,, there exists a unique solution pair (A7) € L%(0, 1; H') x
(L0, 1; HDOY of the adjoint equation (4.1). Moreover. there is q constant Ny, that
depends only on K such that

o T d’ :
6.1) E 4 AT+ % (1)) drgN..E[ /ﬂ uFft.Uutmﬁdz+HGH¥J-
k=] .

.

Proof. Once estimate (3.2) is observed, the theorem can be proved in a way similar to
that of Theorem 4.1. The proof is left to the reader. O

THEOREM 6.2. Assume that (B1)=(B3), (Al)3, and (A2) are satisfied with o** = () and
that (2, F, P,W,U) € Usaa is an optimal control along with the optimal state 4. Then for
almost every t € [0, 1],
(6.2) H(t, q(t), U(t), Alt),r(t)) = Tg{:g H(t, q(t), u, A(2), r(t)), P-as.,
where (A.r) is the solution pair of (4.1) with the control [] = U, and the Hamiltonian H
is defined by (5.2).

Proof. Basing on Theorem 6.1, we only need to slightly modify the proof of Theorem
3.1 From Corollary 3.3, it follows that d € Ly(0,1: H3) n L*(Q:C(0, 1: H?)). Hence
q(t) € L*(52; H?) for almost every t € [0.1]. Fix £ € [0, 1) such that q(t) € L3 (Q: HY),
Forz € (0,1 - ¢), define 4z by (5.3)~(5.5). By virtue of Corollary 3.3, we have

t<t<f+=

[ 4=
E( sup Hq.s{f}ili) < NiE ¢ Hri(ﬂH%/{ (17 s, )3 + llg(s. H)H‘}]ﬂfﬂ}

< NE([[G(D)]15 + 2K ).
Define &, (t) := q.(t) - q(t). Then &, satisfies (5.7) on [t,t + =]. Hence,

pldr .
E ( sup u&mnf) SNE [ [I(Alt,u) = Alt)au(t) + £(t,u) - (o))
tSt<t4e t
HICM(E u) — M())q.(t) + g(t,u) — §(t)|?)dt

t+z
< conist E‘/ (lae (&) + 1)dt
]
< const (E|¢(2)||5 + 1)e < const &.

In what follows, we must only repeat the arguments in the proof of Theorem 5.1 to
obtain the desired result, 0

Remark 6.1. Theorem 6.2 requires the higher regularity on the coefficients '/, f, and
so forth, as well as on the initial state qo- However, if the second-order coefficients of
the operator A(¢,u) contain no control variable, then it is easy to verify by the proof of
Theorem 6.2 that all the regularity conditions can be reduced by two orders. It should be
also noted that Theorem 6.2 extends the results of Bensoussan [4] to possibly degenerate
systems.
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6.2. Application to partially observed diffusions. The optimal control problem of
partially observed diffusions with general nonlinear cost functionals can be formulated as
a control problem of linear SPDEs (Zakai's equations) with linear cost functionals. Hence
the results obtained in the previous sections can be applied directly to partially observed

diffusions. ;
First. let us remark that the results in §§5 and 6 can be easily extended to the following

class of systems:

dg(t) = [A(t, W(t),U(t))q(t) + f(t. W(1),U(t))]dt
(6.3) HIME (L W (), UR))a(t) + g (¢, W(t), U(t))]dWi(t), te[0,1],
q(0) = qo,

where

A(t,w,u)d(z) := d;(a (t, z,w,u)0;0(x)) + bi(t, z, w,u)d;¢(x) + c(t,z, w,u)d(z),
ﬂf*(f..‘w. u)o(zx) = ﬂ'i"k[:t,i', w, uw)holx) + h‘:[t*r, w.a)dlz), k=1,2,...,d-

Note only the continuity of the coefficients a*’ and so forth in w € RY will be needed

later.
Let W and W be two independent Brownian motions on a probability space (£2. F, PP),
with values in RY and RY, respectively. Consider the following SDE in R

