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Abstract

Continuous-time Markowitz’s mean–variance efficient strategies are modified by

parameterising a critical quantity. It is shown that these parameterised Markowitz

strategies could reach the original mean target with arbitrarily high probabilities.

This, in turn, motivates the introduction of certain stopped strategies where stock

holdings are liquidated whenever the parameterised Markowitz strategies reach the

present value of the mean target. The risk aspect of the revised Markowitz strategies

are examined via expected discounted shortfall from the initial budget. A new

portfolio selection model is suggested based on the results of the paper.

Key Words. Continuous-time portfolio selection, Markowitz efficient strategies,

goal-reaching probability, stopping time, expected shortfall

2000 MRSubject Classifcations. Primary 90A09; secondary 93E20.

∗Yan acknowledges financial support from the National Natural Science Foundation of China (No.

10571167), the National Basic Research Program of China (973 Program, No.2007CB814902), and the

Science Fund for Creative Research Groups (No.10721101). Zhou acknowledges financial support from

the Nomura Centre for Mathematical Finance and the Oxford–Man Institute of Quantitative Finance,

as well as a start-up fund of the University of Oxford. Both authors thank Yifei Zhong for assistance in

drawing Figures 1 and 2.
†Institute of Applied Mathematics, Academy of Mathematics and Systems Science, Chinese Academy

of Sciences, No. 55 Zhongguancun East Road, Beijing 100190, China. Email: <jayan@amt.ac.cn>.
‡Nomura Centre for Mathematical Finance, and Oxford–Man Institute of Quantitative Finance, The

University of Oxford, 24–29 St Giles, Oxford OX1 3LB, UK, and Department of Systems Engineer-

ing and Engineering Management, The Chinese University of Hong Kong, Shatin, Hong Kong. Email:

<zhouxy@maths.ox.ac.uk>.

1



1 Introduction

Markowitz’s Nobel-prize-winning mean–variance portfolio selection model (Markowitz

1952) is to minimise the variance of the terminal wealth subject to archiving a pre-

scribed mean target in a single-period investment. The continuous-time extension of the

model has been studied extensively in the literaute; see, e.g., Richardson (1989), Bajeux-

Besnainous and Portait (1998), Zhou and Li (2000), and Lim (2004). Li and Zhou (2006)

shows that with a continuous-time mean–variance efficient strategy the discounted mean

target could be reached at or before the terminal time with a probability of at least 80%

for any complete market with a deterministic investment opportunity set. This somewhat

surprising result suggests that, while they are derived from the mean–variance criterion,

the Markowitz strategies are quite good in terms of possessing high goal-reaching proba-

bilities.

This paper is motivated by the preceding 80% rule. It starts with a very simply idea:

now that a Markowitz strategy reaches a given goal with an at least 80% chance, if we

parameterise certain quantity in such a strategy and then optimise over this parameter we

should be able to further increase the goal-reaching probability. The idea indeed works,

and we will show that the goal-reaching probability can be made as close to 100% as one

wants. Therefore, we may revise a Markowitz strategy as follows: we follow the param-

eterised strategy until the goal is reached when we would liquidate the stock holdings.

This stopped strategy would achieve the given target with a very high probability. There

is, however, another issue. Goal-archiving alone cannot serve as the sole performance

measure because the wealth process of a revised Markowitz strategy may go very low (in-

deed negatively low) before it eventually hits the target. Hence, we need to consider the

risk aspect of such strategies at the same time. A natural and reasonable risk measure is

the expected shortfall from the initial endowment. We will derive the expected shortfall

analytically, and show that it is bounded even though the corresponding goal-reaching

probability may be very close to 1. Our results further motivate us to propose a new

portfolio selection model.

The remainder of the paper is organised as follows. In section 2 we set up the market

and introduce the parameterised Markowitz strategies. Section 3 is devoted to the goal-

achieving probabilities of these parameterised Markowitz strategies. In section 4 stopped

Markowitz strategies are proposed and their various properties are investigated including
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the expected shortfall. Finally, section 5 concludes.

