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Abstract

A portfolio choice model in continuous time is formulated for both complete and
incomplete markets, where the quantile function of the terminal cash flow, instead
of the cash flow itself, is taken as the decision variable. This formulation covers a
wide body of existing and new models with law-invariant preference measures, includ-
ing expected utility maximisation, mean-variance, goal reaching, Yaari’s dual model,
Lopes’ SP/A model, behavioural model under prospect theory, as well as those ex-
plicitly involving VaR and CVaR in objectives and/or constraints. A solution scheme
to this quantile model is proposed, and then demonstrated bysolving analytically the
goal-reaching model and Yaari’s dual model. A general property derived for the quan-
tile model is that the optimal terminal payment is anti-comonotonic with the pricing
kernel (or with the minimal pricing kernel in the case of an incomplete market) if
the investment opportunity set is deterministic. As a consequence, the mutual fund
theorem still holds in a market where rational and irrational agents co-exist.
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1 Introduction

Study on continuous-time portfolio choice has predominantly centred around expected
utility maximisation (including the mean–variance model -although it has its own subtly
unique features) since the seminal papers of Samuelson (1969) and Merton (1969). Abun-
dant research around, there have been essentially two approaches developed to solve the
utility model. One is the stochastic control or dynamic programming approach, initially
proposed by Merton (1969, 1971), which transforms the problem into solving a partial dif-
ferential equation called the Hamilton-Jacobi-Bellman (HJB) equation. The other one is
the martingale approach. This approach, developed by Harrison and Kreps (1979), Harri-
son and Pliska (1981, 1983), and Pliska (1986), employs a martingale characterisation to
turn the dynamic wealth equation into a static budget constraint and then identifies the op-
timal terminal wealth via solving a static optimisation problem. If the market is complete,
an optimal strategy is derived by replicating the optimal terminal wealth in the same spirit
of perfectly hedging a contingent claim. Karatzas and Shreve (1998) gives a systematic
account on this approach. In an incomplete market with possible portfolio constraints, the
martingale approach is further developed to include the so-called convex duality machin-
ery; see, e.g., Cvitanić and Karatzas (1992), Kramkov and Schachermayer (1999), and Goll
and R̈uschendorf (2001).

However, it has been known for a long time that some of the basic tenets of the expected
utility as a risk preference measure are systematically violated in practice. Hence, many
alternative preference measures have been put forth, notably Yaari’s “dual theory of choice”
(Yaari 1987) which attempts to resolve a number of puzzles and paradoxes associated with
the expected utility theory (although, as Yaari 1987 admits, the dual theory would lead
to other paradoxes). In this theory, instead of applying a utility which is essentially a
“distortion” in payment, one distorts the probability decumulative function of the payment.
This probability distortion function, as Yaari shows, represents the risk preference in a
different way. In particular, risk aversion is characterised by a convex - rather than concave
- distortion. Other theories developed along this line of involving subjective probability
distortions include Lopes’ SP/A model (Lopes 1987 and Lopesand Oden 1999) and, most
significantly, Kahneman and Tversky’s prospect theory (Kahneman and Tversky 1979 and
Tversky and Kahneman 1992), both in the modern behavioural decision-making paradigm.

It is a natural problem to formulate and solve a portfolio choice model involving proba-
bility distortions; yet a key technical challenge is that such a distortion renders a nonlinear
expectation that destroys the time-consistency necessaryfor the dynamic programming ap-
proach as well as the convexity necessary for the convex duality approach.

Another large set of portfolio choice problems could involve explicitly probability and
VaR/CVaR/quantile, instead of expectation, in their objectives and/or constraints. For in-
stance, the goal-reaching problem, initiated by Kulldorff(1993) and Heath (1993), inves-
tigated extensively by Browne (1999, 2000), and later extended to hedging of contingent
claims by F̈ollmer and Leukert (1999) and Spivak and Cvitanić (1999), is to maximise the
probability of the terminal cash flow in excess of a given level or a given benchmark. Other
models could include VaR/CVaR/quantile as risk measures.1 It is well known that these

1Oddly enough, despite an extensive literature search we have not found any study oncontinuous-time
diffusion models with VaR/CVaR/quantile appearing explicitly either in objectives or in constraints (note in
particular that, although the title of Föllmer and Leukert 1999 includes the word “quantile”, the paper deals
with a problem of maximising the probability of successfully hedging a contingent claim). Kataoka (1963)
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problems cannot be solved, at least directly, by conventional approaches. For example, al-
though one could write a probability as an expectation of an indicator function, the latter is
inherently non-convex. Dynamic programming, on the other hand, becomes inapplicable
for problems explicitly involving VaR/quantile.

In summary, there could be many alternative, ad hoc, and economically sensible port-
folio choice models where the nice properties (such as time-consistency and convexity) we
have all along taken for granted would be missing.2 Ad hoc approaches have been devel-
oped to solve a very limited number of these models. A question arises as to whether it is
possible to establish/develop a unified, general framework/approach to cover/solve all the
aforementioned models (and many others) once and for all. The answer is, as we will show
subsequently, affirmative, and all it takes is a new perspective compared to the standard
portfolio selection literature in mathematical finance.

To reach the answer to the preceding question, this paper explores and exploits two
essential commonalities among all the seemingly differentmodels mentioned above. One
is that all the preference/performance measures involved are law-invariant. That is, agents
care about only the probability distribution of the terminal cash flow, rather than the cash
flow itself. The other commonality is that all the preferences can be written as adistorted
meanwhere both the payment and its distribution function are alterted; see (15) below.
An analysis shows that if we change the decision variable from the terminal cash flowX to
G(Z), whereG is the quantile function ofX andZ isanyuniform random variable on[0, 1],
then the preference reduces to a linear expectation (under apossibly different probability
measure)! This change of variable does not change the preference value becauseX and
G(Z) arealwaysidentical in law. There is, however, another issue to be addressed with this
technique because the budget constraint is inherently law-variant so the preceding change
of variable would in general violate the constraint. However, a dual argument originally
due to Dybvig (1988), in the classical economic spirit that (loosely speaking) maximising
a performance measure is equivalent to minimising the associated cost, reveals thatX can
also be replaced byG(Z) in the budget constraint whereZ is aparticular uniform variable
generated by the pricing kernel.

Based on these analyses, we are prompted to formulate a portfolio choice model, very
general in the sense that it covers all the aforementioned models and many others, where
the optimal quantile function of the terminal payment is to be chosen. Since we have
recovered linear expectation in the quantile model, we are able to propose a general solution
scheme based on the Lagrange approach and a weak/strong duality argument. Once the
optimal quantile function is obtained, the corresponding optimal terminal cash flow can be
recovered by a simple formula, which as a by-product indicates that it is anti-comonotonic
with the pricing kernel. If the market is complete, then the optimal portfolio is the one
replicating the obtained terminal payoff. If the market is incomplete, then we seek the

probably is the first to include a quantile criterion in a single-period portfolio choice model. Grigor’ev and
Kan (2004) and Dhaeneet al. (2005) both consider dynamic portfolio selection problemswith explicitly
present quantile-related criteria, but their settings areboth very specific and restrictive (the former studies a
discrete-time model with uniform distribution of returns,and the latter confines the portfolios to the class of
“constant mix” ones). For more recent study/survey on quantile-related performance measures see Föllmer
and Schied (2004), Dhaeneet al. (2004), and Cherny and Madan (2008).

2Some models may lack both the time-consistency and the convexity. For examples, Lopes’ SP/A model
has both a probability distortion and a probability constraint, and Kahneman and Tversky’s propsect model
has probability distortions and anS-shaped utility function.

3



so-called minimal pricing kernel which exists in some casessuch as when the investment
opportunity set is deterministic.

We demonstrate our formulation and solution procedure by applying them to the goal-
reaching model and Yaari’s model. Analytical solutions areobtained for both models which
turn out to be of the same binary, “win-or-lose-all” structure, although there are subtle -
and indeed substantial - differences between the two in terms of the implied risk–return
preferences. It should be noted that, while our approach gives an alternative way to that
of Browne (1999) in solving the goal-reaching model, we actually extend the setting to
include possibly stochastic opportunity sets for which Browne’s HJB method would fail.3

Moreover, the formulation and solution to the continuous-time Yaari’s dual model are com-
pletely new to our best knowledge.

The quantile formulation also enables us to establish a mutual fund theorem at least in
the case of a deterministic opportunity set (complete or incomplete market regardless). This
has a potentially important consequence in developing a capital asset pricing model for a
market where rational (utility maximising) and irrational(behavioural) agents co-exist.

We finally remark that it is not new at all in the economics (including mathematical
economics) literature to express risk preferences in termsof quantiles or distribution func-
tions; see, to name but a few, Machina (1982), Yaari (1987), and Dybvig (1988). However,
to our best knowledge the quantile formulation and its general solution procedure for pos-
sibly non-convex/concave utility functions and non-convex/concave probability distortions
are new in the portfolio choice literature especially in thecontinuous-time setting4, 5. The
idea was in fact around in Jin and Zhou (2008) for overcoming the difficulties arising from
the nonconcavity and time-inconsistency in the continuous-time portfolio selection model
under the prospect theory, but it was used there in an ad hoc nature. The present paper

3The statistical hypothesis testing argument of Föllmer and Leukert (1999) and the martingale approach
of Spivak and Cvitaníc (1999) could also solve the goal-reaching model with a stochastic opportunity set.

4Despite its title, Dybvig (1988) does not formulate or solveany specific class of portfolio choice problems
per se. Instead, it is concerned with thedual problemof portfolio choice, namely, to characterise the lowest
cost of any given terminal distribution. As discussed above, the dual argument is indeed one of the main
theoretical foundations of the quantile formulation here -although we were not aware of Dybvig’ work when
we were carrying out this research.

