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Abstract

A portfolio choice model in continuous time is formulated fmth complete and
incomplete markets, where the quantile function of the teaincash flow, instead
of the cash flow itself, is taken as the decision variable.sTarmulation covers a
wide body of existing and new models with law-invariant preihhce measures, includ-
ing expected utility maximisation, mean-variance, goakteng, Yaari's dual model,
Lopes’ SP/A model, behavioural model under prospect theasywell as those ex-
plicitly involving VaR and CVaR in objectives and/or corahts. A solution scheme
to this quantile model is proposed, and then demonstratesblvyng analytically the
goal-reaching model and Yaari’s dual model. A general prtyperived for the quan-
tile model is that the optimal terminal payment is anti-commtmnic with the pricing
kernel (or with the minimal pricing kernel in the case of asdmplete market) if
the investment opportunity set is deterministic. As a cqosece, the mutual fund
theorem still holds in a market where rational and irratl@ggents co-exist.
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1 Introduction

Study on continuous-time portfolio choice has predomilyasentred around expected
utility maximisation (including the mean—variance modealthough it has its own subtly
unique features) since the seminal papers of Samuelsof) 486 Merton (1969). Abun-
dant research around, there have been essentially twoagh@® developed to solve the
utility model. One is the stochastic control or dynamic pesgming approach, initially
proposed by Merton (1969, 1971), which transforms the gmlhto solving a partial dif-
ferential equation called the Hamilton-Jacobi-BellmadBj equation. The other one is
the martingale approach. This approach, developed by $derand Kreps (1979), Harri-
son and Pliska (1981, 1983), and Pliska (1986), employs &ngale characterisation to
turn the dynamic wealth equation into a static budget caimgtand then identifies the op-
timal terminal wealth via solving a static optimisation plem. If the market is complete,
an optimal strategy is derived by replicating the optimaiieal wealth in the same spirit
of perfectly hedging a contingent claim. Karatzas and Sh(@998) gives a systematic
account on this approach. In an incomplete market with pésgiortfolio constraints, the
martingale approach is further developed to include theadled convex duality machin-
ery; see, e.g., Cvitadiand Karatzas (1992), Kramkov and Schachermayer (1999;ath
and Rischendorf (2001).

However, it has been known for a long time that some of thecliasiets of the expected
utility as a risk preference measure are systematicalllatgd in practice. Hence, many
alternative preference measures have been put forth,lpoadri’'s “dual theory of choice”
(Yaari 1987) which attempts to resolve a number of puzzlelspamadoxes associated with
the expected utility theory (although, as Yaari 1987 adntlie dual theory would lead
to other paradoxes). In this theory, instead of applyingityutvhich is essentially a
“distortion” in payment, one distorts the probability deawlative function of the payment.
This probability distortion function, as Yaari shows, repents the risk preference in a
different way. In particular, risk aversion is characted$y a convex - rather than concave
- distortion. Other theories developed along this line eblaing subjective probability
distortions include Lopes’ SP/A model (Lopes 1987 and LapesOden 1999) and, most
significantly, Kahneman and Tversky’s prospect theory (k&ahan and Tversky 1979 and
Tversky and Kahneman 1992), both in the modern behavioe@sin-making paradigm.

It is a natural problem to formulate and solve a portfolioiceanodel involving proba-
bility distortions; yet a key technical challenge is thatisa distortion renders a nonlinear
expectation that destroys the time-consistency necefsaiye dynamic programming ap-
proach as well as the convexity necessary for the convextdagiproach.

Another large set of portfolio choice problems could ineodxplicitly probability and
VaR/CVaR/quantile, instead of expectation, in their otyes and/or constraints. For in-
stance, the goal-reaching problem, initiated by Kulld¢i®93) and Heath (1993), inves-
tigated extensively by Browne (1999, 2000), and later ed¢einto hedging of contingent
claims by Bllmer and Leukert (1999) and Spivak and Cvita(i999), is to maximise the
probability of the terminal cash flow in excess of a given lerea given benchmark. Other
models could include VaR/CVaR/quantile as risk meastirésis well known that these

10ddly enough, despite an extensive literature search we hat/found any study ooontinuous-time
diffusion models with VaR/CVaR/quantile appearing exgllyceither in objectives or in constraints (note in
particular that, although the title offmer and Leukert 1999 includes the word “quantile”, thegradeals
with a problem of maximising the probability of successfuikedging a contingent claim). Kataoka (1963)
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problems cannot be solved, at least directly, by conveatiapproaches. For example, al-
though one could write a probability as an expectation ohaicator function, the latter is
inherently non-convex. Dynamic programming, on the otrerd) becomes inapplicable
for problems explicitly involving VaR/quantile.

In summary, there could be many alternative, ad hoc, andozcimally sensible port-
folio choice models where the nice properties (such as tioresistency and convexity) we
have all along taken for granted would be missingd hoc approaches have been devel-
oped to solve a very limited number of these models. A questitses as to whether it is
possible to establish/develop a unified, general frametapgcoach to cover/solve all the
aforementioned models (and many others) once and for ad ahkwer is, as we will show
subsequently, affirmative, and all it takes is a new persgecbmpared to the standard
portfolio selection literature in mathematical finance.

To reach the answer to the preceding question, this papdorespand exploits two
essential commonalities among all the seemingly differeotiels mentioned above. One
is that all the preference/performance measures involkelda-invariant That is, agents
care about only the probability distribution of the terntinash flow, rather than the cash
flow itself. The other commonality is that all the preferemican be written as distorted
meanwhere both the payment and its distribution function arertdtl; see (15) below.
An analysis shows that if we change the decision variabla fite terminal cash floi to
G(Z), whereG is the quantile function ok andZ is anyuniform random variable off, 1],
then the preference reduces to a linear expectation (unpessbly different probability
measure)! This change of variable does not change the prefervalue becaus€ and
G(Z) arealwaysidentical in law. There is, however, another issue to beesird with this
technique because the budget constraint is inherentlywéavent so the preceding change
of variable would in general violate the constraint. Howeweedual argument originally
due to Dybvig (1988), in the classical economic spirit thab$ely speaking) maximising
a performance measure is equivalent to minimising the &sgalccost, reveals thaf can
also be replaced b§(Z) in the budget constraint whefgis aparticular uniform variable
generated by the pricing kernel.

Based on these analyses, we are prompted to formulate alpodiioice model, very
general in the sense that it covers all the aforementionedela@nd many others, where
the optimal quantile function of the terminal payment is ® dhosen. Since we have
recovered linear expectation in the quantile model, we blesta propose a general solution
scheme based on the Lagrange approach and a weak/stroity drgiment. Once the
optimal quantile function is obtained, the correspondipgioal terminal cash flow can be
recovered by a simple formula, which as a by-product indg#hat it is anti-comonotonic
with the pricing kernel. If the market is complete, then thimal portfolio is the one
replicating the obtained terminal payoff. If the marketngomplete, then we seek the

probably is the first to include a quantile criterion in a $&period portfolio choice model. Grigor'ev and
Kan (2004) and Dhaenet al. (2005) both consider dynamic portfolio selection problemith explicitly
present quantile-related criteria, but their settingsbenth very specific and restrictive (the former studies a
discrete-time model with uniform distribution of returagd the latter confines the portfolios to the class of
“constant mix” ones). For more recent study/survey on glearelated performance measures séénier
and Schied (2004), Dhaertal. (2004), and Cherny and Madan (2008).

2Some models may lack both the time-consistency and the ibypvEor examples, Lopes’ SP/A model
has both a probability distortion and a probability coristreand Kahneman and Tversky's propsect model
has probability distortions and afrshaped utility function.



so-called minimal pricing kernel which exists in some casgsh as when the investment
opportunity set is deterministic.

We demonstrate our formulation and solution procedure Ipyyapy them to the goal-
reaching model and Yaari’'s model. Analytical solutions@stained for both models which
turn out to be of the same binary, “win-or-lose-all” struetualthough there are subtle -
and indeed substantial - differences between the two ingerfithe implied risk—return
preferences. It should be noted that, while our approachsgan alternative way to that
of Browne (1999) in solving the goal-reaching model, we altyjuextend the setting to
include possibly stochastic opportunity sets for whichvane’s HJB method would faf.
Moreover, the formulation and solution to the continuadusetYaari’'s dual model are com-
pletely new to our best knowledge.

The quantile formulation also enables us to establish a ahfiad theorem at least in
the case of a deterministic opportunity set (complete anmglete market regardless). This
has a potentially important consequence in developing aatasset pricing model for a
market where rational (utility maximising) and irratior{fakehavioural) agents co-exist.