2 Parameterised Markowitz Portfolios

Consider a capital market in which there are m + 1 assets. One is a risk-free asset (bank

account) whose value process S0(t) is give by

S0(t) = s0e
R t

0 r(s)ds, t ≥ 0,

where r(t) > 0 is the interest rate. The others are m risky assets (stocks) whose price

processes S1(t), · · · , Sm(t) satisfy the following SDEs:

dSi(t) = Si(t)

(
µi(t)dt +

m∑

j=1

σij(t)dW j(t)

)
, Si(0) = si > 0, t ≥ 0, (2.1)

where µi(t) is the appreciation rate, σij(t) is the volatility rate of the stocks, and W (t) =

(W 1(t), · · · ,Wm(t))τ is a standard m-dimensional Brownian motion living in a standard

probability space (Ω,F , P ). Here and henceforth, τ denotes the matrix transpose. We

assume that all the given parameters r(t), µi(t) and σij(t) are bounded deterministic

functions on [0, T ], where T > 0 is given. Furthermore, we assume that for each t ∈ [0, T ]

the matrix σ(t) = (σij(t)) is uniformly non-degenerate. Thus the market is complete.

Let (Ft)t≥0 be the natural filtration of the Brownian motion W (·). If an (Ft)-adapted

process π(t) = (π1(t), · · · , πm(t))τ , where πi(t) is the total market value at time t of an

agent’s wealth in the i-th stock, satisfies E
∫ T

0
|π(s)|2ds < ∞, we call it an admissible

portfolio (strategy). The wealth process under an admissible portfolio π(·) satisfies the

following SDE (see, e.g., Karatzas and Shreve 1999):

dx(t) =
[
r(t)x(t) + π(t)τb(t)

]
dt + π(t)τσ(t)dW (t), x(0) = x0, (2.2)

where x0 > 0 is the initial endowment of an agent, and b(t) = (µ1(t) − r(t), · · · , µm(t) −
r(t))τ . Consequently, under a portfolio π(·), the agent’s wealth invested in the bank

account at time t equals x(t)−π(t)τ1, where 1 denotes the m-dimensional column vector

of 1’s.

Let γ be a real number. Consider the following portfolio in a feedback form which

would generate a portfolio–wealth pair (πγ(·), xγ(·)):

πγ(t) = −
[
xγ(t) − γe

R t

0 r(s)ds
]
(σ(t)σ(t)τ )−1b(t), t ≥ 0. (2.3)
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This class of portfolios is inspired by the form of a continuous-time Markowitz efficient

portfolio where γ has a specific value related to the given mean target (see Remark 3

below). Substituting (2.3) into (2.2) we get the following SDE

dxγ(t) =
(
[r(t) − |θ(t)|2]xγ(t) + γe

R t

0 r(s)ds|θ(t)|2
)

dt

+
(
γe

R t

0 r(s)ds − xγ(t)
)

θ(t)τdW (t), (2.4)

where θ(t) = σ(t)−1b(t). Clearly this equation has a unique solution which is the wealth

process generated by the portfolio πγ(·). We call πγ(·) a parameterised Markowitz portfolio

with parameter γ.

Set yγ(t) = xγ(t) − γe
R t

0 r(s)ds. Then by (2.4) we have

dyγ(t) =
(
r(t) − |θ(t)|2

)
yγ(t)dt − yγ(t)θ(t)

τdW (t), yγ(0) = x0 − γ. (2.5)

Thus,

yγ(t) = (x0 − γ) exp

(∫ t

0

r(s)ds − ϕ(t)

)
, (2.6)

where

ϕ(t) =
3

2
β(t) +

∫ t

0

θ(s)dW (s), β(t) =

∫ t

0

|θ(s)|2ds. (2.7)

Remark 1 In view of (2.6) it is easy to see that xγ(t) < γe
R t

0 r(s)ds if γ > x0,

xγ(t) > γe
R t

0 r(s)ds if γ < x0, and xγ(t) = γe
R t

0 r(s)ds if γ = x0. So γ represents some

ultimate (discounted) upper or lower bound of the wealth trajectory of a parameterised

Markowitz portfolio.

Remark 2 If we consider |yγ(·)| as the price process of a fictitious asset, then the

parametrised Markowitz portfolio with parameter γ is nothing else than a static portfolio

putting amount γ into the bank account and holding or shorting one share of the fictitious

asset.