5After this paper was accepted, the papers by Schied (2004) and Carlier and Dana (2006) came to our
attention. Schied (2004) introduces a quantile-based optimization technique to solve a specific class of con-
vex, robust portfolio selection problems. In Carlier and Dana (2006), a more general class of quantile-based
calculus of variations problems with law-invariantconcavecriteria are formulated, and the issues of existence
of solutions, necessary conditions for optimality, and sufficient conditions for the regularity of solutions are
addressed. These results are closely related to the ones in this paper, but there are important differences.
On p.130, Carlier and Dana (2006), it is stated that “we shallalso requirev to be concave (in therandom
variableX) ...”. This requirement is violated by our model (or indeed any model with nontrivial probability
distortions). Of course, in Section 3.1 there (which contains results closest to ours), this assumption does
not seem to be necessary. However, therein the criterionv is required to be strictly second-order stochastic
dominance (SSD) preserving, which is necessary in proving the key Proposition 3.1. Notice that being SSD
preserving is quite a strong assumption; it is strictly stronger than law invariance plus monotonicity (which
are the only two essential assumptions imposed in our paper here) – see the bottom of p. 130 in Carlier and
Dana (2006). Only whenv is concave do the two coincide – see Proposition 2.4. In otherwords, certain
concavity of the criteria is implicitly assumed and seems tobe critical in the arguments of Carlier and Dana
(2006). In contrast, one of the key points of our paper is to abandon the convexity/concavity (be it in the utili-
ties or in the probability distortions) assumption altogether. Indeed, because of the S-shaped utility functions
and the reversed S-shaped probability distortions involved, the criterion in a general prospect theory model is
inherently nonconcave in either cash flows or in there quantiles.
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attempts to systematically utilise and develop the quantile approach to solving (amongst
others) possibly non-expected and non-convex/concave portfolio choice problems.

The remainder of this paper is organised as follows. Section2 proposes the general
quantile model motivated by five concrete models. In Section3, a solution scheme is
described for the general model, followed by its application to two specific models – the
goal-reaching and Yaari’s models – with explicit solutions. Economic interpretations of
the solutions obtained are discussed. Section 4 is devoted to the incomplete market, and
Section 5 to the mutual fund theorem. Finally, Section 6 concludes.

2 A New Portfolio Choice Formulation

In this section we set up the continuous-time market, and explain the background and
motivation of a new portfolio choice formulation via five concrete models.

2.1 A continuous-time market

Let T > 0 be given and(Ω,F , (Ft)0≤t≤T , P ) be a filtered probability space on which is
defined a standardFt-adaptedn-dimensional Brownian motionW (t) ≡ (W 1(t), · · · ,W n(t))⊤

with W (0) = 0. It is assumed thatFt = σ{W (s) : 0 ≤ s ≤ t}, augmented by all theP -null
sets. Here and henceforthA⊤ denotes the transpose of a matrixA, anda+ := max(a, 0),
a− := max(−a, 0) for a ∈ R.

We define a continuous-time financial market following Karatzas and Shreve (1998).
In the market there arem + 1 assets being traded continuously. One of the assets is a bank
account whose price processS0(t) is subject to the following equation:

dS0(t) = r(t)S0(t)dt, t ∈ [0, T ]; S0(0) = s0 > 0, (1)

where the interest rater(·) is anFt-progressively measurable, scalar-valued stochastic pro-
cess with

∫ T

0
|r(s)|ds < +∞ a.s.. The otherm assets are stocks whose price processes

Si(t), i = 1, · · · ,m, satisfy the following stochastic differential equation (SDE):

dSi(t) = Si(t)

[

bi(t)dt +
n

∑

j=1

σij(t)dW j(t)

]

, t ∈ [0, T ]; Si(0) = si > 0, (2)

wherebi(·) andσij(·), the appreciation and volatility rates respectively, are scalar-valued,
Ft-progressively measurable stochastic processes with

∫ T

0

[

m
∑

i=1

|bi(t)| +
m

∑

i=1

n
∑

j=1

|σij(t)|2
]

dt < +∞, a.s..

Set the excess rate of return process

B(t) := (b1(t) − r(t), · · · , bm(t) − r(t))⊤,

and define the volatility matrix processσ(t) := (σij(t))m×n. Basic assumptions imposed
on the market parameters throughout this paper are summarised as follows:
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Assumption 1 There exists anFt-progressively measurable,Rn-valued processθ0(·) with

Ee
1

2

R T

0
|θ0(t)|2dt < +∞ such that

σ(t)θ0(t) = B(t), a.s., a.e.t ∈ [0, T ].

Assumption 2 There exists2 ≥ s1 > 0 such thats1 ≤ S0(T ) ≤ s2.

Assumption 1 is only slightly stronger than the standard no-arbitrage assumption due to
the additional Novikov condition; see Karatzas and Shreve (1998) for details. Assumption
2 holds when the risk-free rate is bounded.

Consider an agent, with an initial endowmentx0 > 0 and an investment horizon[0, T ],
whose total wealth at timet ≥ 0 is denoted byx(t). Assume that the trading of shares takes
place continuously in a self-financing fashion and there areno transaction costs. Thenx(·)
satisfies (see, e.g., Karatzas and Shreve 1998)

dx(t) =
[

r(t)x(t) + B⊤(t)π(t)
]

dt + π(t)⊤σ(t)dW (t), t ∈ [0, T ]; x(0) = x0, (3)

whereπi(t), i = 1, 2 · · · ,m, denotes the total market value of the agent’s wealth in the
i-th asset at timet. The processπ(·) ≡ (π1(·), · · · , πm(·))⊤ is called aportfolio if it is
Ft-progressively measurable with

∫ T

0

|σ(t)⊤π(t)|2dt < +∞ and
∫ T

0

|B(t)⊤π(t)|dt < +∞, a.s..

and it is tame (i.e., the corresponding discounted wealth process,S0(t)
−1x(t), is almost

surely bounded from below – although the bound may depend onπ(·)). It is standard in
the continuous-time literature that a portfolio be required to be tame so as to, among other
things, exclude the notorious doubling strategy.

There may be other constraints on the portfolios specific to agiven problem, such as
prohibition of shorting or bankruptcy. A portfolio is called admissibleif it satisfies all the
given constraints. LetΠ be the set of all admissible portfolios. It is important to note that
Π does not depend on the initial positionx0. The agent evaluates each admissible portfolio
π(·) via a certain performance (or preference) measure, denotedbyJ(x0, π(·)). The precise
forms ofJ(x0, π(·)) are dictated by individual problems, and will be discussed fully in the
sequel. The objective of a portfolio selection problem is, for a given initial endowment
x0, to choose an optimal portfolio whose performance value achieves the supremum of
J(x0, π(·)) overΠ. Denote byv(x0) this supremum value.

This paper aims to introduce a very general portfolio choiceformulation which in par-
ticular covers both the neoclassical (utility maximisation) and behavioural models. To do
so we need the following “minimal” assumption on the models we are able to include.

Assumption 3 For an initial positionx0 and an admissible portfolioπ(·), if x̂0 > x0 then
there is an admissible portfoliôπ(·) such thatJ(x̂0, π̂(·)) > J(x0, π(·)).

The economic sensibility of this assumption is clear: with more initial budget the agent
will be able to do strictly better. One may appreciate that this is a very weak assumption6,
and any portfolio model violating this would be abnormal. Indeed, all the five concrete
models to be presented in the next subsection satisfy this assumption; see discussions at the
end of Section 2.2.

6Indeed, it is easy to show that Assumption 3 is even weaker than the following very reasonable assump-
tion: v(x̂0) > v(x0) ∀x̂0 > x0.
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2.2 Five motivating models

In this subsection we motivate our new portfolio choice formulation via five concrete
models. These models appear quite different in terms of their economical interpretations
and mathematical formulations; yet the commonalities among them will be explored, lead-
ing to a universal framework and approach covering all of them (and more). In the re-
mainder of this section we assume that the underlying continuous-time market is complete
or equivalently the processθ0(·) in Assumption 1 is unique. The study of an incomplete
market will be deferred to Section 4. Define

ρ(t) := exp

{

−
∫ t

0

[

r(s) +
1

2
|θ0(s)|2

]

ds −
∫ t

0

θ0(s)
⊤dW (s)

}

, (4)

the pricing kernel or state density price process. Denoteρ := ρ(T ). It is clear that under
Assumptions 1 and 2,0 < ρ < +∞ a.s. and0 < Eρ < +∞. Let

ρ̄ ≡ esssup ρ := sup {a ∈ R : P{ρ > a} > 0} ,
ρ ≡ essinf ρ := inf {a ∈ R : P{ρ < a} > 0} .

(5)

In view of the martingale approach a portfolio choice problem in this economy boils
down to determining the optimal terminal wealth.

Let F be the set of cumulative distribution functions (CDFs hereafter) of all the lower
bounded random variables taking values onR, i.e.

F = {F (·) : R → [0, 1], nondecreasing,càdlàg, F (a−) = 0 for somea ∈ R andF (+∞) = 1}.

The lower boundedness above corresponds to the required tameness of portfolios. For any
F (·) ∈ F, denote byF−1(·) its left-inverse, i.e.,

F−1(t) = inf{x ∈ R : F (x) ≥ t} = sup{x ∈ R : F (x) < t}, t ∈ [0, 1].

Let G := {F−1(·) : F (·) ∈ F} be the corresponding set of quantile functions, or

G =
{

G(·) : [0, 1] → R
+, nondecreasing, left continuous,G(0) = −∞, G(0+) > −∞

}

,

whereG(1) := G(1−).

Model 1: Expected Utility Maximisation

Max
X

Eu(X)

subject to E[ρX] = x0, X ≥ 0, X is FT measurable,
(6)

whereu(·) is a utility function,E[ρX] = x0 is the budget constraint, andX ≥ 0 is the
no-bankruptcy constraint (which may be absent in some variants of the model). This is
the classical utility model initiated by Samuelson (1969) and Merton (1969) with extensive
research thereafter. Under the concavity assumption on theutility function (representing
the agent risk-aversion) it is a simple exercise via a Lagrange technique to solve the above
optimisation problem. As explained earlier the solutionX∗ to this static optimisation prob-
lem is the optimal terminal cash flow that ought to be achieved. The optimal portfolio will
then be the one replicatingX∗.
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It is interesting to look more closely at the preference measure,Eu(X), in this model.
Recall for a random payoffX ≥ 0 its mean is

E[X] =

∫ +∞

0

xdFX(x) (7)

whereFX(·) is the CDF ofX, while

Eu(X) =

∫ +∞

0

u(x)dFX(x). (8)

Hence, compared with the mean evaluation (7), the expected utility (8) essentially applies
a utility function todistort the payment outcomes when evaluating a random payment. The
way the distortion takes place reflects the agent attitude towards risk, which is captured
mathematically by the convexity and/or concavity of the utility function.