We finally remark that it is not new at all in the economics laging mathematical
economics) literature to express risk preferences in tefmgsiantiles or distribution func-
tions; see, to name but a few, Machina (1982), Yaari (198W),[2ybvig (1988). However,
to our best knowledge the quantile formulation and its galreslution procedure for pos-
sibly non-convex/concave utility functions and non-codeencave probability distortions
are new in the portfolio choice literature especially in doatinuous-time settirfg®. The
idea was in fact around in Jin and Zhou (2008) for overcomtregdifficulties arising from
the nonconcavity and time-inconsistency in the continttous portfolio selection model
under the prospect theory, but it was used there in an ad hHacenaThe present paper

3The statistical hypothesis testing argument olifier and Leukert (1999) and the martingale approach
of Spivak and Cvitardi (1999) could also solve the goal-reaching model with ah&tstic opportunity set.

4Despite its title, Dybvig (1988) does not formulate or sawy specific class of portfolio choice problems
per se. Instead, it is concerned with theal problemof portfolio choice, namely, to characterise the lowest
cost of any given terminal distribution. As discussed abdlkie dual argument is indeed one of the main
theoretical foundations of the quantile formulation heaéthough we were not aware of Dybvig’ work when
we were carrying out this research.

SAfter this paper was accepted, the papers by Schied (20@4LCarlier and Dana (2006) came to our
attention. Schied (2004) introduces a quantile-basednigition technique to solve a specific class of con-
vex, robust portfolio selection problems. In Carlier anchB#2006), a more general class of quantile-based
calculus of variations problems with law-invariamncavecriteria are formulated, and the issues of existence
of solutions, necessary conditions for optimality, andisigint conditions for the regularity of solutions are
addressed. These results are closely related to the onbis ipaper, but there are important differences.
On p.130, Carlier and Dana (2006), it is stated that “we shlath requirev to be concave (in theandom
variable X) ...". This requirement is violated by our model (or inde@&g anodel with nontrivial probability
distortions). Of course, in Section 3.1 there (which cordaiesults closest to ours), this assumption does
not seem to be necessary. However, therein the criterisrrequired to be strictly second-order stochastic
dominance (SSD) preserving, which is necessary in proviacgey Proposition 3.1. Notice that being SSD
preserving is quite a strong assumption; it is strictly sgyer than law invariance plus monotonicity (which
are the only two essential assumptions imposed in our page) k see the bottom of p. 130 in Carlier and
Dana (2006). Only when is concave do the two coincide — see Proposition 2.4. In otlweds, certain
concavity of the criteria is implicitly assumed and seembdaritical in the arguments of Carlier and Dana
(2006). In contrast, one of the key points of our paper is smaon the convexity/concavity (be it in the utili-
ties or in the probability distortions) assumption altdget Indeed, because of the S-shaped utility functions
and the reversed S-shaped probability distortions inebltlee criterion in a general prospect theory model is
inherently nonconcave in either cash flows or in there glemti



attempts to systematically utilise and develop the quamtdproach to solving (amongst
others) possibly non-expected and non-convex/concavéporchoice problems.

The remainder of this paper is organised as follows. Se@ipnoposes the general
guantile model motivated by five concrete models. In Sec8pm@ solution scheme is
described for the general model, followed by its applicatio two specific models — the
goal-reaching and Yaari’'s models — with explicit solutiorisconomic interpretations of
the solutions obtained are discussed. Section 4 is devot#tetincomplete market, and
Section 5 to the mutual fund theorem. Finally, Section 6 taies.

2 A New Portfolio Choice For mulation

In this section we set up the continuous-time market, anthéxghe background and
motivation of a new portfolio choice formulation via five cyete models.

2.1 A continuous-time market

LetT > 0 be given and$2, F, (F;)o<:<r, P) be afiltered probability space on which is
defined a standatfi;-adaptedi-dimensional Brownian motioW (¢) = (W(¢),--- ,W"(¢))"
with W (0) = 0. Itis assumed that; = o{W (s) : 0 < s < t}, augmented by all the-null
sets. Here and henceforth” denotes the transpose of a matdxanda, := max(a, 0),

a_ = max(—a,0) fora € R.

We define a continuous-time financial market following Kaaatand Shreve (1998).

In the market there an@ + 1 assets being traded continuously. One of the assets is a bank
account whose price proceSg(t) is subject to the following equation:

dSo(t) = r(t)Se(t)dt, t €[0,T]; So(0) =s9 >0, 1)

where the interest rate-) is anF;-progressively measurable, scalar-valued stochastic pro

cess with fOT Ir(s)|ds < +o0 a.s.. The othem assets are stocks whose price processes
Si(t),i=1,---,m, satisfy the following stochastic differential equati@DE):

dS;(t) = Si(t) [b;(t)dt + Zn: aij(t)de(t)] , t€[0,T]; S;(0)=s;>0, (2

=1

whereb;(-) ando;;(-), the appreciation and volatility rates respectively, ax@ar-valued,
Fi-progressively measurable stochastic processes with

T m m n
/ [Z |b: (t)] + ZZ \al-j(t)P] dt < 400, a.s.
0 Li=1 i=1 j=1
Set the excess rate of return process
B(t) == (bi(t) = (), -+, bu(t) = (1)),

and define the volatility matrix processt) := (0y(t))mxn. Basic assumptions imposed
on the market parameters throughout this paper are sunadassfollows:



Assumption 1 There exists atF;-progressively measurabl®&-valued proces§,(-) with
Bes o 1000Pdt « 4 o such that

a(t)0y(t) = B(t), a.s.,a.ete[0,T].
Assumption 2 There exist, > s; > 0 such thats; < Sy(7) < ss.

Assumption 1 is only slightly stronger than the standarcrimtrage assumption due to
the additional Novikov condition; see Karatzas and Shré@98) for details. Assumption
2 holds when the risk-free rate is bounded.

Consider an agent, with an initial endowmegt> 0 and an investment horizd, 77,
whose total wealth at time> 0 is denoted byt (¢). Assume that the trading of shares takes
place continuously in a self-financing fashion and therenarransaction costs. Thert-)
satisfies (see, e.g., Karatzas and Shreve 1998)

dz(t) = [r(t)z(t) + BT (t)r(t)] dt + 7 (t) "o (t)dW (t), t €[0,T]; 2(0) =0, (3)

wherer;(t), i = 1,2---,m, denotes the total market value of the agent’s wealth in the
i-th asset at time¢. The process:(-) = (m(+), - ,m(-))" is called aportfolio if it is
Fi-progressively measurable with

T T
/ lo(t) "7 (t)[*dt < +o00 and / |B(t) " (t)|dt < +o0, a.s.
0 0

and it is tame (i.e., the corresponding discounted wealticg®s,Sy(¢) 'z (t), is almost
surely bounded from below — although the bound may depend(gh It is standard in
the continuous-time literature that a portfolio be requite be tame so as to, among other
things, exclude the notorious doubling strategy.

There may be other constraints on the portfolios specificgovan problem, such as
prohibition of shorting or bankruptcy. A portfolio is cal@admissibléf it satisfies all the
given constraints. Leil be the set of all admissible portfolios. It is important taenthat
IT does not depend on the initial positiop. The agent evaluates each admissible portfolio
7(+) via a certain performance (or preference) measure, debgtétr,, 7(-)). The precise
forms of J(z, 7(-)) are dictated by individual problems, and will be discussgly in the
sequel. The objective of a portfolio selection problem s, d given initial endowment
xo, t0 choose an optimal portfolio whose performance valugeael the supremum of
J(zg,m(-)) overll. Denote byv(z) this supremum value.

This paper aims to introduce a very general portfolio chéemulation which in par-
ticular covers both the neoclassical (utility maximisajiand behavioural models. To do
so we need the following “minimal” assumption on the modedsase able to include.

Assumption 3 For an initial positionz, and an admissible portfolia(-), if z, > x, then
there is an admissible portfolid(-) such that/ (&g, 7(-)) > J(xg, 7(-)).

The economic sensibility of this assumption is clear: witbreninitial budget the agent
will be able to do strictly better. One may appreciate thit iha very weak assumptign
and any portfolio model violating this would be abnormaldéed, all the five concrete
models to be presented in the next subsection satisfy thisrgsion; see discussions at the
end of Section 2.2.

SIndeed, it is easy to show that Assumption 3 is even weakerttiafollowing very reasonable assump-
tion: v(&o) > v(xo) Yo > xo.



2.2 Fivemotivating models

In this subsection we motivate our new portfolio choice falation via five concrete
models. These models appear quite different in terms of #w@nomical interpretations
and mathematical formulations; yet the commonalities agptbem will be explored, lead-
ing to a universal framework and approach covering all ofrtf@nd more). In the re-
mainder of this section we assume that the underlying coatis-time market is complete
or equivalently the proced(-) in Assumption 1 is unique. The study of an incomplete
market will be deferred to Section 4. Define

ott) = e {= [ )+ Jisrr | as— [aorawer}. @

the pricing kernel or state density price process. Depate p(7). Itis clear that under
Assumptions 1 and 2, < p < +oo a.s. and) < Fp < +oo. Let

esssup p:=sup{a € R: P{p > a} > 0},

essinf p:=inf{a € R: P{p <a} > 0}. ©®)

In view of the martingale approach a portfolio choice probl@ this economy boils
down to determining the optimal terminal wealth.