Remark 3 If z > x0 and γ = z−x0e−β(T )

1−e−β(T ) (it is easy to see that γ > z > x0), then

πγ(·) is the mean-variance efficient portfolio (in the Markowitz sense) corresponding to

the time-T mean target ze
R T

0 r(s)ds; see Zhou and Li (2000).

In this paper we will use the following formulae extensively; see Borodin and Saminen

(2002), pp. 251 and 252:

P

(
sup

0≤s≤t
(µs + W (s)) ≥ y, µt + W (t) ∈ dz

)
=

1√
2πt

eµz−µ2t/2−(|z−y|+y)2/2tdz, y ≥ 0,

(2.8)
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P

(
inf

0≤s≤t
(µs + W (s)) ≤ y, µt + W (t) ∈ dz

)
=

1√
2πt

eµz−µ2t/2−(|z−y|−y)2/2tdz, y ≤ 0.

(2.9)

3 Goal-Reaching Probabilities

In Li and Zhou (2005), it is shown that the Markowitz efficient strategy with a mean

target ze
R T

0 r(s)ds indeed hits the target at or before the terminal time with a probability

no less than 80%. Since the Markowitz efficient strategy is a special one of the parame-

terised strategies (2.3), we expect that this “goal-reaching” probability could be higher by

choosing other values of γ. This section shows that, in fact, the goal-reaching probability

can be made as high as one wants.

In the following we fix z > x0 (if z ≤ x0 then the problem is trivial). For any T > 0,

we put

τγ(T ) = inf
{

0 < t ≤ T : xγ(t) = ze
R t
0 r(s)ds

}
.

Here and henceforth we convent that inf ∅ := ∞. By (2.6) we obtain

τγ(T ) = inf
{

0 < t ≤ T : exp(ϕ(t)) =
γ − x0

γ − z

}
. (3.1)

If z > γ ≥ x0, then γ−x0

γ−z
≤ 0, and we have τγ(T ) = ∞. If γ > z then γ−x0

γ−z
> 1; and

if γ < x0, then 0 < γ−x0

γ−z
< 1. In the last two cases, for notational simplicity we denote

L(γ) = log γ−x0

γ−z
.

Theorem 3.1 We have

lim
γ→∞

P (τγ(T ) ≤ T ) = 1, lim
γ↓z

P (τγ(T ) ≤ T ) = 0, (3.2)

and

lim
γ↑x0

P (τγ(T ) ≤ T ) = 0, lim
γ→−∞

P (τγ(T ) ≤ T ) = 1. (3.3)

Proof. First of all, notice that by a well-known time change technique

ϕ(t) =
3

2
β(t) + Ŵ (β(t)), t ≥ 0

where Ŵ (·) is a standard Brownian motion.
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Now consider γ > z. Since ϕ(0) = 0 and L(γ) > 0, by (3.1) and (2.8) we have

P (τγ(T ) ≤ T ) = P
(

sup
0≤t≤T

ϕ(t) ≥ L(γ)
)

= P
(

sup
0≤t≤β(T )

(3
2
t + Ŵ (t)

)
≥ L(γ)

)

= N
(3

2

√
β(T ) − L(γ)√

β(T )

)
+ e3L(γ)N

(
− 3

2

√
β(T ) − L(γ)√

β(T )

)
, (3.4)

where N(·) is the cumulative distribution function of a standard normal random variable.

It then follows immediately that (3.2) holds.

Next we assume γ < x0. Notice in this case L(γ) < 0. Then

P (τγ(T ) ≤ T ) = P
(

inf
0≤t≤T

ϕ(t) ≤ L(γ)
)

= P
(

inf
0≤t≤β(T )

(3
2
t + Ŵ (t)

)
≤ L(γ)

)

= N
(
− 3

2

√
β(T ) +

L(γ)√
β(T )

)
+ e3L(γ)N

(3

2

√
β(T ) +

L(γ)√
β(T )

)
, (3.5)

leading to (3.3). The proof is complete.