Model 2: Goal Reaching

Max
X

P (X ≥ b)

subject to E[ρX] = x0, X ≥ 0, X is FT measurable,
(9)

whereb > 0 is the goal (level of wealth) intended to be reached by timeT . This is called
the goal-reaching problem, which was proposed by Kulldorff(1993), Heath (1993), and
studied extensively (including various extensions) by Browne (1999, 2000).

Economically, the goal-reaching model is different from the expected utility model; see
a detailed discussion in Browne (1999). Technically, it is not covered by the standard utility
model either, since

P (X ≥ b) =

∫ ∞

0

1(x≥b)dFX(x), (10)

and the indicator function1(x≥b) is not concave. Browne (1999, 2000) primarily employs
the dynamic programming and HJB equation to solve the problem.

Model 3: Yaari’s Dual Theory

Max
X

∫ ∞

0
w(P (X > x))dx

subject to E[ρX] = x0, X ≥ 0, X is FT measurable,
(11)

wherew : [0, 1] → [0, 1] is a function called aprobability distortionor weighting function
representing a subjective inflation/deflation of the true probability. It is a generally non-
linear, non-decreasing (so the distortion at least preserves the order of the probabilities)
function withw(0) = 0 andw(1) = 1 (so there is no distortion on sure events).

The preference measure in (11) was first put forward by Yaari (1987) as a “dual theory
of choice under risk” to the expected utility theory. If we write (via Fubini’s theorem)

∫ ∞

0

w(P (X > x))dx =

∫ ∞

0

xd [−w(1 − FX(x))] , (12)
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then we see that, in contrast to the expected utility (8) thatdistorts the payment, Yaari’s
measure (12) distorts the CDF of the payment instead. Yaari (1987), Theorem 2, further
shows that the risk preference can also be captured by this distortion; specifically the agent
is risk-averse if and only ifw is convex.

Yaari’s dual measure is one of the so-callednon-expected utilitieswhich, as Yaari
(1987) argues, can explain a number of paradoxes associatedwith the expected utility the-
ory, although it leads to new “dual” paradoxes at the same time. It would be interesting
to explore what solutions this dual measure would generate in the context of portfolio
choice. There is a rather preliminary study, Hamada, Sherris and van der Hoek (2001), on
a discrete-time portfolio choice model featuring Yaari’s measure, whereas the continuous-
time model (11) is new to our best knowledge. The technical difficulties in solving (11)
include the non-concavity of (12) inX due to the distortionw, and the time-inconsistency
of the measure because of (12) being essentially a nonlinearexpectation (also known as
the Choquet expectation) under the capacityw ◦ P . In particular, time-consistency is the
foundation of the dynamic programming, the latter being theprimary approach in treating
dynamic portfolio choice problems.

Model 4: Lopes’ SP/A Theory

Max
X

∫ ∞

0
w(P (X > x))dx

subject to P (X ≥ A) ≥ α,
E[ρX] = x0, X ≥ 0, X is FT measurable,

(13)

wherew is now called (in Lopes’ terminology) thedecumulative weighting functionin the
SP/A theory,A the aspiration level, andα the confidence level of the final payment exceed-
ing the aspiration. The SP/A theory, developed by Lopes (1987), is widely regarded as an
instantiation of the psychological/behavioural decision-making model, where SP stands for
a security–potentialcriterion and A for anaspirationcriterion. Model (13) looks similar
to the Yaari model (11) except for the additional aspirationconstraint; neverthelessw in
(13) actually has a more specific economical interpretation. Lopes (1987) specifiesw as a
weighted combination of a convex function and a concave one,where the convexity repre-
sents the security (risk-aversion) and the concavity captures the potential (risk-seeking).

Lopes and Oden (1999) apply the SP/A theory to formulate and solve a single-period
portfolio selection model. However, it appears that the continuous-time counterpart (13)
has not been studied in the literature at all.

Model 5: Kahneman and Tversky’s Prospect Theory

Max
X

∫ ∞

0
w+ (P (u+ ((X − B)+) > x)) dx

−
∫ ∞

0
w− (P (u− ((X − B)−) > x)) dx

subject to E[ρX] = x0, X is FT measurable and a.s. bounded from below,
(14)

whereB, anFT measurable random variable, is areference pointin wealth,u+(·) and
u−(·) are the utility and disutility functions ofgains(excesses of wealth overB) andlosses
(shortfalls fromB) respectively, andw+ andw− are probability distortions on gains and
losses respectively.
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The preference measure in the above model was proposed and developed by Kahneman
and Tversky, which is the most important component in the Nobel-prize-winning propsect
theory7. There has been active research in incorporating propsect theory into portfolio
choice, albeit mainly restricted hitherto to the single-period case. Study on continuous-
time models such as (14) has been started only recently; see Berkelaar, Kouwenberg and
Post (2004), and Jin and Zhou (2008).

It remains to show that the standing Assumption 3 holds naturally for the above mod-
els under reasonable conditions. For the utility model (6),the performance measure is
J(x0, π(·)) = Eu(x(T )) wherex(T ) := X is the terminal wealth under portfolioπ(·)
starting from the initial endowmentx(0) = x0. If x̂0 > x0, we then define

X̂ :=
x̂0 − x0

Eρ
+ X.

Clearly, X̂ is FT measurable,̂X > X a.s. andE[ρX̂] = x̂0. Now, assuming thatu(·) is
strictly increasing and lettinĝπ(·) be the replicating portfolio of̂X, we haveJ(x̂0, π̂(·)) =
Eu(X̂) > Eu(X) = J(x0, π(·)).

The same argument applying to Yaari’s model (11) and Lopes’ model (13) yields that
Assumption 3 is valid for the two ifw is strictly increasing. For the same reason, the
prospect model (14) satisfies the assumption if allw± andu± are strictly increasing.

The above argument, however, does not apply to the goal-reaching model (9) because
in general it could hold thatP (X̂ ≥ b) = P (X ≥ b) even thoughX̂ > X a.s. We use a
different technique instead. LetJ(x0, π(·)) = P (X ≥ b) whereX is the terminal wealth
under portfolioπ(·) starting from the initial endowmentx(0) = x0. Considerx̂0 with
bE[ρ] > x̂0 > x0. (If bE[ρ] ≤ x̂0 then the corresponding optimal value,v(x̂0), is 1 which
is a trivial case.) ThenP (X < b) > 0. Find anFT measurable setA ⊂ {X < b} such that
P (A) > 0 andbE[ρ1A] ≤ x̂0 − x0. DefineX̂ := a1A + X1Ac where

a :=
x̂0 − E[ρX1Ac]

E[ρ1A]
≥ x0 + bE[ρ1A] − E[ρX1Ac]

E[ρ1A]
≥ b.

In fact the abovea was chosen so thatE[ρX̂] = x̂0. ClearlyX̂ ≥ 0 and

P (X̂ ≥ b) = P (X̂ ≥ b|A)P (A)+P (X̂ ≥ b|Ac)P (Ac) = P (A)+P (X ≥ b) > P (X ≥ b).

Therefore, Assumption 3 holdsunconditionallyfor (9).

2.3 Formulation via quantiles

Among the preceding five models, the last three involve non-expected utilities due to the
probability distortions; hence the standard approaches such as convex duality and dynamic
programming fail to apply. The questions we are going to address are whether we can

7Theprospect theorywas first introduced in Kahneman and Tversky (1979), and later modified to the so-
calledcumulative prospect theoryin Tversky and Kahneman (1992) so as to be consistent with thefirst-order
stochastic dominance. On the other hand, in the works of Kahneman and Tversky the behavioural measure is
defined on prospects with discrete outcomes, while the one in(14) is a natural generalisation that covers both
continuous and discrete outcomes.
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solve the last three models, and whether in addition we can establish/develop a unified
framework/approach to cover/solve all the five models (and many others) at the same time.
We will show that the answers are positive if we take a different perspective compared
with the one taken for granted in expected utility maximisation. A first and key step to
reach the answers is to find the commonalities among the models above. Notice that all the
preference measures in those models can be written in the following general form:

C(X) :=

∫ ∞

−∞

u(x)d [w(FX(x))] (15)

whereu(·) andw : [0, 1] → [0, 1] are both nonlinear8. In essence, (15) is amodifiedmean
of the cash flowX whereboth the cash flow and its probability distribution are distorted9.
While C(X) appears to be a non-expected measure mainly due to the presence ofw, by
letting z = FX(x) in (15) we have (assuming thatw is differentiable)

C(X) =

∫ 1

0

u
(

F−1
X (z)

)

d (w(z)) =

∫ 1

0

u
(

F−1
X (z)

)

w′(z)dz = E [u(G(Z))w′(Z)] (16)

whereZ is anyuniform random variable on(0, 1) (we writeZ ∼ U(0, 1)) andG = F−1
X ,

the quantile functionof X. Hence, by regardingG (a quantile) as the decision variable,
instead ofX (a random variable), we recover linear expectation.10

Note that the law-invariant nature of the performance measure C(X) is essential in
the above treatment. Next, to have a complete quantile formulation, it remains to express
the budget constraintE[ρX] = x0, a constraint inherent to any continuous-time portfolio
choice model, in terms of also the quantile ofX. An obstacle for doing this is thatρ and
X are two possibly correlated random variables, and the correlation is generally unknown.
In other words,E[ρX] is law-variant (inX). To get around we need to exploit some
“dual” property of the underlying optimisation problem, subtly based upon the minimal
assumption introduced earlier, namely Assumption 3, alongwith the following additional
assumption on the pricing kernelρ:

Assumption 4 ρ admits no atom.