Let IF be the set of cumulative distribution functions (CDFs h&eznof all the lower
bounded random variables taking valuesin.e.

F={F(-):R — [0,1], nondecreasingiadlag, F'(a—) = 0 for somea € R andF'(+o0) = 1}.

The lower boundedness above corresponds to the requireshéms of portfolios. For any
F(-) € F, denote byF~!(-) its left-inverse, i.e.,

Flt)=inf{r €R: F(x) >t} =sup{zr € R: F(x) <t}, tec][0,1].
LetG := {F~!() : F(-) € F} be the corresponding set of quantile functions, or
G = {G(-) : [0,1] — R*, nondecreasing, left continuous(0) = —oco, G(0+) > —oo},
whereG(1) := G(1-).

Model 1: Expected Utility Maximisation

Max FEu(X)
X

6
subjectto E[pX] = xz¢, X > 0, X is Fr measurable, ©)

whereu(-) is a utility function, E[pX] = z, is the budget constraint, and > 0 is the
no-bankruptcy constraint (which may be absent in some neriaf the model). This is
the classical utility model initiated by Samuelson (1968J &Merton (1969) with extensive
research thereafter. Under the concavity assumption oatility function (representing
the agent risk-aversion) it is a simple exercise via a Laggarchnique to solve the above
optimisation problem. As explained earlier the solutiohto this static optimisation prob-
lem is the optimal terminal cash flow that ought to be achieVédx optimal portfolio will
then be the one replicating*.



It is interesting to look more closely at the preference mmemad/u(X ), in this model.
Recall for a random payofk > 0 its mean is

E[X] = /O+O° rdFx () (7)

whereFx(-) is the CDF ofX, while

400
Fu(X) = /0 u(z)dFx(z). (8)

Hence, compared with the mean evaluation (7), the expetiiaygl (8) essentially applies

a utility function todistortthe payment outcomes when evaluating a random payment. The
way the distortion takes place reflects the agent attitudeards risk, which is captured
mathematically by the convexity and/or concavity of théitytfunction.

Model 2: Goal Reaching

MXax P(X >b)

9
subjectto E[pX] = z¢, X > 0, X is Fr measurable, ©

whereb > 0 is the goal (level of wealth) intended to be reached by tim&his is called
the goal-reaching problem, which was proposed by Kulld(€93), Heath (1993), and
studied extensively (including various extensions) byviare (1999, 2000).

Economically, the goal-reaching model is different frora #xpected utility model; see
a detailed discussion in Browne (1999). Technically, itascovered by the standard utility
model either, since

0

and the indicator function,>; is not concave. Browne (1999, 2000) primarily employs
the dynamic programming and HJB equation to solve the pnoble

Model 3: Yaari’s Dual Theory

M)?.X JoSw(P(X > x))da

11
subjectto E[pX] = x¢, X > 0, X is Fr measurable, (11)

wherew : [0, 1] — [0, 1] is a function called @robability distortionor weighting function
representing a subjective inflation/deflation of the truebgbility. It is a generally non-
linear, non-decreasing (so the distortion at least presetive order of the probabilities)
function withw(0) = 0 andw(1) = 1 (so there is no distortion on sure events).

The preference measure in (11) was first put forward by YA&8T7) as a “dual theory
of choice under risk” to the expected utility theory. If weitgr(via Fubini’'s theorem)

/Ooow(P(X > x))dr = /000 zd [—w(l — Fx(z))], (12)

8



then we see that, in contrast to the expected utility (8) thstbrts the payment, Yaari’s
measure (12) distorts the CDF of the payment instead. Ya@87), Theorem 2, further
shows that the risk preference can also be captured by 8imtion; specifically the agent
is risk-averse if and only ifv is convex.

Yaari's dual measure is one of the so-calleoh-expected utilitiesvhich, as Yaari
(1987) argues, can explain a number of paradoxes assouwrdtethe expected utility the-
ory, although it leads to new “dual” paradoxes at the same.tithwould be interesting
to explore what solutions this dual measure would generathe context of portfolio
choice. There is a rather preliminary study, Hamada, Shamil van der Hoek (2001), on
a discrete-time portfolio choice model featuring Yaari'sasure, whereas the continuous-
time model (11) is new to our best knowledge. The technidédities in solving (11)
include the non-concavity of (12) iN due to the distortiom, and the time-inconsistency
of the measure because of (12) being essentially a nonlggmactation (also known as
the Choquet expectation) under the capagity P. In particular, time-consistency is the
foundation of the dynamic programming, the latter beingghmary approach in treating
dynamic portfolio choice problems.

Model 4: Lopes’ SP/A Theory

M}?.X JoSw(P(X > x))dx
subjectto P(X > A) > «, (13)
E[pX] =z, X >0, X is Fr measurable,

wherew is now called (in Lopes’ terminology) theeecumulative weighting functian the
SP/A theory,A the aspiration level, and the confidence level of the final payment exceed-
ing the aspiration. The SP/A theory, developed by Lopes{}L98 widely regarded as an
instantiation of the psychological/behavioural decismaking model, where SP stands for
a security—potentiatriterion and A for araspirationcriterion. Model (13) looks similar
to the Yaari model (11) except for the additional aspiratonstraint; nevertheless in
(13) actually has a more specific economical interpretatiampes (1987) specifies as a
weighted combination of a convex function and a concave where the convexity repre-
sents the security (risk-aversion) and the concavity captthe potential (risk-seeking).

Lopes and Oden (1999) apply the SP/A theory to formulate ahek s single-period
portfolio selection model. However, it appears that thetiomous-time counterpart (13)
has not been studied in the literature at all.

Model 5: Kahneman and Tversky’s Prospect Theory

0
— Jw_ (P (u- (X = B)-) > ))dx (14)
subjectto E[pX] = z¢, X is Fr measurable and a.s. bounded from below,

Max Jo wi (P (uy (X = B)y) > ) dr

where B, an Fr measurable random variable, igeference poinin wealth, «. (-) and
u_(-) are the utility and disutility functions afains(excesses of wealth ovét) andlosses
(shortfalls fromB) respectively, andv, andw_ are probability distortions on gains and
losses respectively.



The preference measure in the above model was proposed\aidpkd by Kahneman
and Tversky, which is the most important component in theélplize-winning propsect
theory. There has been active research in incorporating propbkeotyt into portfolio
choice, albeit mainly restricted hitherto to the singleipe case. Study on continuous-
time models such as (14) has been started only recently; sd®IBar, Kouwenberg and
Post (2004), and Jin and Zhou (2008).

It remains to show that the standing Assumption 3 holds a#iyuior the above mod-
els under reasonable conditions. For the utility model {6, performance measure is
J(xo,m(+)) = FEu(x(T)) wherex(T) := X is the terminal wealth under portfolin(-)
starting from the initial endowment(0) = x,. If o > x,, we then define

s JAIO — X9

X = X.
Ep *

Clearly, X is F; measurableX > X a.s. andE[pX] = &,. Now, assuming thai(-) is
strictly increasing and letting(-) be the replicating portfolio ok, we haveJ (i, #(-)) =
Eu(X) > Eu(X) = J(zo, ().

The same argument applying to Yaari’s model (11) and Lopexsieh(13) yields that
Assumption 3 is valid for the two ifv is strictly increasing. For the same reason, the
prospect model (14) satisfies the assumption iftallandwu.. are strictly increasing.

The above argument, however, does not apply to the godhireaeodel (9) because
in general it could hold thaP(X > b) = P(X > b) even thoughX > X a.s. We use a
different technique instead. Ld{(xzq, 7(-)) = P(X > b) whereX is the terminal wealth
under portfolior(-) starting from the initial endowment(0) = z,. Considerz, with
bE[p| > To > 0. (If bE[p] < &, then the corresponding optimal valugg,), is 1 which
is a trivial case.) The®(X < b) > 0. Find anFr measurable set C {X < b} such that
P(A) > 0 andbE[pl 4] < & — xo. DefineX := al + X 14 where

_: i’g — E{leAc] > £0+bE[p1A] —E[leAL] >b
Elpla]  — Elpl4] -

In fact the above was chosen so thd@[pX] = i,. Clearly X > 0 and
P(X >b) = P(X > b|A)P(A)+P(X > b|A°)P(A°) = P(A)+P(X >b) > P(X > D).

Therefore, Assumption 3 holdsconditionallyfor (9).