AX(t) = (t. X(t),Y(t),U(t))dt + alt, X(2), Y (t),U(t))dW(t)
(6.4) +a(t. X(8),Y(t).U@t)dW(t), te€]0,1],
- X(0) =6,

with the observation

dY (t) =ﬁ{t,.&:(t}y(t}, U(t))dt +dW(t), tel0,1],

(6.5) Y(0) =0,

where [/ is an admissible control, namely, {U(t) : 0 < t < 1} is a ['-valued, o{Y(s) :
0 < s < t}-adapted measurable process. Note o is the correlation between the state and
the observation noises.

Let F:[0,1] x R* x RY xT — R'.G: R? x RY — R' be given. The objective is
to minimize the cost functional defined by

(6.6) J(U):=E U F(t, X(t),Y(t),U(t))dt + G(}f(l}.}’(l)}]
J10

over the set of admissible controls. )
Note that W and Y are independent Brownian motions under a new probability P

defined by dP := p~'(1)dP, where

p(t) :=exp [[ﬂ k(s, X(s),Y(s), U[s})d}’{rs) - —é]‘; |k(s, X (s),Y(s), U(s)”lds] :

Consider the following SPDE:

da(t) = A(t, Y(t), U(t))a(t)dt + M*(¢, Y (2), U(D)a(t)dYe(t), te[0,1],

6D 4(0) = g,
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where Yy, k= 1,2,....d', are the components of Y, and

A(t, y, u)d(x) := d(a% (t. 2, y, u)B;0(z)) — Bi(a'(t, z, y, u)d(z)),
ME(t, y,u)p(z) = a“‘(r z,y, u)8ip(z) + h5(t, z,y, u)d(z),
(a“(t,z,y,u))i; = alt, z, ¥, u) [n*a t.z,y,u) + aa’ (t,z,y,u)]/2.
a'(t,z,y,u) ;== v'(t,z,y,u) — 8;a" (t,x,y, u),
hk{LI,y.u} = k5 (t, .y u) — dlﬁr’k(t,x, nu) G i=12,....dk=1,2,....d,
qo := the density of £.

Then ¢(¢) proves to be the unnormalized conditional prnbab:hty density of the state
process X (t), and the cost functional (6.6) reduces to

I
(6.8) JU)=E U (F(t, -, Y(t),U(t)),q(t))odt + (G(-Y(1)),q(1))

()

see Pardoux [13], Rozovskii [14], and Nagase and Nisio [12] for details.

Now we have tumned problem (6.4)-(6.6) to the one already solved in §§5 and 6.
observing the remark at the beginning of this section. So we can obtain the necessary
conditions for an optimal solution to problem (6.4)—-(6.6) by appropriately interpreting the
assumptions and conclusions. Here we omit this simple interpretative work and only remark
that, in the present case. (A2) is satisfied automatically; (A2) is also satisfied, providad
that aa” is uniformly positive definite.

7. Concluding remarks. In this paper, a finite-dimensional approximation approach
and some a prior estimates of differential operators are employed to solve the adjoint
equations of linear SPDEs, based on which necessary conditions of optimality for controlled
SPDEs are derived. For some sufficient conditions for the existence of an optimal control,
refer to [12], [15].

The adjoint equations of SPDEs may also be applied to some other important problems
besides the necessity of optimality. For example, a relationship between the adjoint process
A and the value function is given in [16], which enables us to gain some insight into the
deep connection between the adjoint equations and the dynamic programming equations
(Hamilton-Jacobi-Bellman equations). Further research on the analytical and qualitative
properties of solutions of the adjoint equations together with their applications to linear
SPDEs is carried out in [17].

Let us conclude the paper by noting that our results on the adjoint equations are by no
means optimal. In view of the observation at the beginning of §6.1, it remains a challenging
open problem to solve the adjoint equations of degerate SPDEs in which diffusion terms
contain first-order differential operators.
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