This assumption will be in force hereafter. It is satisfied, in particular, whenr(·) and
θ(·) are deterministic with

∫ T

0
|θ(t)|2dt 6= 0 (in which caseρ is a nondegenerate lognormal

random variable).
Denote byFρ(·) the CDF ofρ andZρ := 1 − Fρ(ρ). Becauseρ is atom-less,Zρ ∼

U(0, 1) and we can expressρ in terms ofZρ: ρ = F−1
ρ (1−Zρ) a.s.. The following lemma,

derived11 in Jin and Zhou (2008) Theorem B.1, is crucial.

8Strictly speaking, the preference measure of the propsect model, Model 5, is the difference between the
two terms of the form (15). As discussed below, our approach here applies to Model 5 as well.

9General preference measures involving both utility functions and non-additive probabilities have been
proposed in, e.g., Quiggin (1982) and Schmeidler (1989), albeit for discrete probability spaces.

10Alternatively (but equivalently), we may take the random variable Y := G(Z) as the new decision
variable, and (16) reduces to the classical expected utility criterion under a new probability measure that has
a Radon–Nikodym densityw′(Z) with respect toP . Note thatG(Z) has the same probability law asX, but
in generalG(Z) 6= X as random variables.

11The essential ideas contained in Lemma 1 were first put forth in Dybvig (1988), Theorems 2 and 3. The
exact form of the lemma needed for the present paper was proved, with a different proof than Dybvig (1988),
in Jin and Zhou (2008).
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Lemma 1 Suppose Assumption 4 holds. ThenE[ρG(Zρ)] ≤ E[ρX] for any lower bounded
random variableX whose quantile isG. Furthermore, ifE[ρG(Zρ)] < ∞, then the in-
equality becomes equality if and only ifX = G(Zρ), a.s..

Recall thatE[ρX] is the t = 0 price of a future (t = T ) random cash flowX. The
economic interpretation of this lemma is that one can alwaysreplace a random paymentX
byY := G(Zρ), which has thesame probability lawasX, yet with no greater (and possibly
smaller) cost. Notice this replacement would not change thepreference measure (16),
including of course those of the aforementioned five models,due to the law-invariance.
Hence a dual argument yields that at an optimal solutionX∗ it must hold thatE[ρG∗(Zρ)] =
E[ρX∗] whereG∗ is the quantile ofX∗. (Indeed, ify0 := E[ρG∗(Zρ)] < E[ρX∗] =: x0,
thenG∗(Zρ) would achieve the same performance value with a strictly smaller budget. By
Assumption 3, the agent couldstrictly increase the performance value with the original
budgetx0 > y0, hence contracting the optimality ofX∗.) This, in turn, leads toX∗ =
G∗(Zρ), a.s. in view of Lemma 1.

The above argument shows that an optimal solutionX∗ of all the models in this section,
or indeed any continuous-time model satisfying Assumptions 3 and 4, must be in the form
G∗(Zρ) whereG∗ is a quantile andZρ is aparticular uniform random variableZρ = 1 −
Fρ(ρ). In other words, to find an optimal solution we need only to search among the random
variables of the formG(Zρ) whereG ∈ G. Sinceρ = F−1

ρ (1 − Zρ) a.s., we can replace
the budget constraintE[ρX] = x0 by

E[F−1
ρ (1 − Zρ)G(Zρ)] = x0. (17)

Now we are ready to formulate our general portfolio choice model via quantiles:

Max
G(·)

U(G(·)) = E [u(G(Zρ))w
′(Zρ)]

subject to E[F−1
ρ (1 − Zρ)G(Zρ)] = x0,

G(·) ∈ G ∩ M,

(18)

whereZρ = 1−Fρ(ρ), G is the set of quantile functions of lower bounded random variables
andM specifies some other constraints. For instance, the no-bankruptcy constraintX ≥ 0
can be translated intoM = {G(·) : G(0+) ≥ 0}.

Sometimes it is more convenient to consider the following integral version of (18):

Max
G(·)

U(G(·)) =
∫ 1

0
u (G(z))w′(z)dz

subject to
∫ 1

0
F−1

ρ (1 − z)G(z)dz = x0.
G(·) ∈ G ∩ M.

(19)

We have demonstrated that the above formulation generalises the five concrete models
presented in the previous subsection12. In fact, it is general enough to cover many other
models such as the continuous-time Markowitz model13, models explicitly involving VaR,
CVaR or quantile functions in performance measures and/or constraints.

12To be precise, Model 5 is notdirectly covered by the above formulation because its objective is the
difference of two terms. However, a key step in solving Model5, as carried out in Jin and Zhou (2008), is to
decompose the problem into two subproblems each of which is of the form (18).

13Assumption 3 holds for the Markowitz model if one is interested in only the nonsatiation portion of the
Markowitz efficient frontier.
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Finally, we reiterate that the above formulation depends onthe market completeness
since it involves explicitly a pricing kernel viaZρ. The incomplete market case will be
dealt with in Section 4.

3 Solutions

In this section we first outline the general solution scheme to solving (18) or (19) in
a complete market, and then illustrate the scheme by solvingexplicitly the goal-reaching
model and Yaari’s dual model.14 Notice that the results on Yaari’s model are completely
new to our best knowledge.

The general scheme starts with removing the budget constraint in (19) via a Lagrange
multiplier λ ∈ R and considering the following problem

Max
G(·)

Uλ(G(·)) :=
∫ 1

0
u (G(z))w′(z)dz − λ

(

∫ 1

0
F−1

ρ (1 − z)G(z)dz − x0

)

subject to G(·) ∈ G ∩ M.
(20)

In solving the above problem one usually ignores the constraint, G(·) ∈ G ∩ M, in
the first instance, since in many cases the optimal solution of the resulting unconstrained
problem could be modified (without affecting the objective value) to satisfy this constraint
under some reasonable assumptions (see concrete examples below). For some cases such a
modification could be technically challenging; see for example the SP/A model tackled in
He and Zhou (2008). In other cases the constraint may need to be dealt with separately, via
techniques specific to each problem.

Once (20) is solved with an optimal solutionG∗
λ(·), one then findsλ∗ ∈ R that binds

the original budget constraint, namely,

∫ 1

0

F−1
ρ (1 − z)G∗

λ∗(z)dz = x0.

The existence of suchλ∗ can usually be obtained by examining the monotonicity and con-
tinuity of f(λ) :=

∫ 1

0
F−1

ρ (1− z)G∗
λ(z)dz in λ. Moreover, if the strict monotonicity can be

established, thenλ∗ is unique. See the examples below.
Finally, G∗(·) := G∗

λ∗(·) can be proved to be the optimal solution to (18) or (19). This
is shown in the following way. Letv(x0) andvλ(x0) be respectively the optimal value of
(19) and (20). By their very definitions we have the followingweak duality

v(x0) ≤ inf
λ∈R

vλ(x0) ∀x0 ∈ R.

However,

v(x0) ≤ inf
λ∈R

vλ(x0) ≤ vλ∗(x0) = Uλ∗(G∗(·)) = U(G∗(·)) ≤ v(x0).

14Among the five models presented earlier, the expected utility model has been well studied, and the
prospect model has been solved quite completely in Jin and Zhou (2008). The SP/A model can be solved by
the scheme suggested here, which however would involve substantial technicalities among other subtle issues
unique to this model. We hence decide, in order not to distract the main focus of this paper, to investigate the
SP/A model in a separate paper He and Zhou (2008).
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This implies thatG∗(·) is optimal to (19) (and thestrong dualityv(x0) = infλ∈R vλ(x0)
holds).

The uniqueness of the optimal solution can also be derived from that of (20). Indeed,
suppose we have established the uniqueness of optimal solution to (20) forλ = λ∗, andλ∗

is such thatG∗
λ∗(·) binds the budget constraint. ThenG∗

λ∗(·) is the unique optimal solution
to (18). To see this, assume there exists another optimal solution G̃∗(·) to (18). Then

Uλ∗(G̃∗(·)) ≤ Uλ∗(G∗
λ∗(·)) = v(x0) = U(G̃∗(·)) = Uλ∗(G̃∗(·)).

Hence, by the uniqueness of optimal solution to (20), we concludeG̃∗(·) = G∗
λ∗(·).

Finally, once (18) or (19) has been solved with the optimal solution G∗(·), the corre-
sponding optimal terminal cash flow can be recovered by

X∗ = G∗(Zρ) ≡ G∗(1 − Fρ(ρ)). (21)

The above expression shows that the optimal terminal wealthof the model (18) or (19)
is anti-comonotonicwith the pricing kernelρ in a complete market. This underlines one
of the most important, common properties of the quantile model (which covers a wide
range of portfolio selection problems from neoclassical tobehavioural). It will also play a
significant role in treating incomplete markets and in establishing the mutual fund theorem;
see the next two sections.

We remark that while the above solution scheme is outlined underλ ∈ R, it extends
readily to the situation whereλ is restricted to a smaller subset, typically the positive axis
R+ \ {0}15; see examples below.

Now we apply this general scheme to two concrete models presented earlier. Recall we
are dealing with a complete market for now. Consequently, weassume the following on
the market in Section 2.1 throughout the remainder of this section:

Assumption 5 m = n andσ(t) is invertible a.s., a.e.t ∈ [0, T ].

3.1 Goal-reaching model

Consider the goal-reaching problem (9). Browne (1999) has solved this problem, as-
suming that the investment opportunity set is deterministic, using rather ad hoc method
based on the HJB equation and the associated verification theorem. Here, without assum-
ing a deterministic investment opportunity set, we demonstrate that our quantile formula-
tion will lead to a rather simple approach.