2.3 Formulation via quantiles

Among the preceding five models, the last three involve nqreeted utilities due to the
probability distortions; hence the standard approachels asi convex duality and dynamic
programming fail to apply. The questions we are going to esliare whether we can

"The prospect theoryvas first introduced in Kahneman and Tversky (1979), and tatalified to the so-
calledcumulative prospect theoig Tversky and Kahneman (1992) so as to be consistent witfirdteorder
stochastic dominance. On the other hand, in the works of &adam and Tversky the behavioural measure is
defined on prospects with discrete outcomes, while the oflelinis a natural generalisation that covers both
continuous and discrete outcomes.
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solve the last three models, and whether in addition we ctabksh/develop a unified

framework/approach to cover/solve all the five models (aadyrthers) at the same time.
We will show that the answers are positive if we take a difiéngerspective compared
with the one taken for granted in expected utility maxim@at A first and key step to

reach the answers is to find the commonalities among the mabtele. Notice that all the
preference measures in those models can be written in tlogvfoy general form:

Cx) = [ ul)d fw(Fx(a) 15)
whereu(-) andw : [0,1] — [0, 1] are both nonlinedr In essence, (15) ismodifiedmean
of the cash flowX whereboththe cash flow and its probability distribution are distofted
While C'(X) appears to be a non-expected measure mainly due to the peesin, by
letting z = F'x(z) in (15) we have (assuming thatis differentiable)

C(X) = / u (Fgl(2)) d (w(2)) = / u (Fg!(2) w'(2)dz = E[u(G(Z))w'(Z)] (16)

whereZ is anyuniform random variable of0, 1) (we write Z ~ U(0,1)) andG = Fy',
the quantile functionof X. Hence, by regarding: (a quantile) as the decision variable,
instead ofX (a random variable), we recover linear expectatfon.

Note that the law-invariant nature of the performance measi{.X) is essential in
the above treatment. Next, to have a complete quantile fiation, it remains to express
the budget constrainf|[pX] = z,, a constraint inherent to any continuous-time portfolio
choice model, in terms of also the quantileX6f An obstacle for doing this is thatand
X are two possibly correlated random variables, and the lediga is generally unknown.
In other words,E[pX] is law-variant (inX). To get around we need to exploit some
“dual” property of the underlying optimisation problem,bsly based upon the minimal
assumption introduced earlier, namely Assumption 3, aleitly the following additional
assumption on the pricing kerneil

Assumption 4 p admits no atom.

This assumption will be in force hereafter. It is satisfiedparticular, wherr(-) and
g(-) are deterministic witlijT 6(t)|>dt # 0 (in which casep is a nondegenerate lognormal
random variable).

Denote byF,(-) the CDF ofp andZ, := 1 — F,(p). Becausep is atom-less/Z, ~
U(0,1) and we can expregsin terms ofZ,: p = F, (1 — Z,) a.s.. The following lemma,

derived! in Jin and Zhou (2008) Theorem B.1, is crucial.

8Strictly speaking, the preference measure of the propsedemModel 5, is the difference between the
two terms of the form (15). As discussed below, our approach hpplies to Model 5 as well.

9General preference measures involving both utility fuoresi and non-additive probabilities have been
proposed in, e.g., Quiggin (1982) and Schmeidler (1988giafor discrete probability spaces.

Oalternatively (but equivalently), we may take the randomialle Y := G(Z) as the new decision
variable, and (16) reduces to the classical expectedyutiliterion under a new probability measure that has
a Radon—Nikodym density’(Z) with respect taP. Note thatG(Z) has the same probability law &§, but
in generalG(Z) # X as random variables.

1The essential ideas contained in Lemma 1 were first put farBybvig (1988), Theorems 2 and 3. The
exact form of the lemma needed for the present paper wasgyrawih a different proof than Dybvig (1988),
in Jin and Zhou (2008).
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Lemmal Suppose Assumption 4 holds. TgpG(Z,)] < E[pX] for any lower bounded
random variableX whose quantile i€7. Furthermore, ifE[pG(Z,)] < oo, then the in-
equality becomes equality if and onlyXf= G(Z,), a.s..

Recall thatE[pX] is thet = 0 price of a future { = 7') random cash flowX. The
economic interpretation of this lemma is that one can alwagkce a random paymeit
byY := G(Z,), which has theame probability lavas.X, yet with no greater (and possibly
smaller) cost. Notice this replacement would not changeptieéerence measure (16),
including of course those of the aforementioned five modi#ig, to the law-invariance.
Hence a dual argument yields that at an optimal solutiéiit must hold thatl[pG*(Z,)] =
E[pX*] whereG* is the quantile ofX*. (Indeed, ify, := E[pG*(Z,)] < E[pX*] =: o,
thenG*(Z,) would achieve the same performance value with a strictiilsmaudget. By
Assumption 3, the agent coukdrictly increase the performance value with the original
budgetz, > ¥, hence contracting the optimality &f*.) This, in turn, leads toX* =
G*(Z,), a.s. in view of Lemma 1.

The above argument shows that an optimal solulidrof all the models in this section,
or indeed any continuous-time model satisfying Assumjti®and 4, must be in the form
G*(Z,) whereG* is a quantile and’, is aparticular uniform random variableZ, = 1 —
F,(p). In other words, to find an optimal solution we need only tasleamong the random
variables of the fornG:(Z,) whereG € G. Sincep = F, (1 — Z,) a.s., we can replace
the budget constrairf[p X | = z, by

E[F;'(1-Z,)G(Z,)] = . (17)

p

Now we are ready to formulate our general portfolio choicelet@ia quantiles:

Max U(G() = Eu(G(Zp))w'(Z,)]
subjectto E[F, (1 — Z,)G(Z,)] = o, (18)
G(-) e GNM,

whereZ, = 1—-F,(p), G is the set of quantile functions of lower bounded randomazes
andM specifies some other constraints. For instance, the norbaity constraintX’ > 0
can be translated infel = {G(-) : G(0+) > 0}.

Sometimes it is more convenient to consider the followirtggnal version of (18):

Max  U(G() = fy u(G(2)w/(:)dz
subjectto [ F ' (1 — 2)G(z)dz = . (19)
G(-) e GNM.

We have demonstrated that the above formulation genesdhgefive concrete models
presented in the previous subsectfonin fact, it is general enough to cover many other
models such as the continuous-time Markowitz mbti@hodels explicitly involving VaR,
CVaR or quantile functions in performance measures anafostcaints.

12To be precise, Model 5 is natirectly covered by the above formulation because its objectiveds th
difference of two terms. However, a key step in solving Mdsleds carried out in Jin and Zhou (2008), is to
decompose the problem into two subproblems each of whichtieedorm (18).

B3Assumption 3 holds for the Markowitz model if one is inteegkin only the nonsatiation portion of the
Markowitz efficient frontier.
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Finally, we reiterate that the above formulation dependshenmarket completeness
since it involves explicitly a pricing kernel via,. The incomplete market case will be
dealt with in Section 4.

3 Solutions

In this section we first outline the general solution schemediving (18) or (19) in
a complete market, and then illustrate the scheme by sowspdicitly the goal-reaching
model and Yaari’s dual modét. Notice that the results on Yaari’'s model are completely
new to our best knowledge.

The general scheme starts with removing the budget consing{19) via a Lagrange
multiplier A € R and considering the following problem

Max UNG()) = [Mu(G(2)) ! ()dz — (jo 11— 2)G(2)dz — xO)
subjectto G(-) € GN M.

(20)

In solving the above problem one usually ignores the comsfr&(-) € G N M, in
the first instance, since in many cases the optimal solutidheoresulting unconstrained
problem could be modified (without affecting the objectiaue) to satisfy this constraint
under some reasonable assumptions (see concrete examlple}. -or some cases such a
modification could be technically challenging; see for eglarthe SP/A model tackled in
He and Zhou (2008). In other cases the constraint may neezldeddt with separately, via
techniques specific to each problem.

Once (20) is solved with an optimal soluti@#(-), one then finds\* € R that binds
the original budget constraint, namely,

/01 Fo(1— 2)G3(2)dz = 0.

The existence of such" can usually be obtained by examining the monotonicity and co
tinuity of f(\ fo (1 —2)G5(2)dz in X. Moreover, if the strict monotonicity can be
established, theh* 5 unlque See the examples below.

Finally, G*(-) := G}.(-) can be proved to be the optimal solution to (18) or (19). This
is shown in the following way. Let(xy) andv,(z,) be respectively the optimal value of
(19) and (20). By their very definitions we have the followingak duality

v(xg) < igﬂgvA(xo) Vo € R.

However,

(o) < fnf 03 (w0) < e (w0) = Ve (G*()) = U(G"()) < wlaa).

¥Among the five models presented earlier, the expectedyutiibdel has been well studied, and the
prospect model has been solved quite completely in Jin and Z2008). The SP/A model can be solved by
the scheme suggested here, which however would involveantiz technicalities among other subtle issues
unique to this model. We hence decide, in order not to distr@cmain focus of this paper, to investigate the
SP/A model in a separate paper He and Zhou (2008).
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This implies thatG*(-) is optimal to (19) (and thetrong dualityv(zg) = infycg va(xo)
holds).

The uniqueness of the optimal solution can also be derivad that of (20). Indeed,
suppose we have established the uniqueness of optimailbsolat(20) for\ = \*, and\*
is such that}.(-) binds the budget constraint. ThéH. (-) is the unique optimal solution
to (18). To see this, assume there exists another optimati@ol>*(-) to (18). Then

Un(G*(-)) < Une (G5 (1) = v(zo) = U(G*()) = Un-(G" ().