So, the goal-reaching probability can be made as high as possible with the parame-

terised Markowitz strategies by sending the parameter γ to either positive or negative

infinity. On the other hand, when γ is close to z from above or close to x0 from below

the goal-reaching probability is very small.

These results indicate that goal-reaching probability alone is not a good performance

measure, because the risk part is not properly taken care of. They also show that the

very popular risk measure VaR (Value at Risk) may not be a proper measure in guiding

investment practice, because it gives only the probability of certain losses to occur, but

not the magnitude of potential losses. As a result, VaR often induces agents to gamble on

an event with a small probability. Browne (1999) studies the goal-reaching model with a

non-negativity constraint on the wealth trajectory, and derives that the optimal terminal

wealth profile is a digital option, which corresponds to exactly a gambling strategy; see

also He and Zhou (2008). In the next section, we will address the risk-control issue of the

parameterised Markowitz strategies.
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4 Stopped Markowitz Strategies

The previous section shows that the revised, parameterised Markowitz portfolios could

realize a given target before the terminal time with very high probabilities. This in turn

suggests the following further revision of the strategies: whenever the target is realized half

way through one stops and withdraws funds from the stocks. To be precise, let z > x0

be the t = 0 value of the given target. We construct the following stopped Markowitz

portfolio with parameter γ where γ > z or γ < x0: If τγ(T ) ≤ T then we liquidate all the

stocks holdings at time τγ(T ) and put the proceeds into the bank account to achieve the

final total wealth ze
R T

0 r(s)ds at time T ; otherwise (i.e., τγ(T ) = ∞), we continue to use the

(parameterised) Markowitz portfolio until T and get the final wealth xγ(T ) (which will

be strictly less than ze
R T

0 r(s)ds). Consequently, the wealth at time T of such a stopped

Markowitz portfolio with parameter γ is

ξγ(T ) = ze
R T

0 r(s)dsI[τγ(T )≤T ] + xγ(T )I[τγ(T )=∞]. (4.1)

Define the expected discounted wealth at time T of a stopped Markowitz portfolio with

parameter γ

Wγ(T ) = E[e−
R T

0 r(s)dsξγ(T )]. (4.2)

Proposition 4.1 If γ > z of γ < x0 then Wγ(T ) < z.

Proof. Since e−
R T

0 r(s)dsxγ(T ) < z on [τγ(T ) = ∞] and P (τγ(T ) = ∞) > 0 by virtue

of (3.4) or (3.5), we obtain the desired inequality immediately from (4.1).

So the stopped Markowitz portfolio underachieves the original mean target presented

in the mean–variance model. However, this is compensated by the increased goal-reaching

probability when |γ| is sufficiently large. The following gives more precise estimates of

the mean losses with stopped Markowitz strategies when γ converges to the ends of its

ranges.

Proposition 4.2 We have

limγ→∞ Wγ(T ) = z + (z − x0)
(
e−β(T )N(−1

2

√
β(T )) − 3N(−3

2

√
β(T ))

)
,

limγ↓z Wγ(T ) = z − (z − x0)e
−β(T ),

(4.3)
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and

limγ→−∞ Wγ(T ) = z + (z − x0)
(
e−β(T )N(1

2

√
β(T )) − 3N(3

2

√
β(T ))

)
,

limγ↑x0 Wγ(T ) = x0.

(4.4)

Proof. Since

E
[
e−ϕ(T ), τγ(T ) = ∞

]
= E

[
e−ϕ(T )

]
− E

[
e−ϕ(T ), τγ(T ) ≤ T

]

= e−β(T ) − E
[
e−ϕ(T ), τγ(T ) ≤ T

]
,

we deduce

Wγ(T ) = E[e−
R T

0 r(s)dsξγ(T )]

= zP (τγ(T ) ≤ T ) + E
[
γ + (x0 − γ)e−ϕ(T ), τγ(T ) = ∞

]

= (z − γ)P (τγ(T ) ≤ T ) + γ

+(x0 − γ)
(
e−β(T ) − E

[
e−ϕ(T ), τγ(T ) ≤ T

])
. (4.5)