First, it is easy to see that ifx0 ≥ bE[ρ], then a trivial optimal solution isX∗ = b and
the optimal value is 1. Therefore we confine us to the only interesting case0 < x0 < bE[ρ],
which means that the goal is at least more ambitious than the risk-free payoff. Notice

P (X ≥ b) =

∫

R

1{x≥b}dFX(x) =

∫ 1

0

1{G(z)≥b}dz,

15This is because, due to Assumption 3, the equality constraint in (19) could be revised to the less-or-equal
inequality constraint without essentially changing the model.
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andX ≥ 0 is equivalent toG(0+) ≥ 0. Hence problem (9) can be formulated in the
following quantile version:

Max
G(·)

U(G(·)) =
∫ 1

0
1{G(z)≥b}dz

subject to
∫ 1

0
F−1

ρ (1 − z)G(z)dz = x0,
G(·) ∈ G, G(0+) ≥ 0.

(22)

This, certainly, specialises the general model (19) with a non-convex/concave “utility”
function.

Introducing the Lagrange multiplierλ > 0 (as discussed earlier as well as evident from
below in this case we need only to consider positive multipliers), we have the following
family of problems

Max
G(·)

Uλ(G(·)) :=
∫ 1

0

[

1{G(z)≥b} − λF−1
ρ (1 − z)G(z)

]

dz + λx0

Subject to G(·) ∈ G, G(0+) ≥ 0.
(23)

Ignore the constraints for now, and consider the pointwise maximisation of the integrand
above in the argumentx = G(z): maxx≥0[1{x≥b} − λF−1

ρ (1 − z)x]. It is an easy ex-
ercise to show that its optimal value ismax{1 − λF−1

ρ (1 − z)b, 0} attained atx∗ =
b1{1−λF−1

ρ (1−z)b≥0}. Moreover, such an optimal solution is unique whenever1− λF−1
ρ (1−

z)b > 0. Thus, we define

G∗
λ(z) := b1{1−λF−1

ρ (1−z)b≥0}, 0 < z < 1,

which is nondecreasing inz. It may not be left continuous; however, the value ofUλ(G(·))
is unchanged ifG(·) is altered only at countable points on[0, 1]. Hence we can take the
left-continuous modification ofG∗

λ(·) to be the optimal solution of (23), and the optimal
solution is unique up to a null Lebesgue measure. On the otherhand, the modification
above would generate the same (in the sense of a.s.) random payment (21) sinceρ has no
atom. So the aboveG∗

λ(·) can be regarded as the optimal solution to (23).
Now we are to findλ∗ > 0 binding the budget constraint so as to conclude thatG∗

λ∗(·)
is the optimal solution to (22). To this end, let

f(λ) : =

∫ 1

0

F−1
ρ (1 − z)G∗

λ(z)dz

= b

∫ 1

0

F−1
ρ (1 − z)1{F−1

ρ (1−z)≤1/(λb)}dz

= b

∫ +∞

0

x1{x≤1/(λb)}dFρ(x)

= bE
[

ρ1{ρ≤1/(λb)}

]

, λ > 0.

It is easy to see thatf(·) is nonincreasing, continuous on(0,+∞), with limλ↓0 f(λ) =
bE[ρ] and limλ↑+∞ f(λ) = 0. Therefore, for any0 < x0 < bE[ρ], there existsλ∗ > 0
such thatf(λ∗) = x0 or the budget constraint holds. As per discussed in the general
solution scheme the correspondingG∗

λ∗(·) solves (22) and the terminal paymentX∗ =
G∗

λ∗(1 − Fρ(ρ)) = b1{ρ≤c∗}, wherec∗ ≡ (λ∗b)−1 is such that the initial budget constraint
binds, solves the original problem (9). Finally, the optimal solution is unique and the
optimal value isP (X∗ ≥ b) = P (ρ ≤ c∗) = Fρ(c

∗).
To summarise, we have
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Theorem 1 Assume that0 < x0 < bE[ρ]. Then the unique solution to the goal-reaching
problem (9) isX∗ = b1{ρ≤c∗} wherec∗ > 0 is the one such thatE[ρX∗] = x0. The optimal
value isFρ(c

∗).

The solution above certainly reduces to that of Browne (1999) when the investment
opportunity set is deterministic. It is, however, important to highlight the advantages of our
approach. First, the approach in Browne (1999) is rather ad hoc, in that a value function of
the problem isconjecturedand then verified to be the solution of the HJB equation, without
an explanation as to how the function was come up with in the first place. Here wederive
the solution (without having to know its form a priori) basedon the quantile approach. Thus
our method could be easily adapted to more general settings.Second, the HJB equation
fails to work with a stochastic investment opportunity set,16 which however can be treated
by our approach here. Finally, our result can even be extended to an incomplete market
with a deterministic opportunity set; see the next section for details.

Föllmer and Leukert (1999) and Spivak and Cvitanić (1999) extend the goal-achieving
problem to the context of hedging contingent claims, allowing more general settings in-
volving random goals, stochastic opportunity sets, and/orcontinuous semimartingales as
asset prices. The approaches they develop (Neyman–Pearsonlemma and martingale re-
spectively) are again somewhat specific to the probability maximisation problems. In con-
trast, the quantile approach of this paper is general enoughto cover many models beyond
probability maximisation.17

We end this subsection by noting an interesting feature of the solution derived. The
optimal terminal wealth profile for the goal-reaching is a digital option.18 Optimally the
agent either obtains a fixed payment upon a “winning event” orelse loses all the money on
a “losing event” at the end of the investment horizon. Whether the world ends up with a
winning event is completely dictated by the pricing kernel not exceeding a critical levelc∗.
Moreover, sinceX∗ = b1{ρ≤c∗}, the payoffb in case of a winning is fixed while the winning
probability,P (ρ ≤ c∗), monotonically decreases withb/x0, a quantity that measures the
aspiration (or indeed the greed) of the agent. This is seen by

E[ρ1{ρ≤c∗}] = (b/x0)
−1.

From a different perspective, given the initial wealthx0, there is a tradeoff between the
winning amountb and the winning chance represetned byc∗, since

bE[ρ1{ρ≤c∗}] = x0.

So the higher goal the agent sets the less chance the goal willbe reached, and vice versa.
This in turn suggests that, although the notion of risk preference is not explicitly presented
in the goal-reaching model, it isimplied in the following sense: the more risk-averse the

16In this case one would have to involve the so-called backwardstochastic partial differential equation in
formulating the corresponding HJB equation, which is in general very complicated and extremely hard to
deal with.

17In this paper the goalb in (9) is assumed to be deterministic, althouth it is not essential. If b is random,
then by considering a new decision variableY = X/b one could mathematically recover (9) withb = 1. Of
course, some subtle technical consideration is required ifb is not almost surely strictly positive; we leave the
details to the interested readers.

18It is an easy problem to replicate a digital option to obtain the optimal trading strategy; see, e.g., Appendix
E in Jin and Zhou (2008).
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agent is, the more weight should be put on the winningchanceand the less on the winning
amount. More on this in the next subsection.

3.2 Yaari’s dual model

In this subsection we turn to the portfolio choice model (11)under Yaari’s dual theory.
We assumex0 > 0 to exclude a trivial case. In view of (12), (15), and (16) the problem has
the following quantile formulation:

Max
G(·)

U(G(·)) =
∫ 1

0
G(z)w′(1 − z)dz

subject to
∫ 1

0
F−1

ρ (1 − z)G(z)dz = x0.
G(·) ∈ G, G(0+) ≥ 0.

(24)

We first impose the following assumption on the distortion functionw(·).

Assumption 6 w(·) : [0, 1] → [0, 1] is continuous and strictly increasing withw(0) = 0,
w(1) = 1. Furthermore,w(·) is continuously differentiable on(0, 1).

Other than the differentiability which is purely technical, the economical sensibility of
the assumption is evident.

Before we attempt to solve (11) or (24), notice the preference measure is linear in the
payment; see (12). Hence its value can be possibly made as large as one wants. Define by
v(x0) the optimal value of (24). We say the model isill-posedif v(x0) = +∞; otherwise
it is well-posed. An ill-posed model is one where the incentives implied by the model are
wrong, and in the context of portfolio choice an ill-posed model usually leads to trading
strategies that take the greatest possible leverages (hence the agent is most aggressive); see
Jin and Zhou (2008) for a detailed discussion and treatment of the ill-posedness. A well-
posed Yaari’s model requires some consistency between the probability distortion and the
market. This is made precise in the following theorem.

Theorem 2 Under Assumption 6, model (24) is ill-posed iflim infz↓0
w′(z)

F−1
ρ (z)

= +∞, and

well-posed iflim supz↓0
w′(z)

F−1
ρ (z)

< +∞.

Proof If lim infz↓0
w′(z)

F−1
ρ (z)

= +∞, then for anyn > 0, there existsz1 ∈ (0, 1) such that

w′(z) ≥ n
x0

F−1
ρ (z) for anyz ∈ (0, z1]. ConstructG(·) ∈ G in the following way: it is 0 on

[0, 1 − z1] and is a constantb on (1 − z1, 1]. Becauseρ > 0, we haveF−1
ρ (z) > 0 ∀z > 0.

Hence we can selectb such that
∫ 1

0
G(z)F−1

ρ (1 − z)dz = x0 > 0. Consequently, we have
∫ 1

0

G(z)w′(1 − z)dz ≥ n

x0

∫ 1

0

G(z)F−1
ρ (1 − z)dz = n.

This indicates thatv(x0) = +∞ or the underlying model is ill-posed.
If lim supz↓0

w′(z)

F−1
ρ (z)

< +∞, then there existsK1 > 0 and 0 < z1 < 1 such that

w′(z) ≤ K1F
−1
ρ (z) for any z ∈ (0, z1]. Now for any feasibleG(·) to problem (24), we

have

G(1 − z1) ≤
∫ 1

1−z1

G(z)F−1
ρ (1 − z)dz

∫ 1

1−z1

F−1
ρ (1 − z)dz

≤ x0
∫ 1

1−z1

F−1
ρ (1 − z)dz

=: K2 < +∞.
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Thus

U(G(·)) =

∫ 1−z1

0

G(z)w′(1 − z)dz +

∫ 1

1−z1

G(z)w′(1 − z)dz

≤ G(1 − z1)

∫ 1−z1

0

w′(1 − z)dz + K1

∫ 1

1−z1

G(z)F−1
ρ (1 − z)dz

≤ K2 + K1x0.

