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Abstract

In this paper a new maximum principle for the risk-sensitive control problem is established.
One important feature of this result is that it applies to systems in which the diffusion term
may depend on the control. Such control dependence gives rise to interesting phenomena not
observed in the usual setting where control independence of the diffusion term is assumed. In
particular, there is an additional second order adjoint equation and additional terms in the
maximum condition that involve this second order process as well as the risk-sensitive parame-
ter. Moreover, contrary to a conventional maximum principle, the first order adjoint equation
involved in our maximum principle is a nonlinear equation. An advantage of considering this
new type of adjoint equation is that the risk-sensitive maximum principle derived is similar in
form to its risk-neutral counterpart. The approach is based on the logarithmic transformation
and the relationship between the adjoint variables and the value function. As an example, a

linear-quadratic risk-sensitive problem is solved using the maximum principle derived.
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1 Introduction

Risk-sensitive control has attracted much research attention in recent years. In this paper,
we derive a maximum principle, namely, necessary conditions for optimality, for optimally
controlled diffusion processes with an exponential-of-an-integral risk-sensitive cost functional.
A key feature of our result is that it applies to systems in which the control input may appear
in the diffusion term, and hence, affects the variance of the noise.

Although dynamic programming has been the tool predominantly used to study the risk-
sensitive control, several papers have been devoted to the maximum principle. For systems with
control independent diffusion terms, there are the papers by Whittle [17, 18], and Charalambous
and Hibey [4]. In [17, 18], ideas from the theory of large deviations form the basis of a
heuristic, rather than rigorous, derivation of a maximum principle for both full observation
and partial observation problems. In [4], a measure-valued decomposition (to transform the
Zakai equation) and weak control variations are used to obtain a minimum principle for the
partial observation problem.

Since the publication of the deterministic maximum principle by Pontryagin et. al. [15],
much work has been done on various generalizations to stochastic systems; see [6, 9] for ex-
ample. However, in these and other papers, it is assumed that the diffusion term is control
independent, and the resulting stochastic maximum principles are quite similar to the deter-
ministic result. A stochastic maximum principle for systems with a control dependent diffusion
term was first obtained by Peng [14] by considering the second order term in the Taylor ex-
pansion for the spike variation. His result brought to light certain key differences between
deterministic and stochastic optimal control problems not seen in earlier results. For systems
with control dependent diffusions, there is an additional (second order) adjoint equation, and
the maximum condition involves both the first and second order adjoint processes. (We note
that the risk-sensitive maximum principles [4, 5, 17, 18] only involve one adjoint process).
One good illustration of these ideas is the stochastic linear-quadratic (LQ) problem. It is
shown in [3] that if the diffusion depends on the control, a stochastic LQ problem can be well
posed even if the control weighting matrix is negative definite. This contrasts sharply with the
deterministic case or the stochastic case with control-independent diffusion terms where, in
general, a positive semi-definite control weight is required for well posedness. We also mention
that LQ problems with indefinite control weighting matrices and control dependent diffusions
arise frequently in finance applications; for example mean-variance portfolio selection [10] and
insurance problems [16]. For a unified account on these results, the reader should consult [19].

To the best of our knowledge, the risk-sensitive maximum principle established in this
paper is entirely new, and is fundamentally different from the existing results. Apart from

the aforementioned feature of control-dependent diffusion, the first order adjoint equation



is a nonlinear backward stochastic differential equation. This is contrary to any conventional
maximum principle, deterministic and stochastic alike, where the (first order) adjoint equation
is a linear equation. On the other hand, the maximum condition in our maximum principle
is similar in form to that in a risk-neutral maximum principle, with some coefficient matrix
appropriately modified incorporating the risk-sensitive parameter. This is again not seen in
the literature.

In addition to the risk-sensitive maximum principle, one of the main contribu-
tions of this paper is the method of proof, which relies on novel transformations of
the adjoint variables, and is considerably shorter and less technical than a typical
‘first principles’ derivation. The derivation consists of two steps outlined as follows.
The first is a simple reformulation of the risk-sensitive problem as a (standard)
risk-neutral problem by augmenting the state with an additional variable (that
represents the evolution of the cost over time). An intermediate maximum princi-
ple is then obtained by a standard application of Peng’s (risk-neutral) result to the
augmented problem. This intermediate result is unsatisfactory however as it is sig-
nificantly more complex than its risk-neutral counterpart and involves additional
adjoint variables (due to the state space enlargement) that seem unnecessary.
Consequently, the next step is to simplify. A key element of the simplification is
a transformation of the intermediate first and second order adjoint variables that
is inspired by the logarithmic transform used in the dynamic programming ap-
proach to the risk-sensitive problem [7] together with the fundamental relationship
between the maximum principle and dynamic programming [20]. This transfor-
mation reduces the dimension of the (intermediate) system of adjoint equations
and results in the new first and second order adjoint system associated with the
risk-sensitive problem. After the new maximum principle is derived, we further prove that
the maximum condition is sufficient under some additional convexity/concavity conditions. It
should be noted that our approach relies on the value function being sufficiently smooth, a
common assumption in dynamic programming but one not usually required for the maximum
principle. Save for this however, our assumptions are generally weaker than those typically
required for optimality results on risk-sensitive control; see remarks in Section 2.