We first consider the γ > z case where L(γ) > 0. By (3.1) and (2.8) we get

E
[
e−ϕ(T ), τγ(T ) ≤ T

]
= E

[
e−ϕ(T ), sup

0≤t≤T
ϕ(t) ≥ L(γ)

]

= E
[
e−( 3

2
β(T )+cW (β(T ))), sup

0≤t≤β(T )

(
3

2
t + Ŵ (t)

)
≥ L(γ)

]

=
e−9β(T )/8−2L(γ)2/β(T )

√
2πβ(T )

∫ L(γ)

−∞
exp

(
−z2 − [β(T ) + 4L(γ)]z

2β(T )

)
dz

+
e−9β(T )/8

√
2πβ(T )

∫ ∞

L(γ)

exp

(
−z2 − β(T )z

2β(T )

)
dz

= eL(γ)−β(T )N

(
−1

2

√
β(T ) − L(γ)√

β(T )

)
+ e−β(T )N

(
1

2

√
β(T ) − L(γ)√

β(T )

)
.

From (4.5) we obtain an expression of the expected discounted wealth at time T as follows:

Wγ(T ) = (z − γ)P (τγ(T ) ≤ T ) + γ

+(x0 − γ)e−β(T )
[
N

(
−1

2

√
β(T ) +

L(γ)√
β(T )

)

−eL(γ)N

(
−1

2

√
β(T ) − L(γ)√

β(T )

)]
. (4.6)
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By l’Hôpital’s rule, it is easy to show that

lim
γ→∞

[γ(1 − P (τγ ≤ T ))] = (z − x0)

(
2√

2πβ(T )
e−

9
8
β(T ) − 3N(−3

2

√
β(T ))

)
,

and

lim
γ→∞

{
(x0 − γ)e−β(T )

[
N
(
− 1

2

√
β(T ) +

L(γ)√
β(T )

)
− eL(γ)N

(
− 1

2

√
β(T ) − L(γ)√

β(T )

)]}

= (z − x0)

(
e−β(T )N(−1

2

√
β(T )) − 2√

2πβ(T )
e−

9
8
β(T )

)
.

The first equation of (4.3) then follows immediately. The second one is straightforward.

Now consider γ < x0, where L(γ) < 0. Then

E
[
e−ϕ(T ), τγ(T ) ≤ T

]
= E

[
e−ϕ(T ), inf

0≤t≤T
ϕ(t) ≤ L(γ)

]

= E
[
e−( 3

2
β(T )+cW (β(T ))), inf

0≤t≤β(T )

(
3

2
t + Ŵ (t)

)
≤ L(γ)

]

=
e−9β(T )/8−2L(γ)2/β(T )

√
2πβ(T )

∫ ∞

L(γ)

exp

(
−z2 − [β(T ) + 4L(γ)]z

2β(T )

)
dz

+
e−9β(T )/8

√
2πβ(T )

∫ L(γ)

−∞
exp

(
−z2 − β(T )z

2β(T )

)
dz

= eL(γ)−β(T )N

(
1

2

√
β(T ) +

L(γ)√
β(T )

)
+ e−β(T )N

(
−1

2

√
β(T ) +

L(γ)√
β(T )

)
.

Thus, from (4.5) we obtain an expression of the expected discounted wealth at time T as

follows:

Wγ(T ) = (z − γ)P (τγ(T ) ≤ T ) + γ

+ (x0 − γ)e−β(T )
[
N
(1

2

√
β(T ) − L(γ)√

β(T )

)

− eL(γ)N
(1

2

√
β(T ) +

L(γ)√
β(T )

)]
. (4.7)

It can be shown that

lim
γ→−∞

[γ(1 − P (τγ ≤ T ))] = (z − x0)

(
− 2√

2πβ(T )
e−

9
8
β(T ) − 3N(

3

2

√
β(T )

)
,

9



lim
γ→−∞

{
(x0 − γ)e−β(T )

[
N
(1

2

√
β(T ) − L(γ)√

β(T )

)
− eL(γ)N

(1

2

√
β(T ) +

L(γ)√
β(T )

)]}

= (z − x0)

(
e−β(T )N(

1

2

√
β(T )) +

2√
2πβ(T )

e−
9
8
β(T )

)
. (4.8)

This leads to the first equation of (4.4). The second one is straightforward.