This shows thatv(x0) ≤ K2 + K1x0 < +∞ and the model is well-posed.

If w is concave and differentiable, andρ = 0, then

lim inf
z↓0

w′(z)

F−1
ρ (z)

≥ lim inf
z↓0

w′(1/2)

F−1
ρ (z)

= +∞.

So a concave distortion leads to an ill-posed problem or the agent is most aggressive in
taking the risk. However, this is perfectly consistent withYaari’s theory that a concave
distortion is equivalent to the risk-seeking preference.

Next, we apply the Lagrange method to solve (24), for which weintroduce an additional
assumption in terms of a functionM(z) := w′(1−z)

F−1
ρ (1−z)

, 0 < z < 1.

Assumption 7 M(·) is continuous on(0, 1), and there existsz0 ∈ (0, 1) such thatM(·) is
strictly increasing on(0, z0) and strictly decreasing on(z0, 1).

Assumption 7 can be weakened to the one whereM(·) may have a finite number of
monotonic pieces. However, such a generalisation only incurs notational complexity in
the approach below rather than any essential difference. Onthe other hand, we will show
later in this subsection that Assumption 7 holds naturally for some common and interesting
cases. Finally note that, in view of Theorem 2, problem (24) is well-posed under this
assumption.

Consider the following family of problems with the parameter λ > 0 being the La-
grange multiplier:

Max
G(·)

Uλ(G(·)) :=
∫ 1

0
G(z)

[

w′(1 − z) − λF−1
ρ (1 − z)

]

dz + λx0

subject to G(·) ∈ G, G(0+) ≥ 0.
(25)

Denote byvλ(x0) the optimal value of (25). The following proposition solves(25) com-
pletely.

Proposition 1 Let Assumptions 6-7 hold. Then there is the unique rootλ∗ > 0 of the
following function on(0,+∞):

h(λ) :=

∫ 1

0

[

w′(1 − z) − λF−1
ρ (1 − z)

]

+
dz −

∫ 1

z0

[

w′(1 − z) − λF−1
ρ (1 − z)

]

−
dz.

Moreover,

(i) If 0 < λ < λ∗, thenvλ(x0) = +∞.

(ii) If λ > λ∗, thenvλ(x0) = λx0 and the unique optimal solution to(25) is G∗
λ(·) ≡ 0.
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(iii) If λ = λ∗, thenvλ(x0) = λx0, and the set of optimal solutions to(25) is {G(·) ∈
G : G(z) = b1{z(λ∗)<z≤1}, b ≥ 0} where0 < z(λ∗) ≤ z0 is the one satisfying
M(z(λ∗)) = λ∗.

Proof Rewrite, for eachλ > 0,

Uλ(G(·)) =

∫ 1

0

G(z)F−1
ρ (1 − z)fλ(z)dz + λx0

wherefλ(z) := M(z) − λ. If fλ(z) < 0 ∀z ∈ (0, 1) then the obvious unique optimal
G∗

λ(·) ≡ 0 which leads to (ii). Hence we assume thatfλ(z) ≥ 0 for at least onez ∈ (0, 1).
Let z(λ) := inf{z ∈ (0, z0] : fλ(z) ≥ 0} with the convention thatinf ∅ := z0. A
crucial step in what follows is to show that the optimal solution to (25) must be attained in
a subclass ofG, consisting of certain step functions, defined as

Gλ := {G(·) ∈ G : G(z) = b1{z(λ)<z≤1}, b ≥ 0}.

It is clear thatvλ(x0) ≥ supG(·)∈Gλ
Uλ(G(·)). To show the opposite inequality, consider

z̄(λ) := inf{z ∈ [z0, 1) : fλ(z) < 0} with inf ∅ := 1. By virtue of Assumption 7,fλ(·) is
positive on(z(λ), z̄(λ)) and negative on(0, z(λ)) ∪ (z̄(λ), 1). Now, for any feasibleG(·)
to (25), we have

Uλ(G(·)) =

∫ 1

0

G(z)F−1
ρ (1 − z)fλ(z)dz + λx0

=

∫ z(λ)

0

G(z)F−1
ρ (1 − z)fλ(z)dz

+

∫ z̄(λ)

z(λ)

G(z)F−1
ρ (1 − z)fλ(z)dz +

∫ 1

z̄(λ)

G(z)F−1
ρ (1 − z)fλ(z)dz + λx0

≤ α

∫ z̄(λ)

z(λ)

F−1
ρ (1 − z)fλ(z)dz + α

∫ 1

z̄(λ)

F−1
ρ (1 − z)fλ(z)dz + λx0

≤ sup
g(·)∈Gλ

Uλ(g(·)),

whereα := limz↓z̄(λ) G(z). The first inequality above becomes equality if and only if
G(·) = α1{z(λ)<z≤1}. Therefore, ifG∗(·) is optimal to (25), thenG∗(·) ∈ Gλ.

On the other hand, a simple exercise shows that

h(λ) ≡
∫ 1

z(λ)

[

w′(1 − z) − λF−1
ρ (1 − z)

]

dz.

Clearly, h(·) is continuous and strictly decreasing on(0,+∞) with limλ↓0 h(λ) = 1,
limλ↑∞ h(λ) = −∞. Soh(λ) admits a unique rootλ∗ > 0. Now,

vλ(x0) = sup
G(·)∈Gλ

Uλ(G(·)) = λx0 + sup
b≥0

[bh(λ)] = λx0 + h(λ) sup
b≥0

b.

Sinceh(λ) is positive whenλ < λ∗, negative whenλ > λ∗, and identical to 0 whenλ = λ∗,
the desired results (i)-(iii) follow immediately.

Now we are ready to give the complete solution to (11) or equivalently (24).
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Theorem 3 Suppose Assumptions 6-7 hold, and letλ∗ be the one in Proposition 1. Then

(i) The strong duality holds, i.e.,v(x0) = infλ>0 vλ(x0) = λ∗x0.

(ii) X∗ = b∗1{ρ≤c} is the unique optimal solution to(11) wherec is the unique root of
the following function

ϕ(x) := xw(Fρ(x)) − w′(Fρ(x))

∫ x

0

sdFρ(s) (26)

on (F−1
ρ (1 − z0), ρ) andb∗ > 0 is the one binding the initial budget constraint, i.e.,

E[ρX∗] = x0.

Proof We clearly have the weak duality:v(x0) ≤ infλ>0 vλ(x0) = λ∗x0 where the equal-
ity is due to Proposition 1. Now, takeG∗(z) = b∗1{z(λ∗)<z≤1}, 0 ≤ z ≤ 1, such that
∫ 1

0
G∗(z)F−1

ρ (1 − z)dz = x0. Thenv(x0) ≥ U(G∗(·)) = λ∗x0 where the equality is again
by Proposition 1. This proves the strong duality and, moreover,G∗(·) is optimal to (24).

If there is another optimal solutioñG∗(·) to (24), then
∫ 1

0
G̃∗(z)F−1

ρ (1 − z)dz = x0

and G̃∗(·) is optimal to (25) with the multiplierλ∗. Proposition 1-(iii) then implies that
G̃∗(·) ∈ Gλ∗ and consequentlỹG∗(·) = G∗(·). This proves the uniqueness of the optimal
solution to (24).

Next we recover the optimal terminal payoff via (21):

X∗ = b∗1{z(λ∗)<1−Fρ(ρ)≤1} = b∗1{ρ≤c}

wherec := F−1
ρ (1 − z(λ∗)).

It remains to show that the abovec is the unique root ofϕ(·) defined in (26). Recalling
h(λ) =

∫ 1

z(λ)

[

w′(1 − z) − λF−1
ρ (1 − z)

]

dz andλ = M(z(λ)) when0 < z(λ) ≤ z0, we
conclude thatz(λ∗) is the unique root of the following function (iny)

∫ 1

y

w′(1 − z)dz − M(y)

∫ 1

y

F−1
ρ (1 − z)dz ≡ w(1 − y) − M(y)

∫ 1

y

F−1
ρ (1 − z)dz.

A change of integrand variables = F−1
ρ (1 − z) in evaluating the integral above reveals

immediately thatc = F−1
ρ (1 − z(λ∗)) is the unique root ofϕ defined on the interval

(F−1
ρ (1 − z0), ρ). The proof is completed.

The following example first shows the validity of Assumption7 for a broad and inter-
esting class of distortion functions and pricing kernels, and then gives the corresponding
optimal solution to Yaari’s model.

Example 1 Letρ follow lognormal distribution19, i.e.,Fρ(x) = Φ
(

ln x−µ
σ

)

for someµ ∈ R,
σ > 0 whereΦ(·) is the CDF of the standard Normal distribution. Takew(z) = zγ for some
γ > 1; sow(·) is convex and reflects the risk aversion of the investor according to Yaari’s
theory. We now verify Assumption 7 or, equivalently, the monotonicity of

f(x) :=
w′(Fρ(x))

x
=

γ
[

Φ
(

ln x−µ
σ

)]γ−1

x
, x > 0.

19This covers, e.g., the case with a deterministic investmentopportunity set.
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A calculation shows

f ′(x) =
γ

[

Φ
(

ln x−µ
σ

)]γ−2

x2
f1

(

ln x − µ

σ

)

where

f1(y) :=
γ − 1

σ
φ (y) − Φ (y)

andφ(·) is the density function of the standard Normal distribution. Again taking derivative
onf1(y), we have

f ′
1(y) = −φ(y)

(

1 +
γ − 1

σ
y

)

.

Thereforef1 takes its maximum aty1 = − σ
γ−1

< 0, strictly increases on(−∞, y1), and
strictly decreases on(y1,+∞). Moreover,

f1(y1) = −
[

Φ (y1) +
1

y1

φ (y1)

]

= −
[

1 − Φ (−y1) −
1

−y1

φ (−y1)

]

> 0.

On the other hand, we have

f1(−∞) = 0, f1(+∞) = −1 < 0.