Finally, when the diffusion term is independent of the control, the maximum principle is
not very different from the deterministic one: The second order adjoint equation does not play
any role, and the maximum condition contains no additional terms. However, in the case when
the diffusion is control dependent, the maximum condition has additional terms involving the
second order adjoint variable and the risk-sensitive parameter; that is, the optimal control
depends explicitly on these quantities.

The paper is organized as follows. In Section 2, we state the problem and assumptions.



In Section 3, we give statements of the new risk-sensitive maximum principle as well as its
sufficiency for optimality. For the sake of readability, the proofs of the results are spread over
several subsections in Section 4. In Section 5, we present a risk-sensitive L) problem as an
example of applying the general results established. We end with some concluding remarks in

Section 6.

2 Problem statement

Let s € [0, T] and W (-) be a standard Brownian motion on [s, 7] defined on a given filtered
probability space (€, F, P; {F} };>s). Throughout this paper, L% (s, T; R") will denote the set
of R valued, {F} };>s-adapted, square integrable processes on [s, T'], and L¥ (s, T; R") the
set of R"-valued, {F}};>s;-adapted, essentially bounded processes on [s, T'|. For convenience,
we shall assume that T (-) is one-dimensional. (The subsequent analysis and results can easily
be extended to the case of higher-dimensional Brownian motions). For any (s, z) € [0, T|xR",

consider the following Ito stochastic differential equation (SDE):

d(t) = bt z(t),u(t)) dt +o(t, z(t), u(t))dW (2),
(1)
z(s) = =z
We shall work in the weak formulation [19, p. 248]. For any s € [0, T, the class of admis-
sible controls U[s, T| is the set of all 5-tuples (2, F, P, W(-), u(-)) satisfying the following

conditions:
1. (R, F, P) is a complete probability space.
2. W{(-) is a standard Brownian motion defined on (2, F, P) over [s, T] (with W(s) = 0,
P-as.), and F} is o{W (r) : s <r <t} augmented by all the P-null sets in F.
3. u:[s, T] x Q= U is an {F}s>s adapted process on (2, F, P).
4. Under u(-), for any y € R"*, the equation (1) admits a unique (in the sense of probability
law) solution z(-) on (R, F, P; {F{}i>0)-

We write (Q, F, P, W(-), u(:)) € U[s, T]. However, if there is no ambiguity, we may simply
write u(-) € U[s, T] instead of the entire 5-tuple. If z(-) is the unique solution of (1) associated
with the input u(-) € U[s, T], we refer to (z(-), u(-)) as an admissible pair.

The cost J%(s, z; u(-)) associated with the initial condition (s, z) € [0, T] x R* and control

u(+) € U[s, T) is given by

T0(s, z; u(’)) = Bllo@@N+[ 1ta)u®) 2)



where 0 > 0, the risk-sensitive parameter, is a given fixed constant. The risk-sensitive control

problem associated with (1)-(2) is defined as follows:

Minimize  J%(s, z; u(-))
u() €U[s, T 3)

subject to: {
(z(-),u(-)) satisfies (1).

The value function % : [0, T] x R* — R associated with (3) is defined by:

(s, z) = inf J%s, z; u("). 4
()= it T'(s, @i u() @

Due to the exponential function involved, it is clear that v%(s, ) > 0. Hence, we say that (3)
is well posed if v/ (s, ) > 0, or equivalently, if Inv?(s, z) > —oo.

We introduce the following assumptions.
Assumptions:

(B1) U is a separable metric space and 7' > 0.

(B2) Themaps b: [0, 7] xR* xU - R", 0:[0,T]xU - R", f:[0,T]xR*xU — R and
g : R" — R are measurable, and there exists a constant L > 0 and a modulus of continuity

@ : [0,00) — [0, 00) such that for p(t,z,u) = b(t,z,u), o(t,x), f(t,z,u), g(z),
|(10(taxau) - QO(t,y,’U)' < L|‘T _y| +(Z)(d(u,v)), Vi € [OaT]a T,y € Rna Uu,v € U7
lo(t,0,u)] < L, Vte€[0,T], ueU.

Also, f and g are uniformly bounded.
(B3) b, f, g are C? in z, and there exists a modulus of continuity @ : [0, 00) — [0, c0) such
that for ¢(t,z,u) = b(t,z,u), f(t,z,u), g(z),

‘(pm(t,.’IJ,U) - wm(tayavﬂ S L|‘I - y| + (D(d(uav)),
\(pm(t,m,u) - @zm(taya")” < "‘_)("T - y' + d(u,v)),
Vte[0,T], z,y,€ R*, u,v € U.

(B4) v% € CH3([0, T] x R™).

For the sufficiency of the maximum principle, we require the following additional assump-
tion.

(B5) U is a convex subset of R¥. The maps b, o, and f are locally Lipschitz in u, and
their derivatives in z are continuous in (z, u).