Hence, by the uniqueness of optimal solution to (20), we ke (-) = G%.(-).
Finally, once (18) or (19) has been solved with the optimétsmn G*(-), the corre-
sponding optimal terminal cash flow can be recovered by

X* = G'(Z,) = G"(1 - Fy(p)). (21)

The above expression shows that the optimal terminal weéltine model (18) or (19)
is anti-comonotoniavith the pricing kernep in a complete market. This underlines one
of the most important, common properties of the quantile eh@drhich covers a wide
range of portfolio selection problems from neoclassicdigébavioural). It will also play a
significant role in treating incomplete markets and in d&thimg the mutual fund theorem;
see the next two sections.

We remark that while the above solution scheme is outlinettuh € R, it extends
readily to the situation wherg is restricted to a smaller subset, typically the positiviss ax
Rt \ {0}*°; see examples below.

Now we apply this general scheme to two concrete models piedearlier. Recall we
are dealing with a complete market for now. Consequentlyassaime the following on
the market in Section 2.1 throughout the remainder of thitee

Assumption 5 m = n ando(t) is invertible a.s., a.et € [0, 7).

3.1 Goal-reaching model

Consider the goal-reaching problem (9). Browne (1999) lohsed this problem, as-
suming that the investment opportunity set is determiisising rather ad hoc method
based on the HIB equation and the associated verificationetime Here, without assum-
ing a deterministic investment opportunity set, we denmanstthat our quantile formula-
tion will lead to a rather simple approach.

First, it is easy to see thatify > bE[p], then a trivial optimal solution is(* = b and
the optimal value is 1. Therefore we confine us to the only@siing casé < zo < bE[p),
which means that the goal is at least more ambitious tharigkdree payoff. Notice

1
P(X >b) = / LasndFx(x) = / LiG(z)>p}dz,
R 0

5This is because, due to Assumption 3, the equality consira{ti9) could be revised to the less-or-equal
inequality constraint without essentially changing thededo
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and X > 0 is equivalent toG(0+) > 0. Hence problem (9) can be formulated in the
following quantile version:

Max  U(G() = [ Lgezndz

subjectto [} F, (1 — 2)G(2)dz = o, (22)
G() eG, G0+)>0.

This, certainly, specialises the general model (19) withoa-convex/concave “utility”
function.

Introducing the Lagrange multiplier > 0 (as discussed earlier as well as evident from
below in this case we need only to consider positive muéigl, we have the following
family of problems

Max UAG) = [} [Liaesn — AF, (1= 2)G(2)] dz + Axg
Subjectto G(-) € G, G(0+) > 0.
Ignore the constraints for now, and consider the pointwisg&imisation of the integrand
above in the argument = G(z): max,>o[lzy — AF, (1 — 2)z]. Itis an easy ex-
ercise to show that its optimal value isax{1 — AF,'(1 — z)b,0} attained atz* =
b1 \p;1(-2>0p- MoOreover, such an optimal solution is unique wheneverzF, ' (1 —
z)b > 0. Thus, we define

(23)

which is nondecreasing in It may not be left continuous; however, the valuégfG(-))
is unchanged if7(-) is altered only at countable points ¢h 1]. Hence we can take the
left-continuous modification o+ (-) to be the optimal solution of (23), and the optimal
solution is unique up to a null Lebesgue measure. On the didwed, the modification
above would generate the same (in the sense of a.s.) randenept(21) since has no
atom. So the abow&’;(-) can be regarded as the optimal solution to (23).

Now we are to find\* > 0 binding the budget constraint so as to conclude €ai-)
is the optimal solution to (22). To this end, let

1
’ 1
—1
— b/o Foo (= 2) g oy <ayonpd2

+oo
= b/ T (z<1/00)pdEp(T)
0

=bE [plip<y/ony], A >0.

It is easy to see thaf(-) is nonincreasing, continuous @f, +o0c), with limy o f(A) =
bE[p] andlimy;; f(A) = 0. Therefore, for any) < z, < bE]p], there exists\* > 0
such thatf(\*) = z, or the budget constraint holds. As per discussed in the gener
solution scheme the corresponditg.(-) solves (22) and the terminal paymekit =
G3-(1 = F,(p)) = bly,<y, wherec* = (A\*b)~! is such that the initial budget constraint
binds, solves the original problem (9). Finally, the optirmalution is unique and the
optimal value isP(X* > b) = P(p < ¢*) = F,(c*).

To summarise, we have
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Theorem 1 Assume thab < zq < bE[p]. Then the unique solution to the goal-reaching
problem (9) isX* = bly,<.} wherec* > 0 is the one such thaf [p.X*| = x,. The optimal
value isF,(c*).

The solution above certainly reduces to that of Browne (199®n the investment
opportunity set is deterministic. It is, however, impottamhighlight the advantages of our
approach. First, the approach in Browne (1999) is ratheioadih that a value function of
the problem iconjecturecand then verified to be the solution of the HIB equation, witho
an explanation as to how the function was come up with in tisé fiace. Here weerive
the solution (without having to know its form a priori) bas®tthe quantile approach. Thus
our method could be easily adapted to more general settiBgsond, the HIB equation
fails to work with a stochastic investment opportunity $ethich however can be treated
by our approach here. Finally, our result can even be extet@lan incomplete market
with a deterministic opportunity set; see the next sectoyrdétails.

Folimer and Leukert (1999) and Spivak and Cvita(i999) extend the goal-achieving
problem to the context of hedging contingent claims, alf@vnore general settings in-
volving random goals, stochastic opportunity sets, andéotinuous semimartingales as
asset prices. The approaches they develop (Neyman—Pdamsora and martingale re-
spectively) are again somewhat specific to the probabildéyimisation problems. In con-
trast, the quantile approach of this paper is general entugbver many models beyond
probability maximisatiort!

We end this subsection by noting an interesting feature efstilution derived. The
optimal terminal wealth profile for the goal-reaching is gitdil option® Optimally the
agent either obtains a fixed payment upon a “winning evenélge loses all the money on
a “losing event” at the end of the investment horizon. Whethe world ends up with a
winning event is completely dictated by the pricing kernetl @xceeding a critical levet".
Moreover, sinceX* = bly,<., the payoffs in case of a winning is fixed while the winning
probability, P(p < ¢*), monotonically decreases withz,, a quantity that measures the
aspiration (or indeed the greed) of the agent. This is seen by

ElpLipeey] = (bfo) ™.

From a different perspective, given the initial wealtfy there is a tradeoff between the
winning amound and the winning chance represetned-hysince

bE[Pl{pgc*}] = Xyp-

So the higher goal the agent sets the less chance the gohlen#lached, and vice versa.
This in turn suggests that, although the notion of risk pezfee is not explicitly presented
in the goal-reaching model, it impliedin the following sense: the more risk-averse the

18|n this case one would have to involve the so-called backwtrchastic partial differential equation in
formulating the corresponding HJB equation, which is inegahvery complicated and extremely hard to
deal with.

In this paper the godl in (9) is assumed to be deterministic, althouth it is not esak If b is random,
then by considering a new decision variable= X /b one could mathematically recover (9) with= 1. Of
course, some subtle technical consideration is requirkisihot almost surely strictly positive; we leave the
details to the interested readers.

8|t is an easy problem to replicate a digital option to obthdptimal trading strategy; see, e.g., Appendix
E in Jin and Zhou (2008).
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agent is, the more weight should be put on the winmingnceand the less on the winning
amount More on this in the next subsection.

3.2 Yaari'sdual modd

In this subsection we turn to the portfolio choice model (ddgler Yaari’s dual theory.
We assume;, > 0 to exclude a trivial case. In view of (12), (15), and (16) thelglem has
the following quantile formulation:

Max fo "(1—2)dz

G()

subject to fo Fp* (1-— z)G(z)dz = . (24)
G()eG, G(O+)>0.

We first impose the following assumption on the distortiondtiionw(-).

Assumption 6 w(-) : [0,1] — [0, 1] is continuous and strictly increasing with(0) = 0,
w(1) = 1. Furthermore(-) is continuously differentiable oft), 1).

Other than the differentiability which is purely technictile economical sensibility of
the assumption is evident.

Before we attempt to solve (11) or (24), notice the prefeeameasure is linear in the
payment; see (12). Hence its value can be possibly madegesdarone wants. Define by
v(xo) the optimal value of (24). We say the modelligposedif v(zy) = +o0; otherwise
it is well-posed An ill-posed model is one where the incentives implied by todel are
wrong, and in the context of portfolio choice an ill-poseddabusually leads to trading
strategies that take the greatest possible leveragesgtemagent is most aggressive); see
Jin and Zhou (2008) for a detailed discussion and treatniethieall-posedness. A well-
posed Yaari's model requires some consistency betweernrdialpility distortion and the
market. This is made precise in the following theorem.