Hencef1(·) has a unique rooty2 such thatf1(y) > 0 on (−∞, y2) and f1(y) < 0 on

(y2,+∞). Furthermorey2 > y1 = − σ
γ−1

. Let ρ0 := exp(σy2 + µ) > exp
(

µ − σ2

γ−1

)

and

z0 := 1 − Fρ(ρ0) = 1 − Φ(y2). Then Assumption 7 holds.
The functionϕ(·) defined in Theorem 3 is

ϕ(x) =

[

Φ

(

ln x − µ

σ

)]γ−1 [

xΦ

(

lnx − µ

σ

)

− γeµ+ σ2

2 Φ

(

ln x − µ

σ
− σ

)]

.

This function has a unique rootc on
(

ρ0, γ exp
(

µ + σ2

2

))

. Therefore, the optimal solution

is given asX∗ = b∗1{ρ≤c} with E[ρX∗] = x0.

As with the goal-reaching model, it turns out that the optimal solution to the Yaari’s
model has the same digital or “win-or-lose-all” structure20. However, there are subtle dif-
ferences between the two models. In the goal-reaching model, the winning payoffb is

20As discussed in Madan and Zhou (2008) the structure of digital claims being optimal is arguably not well
formed and appears to be an artificial consequence of the problem formulations – in particular the linearity in
both preferences and constraints – than a real structural property. Here both the goal-reaching model and the
Yaari model have linear payment in their preference measures (Yaari’s criterion only distorts the probability
and not the payment), which is the essential economic reasonbehind the digital solutions. A more plausible
optimal claim is what we call agambling strategy, that is, it is a known claimX in certain states of the world
and another claimY otherwise, andX andY usually havedistinct economic interpretations. So people
gamble on the occurrence of the former states (the good states). The propsect model Jin and Zhou (2008) has
exactly such an optimal structure whereX is the gain andY the loss. See also He and Zhou (2008) for the
SP/A model where a utility function is applied to distort thepayment in addition to the probability distortion.
A digital option is certainly a special case and, more importantly, an approximation of the general form. We
stress that the general quantile model formulated in this paper has rich optimal structures; it just so happens
that the two models demonstrated here have the digital structure.
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exogenouslychosenby the agent while the winning chance is endogenouslyimpliedby the
model; the latter being affected by the initial wealthx0 (or more precisely, by the aspiration
level b/x0). In Yaari’s model,X∗ = b∗1{ρ≤c}, so both the winning chance and the winning
amount are endogenous. In particular,c is completely determined by the market and the
agent risk preference; see (26). In other words there is a capon the winning chancere-
gardlessof the initial wealth whereas the winning payoffb∗ depends linearly on the initial
wealth.

As Yaari (1987) argues, risk preference is explicitly present and reflected by the proba-
bility distortionw in his dual criterion. Now let us examine howw would affect the winning
chance represented byc, and whether Yaari’s model is consistent with the notion (asdis-
cussed earlier) that a more risk-averse agent would put moreweight on the winning chance
and less weight on the winning payoff.

Recall that in the proof of Theorem 3, we have proved thatz := 1−Fρ(c) is the unique
root of the following function

g(y) := w(1 − y) − M(y)

∫ 1

y

F−1
ρ (1 − s)ds

on (0, z0). Notingg′(y) = −M ′(y)
∫ 1

y
F−1

ρ (1− s)ds along with Assumption 7,g(·) strictly
decreases on(0, z0) and strictly increases on(z0, 1). Consequently,g(y) > 0 on (0, z) and
g(y) < 0 on (z, 1). Rewriteg(·) as

g(y) = w′(1 − y)

[

w(1 − y)

w′(1 − y)
−

∫ 1

y
F−1

ρ (1 − s)ds

F−1
ρ (1 − y)

]

.

Suppose now we have two distortion functions,w1(·) andw2(·), both satisfying Assump-
tions 6 and 7, such that

w′
1(1 − y)

w1(1 − y)
≤ w′

2(1 − y)

w2(1 − y)
. (27)

The corresponding functionsg(·), ϕ(·) and the quantitiesz andc are now affixed with a
subscripti = 1, 2 to indicate the correspondence to the two distortionswi, i = 1, 2. Then
we have

0 = g1(z1) ≥ w′
1(1 − z1)

[

w2(1 − z1)

w′
2(1 − z1)

−
∫ 1

z1

F−1
ρ (1 − s)ds

F−1
ρ (z1)

]

.

This impliesg2(z1) ≤ 0 and, consequently,z1 ≥ z2 or equivalently,c1 ≤ c2. If the in-
equality in (27) is strict, so are all the subsequent inequalities above. If we accept that
in the tradeoff between the winning chance and the winning amount, a risk-averse agent
favours the former, then the above analysis shows that the index w′(z)

w(z)
can be used to mea-

sure the degree of “risk-aversion” in Yaari’s model, i.e., the greater the index the higher
winning chance the agent wishes to achieve. We remark that inMachina (1982), Theorem
4-(ii), based on the notion of risk aversion introduced by Rothschild and Stiglitz (1970),
it is shown that the risk aversion levels of different preference functionals can be ranked
according to a criterion. It is easy to show that the criterion in the current Yaari setting
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is exactly the Arrow–Pratt indexw
′′(z)

w′(z)
. Here, we have suggested a different risk aversion

index as implied by the Yaari portfolio choice model.21

4 Incomplete Market

In this section we discuss the incomplete market case. A crucial advantage with a
complete market is that there is a unique pricing kernelρ; so one can turn a dynamic
portfolio choice problem into a static one in terms of the terminal cash flow. Once the
optimal terminal wealth is derived the corresponding portfolio is nothing else than the one
to replicate it. With an incomplete market, on the other hand, one needs to specify the set
of terminal cash flows that are replicable (attainable) before finding an optimal terminal
wealth position.22

We take the continuous-time market formulated in Section 2.1. Now the dimension of
the Brownian motion,n, is not necessarily the same as the number of stocks,m. Moreover,
there is an explicit constraint on portfolios

π(t) ∈ K, a.s., a.e.t ∈ [0, T ], (28)

whereK ⊂ Rm is a given closed convex cone.23 In addition to achieving more generality,
including this constraint will also be useful in proving themutual fund theorem in the next
section.

An FT measurable contingent claim (random variable)ξ is calledattainableor repli-
cable if there exists an initial endowmentx ∈ R and an admissible portfolio satisfying
(28) whose terminal wealth isx(T ) = ξ. In the following, we identify a set of attainable
contingent claims. To this end, we introduce the following.

Let K∗ be the dual cone ofK, i.e.,

K∗ := {x ∈ R
m : x · y ≥ 0 for all y ∈ K}.

Define the set ofFt-progressively measurable,Rn-valued processes:

Θ := {θ(·) : σ(t)θ(t) − B(t) ∈ K∗, a.s., a.e.,t ∈ [0, T ] with Ee
1

2

R T

0
|θ(t)|2dt < +∞}.

Assumption 1 implies thatΘ is nonempty, and it is easy to see thatΘ is convex. For any
θ(·) ∈ Θ, define a pricing kernel process

ρθ(t) := exp

{

−
∫ t

0

[

r(s) +
1

2
|θ(s)|2

]

ds −
∫ t

0

θ(s)⊤dW (s)

}

, (29)

and callρθ := ρθ(T ) a pricing kernel. Notice in an incomplete market there couldbe many
pricing kernels.

Introduce the notationA(K) := {Ax : x ∈ K} for anyn×m matrixA. Clearly,A(K)
is a convex cone. We assume that

21In the case of a power distortion function, i.e.,w(z) = zγ , γ > 1, these two indices are indeed consistent
in ordering the risk aversion level.

22The discussion in this section follows standard lines in dealing with incomplete markets in the
continuous-time portfolio selection literature. The mainfinding is that this approach turns out to work well
within the quantile framework too.

23A typical example is the so-called no-shorting constraint.Indeed, even thoughm = n and σ(t) is
uniformly non-degenerate, the presence of such a portfolioconstraint renders an incomplete market.
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Assumption 8 σ(t)⊤(K) is closed, a.s., a.e.t ∈ [0, T ].

Generally speaking,A(K) may not be closed even ifK is a closed convex cone. How-
ever, if rank(A) = n, thenA(K) is closed for any closed convex coneK. If K = {y :
By ≥ 0} for some matrixB, thenA(K) is closed for anyA. Therefore, Assumption 8
covers some interesting cases such as the no-shorting constraint.

The following is a classical result.

Proposition 2 Suppose Assumptions 1 and 8 hold. Letξ be anFT measurable random
variable such thatS0(T )−1ξ is bounded from below. If there existsθ̂(·) ∈ Θ such that

x := E[ρθ̂ξ] = sup
θ∈Θ

E[ρθξ] < +∞,

thenξ is attainable with the initial wealthx.

If there is no cone constraint, i.e.,K = Rm, then Proposition 2 is exactly the classical
result for incomplete markets; see, e.g., Theorem 8 in Jacka(1992). In the presence of con-
straints, Karatzas and Shreve (1998) deal with the case of general closed convex constraints
in complete market. F̈ollmer and Kramkov (1997) consider a general market via optional
decompositions. Proposition 2 is a special case of the results in Föllmer and Kramkov
(1997). Meanwhile, Assumption 8 is related to Assumption 3.1 in Föllmer and Kramkov
(1997).

Proposition 2 characterises the attainability of a contingent claimξ by an optimisation
problem

max
θ∈Θ

E[ρθξ]. (30)

If this problem is solved by somêθ ∈ Θ, thenξ is attainable. However, in generalθ̂ depends
on ξ and there is nocommon̂θ for all the tame claims. This would cause a major problem
to the continuous-time portfolio model and our quantile approach, because in this case the
constraintx0 = E[ρθ̂ξ] = supθ∈Θ E[ρθξ] has essentially infinitely many constraints and it
remains an open problem as to how to formulate the quantile model accordingly. However,
if the investment opportunity set is deterministic, then itis possible to select a common
θ̂ amongst a certain set (to be specified below) of contingent claims, in which case the
quantile model can be formulated as in the complete market case.

We now introduce

Assumption 9 r(·), B(·), σ(·) are deterministic.