As mentioned in the Introduction, our results depend on the value function v%(s, z) being
sufficiently smooth; see (B4). This is due to our use, in Section 4, of results on the relationship

between the maximum principle and dynamic programming; see (26). A sufficient condition
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for (B4) to hold is the so-called non-degeneracy assumption; that is, there exists a constant
d > 0 such that oo’ > 6I; see [8]. On the other hand, apart from the assumption that f and
g are uniformly bounded (which is standard in the risk-sensitive literature), our remaining
assumptions are typical for a maximum principle result and weaker than those usually invoked
in risk-sensitive control; see [1, 4, 7] for typical assumptions for the risk-sensitive problem and

[19, p. 114] for the maximum principle.

3 Statement of risk-sensitive maximum principle

In this section, we present a maximum principle for the risk-sensitive control problem (3) as
well as sufficient conditions for optimality. For the purpose of readability, proofs of these
results will be given in the next section.

Let (Z(-),u(-)) be an admissible pair for the system (1). We introduce the first order ad-
joint variable (p(-),q(+)) € L%(s,T;R") x L%(s,T;R") and the second order adjoint variable
(P("),Q(")) € L3%(s, T; R*™™) x L% (s, T; R"*") associated with the admissible pair (Z(-), a(")),

which are the solutions of the following first order and second order adjoint equations respec-

tively:
(dpt) = —[b()P(®) — Fol®) — 0515 ()7 (1)'(2)
< —~0p(t)7(®)a(t) + o, (1)a(®) | dt + a(W)aW (2), (5)
| PT) = —g.(2(D),
(dP() = —{baty P(t) + P()ba(t) + 0 (t) [P(2) — 0 p(1)p(1) ] (1)

+Q(t)dW (2),

\ P(T) = _gmm(j(T))a
where by (t) := by(t,Z(t),a(t)) (with similar interpretations for fi(t), (t), etc.), and H? :
RxR* x R™ x R* x R* — R, called the Hamiltonian associated with the pair (Z(-), u(-)), is
given by

‘He(ta T, Uu,p, q) = <p7 b(ta z, U)) - f(ta z, U) + U(t’ z, u)l [q - Oppl U(t, i‘(t), ﬂ(t))] (7)

Note that (5) and (6) are backward stochastic differential equations (BSDEs). In particular,

the terminal conditions in (5) and (6) are Fj-measurable random variables, and the solution
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pairs (p(-),q(-)) and (P(-),Q(-)) must be {F}}i>s-adapted. (For systematic discussions on
BSDEs, the reader may refer to [13, 12, 19].) In addition, unlike the risk-neutral case where
the adjoint equations are linear (see [14, 19]), (5) is a nonlinear equation. Moreover, while
it does not appear that the usual conditions (Lipschitz continuity and linear growth) for
existence and uniqueness of the solutions to nonlinear BSDEs ([12, 13, 19]) are satisfied by
this equation, it will be shown however that our assumptions are sufficient to guarantee the
existence of unique solutions (p(-), ¢(-)) € L%(s, T; R*) x L%(s, T; R*) and (P(:),Q(-)) €
LZ (s, T; R"™™") x L2%(s, T; R**™) of (5) and (6), respectively.

Let the H-function % : Rx R" x R™ — R, associated with the pair (z(-), 4(-)), be defined

as

HO(t, 2, u) := (B(t),b(t, z,u)) — f(t, z,u)
+50(t, @, w) [P() ~ 69(0) p(0) ) o (1, 7, )
+o(t,z,u) [q(t) — P(t) o(t, (1), a(t))]. (8)

The risk-sensitive maximum principle can be stated as follows:

Theorem 3.1 (Risk-sensitive maximum principle) Suppose that (B1)-(B4) hold. Let
(z(-),u(-)) be an optimal pair for the risk-sensitive optimal control problem (3). Then there are
unique solutions (p(+),q(+)) € L%(s, T;R") x L% (s, T;R") and (P(-),Q(-)) € L% (s, T; R"™ ") x
LZ(s,T;R"™™) of the first order and second order adjoint equations (5) and (6), respectively,
such that

ﬂa(tai‘(?aﬂ(t),ﬁ(t)aCi(t)) — H(t,2(t),u,p(t),q(t))
—5lo(t,2(1), (1) — ot 2(t), W] [P(t) — 0p(t)p() [0 (¢, 2 (1), A1) — o (t, 2(2), w)]
> 0, ae. t€[s,T], P—as., (9)

or equivalently

HO(t, Z(t), u(t) = I&&g{ﬂa(t,i(t),u), a.e. t€[s,T], P—as. (10)

Sufficient conditions for optimality of the pair (Z(-),a(-)) are as follows:

Theorem 3.2 (Sufficient conditions for optimality) Suppose that (B1)-(B5) hold. Let
(z(-),u(+)) be an admissible pair, and (p(-),q(-)), (P(-),Q(-)) the associated first and second
order adjoint variables respectively. Suppose that g(-) is convez, H?(t,-,-,p(t), §(t)) is concave
for all t € [0,T] almost surely, and
HO(t,z(t),u(t)) = ma(;}c’)fla(t,:i:(t),u), ae.t€[s,T], P—as. (11)
uc

Then (z(-),u(-)) is an optimal pair for the problem (3).
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Proofs of the preceding two theorems are deferred to Section 4.