By Theorem 3.1, the goal-reaching probabilities of the stopped Markowitz strategies

are arbitrarily close to 1 when |γ| is sufficiently large. Proposition 4.2 gives the precise

prices, in terms of the resulting losses in terminal means, of the gains in goal-reaching

probabilities. To elaborate, define

f(x) = e−x2

N

(
−1

2
x

)
− 3N

(
−3

2
x

)
, x ≥ 0,

and

g(x) = e−x2

N

(
1

2
x

)
− 3N

(
3

2
x

)
, x ≥ 0.

It is an easy exercise to show that −1 < f(x) < 0 and −3 < g(x) < −1 ∀x ≥ 0.

See also Figures 1 and 2 for the graphs of the two functions. However, f(x) converges

to 0 rather quickly when x becomes large. This, together with (4.3), suggests that the

mean loss of the stopped Markowitz strategy with a large γ > 0 is small if β(T ) is

large. Recall β(T ) =
∫ T

0
|θ(s)|2ds; so β(T ) being large is equivalent to T being large

and/or the Sharpe ratio of the stock market being large. In other words, the stopped

Markowitz strategies perform well when the market is good and the agent has a long

investment horizon. In contrast, the stopped Markowitz strategy when γ < 0 is not

preferred because, in view of the fact that g(x) < −1, there is a minimum loss in terminal

mean (or limγ→−∞ Wγ(T ) ≤ x0).

Now we are to study the problem of measuring the risk of this stopped Markowitz

portfolio. From the last section we see that goal-reaching is not a proper performance

measure without introducing a tradeoff in terms of risk control. Here we use the expected

(discounted) shortfall, defined by

ES(γ) := E
[(

ξγ(T )e−
R T
0 r(s)ds − x0

)

−

]
, (4.9)

as a reasonable risk measure, where a− = max(−a, 0) for any real number a.

First of all, we have the following asymptotic properties of this risk measure for stopped

Markowitz strategies.
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Figure 1: f(x) = e−x2
N(−x/2) − 3N(−3x/2), x ≥ 0.
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Figure 2: g(x) = e−x2
N(x/2) − 3N(3x/2), x ≥ 0.
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Theorem 4.1 We have

limγ→∞ ES(γ) = (z − x0)
(
−e−β(T )N(−1

2

√
β(T )) + 3N(−3

2

√
β(T ))

)
.

limγ↓z ES(γ) = (z − x0)
(
e−β(T )N

(
− 1

2

√
β(T )

)
− N

(
− 3

2

√
β(T )

))
.

(4.10)

and

limγ→−∞ ES(γ) = (z − x0)
(
−e−β(T )N(1

2

√
β(T )) + 3N(3

2

√
β(T ))

)
,

limγ↑x0 ES(γ) = 0.

(4.11)

Proof. Since [ξγ(T ) ≤ x0e
R T

0 r(s)ds] ⊂ [τγ(T ) = ∞], we have

ES(γ) = E
[(

xγ(T )e−
R T
0 r(s)ds − x0

)

−
, τγ(T ) = ∞

]
, (4.12)

where

xγ(T )e−
R T

0 r(s)ds − x0 = yγ(T )e−
R T

0 r(s)ds + (γ − x0)

= (γ − x0)
(
1 − e−ϕ(T )

)
.

First we assume γ > z. In this case, we have

ES(γ) = (γ − x0)E
[(

1 − e−ϕ(T )
)

−
, τγ(T ) = ∞

]
. (4.13)

By (3.1) and (2.8) we get

E
[(

1 − e−ϕ(T )
)
−, τγ(T ) ≤ T

]

= E
[(

1 − e−( 3
2
β(T )+cW (β(T ))

)

−
, sup

0<t≤β(T )

(
3

2
t + Ŵ (t)

)
≥ L(γ)

]

=
e−9β(T )/8−2L(γ)2/β(T )

√
2πβ(T )

∫ 0

−∞
exp

(
−z2 − [3β(T ) + 4L(γ)]z

2β(T )

)(
e−z − 1

)
dz

= eL(γ)−β(T )N
(
−
(1
2

√
β(T ) +

2L(γ)√
β(T )

))
− e3L(γ)N

(
−
(3
2

√
β(T ) +

2L(γ)√
β(T )

))
.