Denote byΘ(t) := {θ : σ(t)θ − B(t) ∈ K∗}, 0 ≤ t ≤ T . Under Assumption 9,
define

θ̂(t) := argminθ∈Θ(t)|θ|2. (31)

It is clear thatθ̂(·) is uniquely defined and deterministic. Furthermore, via themeasurable
selection theorem,̂θ(·) is measurable. Also, by Assumption 1 and the definition ofθ̂(·),
we have

∫ T

0
|θ̂(t)|2dt < +∞. Therefore,̂θ(·) ∈ Θ. We call θ̂(·) theminimal price of risk

processand callρθ̂ theminimal pricing kernel.

24



Let H be the set of all non-increasing functionsg : R+\{0} → R which is bounded
from below. The following result, which essentially follows from Theorem 6.6.4 in Karatzas
and Shreve (1998), indicates that any contingent claim in the formg(ρθ̂) whereg ∈ H can
be replicated.

Theorem 4 Suppose Assumptions 1, 8 and 9 hold. Letθ̂(·) be as in(31), andg(·) ∈ H be
such thatx := E[ρθ̂g(ρθ̂)] < ∞. Theng(ρθ̂) is attainable with the initial wealthx.

Now, takeρ := ρθ̂, and assume (as before) thatρ has no atom. Noticing that Lemma
1 holds for any atomless, positive random variableρ (see Jin and Zhou 2008, Theorem
B.1]), we may go through exactly the same argument as that in Section 2.3 and formulate
the portfolio choice model (19). If (19) is solved with an optimal solutionG∗, then the
optimal terminal wealth isX∗ = g(ρ) whereg(x) = G∗(1 − Fρ(x)), according to (21).
However, it is indeed true thatg ∈ H; henceX∗ is replicable by the initial wealthx0, while
the replicating portfolio is the optimal strategy to the portfolio selection model.

In the case of a stochastic investment opportunity set, we donot yet have a general
quantile formulation. However, we may at least include the case of aweak complete market,
a notion proposed by Schachermayer, Sirbu and Taflin (2009).Let θ̂(·) be defined as in (31)
(even without Assumption 9). The market is weak complete ifg(ρθ̂) is replicable for any
bounded non-increasing functiong. (So Theorem 4 says that a market with a deterministic
investment opportunity set and with cone constraints is weak complete.) Clearly, for a
weak complete market the quantile formulation is valid so long asρθ̂ admits no atom.

Therefore, the solutions to the goal-reaching problem and Yaari’s model, obtained in
Section 3, as well as that to the behavioural model (see Theorem 4.1 in Jin and Zhou 2008),
can be extended readily to incomplete markets with deterministic investment opportunity
sets and with conic constraints (or even to weak complete markets), where the unique
pricing kernelρ is replaced by the minimal pricing kernelρθ̂.

5 Mutual Fund Theorem

The Mutual Fund Theorem, also called thetwo-fund theoremor separation theorem,
states that under some assumptions, agents achieve optimality by simply allocating money
between the bank account and a risky portfolio called themutual fund. The key feature
is that the mutual fund is same for all agents. The mutual fundtheorem dates back to the
Markowitz mean–variance portfolio analysis in single period where it can be shown that if
all the investors are mean–variance efficiency seeker, thenthe mutual funds theorem holds
even though different investors may have difference risk-return preferences. This becomes
the foundation of the capital asset pricing model (CAPM). Merton (1971) shows that for
the continuous-time Black–Scholes model (where the opportunity set is deterministic) the
mutual fund theorem holds if all the agents are power utilitymaximisers. Such a result has
been generalised to the case of general concave utility functions; see Karatzas and Shreve
(1998). Recently, Schachermayer, Sirbu and Taflin (2009) discuss in a general setting when
a mutual fund theorem holds true, assuming all the agents areexpected utility maximisers.

Now, thanks to the quantile formulation developed in this paper especially the general
expression of an optimal terminal wealth (21), we are able toprove that the mutual fund
theorem holds in any market (complete or incomplete, with possible conic constraints on
portfolios) having a deterministic opportunity set so longas all the agents follow the general
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model (19). Note that such a model covers a very diversified risk–return preferences in-
cluding those of the classical utility maximisation, mean-variance and various behavioural
models.

Consider the (possibly incomplete) market presented in Section 4 where portfolios are
constrained in a given closed convex coneK. Under Assumption 9, let̂θ(·) be the minimal
price of risk process and defineN(t) := ρθ̂(t)

−1, 0 ≤ t ≤ T . It is well known thatN(·)
is the wealth process of the optimal portfolio under log utility maximisation with initial
wealth 1. We call this portfolio thenuḿeraire portfolio; see, e.g., Schachermayer, Sirbu
and Taflin (2009).

Theorem 5 Under Assumptions 8 and 9, any optimal cash flow of the model(19) can be
attained by a (dynamic) portfolio of the risk-free assetS0(·) and the nuḿeraire portfolio
N(·). Moreover, this portfolio never short sellsN(·).

Proof Itô’s formula shows that

dN(t) =
[

r(t) + |θ̂(t)|2
]

N(t)dt + N(t)θ̂(t)⊤dW (t), N(0) = 1.

Define

W̃ (t) :=

∫ t

0

[

1

|θ̂(u)|1{θ̂(u) 6=0}

θ̂(u)⊤ +
1√
n
1{θ̂(u)=0}1

⊤
n

]

dW (u), 0 ≤ t ≤ T.

By Lévy’s characterisation,̃W (·) is a one-dimensional standard Brownian motion on
(Ω,F , (Ft)0≤t≤T , P ). Then,N(·) satisfies

dN(t) =
[

r(t) + |θ̂(t)|2
]

N(t)dt + |θ̂(t)|N(t)dW̃ (t), N(0) = 1.

Now the probability space(Ω,FW̃
T , (FW̃

t )0≤t≤T , P ), whereFW̃
t is generated bỹW (·) and

augmented by all theP -null sets, together with the risk-free assetS0(·) and the risky asset
N(·), constitutes a new, fictitious financial market. This markethas a deterministic invest-
ment opportunity set. We further impose the no-shorting constraint in this market, i.e.,
the position ofN(·) must be non-negative, which is a conic constraint. It is easyto show
that the minimal price of risk process, as determined by (31)in general, is|θ̂(·)| in this
new market; hence the corresponding minimal pricing kernelis ρθ̂(T ) := ρ itself. In other
words, the minimal pricing kernels in the two markets are identical. However, it has been
shown that with an optimal solutionG∗(·) to (19) in the original market, the corresponding
optimal terminal payoff isX∗ = g(ρ) whereg(x) = G∗(1 − Fρ(x)). Recall thatg ∈ H;
hence Theorem 4 yields thatX∗ is replicable by an admissible portfolio in thenewmarket.
More precisely, there exists anFW̃

t -progressively measurable (and thusFt-progressively
measurable) portfolioα(·), with α(t) ≥ 0, a.s., a.e.t ∈ [0, T ], that replicatesX∗ = g(ρ)
from the initial wealthx0. Hereα(t) is the amount allocated toN(·) at timet; hence its
non-negativity is due to the no-shorting constraint we haveimposed. It follows that this
replicating portfolio never short sellsN(·). Finally, to see that this replicating portfolio
does satisfy the given conic constraint, note that, again byTheorem 4,N(·) = ρθ̂(·)−1

is replicable in the original market, and so is any non-negative position ofN(·) since the
portfolio constraint in the original market is conic. The proof is thus complete.
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The preceding theorem shows thatN(·) is a mutual fund. This is probably the most
general mutual fund theorem to date, at least to our best knowledge, due to the broad
coverage of our quantile portfolio choice model (19). The result suggests that the mutual
fund theorem is somewhat inherent in financial portfolio selection, at least in markets with
deterministic opportunity sets. As a consequence, the samerisky portfolio is being held
across neoclassical (rational) and behavioural (irrational) agents in the market. This, in
turn, will shed light on the market equilibrium and capital asset pricing in markets where
rational and irrational agents co-exist.

There is an interesting application of our result to models featuring the so-called men-
tal accounting. Mental accounting, a notion coined by Thaler (1980) and an important
ingredient of the behavioural theory, argues that people group their assets into a number
of non-fungible mental accounts. Das, Markowitz, Scheid and Statman (2009) consider
a single-period portfolio optimisation with several separated mental accounts of different
objectives. In particular, within each account the agent tries to maximise the expected re-
turn while lowering the risk which is identified as the probability that the terminal payoff
is below some threshold. They show that if the returns of the assets are joint-normally dis-
tributed, then the optimal portfolios in those mental accounts are in the same mean–variance
efficient frontier. Consequently, the agent will hold the same risky portfolio in each mental
account, and so will she on aggregation. Now, consider an extension to the continuous-time
market with a deterministic investment opportunity set. Ifwithin each mental account the
agent follows an instance of our general quantile model (although across different accounts
the preferences could be very different; say for Account A the agent is rational while for
Account B she is behavioural), then she will hold the same risky portfolio N(·) in each
mental account. As a result, she will hold the same risky portfolio in total.

6 Conclusions

Existing risk–return criteria (neoclassical and behavioural) in portfolio selection have
introduced distortions in either payments or probabilities, or both, in evaluating uncer-
tain payments. These distortions have various economical interpretations and significance.
Yet they have given rise to difficulties, especially in the dynamic setting, for which tra-
ditional approaches fall apart. In this paper we propose to change the whole perspective
of continuous-time portfolio choice: Instead of determining random terminal cash flows
– specifications of values for all scenarios – one should consider quantiles – fractions of
scenarios below given values, even if the underlying modelsmay not explicitly involve
quantiles in their objectives or constraints. The result isquite satisfying: it has sorted out
the issues of nonlinear expectation and non-concavity simultaneously. We hope that the
quantile formulation opens up a broad avenue to modelling and solving financial portfolio
choice problems.

One should note that the quantile approach highly depends onthe prerequisites that the
preference measure is law-invariant and the pricing kernelis atomless. While we acknowl-
edge a great wide variety of problems do satisfy these assumptions, it is a very challenging
problem to explore beyond them.
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