Several remarks are in order. First, observe that the form of the variational inequality (9)
is very similar to its risk-neutral counterpart (see [19, p. 118, Theorem 3.2]) with P(¢) in the
quadratic form there replaced by P(t) — 6p(t)p(t)’. If one substitutes # = 0 in (5)-(8), then
Theorem 3.1 is nothing else than the risk-neutral stochastic maximum principle that appears
in [14, 19], and Theorem 3.2 the sufficient condition [19, 22]. More important however is to
observe the changes to the usual stochastic maximum principle due to risk-sensitivity (i.e.
6 > 0), and in particular, the changes due to the control appearing in the diffusion term.
As mentioned risk-sensitivity results in additional terms appearing in the adjoint equations
(5)-(6) as well as in the Hamiltonian (7) and the H-function (8). However, if o is independent
of u, then the additional risk-sensitive term that appears in the H-function does not have any
influence on the maximization (10). In fact, if o is independent of u, the terms in (8) which

involve the second order process P(t) may also be ignored, and we can replace #? in (10) by

H(t, z, u) = (p(t), b(t, z, u)) — f(¢t, z, u). (12)

This is simply the Hamiltonian function that appears in the deterministic maximum principle,
evaluated along the adjoint process p(¢). In summary, if the diffusion term is control inde-
pendent, then the only effect of risk-sensitivity is on the solution (p(-), g(-)) of the first order
adjoint equation (5). In particular, the control (¢) which maximizes the H-function does not
depend explicitly on € and is exactly the same (as a function of p(t), (¢) and ¢) as the control
that maximizes the Hamiltonian in the deterministic problem. (Of course, p(-) will depend
implicitly on the value of # via (5)). On the other hand, if o is control dependent, then the
maximum principle involves the second order adjoint process P(-), as well as a terms depending
on the risk-sensitive parameter . Both P(-) and @ appear in #?(¢, z, u). The optimal control
@(t), which maximizes (10), depends ezplicitly on P(t) and 6 as well as p(t), Z(t) and t.

4 Proofs of Theorems 3.1 and 3.2

This section is devoted to proofs of the two main theorems of the paper, Theorems 3.1 and

3.2. The proofs will be spread over several subsections.

4.1 Applying risk-neutral maximum principle

The risk-sensitive control problem (3) is not of a form in which the existing (risk-neutral)
stochastic maximum principle found in [14, 19] can be applied. In this subsection, the re-
sult from [14, 19] is applied to an optimal control problem that is equivalent to (3). In the
subsequent subsections, transformations are then introduced which enable us to represent the

risk-sensitive maximum principle in the more familiar form as stated in Theorem 3.1.



Consider the following optimal control problem:
[ Minimize J%(s, z, y; u(-)) = Ee?9@M)+y(T)]
subject to:
dz(t) = b(t, z(t),u(t)) dt + o(t, z(t), u(t))dW (t),
dy(t) = f(t, x(t), u(t))dt,

z(s) =z, y(s) =y,

u(-) € U[s, T).

\

Clearly, (3) corresponds to the case when y = 0 in (13). The value function v? : [0, T] x R x
R — R associated with (13) is

0 : 0
v(s, xz,y):= inf J(s, z, y; u(:)). 14
(5. 000) = inf I*(s, 3,5 () (14
Note that
Ua(sa T, y) = e@yvﬁ(s’ 'T), (15)

where v%(s, z) is defined by (4). In particular, (B4) implies that v € C1:3°°([0, T] x R* x R).

Assuming (B1)-(B3), we can apply the result from [14] or [19, Theorem 3.2, p. 118] to
(13): Suppose that ((z(-),y(-)),u(:)) is an optimal triple for the optimal control problem (13).
Denoting b, (t) := by (t,Z(t), @(t)) (with similar interpretations for f(t), (t), etc.), the first

order and second order adjoint equations are:

o {[?8 g] p(t) + Ew()(t) O] Q(t)}dt+q(t)dW( ),
| w (16)
p(T) = —0eflo@D)+3(T)] lgm(i’(T)) ’
1




{ bu(1) bel1)
dP(t) = =< | PO+PI |
0 {[ - O+PO| 76 ]
. r 5’$(t) T Ip(t) 5’z(t) 0
0 0 0
5.(t) 0] 7a(t) 0
| (17)
N ) Q(t)+Q(t)[ 0 0]
N HY,(t,5(t), ﬂo(t)ap(t)a q(t)) } dt + Q(t)dW (1),
P(T) = —6¢ls@@M)+a(D)] 0 9 (Z(T)) gz (Z(T)) + guz(Z(T)) 0 9-(Z(T))
| ng(f(T)), 0 ?

where the Hamiltonian H? : R x R* x R™ x R**! x R*t! — R is given by

0 _ b(t, z,u) o(t,z,u)
H(t,z,u,p,q) = <p, ( F(to,0) )> + <q, ( 0 >> (18)

The adjoint equations (16)-(17) are linear BSDEs. Under (B1)-(B3), for every admissible
triple ((z(-), 4(-)), u(-)), there are unique solutions (p(-),q(-)) € L%(s, T; R" 1) x L% (s, T; R**1)
and (P(-),Q())) € L%(s, T; Rn+x(n+1)y 5 L2 (5, T; ROFIX(+D)) of (16)-(17), respectively;
see [19, Theorem 2.2, p. 349].