On the other hand, we have

E
[(

1 − e−ϕ(T )
)
−
]

= E
[(

1 − e−( 3
2
β(T )+cW (β(T ))

)

−

]

=
1√

2πβ(T )

∫ − 3
2
β(T )

−∞

(
e−( 3

2
β(T )+z) − 1

)
e−

z2

2β(T ) dz

= e−β(T )N
(
− 1

2

√
β(T )

)
− N

(
− 3

2

√
β(T )

)
.
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Thus, we obtain an expression for the expected (discounted) shortfall ES(γ):

ES(γ) = (γ − x0)k(γ), γ > z, (4.14)

where

k(γ) = e−β(T )N
(
− 1

2

√
β(T )

)
− N

(
− 3

2

√
β(T )

)

−eL(γ)−β(T )N
(
−
(1
2

√
β(T ) +

2L(γ)√
β(T )

))

+e3L(γ)N
(
−
(3
2

√
β(T ) +

2L(γ)√
β(T )

))
, γ > z. (4.15)

It is easy to see that

lim
γ↓z

ES(γ) = (z − x0)

(
e−β(T )N

(
− 1

2

√
β(T )

)
− N

(
− 3

2

√
β(T )

))
.

Now we are going to investigate limγ→∞ ES(γ). First of all, we have

lim
γ→∞

ES(γ) = lim
γ→∞

(γ − x0)k(γ) = lim
γ→∞

k′(γ)

− 1
(γ−x0)2

= − lim
γ→∞

(γ − x0)
2k′(γ).

Next we have

k′(γ) = −L′(γ)eL(γ)−β(T )N
(
−
(1
2

√
β(T ) +

2L(γ)√
β(T )

))

+
2L′(γ)√
2πβ(T )

eL(γ)−β(T )e
− 1

2

(
1
2

√
β(T )+

2L(γ)√
β(T )

)2

+3L′(γ)e3L(γ)N
(
−
(3
2

√
β(T ) +

2L(γ)√
β(T )

))

− 2L′(γ)√
2πβ(T )

e3L(γ)e
− 1

2

(
3
2

√
β(T )+

2L(γ)√
β(T )

)2
.

Since limγ→∞(γ − x0)
2L′(γ) = x0 − z and limγ→∞ L(γ) = 0, we obtain the first equation

of (4.10).

Now we consider the γ < x0 case. In this case we have

ES(γ) = (x0 − γ)E
[(

1 − e−ϕ(T )
)

+
, τγ(T ) = ∞

]
, (4.16)
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where a+ = max(a, 0) for any real number a. Noting that L(γ) < 0, by (3.1) and (2.9)

we get

E
[(

1 − e−ϕ(T )
)
+
, τγ(T ) ≤ T

]
= E

[(
1 − e−ϕ(T )

)
+
, inf

0≤t≤T
ϕ(t) ≤ L(γ)

]

= E
[(

1 − e−( 3
2
β(T )+cW (β(T ))

)

+
, inf

0≤t≤β(T )

(
3

2
t + Ŵ (t)

)
≤ L(γ)

]

=
e−9β(T )/8−2L(γ)2/β(T )

√
2πβ(T )

∫ ∞

0

exp

(
−z2 − [3β(T ) + 4L(γ)]z

2β(T )

)(
1 − e−z

)
dz

= e3L(γ)N
( 2L(γ)√

β(T )
+

3

2

√
β(T )

)
− eL(γ)−β(T )N

( 2L(γ)√
β(T )

+
1

2

√
β(T )

)
.

On the other hand, we have

E
[(

1 − e−ϕ(T )
)
+

]
= E

[(
1 − e−( 3

2
β(T )+cW (β(T ))

)

+

]

=
1√

2πβ(T )

∫ ∞

− 3
2
β(T )

(
1 − e−( 3

2
β(T )+z)

)
e−

z2

2β(T ) dz

= N
(3

2

√
β(T )

)
− e−β(T )N

(1

2

√
β(T )

)
.