Theorem 2 Under Assumption 6, model (24) is ill-posediifiinf, |, F“i’ﬁ?)) = +4o0, and
p z
( )
well-posed iflim sup, i < oo
Proof If lim mfzw =) — 40, then for anyn > 0, there exists; € (0, 1) such that

Fy'(2)
w'(z) = £ F,; 1(z) foranyz € (0, z1]. ConstruciG(-) € G in the following way: it is 0 on

[0,1 — =] and is a constariton (1 — z;, 1]. Becausg > 0, we haveF, '(z) > 0Vz > 0.
Hence we can seleétsuch thath1 G(2)F; (1 — z)dz = 2, > 0. Consequently, we have

/01 G(2)w'(1 - z)dz > n 01 G(2)F, ' (1= z)dz = n.

Lo
This indicates that(xz,) = +oo or the underlying model is ill-posed.
If limsup, g F“ﬁf)) < +o00, then there existg(; > 0 and0 < z; < 1 such that
p z
w'(z) < K1F,'(z) foranyz € (0, 2]. Now for any feasibleZ(-) to problem (24), we
have

fl 21 p (1 - Z)dz < Xy
N f1 L F (1 —2)dz f11_21 F(1 = 2)dz

G(l — 21) =: KQ < +00.
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Thus
U(G()) = /0 - G2)w' (1 —z)dz + /1_ G(2)w'(1 — z)dz

SG(l—zl)/l_ w'(1—2)dz + K4 /1 G(2)F; Y (1 - 2)d>

21

< KQ + Kll’g.

This shows that(z,) < Ky + Kixy < +oo and the model is well-posed. |
If w is concave and differentiable, agd: 0, then

/ / 1 2
lim inf uifz) > lim inf wEI/ ) =
20 Fri(2) 20 F7(2)

So a concave distortion leads to an ill-posed problem or femtais most aggressive in
taking the risk. However, this is perfectly consistent wyidari’s theory that a concave
distortion is equivalent to the risk-seeking preference.

Next, we apply the Lagrange method to solve (24), for whiclintreduce an additional

assumption in terms of a functidi (z) := F"?f%:i), 0<z<1.

Assumption 7 M (-) is continuous orf0, 1), and there exists, € (0, 1) such thatM (-) is
strictly increasing on0, z,) and strictly decreasing ofx, 1).

Assumption 7 can be weakened to the one whigie) may have a finite number of
monotonic pieces. However, such a generalisation onlyrénootational complexity in
the approach below rather than any essential differenceh®nther hand, we will show
later in this subsection that Assumption 7 holds naturaltysbme common and interesting
cases. Finally note that, in view of Theorem 2, problem (24yvell-posed under this
assumption.

Consider the following family of problems with the paramete> 0 being the La-

grange multiplier:
I\g(a) Un(G(")) := fol G(z) [w' (1 —2) = AFE,;H(1 — 2)] dz + Ao (25)
subjectto G(-) € G, G(0+) > 0.

Denote byv,(zo) the optimal value of (25). The following proposition solM&s) com-
pletely.

Proposition 1 Let Assumptions 6-7 hold. Then there is the unique prdot> 0 of the
following function on(0, 4+00):

h(A) = /0 [w/(1—2) = A (1= 2)], d2 — / [w/(1— 2) — AF; (1 - 2)] dz.

20

Moreover,
(i) If 0 < X < A\, thenvy(zg) = +00.

(i) If A > \*, thenu,(zo) = Az and the unique optimal solution {@5)is G5(-) = 0.
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(i) If X = \*, thenvy(z9) = Az, and the set of optimal solutions {85) is {G(-) €
G : G(z) = bliw)<z<1y, b > 0} where0 < z(A*) < 2 is the one satisfying
M(z(\*)) = A"

Proof Rewrite, for each\ > 0,
1
UA(G() = / G()F; (1 — 2) fa(2)dz + Ao
0

where fy(z) := M(z) — X If fi(z) < 0Vz € (0,1) then the obvious unique optimal
G5 () = 0 which leads to (ii). Hence we assume tlfatz) > 0 for at least one € (0, 1).
Let z(\) := inf{z € (0,2] : fa(z) > 0} with the convention thainf () := 2,. A
crucial step in what follows is to show that the optimal s@lntto (25) must be attained in
a subclass ofs, consisting of certain step functions, defined as

Gy :={G() € G: G(2) =bly ey, b =0}

It is clear thatvy(zo) > supg()ec, Ur(G(+)). To show the opposite inequality, consider
Z(A\) :=inf{z € [20,1) : fa(z) < 0} with inf ) := 1. By virtue of Assumption 7f,(-) is
positive on(z(\), 2(\)) and negative oif0, z(A)) U (2(A), 1). Now, for any feasible~(-)

to (25), we have

UA(G() = /0 G(2)E (1 — 2) fa(2)dz + Ao

z(\)
:/0 G(2)F, (1 - 2) fal2)dz

()
+ / G(2)F, (1 — 2) fa(z)dz + / G(2)F, M (1 = z) fa(z)dz + Ao
z(\) Z(A)

2\ 1
< a/(/\) FyN 1= 2) fa(z)dz + ax(/\) FoN1 = 2) fa(z)dz + Ao

wherea := lim. :») G(z). The first inequality above becomes equality if and only if
G(-) = aly.(n)<=<1y. Therefore, ifG*(-) is optimal to (25), thei*(-) € G..
On the other hand, a simple exercise shows that

h(\) = /(/\) (W' (1—=2) = AF, (1= 2)] da.

Clearly, h(-) is continuous and strictly decreasing @0 +oo) with limy o h(A) = 1,
limyjoo A(A) = —00. SOA(A) admits a unique root* > 0. Now,

vr(zg) = sup Ux(G(-)) = Azo + sup[bh(X\)] = Azg + h(X) supb.

G()EGy b>0 b>0

Sinceh(\) is positive whem\ < \*, negative when\ > \*, and identical to O when = \*,
the desired results (i)-(iii) follow immediately. |

Now we are ready to give the complete solution to (11) or exjaivtly (24).
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Theorem 3 Suppose Assumptions 6-7 hold, and\ebe the one in Proposition 1. Then
(i) The strong duality holds, i.ev(xy) = inf)s¢ vr(zg) = A 2.

(i) X* = b*1,<q Is the unique optimal solution t1) wherec is the unique root of
the following function

o(z) == zw(F,(z)) — w'(F,(z)) /Oﬂﬂ sdF,(s) (26)

on (F, (1 — z),p) andb* > 0 is the one binding the initial budget constraint, i.e.,
E[pX*] = xo.

Proof We clearly have the weak duality(xy) < infy~ovx(z9) = A*z¢ Where the equal-
ity is due to Proposition 1. Now, tak6*(z) = b*1(\)<.<13, 0 < z < 1, such that
fol G*(2)F,; ' (1 = z)dz = xo. Thenu(zo) > U(G*(-)) = Az, where the equality is again
by Proposition 1. This proves the strong duality and, moeeav*(-) is optimal to (24).

If there is another optimal solutio*(-) to (24), thenf,' G*(z)F; (1 — 2)dz = o
and C?*(-) is optimal to (25) with the multipliet\*. Proposition 1-(iii) then implies that
G*(-) € G- and consequentlg*(-) = G*(-). This proves the uniqueness of the optimal
solution to (24).

Next we recover the optimal terminal payoff via (21):

XT=0"1eana-Rp)<y = V<o
wherec := F;1(1 — 2(\%)).

P
It remains to show that the abowés the unique root of(-) defined in (26). Recalling
W) = [ [W/(1=2) = AF; (1= 2)] dz and X = M(z())) when0 < z(}) < z, we
conclude that(\*) is the unigue root of the following function (i)

/ylw/(l — z)dz — M(y) /y1 F' 1= z)dz = w(l—y) — M(y) /y1 FrY(1 - 2)dz.

A change of integrand variable = F,'(1 — 2) in evaluating the integral above reveals
immediately thatc = F,'(1 — z()\*)) is the unique root ofp defined on the interval
(F, (1 = 20), p). The proof is completed. |

The following example first shows the validity of Assumptidiior a broad and inter-
esting class of distortion functions and pricing kernetsj ghen gives the corresponding
optimal solution to Yaari’'s model.

Example 1 Let p follow lognormal distributio?®, i.e., F,(z) = ® (2-£) for someu € R,
o > 0 whered(-) is the CDF of the standard Normal distribution. Take) = 2 for some
v > 1; sow(-) is convex and reflects the risk aversion of the investor afiogrto Yaari's
theory. We now verify Assumption 7 or, equivalently, the ratumicity of

f(z) = W (Fy(x)) =7 [© CMT?N)P? . x> 0.

T T

19This covers, e.g., the case with a deterministic investropportunity set.
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A calculation shows

where

ande¢(-) is the density function of the standard Normal distributidgain taking derivative
on f1(y), we have

it ==ot (1474,

Thereforef; takes its maximum ag; = —ﬁ < 0, strictly increases ofi—oc, 3, ), and
strictly decreases ofy;, +o00). Moreover,

filn) = — | () + iqb(yl)} - {1 d(y) - ilqb(—yl)} - 0.
On the other hand, we have
fi(—=o0) =0, fi(+o0) = -1 < 0.