The H-function for problem (13) associated with ((z(-),y(+)),u(-)) is defined by:

HO(t, z,u)

= HO(t,z,u,p(t),q(t)) —

1 [ o(t,z,u) — ot 2(t), a(t))
2 0

The maximum principle for (13) can be stated as follows:

Proposition 4.1 ([14, 19]) Let (B1)-(B3) hold. Let ((z(-),5(:)),u(:)) be an optimal triple
for the optimal control problem (13). Then there are unique solutions (p(-),q()) € L%(s, T; R**1)x
L2(s, T; R and (P(), () € Lix(s, T RVDX (1)) x T2 (5, T RADX0D) ) of (16)-(17),
respectively, such that

HO(t,z(t), a(t), p(t), (1)) — H'(t, 2(t), u, p(t), q(2))

’
!

1 o(t,z,u) —o(t,z(t), u(t)) 0 o(t,z,u) —o(t,z(t), u(t))
2 0 0
> 0,VueU, ae. t€[0,T], P—as., (20)
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or equivalently
HO(t,z(t), a(t)) = mggc?—[a(t,;i(t),u), ae. t€[s,T], P—as. (21)
U

Sufficient conditions for the optimality of ((Z(-),7(-)),u(-)) are as follows:

Proposition 4.2 ([22]) Let (B1)-(B3) hold. Let ((z(-),y(-)),u(-)) be an admissible triple
and (p(-),q(-), P(-), Q(-)) satisfy (16) and (17). Suppose that g(-) is convez, H?(t,-,-, p(t),q(t), P(t), Q(t))
is concave for allt € [0,T], P — a.s., and
HO(, z(t), a(t) = Iilea,[}(?-le(t,a_c(t),u), a.e. t€[s,T], P—as. (22)
Then ((z(-),y(:)),u(-)) is an optimal triple for (13).

Note that Propositions 4.1 and 4.2 do not depend on assumption (B4).

4.2 Transformation of first order adjoint

Although Proposition 4.1 can be regarded as a maximum principle for the underlying risk-
sensitive control problem, it is not a desirable one since the adjoint variables there involve
additional and unnecessary components (for example, the dimension of p(-) is one plus that of
the state variable) and the adjoint equations appear to be complicated. To cope with this prob-
lem, we need to transform the adjoint variables (p(-),¢(-)) and (P(-),Q(-)) in certain ways.
While we could have presented such transformations immediately without any explanation,
for the benefit of the readers we choose to unfold the process of finding those transformations
which is inspired by the logarithmic transformation and the relationship between the maxi-

mum principle and dynamic programming [19, 20]. This will be carried out in this and next
subsections.

Let ((z(-), 9(-)), @(-)) be an optimal triple for (13), and (p(-), ¢(-)) = < pi() ] , [ () ]) €
p2() g2()

LZ(s, T;R"M) x LZ (s, T; R™"!) be the associated first order adjoint variables satisfying equa-
tion (16), where pi (), ¢1(-) € L% (s, T; R*) and po(-), g2(+) € L%(s, T; R). Recall that v%(s, =z, y)

is the corresponding value function. Under assumption (B4), v%(s, z, y) € Cb3°°([0, T] x

R™ x R); see (15). By the relationship between the maximum principle and dynamic program-

ming, we have (see [19, Theorem 4.1, p. 250]):

p(t) = =0, (&, E(2), (1)), (23)

where 'u? v) signifies the gradient of v? in (z,%). On the other hand, the following logarithmic

Z,

transformation is typically used to derive a partial differential equation for the value function

associated with the risk-sensitive problem (13)

1
Va(taway) = aln’l)a(t,ﬂ,‘,y); (24)

11



see [7] for instance. Transformation (24) and relation (23) suggest that we take the following

transformation of the first order adjoint variable (by taking gradient on the right hand side of
(24)):

plt) (25)

v(t)

=

pt) =

where v(t) := v (t, Z(t), §(t)) > 0.