Finally we obtain an expression for the expected (discounted) shortfall ES(γ):

ES(γ) = (γ − x0)l(γ), γ < x0, (4.17)

where

l(γ) = N
(3

2

√
β(T )

)
− e−β(T )N

(1

2

√
β(T )

)

−e3L(γ)N
( 2L(γ)√

β(T )
+

3

2

√
β(T )

)
(4.18)

+eL(γ)−β(T )N
( 2L(γ)√

β(T )
+

1

2

√
β(T )

)
, γ < x0. (4.19)

Similarly as above we can prove (4.11).

The first equation of (4.10) implies that | limγ→∞ ES(γ)| ≤ z − x0. So the expected

shortfall is capped when γ > 0 is sufficiently large. Moreover, as discussed earlier this cap

could be reduced to be arbitrarily small when the stock market is sufficiently good and/or

the investment horizon is sufficiently long. Recall that the goal-reaching probability is

arbitrarily high when γ is sufficiently large. So the revised Markowitz strategies perform
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well judged by the goal-reaching probability and expected shortfall. On the other hand,

the cap on the other limit, as seen by | limγ→−∞ ES(γ)| ≤ 3(z − x0), is not as good.

We may define the expected (discounted) excess

EE(γ) := E
[(

ξγ(T )e−
R T

0 r(s)ds − x0

)

+

]
, (4.20)

Corollary 4.1 We have

limγ→∞ EE(γ) = z − x0.

limγ↓z EE(γ) = (z − x0)
(
−e−β(T )N

(
1
2

√
β(T )

)
+ N

(
3
2

√
β(T )

))
.

(4.21)

and

lim
γ→−∞

EE(γ) = z − x0, lim
γ↑x0

EE(γ) = 0. (4.22)

Proof. These results are immediate by noticing that

EE(γ) − ES(γ) = Wγ(T ) − x0,

and then combining Theorem 4.1 and Proposition 4.1.

We end this section by proposing a new portfolio selection model: For any given a > 0,

to choose γ and the corresponding stopped Markowitz strategy so as to

maximise P (τγ(T ) ≤ T )

subject to EE(γ) ≤ a,

γ > z or γ < x0.

(4.23)

An optimal solution to the above achieves a Pareto optimality between the goal-reaching

probability and the shortfall risk. Since both the analytical forms of P (τγ(T ) ≤ T ) and

EE(γ) have been derived in this paper, (4.23) is a very easy one-dimensional optimisation

problem.

5 Conclusions

This paper introduces some revised Markowitz strategies and investigates their properties

in terms of the goal-reaching probabilities, expected discounted terminal payments, and

15



expected shortfall. The results suggest that the continuous-time mean–variance model

produce sensible investment solutions beyond the original mean–variance criterion, and

Markowitz’s efficient strategies could serve as building blocks to construct more models

and portfolios that address different investment problems.
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[3] S. Browne (1999), Reaching Goals by a Deadline: Digital Options and Continuous-

Time Active Portfolio Management, Advances in Applied Probability, 31, pp. 551–577.

[4] X.D. He and X.Y. Zhou (2008), Portfolio Choice via Quantiles, Working paper,

University of Oxford.

[5] I. Karatzas and S. E. Shreve (1998), Methods of Mathematical Finance. New

York, Springer, 1998.

[6] X. Li and X.Y. Zhou (2006), Continuous-Time Mean–Variance Efficiency: The

80% Rule, Annals of Applied Probability, 16, pp. 1751–1763.

[7] A.E.B. Lim (2004), Quadratic Hedging and Mean–Variance Portfolio Selection with

Random Parameters in an Incomplete Market, Mathematics of Operations Research,

29, pp. 132–161.

[8] H. Markowitz (1952), Portfolio Selection, Journal of Finance, 7, pp. 77–91.

[9] H.R. Richardson (1989), A Minimum Variance Result in Continuous Trading

Portfolio Optimization, Management Sciences, 25, pp. 1045–1055.

[10] X.Y. Zhou and D. Li (2000), Continuous-Time Mean-Variance Portfolio Selection:

A Stochastic LQ Framework, Applied Mathematics and Optimization, 42, pp. 19–33.

17