Hence fi(-) has a unique roog, such thatf;(y) > 0 on (—oo,y2) and f1(y) < 0 on
(y2, +00). Furthermorey, > y; = —5%. Letpy == exp(oys + p) > exp (u — 7"—_21) and

zp:=1—F,(py) =1 — ®(y2). Then Assumption 7 holds.
The functiony(-) defined in Theorem 3 is

- [o (B o () (22 )]

This function has a unique roobn (po, v exp (u + "72)) Therefore, the optimal solution
is given asX™* = b*1,<.y with E[pX*] = x.
As with the goal-reaching model, it turns out that the optis@ution to the Yaari’s

model has the same digital or “win-or-lose-all” strucireHowever, there are subtle dif-
ferences between the two models. In the goal-reaching mduelwinning payoffb is

20As discussed in Madan and Zhou (2008) the structure of digjaans being optimal is arguably not well
formed and appears to be an artificial consequence of thégondbrmulations — in particular the linearity in
both preferences and constraints — than a real structwpépy. Here both the goal-reaching model and the
Yaari model have linear payment in their preference meagiaari’s criterion only distorts the probability
and not the payment), which is the essential economic relasloind the digital solutions. A more plausible
optimal claim is what we call gambling strategythat is, it is a known clainX in certain states of the world
and another claint” otherwise, andX andY usually havedistinct economic interpretations. So people
gamble on the occurrence of the former states (the gooditdtee propsect model Jin and Zhou (2008) has
exactly such an optimal structure wheXeis the gain and” the loss. See also He and Zhou (2008) for the
SP/A model where a utility function is applied to distort freeyment in addition to the probability distortion.
A digital option is certainly a special case and, more imgatty, an approximation of the general form. We
stress that the general quantile model formulated in thiephas rich optimal structures; it just so happens
that the two models demonstrated here have the digitaltateic
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exogenouslghoserby the agent while the winning chance is endogenoinsplied by the
model; the latter being affected by the initial wealih(or more precisely, by the aspiration
levelb/zo). In Yaari's model X* = b*1,<.;, S0 both the winning chance and the winning
amount are endogenous. In particulars completely determined by the market and the
agent risk preference; see (26). In other words there is anape winning chancee-
gardlessof the initial wealth whereas the winning payoffdepends linearly on the initial
wealth.

As Yaari (1987) argues, risk preference is explicitly preésend reflected by the proba-
bility distortionw in his dual criterion. Now let us examine hawwould affect the winning
chance represented lyand whether Yaari's model is consistent with the notiondjas
cussed earlier) that a more risk-averse agent would put meight on the winning chance
and less weight on the winning payoff.

Recall that in the proof of Theorem 3, we have proved that 1 — F,(c) is the unique
root of the following function

g(y) == w(l —y) — M(y) / FU(1 - s)ds

on (0, z9). Noting¢'(y) = —M'(y f F s)ds along with Assumption 7g(-) strictly
decreases of?, zo) and strlctly mcreases o(n:o, 1). Consequentlyy(y) > 0 on (0, z) and
g(y) <0on(z,1). Rewriteg(-) as

Suppose now we have two distortion functiong(-) andws(-), both satisfying Assump-
tions 6 and 7, such that

The corresponding functiong-), ¢(-) and the quantities andc are now affixed with a
subscript; = 1, 2 to indicate the correspondence to the two distortions = 1,2. Then
we have

woll — 21 zl F(1
0=g1(z1) > wi(l = z) wfzg — z1; = F(l(zl)

This impliesg,(21) < 0 and, consequently; > 2z, or equivalently,c; < c,. If the in-
equality in (27) is strict, so are all the subsequent inatjealabove. If we accept that
in the tradeoff between the winning chance and the winninguart) a risk-averse agent
favours the former, then the above analysis shows that dm(%@ can be used to mea-
sure the degree of “risk-aversion” in Yaari’'s model, i.&g greater the index the higher
winning chance the agent wishes to achieve. We remark thdachina (1982), Theorem
4-(ii), based on the notion of risk aversion introduced byHRohild and Stiglitz (1970),
it is shown that the risk aversion levels of different prefeze functionals can be ranked
according to a criterion. It is easy to show that the criterio the current Yaari setting
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is exactly the Arrow—Pratt inde%. Here, we have suggested a different risk aversion
index as implied by the Yaari portfolio choice modél.

4 Incomplete Market

In this section we discuss the incomplete market case. Aiaradvantage with a
complete market is that there is a unique pricing kemmeso one can turn a dynamic
portfolio choice problem into a static one in terms of thevteral cash flow. Once the
optimal terminal wealth is derived the corresponding mbidfis nothing else than the one
to replicate it. With an incomplete market, on the other hame needs to specify the set
of terminal cash flows that are replicable (attainable) teefonding an optimal terminal
wealth positior??

We take the continuous-time market formulated in Sectidn Row the dimension of
the Brownian motiong, is not necessarily the same as the number of steck&joreover,
there is an explicit constraint on portfolios

n(t) € K, a.s.,a.et € [0,7], (28)

where K C R™ is a given closed convex coR&ln addition to achieving more generality,
including this constraint will also be useful in proving tmeitual fund theorem in the next
section.

An Fr measurable contingent claim (random varialglé3 calledattainableor repli-
cableif there exists an initial endowment € R and an admissible portfolio satisfying
(28) whose terminal wealth is(7") = £. In the following, we identify a set of attainable
contingent claims. To this end, we introduce the following.

Let K* be the dual cone ok, i.e.,

K :={xeR": z-y>0forally € K}.
Define the set ofF;-progressively measurabl&;'-valued processes:
O :={0(-): o(t)8(t) — B(t) € K*, as., a.et € [0,T] with Bez Jo 100t o | oy,

Assumption 1 implies thad is nonempty, and it is easy to see tkats convex. For any
0(-) € O, define a pricing kernel process

ity = o {= [ [+ Juir] as— [oraws}. o

and callp, := py(T') a pricing kernel. Notice in an incomplete market there cdogdanany
pricing kernels.

Introduce the notatiord (K) := {Az : x € K} for anyn x m matrix A. Clearly, A(K)
is a convex cone. We assume that

21In the case of a power distortion function, i.e(z) = 27,~ > 1, these two indices are indeed consistent
in ordering the risk aversion level.

22The discussion in this section follows standard lines inlidgawith incomplete markets in the
continuous-time portfolio selection literature. The maiming is that this approach turns out to work well
within the quantile framework too.

237 typical example is the so-called no-shorting constrailitdeed, even thoughn = n ando(t) is
uniformly non-degenerate, the presence of such a portfoiistraint renders an incomplete market.
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Assumption 8 o(t)" (K) is closed, a.s., a.e.€ [0, 7.

Generally speakingd (/') may not be closed even K is a closed convex cone. How-
ever, if rankA) = n, then A(K) is closed for any closed convex cohg If K = {y :
By > 0} for some matrixB, then A(K) is closed for anyA. Therefore, Assumption 8
covers some interesting cases such as the no-shortingaonhst

The following is a classical result.

Proposition 2 Suppose Assumptions 1 and 8 hold. {dte anZr measurable random
variable such thats,(7")~*¢ is bounded from below. If there exigts) € © such that

= Elps&] = sup E[ppé] < +o0,
0O

then¢ is attainable with the initial wealthr.

If there is no cone constraint, i.g<, = R™, then Proposition 2 is exactly the classical
result for incomplete markets; see, e.g., Theorem 8 in JA&&R). In the presence of con-
straints, Karatzas and Shreve (1998) deal with the casenefgkclosed convex constraints
in complete market. &llmer and Kramkov (1997) consider a general market viaomat
decompositions. Proposition 2 is a special case of thetseeBulFollmer and Kramkov
(1997). Meanwhile, Assumption 8 is related to AssumptidhiB.Follmer and Kramkov
(1997).

Proposition 2 characterises the attainability of a corimglaimé by an optimisation
problem

max Ep€]. (30)

If this problem is solved by sorfec ©), then¢ is attainable. However, in genefatlepends
on ¢ and there is naommory for all the tame claims. This would cause a major problem
to the continuous-time portfolio model and our quantilerapgh, because in this case the
constraintry = Epyé] = supgee E|po&] has essentially infinitely many constraints and it
remains an open problem as to how to formulate the quantidetrexcordingly. However,
if the investment opportunity set is deterministic, thersipossible to select a common
6 amongst a certain set (to be specified below) of contingexitms, in which case the
guantile model can be formulated as in the complete marlset. ca

We now introduce

Assumption 9 r(-), B(+), o () are deterministic.

Denote byO(t) := {6 : o(t)f — B(t) € K*}, 0 <t < T. Under Assumption 9,
define

A~

0(t) := argmin,g ;) 10]*. (31)

It is clear thaté( -) is uniquely defined and deterministic. Furthermore, viartt@asurable
selection theoremy(-) is measurable. Also, by Assumption 1 and the definitiod (of,

we havefOT |0(t)|2dt < +oco. Thereforef(-) € ©. We calld(-) theminimal price of risk
processand callp, theminimal pricing kernel
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Let H be the set of all non-increasing functiops R, \{0} — R which is bounded
from below. The following result, which essentially folledrom Theorem 6.6.4 in Karatzas
and Shreve (1998), indicates that any contingent claimerfahm g(p;) whereg € H can
be replicated.