()
pa()
First notice that v? is the value function of the optimal control problem (13) which has no
running cost; hence, it follows from [19, p. 251-252, (4.18) and (4.19)] that

Next, we are going to derive the equation for p(-) = [ ] where p(-) is R"-valued.

dv(t) = —p1(t)' o(t, 2(2), u(t)) dW (2)

o(T) = 9@ +a(D)]

On the other hand, rearranging (25), we obtain:

Applying Ito’s formula, and assuming that p(t¢) satisfies an equation of the following form:
dp(t) = a(t) dt + ¢(t)dW (¢), (27)
we obtain
dp(t) = d{0o(t)p(t)}
= Ou(t)dp(t) — Op1(t)'a(t)p(t)dW (t) — O p1(t)'5(¢)q(t)dt. (28)

Rearranging (28) for dp(t), and noting (from (25)) that pi(t) = Ov(t)p(t), we obtain the

following expression:

(1) = s dolt) + 0 5(1) BV (1) + 050 5(1)i(0)dr (29)

Substituting the expression (16) for dp(t) into (29) we find that the diffusion term of dp(t) is
~ q(t 1 qg(t

at) = ~( ) | _ L

G2 (t) 0 v(t

where g(-) is R"-valued. Substituting (30) back to (29) and using (16), it follows that the

~—

+0p(t) o(t, 2(t),u(t)) B(2), (30)

—~
~—

transformed first order adjoint variable p(-) satisfies the following equation, where the terminal

12



condition for p(T') is easily determined from (25) and the terminal condition p(T):

[ T o] e 0]
ap(t) = {[fx(t) 0] p(t) — 0p(t) G(t)[ 0 0] p(t)
o e 0] i
q —0p(t)'a(t)g(t) + A ]q(t)}dt—l—q(t)dW( ), (31)
) _[gmm)
{ 1
Expanding (31), it can be easily seen that
po(t) = —1, G2(t) =0, Vtelo,T], (32)

and (p(+),q(+)) € L%(s, T;R") x L%(s,T;R") is a solution of (5). This explains how equation
(5) is derived. Also, since our derivation can be reversed, it follows from the uniqueness

property of (16) that this solution is unique.

4.3 Transformation of second order adjoint

Let (P(-),Q()) € Lx(s, T; RFUX(n+1)) 5 12 (5, 7; RFIX("+1)) be the second order adjoint
variables satisfying (17). Again, inspired by the relation that P(-) corresponds to the second
order derivative of v? (along the optimal triple) as well as (25), we propose the following

transformation of the second order adjoint variable:

Pl) = 5o + 05050 (53)
Then
i) - a{ S5+ agosne) (34)
Putting
() = ok (35)
and assuming that
dT(t) = X (£) dt + Y (£) dW (2), (36)

for some processes X (+), Y (-) € LZ(0,T; R(*T1)*(+1)) "it follows from Ito’s formula and (35)
that

d{ 011 ((?)} =dl(t) = 9@1( ) dP(t) +0p(t)'a(t) { Pib) }dW(t) +0p(t) o) (t)dt.  (37)

13



Substituting the expression for dP(t) (equation (17)) into (37), and noting (36), gives

Y1) = gk + 0p(05(P(E) ~ 6 B S (O50)500). (38)

Substituting (37) into (34) and using Ito’s formula we obtain (after some manipulation):

db (1)
_ be(t) 0 " - be(t) 0 az(t) 0 I P(t) a.(t) 0
- {[fm(t) o | PO fu(t) 0]+[ 0 0 (9v(t)>[ 0 0]

520) 0] ( QU | yo s
o 0] (72 + oawaty - /s @i

—0p(t)'a(t) {Y (t) +05()d() +04(t)p(t)'} — 04(1)()'} dt + Q)W (1), (39)

where

+0(t) o(t,5(0), (1)) (P(t) - 05(2) 3(2) ) (40)

Recalling the definition of HY (i.e. (7)), we have:

L | Hy,(6,3(),4(),p(1),q(t)) 0 | _ | Hy,(t (), a(t),p(t),q(t)) 0 (41)
0 v(t) 0 0 0
Noting that
Y(t) = Q) —05(t)q(t) —0a()p(t) (42)

together with the transformations (30), (33), (40) as well as the relationship (41), equation

14



(39) becomes

(o @ o] 4 OB
dP(t) = {[ ‘) P(t) + P(t) % o]
o) 0] o [ o0
15 (P(t)—epu)p(t))[ )
o) 0] /- T
- (@) - 05ty —0p@)'a ) P())
\ A a5 I po(+\ A~ D ! 6“”(7:) I
+(QU) ~0awptey —optYoPw) | 7

HZ,(t,2(1),a(t), 5(), 4(1)) 0]

—05(t)5(1Q(t) — 0d(1)a®)' } dt + QB)AW (1),
~ | Ya= (z(T)) 0
: .

\

Therefore, it follows that

where (P(-), Q(-)) € L%(s,T; R"*™) x L2%(s,T;R"*™) is the solution of (6). As in the first
order case, this solution is unique.