Theorem 4 Suppose Assumptions 1, 8 and 9 hoId.é(e)t be as in(31), andg(-) € H be
such thatr := E[p;g(py)] < oo. Theng(p;,) is attainable with the initial wealth.

Now, takep := p;, and assume (as before) thahas no atom. Noticing that Lemma
1 holds for any atomless, positive random variaplésee Jin and Zhou 2008, Theorem
B.1]), we may go through exactly the same argument as thatdtidh 2.3 and formulate
the portfolio choice model (19). If (19) is solved with an iopal solutionG*, then the
optimal terminal wealth isX* = g¢(p) whereg(z) = G*(1 — F,(x)), according to (21).
However, it is indeed true thgte H; henceX* is replicable by the initial wealth,, while
the replicating portfolio is the optimal strategy to thetiaio selection model.

In the case of a stochastic investment opportunity set, waadget have a general
guantile formulation. However, we may at least include tseoof aveak complete market
a notion proposed by Schachermayer, Sirbu and Taflin (20@9)\(-) be defined as in (31)
(even without Assumption 9). The market is weak compleig if) is replicable for any
bounded non-increasing functign (So Theorem 4 says that a market with a deterministic
investment opportunity set and with cone constraints isknezanplete.) Clearly, for a
weak complete market the quantile formulation is valid swlasp, admits no atom.

Therefore, the solutions to the goal-reaching problem aamaki¥ model, obtained in
Section 3, as well as that to the behavioural model (see €hedrl in Jin and Zhou 2008),
can be extended readily to incomplete markets with detastigninvestment opportunity
sets and with conic constraints (or even to weak completkets); where the unique
pricing kernelp is replaced by the minimal pricing kerngj.

5 Mutual Fund Theorem

The Mutual Fund Theoremalso called théwo-fund theorenor separation theorem
states that under some assumptions, agents achieve aptinyasimply allocating money
between the bank account and a risky portfolio calledrthtual fund The key feature
is that the mutual fund is same for all agents. The mutual thedrem dates back to the
Markowitz mean-variance portfolio analysis in single pdnivhere it can be shown that if
all the investors are mean—variance efficiency seeker,ttteemutual funds theorem holds
even though different investors may have difference retkin preferences. This becomes
the foundation of the capital asset pricing model (CAPM).ride (1971) shows that for
the continuous-time Black—Scholes model (where the oppdayt set is deterministic) the
mutual fund theorem holds if all the agents are power utihigximisers. Such a result has
been generalised to the case of general concave utilitytins; see Karatzas and Shreve
(1998). Recently, Schachermayer, Sirbu and Taflin (206&udis in a general setting when
a mutual fund theorem holds true, assuming all the agentxgected utility maximisers.

Now, thanks to the quantile formulation developed in thipgraespecially the general
expression of an optimal terminal wealth (21), we are ablpréwve that the mutual fund
theorem holds in any market (complete or incomplete, witbsgale conic constraints on
portfolios) having a deterministic opportunity set so l@asgll the agents follow the general
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model (19). Note that such a model covers a very diversifigk-return preferences in-
cluding those of the classical utility maximisation, meamance and various behavioural
models.

Consider the (possibly incomplete) market presented iticded where portfolios are
constrained in a given closed convex cdtieUnder Assumption 9, let(-) be the minimal
price of risk process and defifé(t) := p;(¢t)~*, 0 < ¢ < T. Itis well known thatV(-)
is the wealth process of the optimal portfolio under logitytimaximisation with initial
wealth 1. We call this portfolio theauneraire portfolio; see, e.g., Schachermayer, Sirbu
and Taflin (2009).

Theorem 5 Under Assumptions 8 and 9, any optimal cash flow of the md®ican be
attained by a (dynamic) portfolio of the risk-free assgt-) and the nuréraire portfolio
N(-). Moreover, this portfolio never short sellé(-).

Proof It6’s formula shows that

AN (t) = [T(t) L0 ] N()dt + N dW(t), N(0) = 1.

- t 1 ~ 1
W(t) .= / [A—Q(U)T + —=1500—0 1) dW(u), 0<t<T.
0 |9(U)|1{é(u)¢o} v o=

By Lévy’s characterisatiori}/(-) is a one-dimensional standard Brownian motion on
(Q, F, (F)o<t<t, P). Then,N(-) satisfies

AN (1) = [r(t) + \9(t)|2] N(®)dt + [0(t)|N(#)dW (), N(0) = 1.

Now the probability spac&?, 7V, (F)V)o<i<r, P), whereF}V is generated byV'(-) and
augmented by all th&-null sets, together with the risk-free assgt-) and the risky asset
N(+), constitutes a new, fictitious financial market. This mateet a deterministic invest-
ment opportunity set. We further impose the no-shortingstramt in this market, i.e.,
the position of N (-) must be non-negative, which is a conic constraint. It is eashow
that the minimal price of risk process, as determined by {81eneral, is/(-)| in this
new market; hence the corresponding minimal pricing keisg)(7") := p itself. In other
words, the minimal pricing kernels in the two markets arentaal. However, it has been
shown that with an optimal solutia@*(-) to (19) in the original market, the corresponding
optimal terminal payoff isX* = ¢(p) whereg(xz) = G*(1 — F,(z)). Recall thaty € H
hence Theorem 4 yields that* is replicable by an admissible portfolio in thewmarket.
More precisely, there exists @R -progressively measurable (and thBsprogressively
measurable) portfolia(-), with a(t) > 0, a.s., a.et € [0, 7], that replicatesY* = g(p)
from the initial wealthz,. Herea(t) is the amount allocated t(-) at timet; hence its
non-negativity is due to the no-shorting constraint we haveosed. It follows that this
replicating portfolio never short sell¥(-). Finally, to see that this replicating portfolio
does satisfy the given conic constraint, note that, agaifftgorem 4,N(-) = p,(-)~!

is replicable in the original market, and so is any non-negaiosition of N(-) since the
portfolio constraint in the original market is conic. Thepfis thus complete. |
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The preceding theorem shows th(-) is a mutual fund. This is probably the most
general mutual fund theorem to date, at least to our best ledo®, due to the broad
coverage of our quantile portfolio choice model (19). Theuiesuggests that the mutual
fund theorem is somewhat inherent in financial portfoli@sgbn, at least in markets with
deterministic opportunity sets. As a consequence, the sekye portfolio is being held
across neoclassical (rational) and behavioural (irratjoagents in the market. This, in
turn, will shed light on the market equilibrium and capitakat pricing in markets where
rational and irrational agents co-exist.

There is an interesting application of our result to moded#during the so-called men-
tal accounting. Mental accounting, a notion coined by Thél®80) and an important
ingredient of the behavioural theory, argues that peopd@mtheir assets into a number
of non-fungible mental accounts. Das, Markowitz, Scheid Statman (2009) consider
a single-period portfolio optimisation with several segiad mental accounts of different
objectives. In particular, within each account the ageastto maximise the expected re-
turn while lowering the risk which is identified as the prolidpthat the terminal payoff
is below some threshold. They show that if the returns of #sets are joint-normally dis-
tributed, then the optimal portfolios in those mental acts@are in the same mean—variance
efficient frontier. Consequently, the agent will hold thengarisky portfolio in each mental
account, and so will she on aggregation. Now, consider ameidn to the continuous-time
market with a deterministic investment opportunity setwithin each mental account the
agent follows an instance of our general quantile moddidalgh across different accounts
the preferences could be very different; say for Account & dlgent is rational while for
Account B she is behavioural), then she will hold the samleyrortfolio N(-) in each
mental account. As a result, she will hold the same riskyfplotin total.

6 Conclusions

Existing risk—return criteria (neoclassical and beharadun portfolio selection have
introduced distortions in either payments or probabsitier both, in evaluating uncer-
tain payments. These distortions have various econormtatgretations and significance.
Yet they have given rise to difficulties, especially in thendgnic setting, for which tra-
ditional approaches fall apart. In this paper we proposentmge the whole perspective
of continuous-time portfolio choice: Instead of determgnirandom terminal cash flows
— specifications of values for all scenarios — one shouldidengjuantiles — fractions of
scenarios below given values, even if the underlying modedy not explicitly involve
guantiles in their objectives or constraints. The resutjuie satisfying: it has sorted out
the issues of nonlinear expectation and non-concavity lsaimeously. We hope that the
guantile formulation opens up a broad avenue to modellirysatving financial portfolio
choice problems.

One should note that the quantile approach highly depentisegorerequisites that the
preference measure is law-invariant and the pricing kesreglomless. While we acknowl-
edge a great wide variety of problems do satisfy these adsamspit is a very challenging
problem to explore beyond them.
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