4.4 Maximum condition

In this subsection, we complete the proofs for Theorem 3.1 and Theorem 3.2 by translating the
maximum condition in Propositions 4.1 and 4.2 into the one stated in (9). To start, consider

the variational inequality (20). It can be shown, in view of (25), (30) and (32), that

HO(t,z,u,p(t),q(t)) = [0v()] H*(t,z,u,5(t), (1)), (43)

where HY(t,z,u,p,q) is given by (7), and

1 l o(t, 2(8),a(t)) — o(t, Z(t), u)




Since v(t) > 0, it follows that the maximum condition (20) is equivalent to

H(t, 2(t), u(t), (1), q(1)) — H’ (¢, :v( )> u, p(t ) q(t ))
(o(t,2(t), u(t)) — o(t, 2(t), )" (P( tp(t)') (o(t,z(t), u(t)) — ot, o(t), u))

N | —

> 0,
which gives us (9). The equivalent condition (10) is seen by direct manipulation. This com-

pletes proofs for both Theorem 3.1 and Theorem 3.2.

5 An example: Linear-quadratic case

Consider the following linear-quadratic (LQ) risk-sensitive problem:

( Minimize Ja(xo;u(-)) _ Eee[% f()T(z(t)’M(t)m(t)+u(t)’N(t)u(t))dt+%x(T)’Hx(T)]’
subject to:
¢ dz(t) = [A®)z(t) + B(t)u(t) + f(1)]dt (44)
+[C(t)z(t) + D(t)u(t) + o(t)|dW (t),
{ z(0) = xo.

We assume that A, C € L¥(0, T; R**"), B, D € L¥(0, T; R**™), M € L¥(0, T; S™*"),
N € LE(0, T; S™™), f, 0 € L%(0, T; R*), H € S™", 15 € R", and 6 > 0 are given and
fixed. Here S™*" denotes the set of all n X n symmetric matrices. Initially, we impose no
additional positive semidefiniteness assumptions on M, N or H.

In [3], the authors consider a (risk-neutral) stochastic linear-quadratic regulator (LQR)

problem with cost:

Jro(z0;u E{ / )z (t) + u(t) N(t)u(t)) dt + %x(T)'H:c(T)} (45)

and dynamics as in (44). An easily verifiable necessary and sufficient condition for solvability
of the associated Riccati equation is given. One consequence of their result is that the LQR
problem with D # 0 may be well posed (i.e., (45) has a finite infimum), even if N is indefinite
or negative definite. Unfortunately, it appears that the optimal control for (44) can not be
expressed in terms of a Riccati type equation when C' # 0 or D # 0. However, it is still possible

to see the effect of having D # 0 on the well posedness of (44). By Jensen’s inequality:
1
Jro(zo;u(+)) < 0 In J%(zo;u(-)), Vu(-) admissible, V. (46)

Therefore, well posedness of the LQR problem with dynamics as in (44) and cost (45) is
sufficient for well posedness of the risk-sensitive problem (44). In particular, it follows from

[3] that if D # 0, then (44) may be well posed even if N in indefinite. However, it remains an
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open question whether well posedness of the LQR problem (45) is necessary for well posedness
of (44).

For the remainder of the paper, we assume that M (¢) > 0 and N(¢) > 0 for a.e. t € [0, T
and H > 0. Unfortunately, it seems that the optimal control can not be expressed in
terms of Riccati type equations unless C' = 0 and D = 0, which we also assume. The
existence of an elegant solution of (44) when C # 0 or D # 0 remains an open issue.
Also, for convenience, we assume f = 0 though this is not crucial. Under these
assumptions, the problem (44) can be solved using completion of squares [2] or dynamic
programming [1, 7]. We now use the risk-sensitive maximum principle established in the
previous sections. (Note that the minimum principle derived in [5] is used to solve the partial
observation problem. This involves solving a pair of stochastic partial differential equations.
On the other hand, the problem (44) involves solving BSDEs). One interesting bi-product
of this analysis is that the second-order adjoint, under these assumptions, reduces
to an ordinary differential equation of Lyapunov type. It should be noted that the
optimal control for the (risk-neutral) stochastic LQR problem with dynamics (44) and cost
(45) has been derived using the completion of square argument, dynamic programming or the
maximum principle; see [19, Chapter 6].

We now determine an admissible pair (Z(-), @(-)) which satisfies the necessary conditions in
Theorem 3.1. First of all, associated with an admissible pair (Z(-), 4(-)) the adjoint equations

(5) and (6) reduce to

dp(t) = —[At) p) - MO)3() — 05() o() a(t)| dt + a(t) W (1) -

B(T) = —HEHT),

dP(t) = —[P()A®) + A@)P(t) — M(t) - 0(5() o ()Q() + alt)a(t)') | dt
+Q(t) dW (1), (48)

P(T) = -—H.

Let (p(+), g(-)) and (P(-), Q(-)) be the solutions of the preceding two equations respectively.

The associated H-function is

’;‘-_la(t, z,u) = p(t) (At)z + B(t)u) — =(z'M(t)z + u'N(t)u)

1
2
+%0(t)'15(t)0(t) +o(t)'[a(t) — P()a(t)). (49)

Maximizing, as in (11), #?(¢, Z(t), u) over u € R™, we obtain:

a(t) = N(t)"'B(t)'p(t). (50)
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Substituting (50) into the SDE in (44) gives
dz(t) = [A(t)z(t) + Bt)N(t)~1B(t)'p(t)] dt + o(t)dW (t), o1)
51
i‘(O) = Iy.

Therefore, an admissible pair that satisfies the necessary conditions can be obtained by solving
the system of forward-backward stochastic differential equations (FBSDEs) (47) and (51). We

conjecture a solution of the form:

p(t) = —P(t)z(t) (52)

for some deterministic R"*"-valued differentiable function P(¢) which we now determine. Ap-

plying Tto’s formula to (52) gives:
dp(t) = (—P(t) — P()A(t) + P})B()N ()~ B(t)'P(t)) #(t) dt — P(t)o(t) AW ().  (53)
On the other hand, after substituting (52) into (47), we arrive at:
dp(t) = —(—A(t)' P(t) — M(t) + 0q(t)o(t) P(t)) Z(t) dt + q(t) AW (¢). (54)
Equating the coefficients of (53) and (54) gives
(p(t), ¢(t)) = (=P()x(t), —P(t)o(t)) (55)

where P(t) is a solution of the differential equation

P(t) + P(HA(t) + A()'P(t) — P(t) (B(t)N(t)_lB(t)’ . 90(t)a(t)’)P(t) + M(t) =0,

(56)
P(T) = H.
Tt is easy to show that
(P(t), Q1)) = (=T(t), 0), (57)
where T'(-) is the solution of the Liyapunov equation:
D(t) + T(t)A(t) + A@)'T(t) + M(t) + 0P(t)o(t)o(t) P(t) = 0, 5

I(T) = H,

is a solution of the second order adjoint equation (48). Finally, with (p(-), g(-)) given by (55),
it follows from (44), (50) that (Z(-), @(-)) satisfies the necessary conditions, where Z(-) is the

unique solution of
dz(t) = (A(t) — B(t)N(t) 'B(t)'P(t)) z(t) dt + o (t)dW (t),
z(0) = o,
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and
a(t) = —N(t) 'B(t) P(t)z(t). (60)

Finally, we verify that in the present case the necessary conditions of optimality (The-
orem 3.1) are also sufficient. In view of the sufficient conditions given by Theorem 3.2 it
suffices to show the convexity of g(z) = %x’H 2z and the joint concavity of the Hamiltonian
HO(t, z,u,p(t),q(t) in (z,u). Since H > 0, the convexity of g is evident. On the other hand,

HO(t,z,u,p(t),q(t) = (p(t), A(t)z + B(t)u) — 32’ M(t)z — 2u/N(t)u
+a(t) [q(t) — 0p(t) p(t) o (t)],

which is concave in (z,u) due to M(t) > 0 and N(¢) > 0.

To summarize, we have the following result.

Theorem 5.1 Assume that C =0, D=0, f =0, M(t) > 0 and N(t) > 0 for a.e. t € [0, T]
and H > 0. If the equation (56) admits a solution P(-), then the state feedback control (60) is
optimal for the risk-sensitive LQ problem (44).

To conclude this section, we remark that the equation (56) resembles the celebrated Riccati

equation. If
B(t)N(t)"'B(t) — 0o(t)o(t) >0,

then it is indeed a Riccati equation which admits a unique solution by the classical Riccati

theory.

6 Conclusion

In this paper we have derived a new maximum principle for the risk-sensitive control problem.
One interesting feature of our result is that it involves a nonlinear adjoint equation which has
not been seen in existing relevant results. Also, our maximum principle applies to systems
in which the diffusion term may be control dependent. By allowing such control dependence,
we obtain results quite different from related work on this problem already in the literature.
In particular, the maximum principle involves an additional second order adjoint process and
the maximum condition contains additional terms associated with the second order process
as well as the risk-sensitive parameter. Importantly, the second order process and the risk-
sensitive parameter do not appear in the maximum condition when the diffusion term is control
independent.

Our derivation consists of two steps: Applying Peng’s result [14] to a standard form, risk-

neutral stochastic optimal control problem (that is equivalent to the risk-sensitive problem)
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and transforming the resulting adjoint variables and maximum condition to obtain the risk-
sensitive maximum principle as stated in Theorem 3.1. This approach allows us to obtain a
completely rigorous result, while avoiding many of the technicalities associated with a ‘first
principles’ derivation.

We wish to emphasize the nonlinear transformations (25) and (33) which are used together
with results on the relationship between dynamic programming and the maximum principle to
obtain our results. These transformations are analogous to the logarithmic transformation used
in the dynamic programming approach to risk-sensitive control. One drawback of our approach
is the requirement that the value function is smooth. The need for this assumption is brought
about by our use of results on the relationship between the maximum principle and dynamic
programming. Typically, this assumption is not required for a maximum principle. Our
remaining assumptions however are standard (in fact weaker) than those commonly invoked
when studying the risk-sensitive problem.

One interesting issue that we have not addressed concerns the relationship between the
risk-sensitive control problem and stochastic differential games (which is studied in [7, 11],
for example), and in particular, the derivation of a ‘min-max principle’ for differential games
through its relationship with the risk-sensitive problem and the maximum principle that is

derived in this paper. This is an important issue which we shall leave for future research.
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