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Abstract. This paper is concerned with stock loan valuation in which the underlying stock price
is dictated by geometric Brownian motion with regime switching. The stock loan pricing is quite
different from that for standard American options because the associated variational inequalities may
have infinitely many solutions. In addition, the optimal stopping time equals infinity with positive
probability. Variational inequalities are used to establish values of stock loans and reasonable values
of critical parameters such as loan sizes, loan rates and service fees in terms of certain algebraic
equations. Numerical examples are included to illustrate the results.
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1. Introduction. This paper is concerned with valuation of stock loans. A stock
loan involves two parties, a borrower and a lender. The borrower owns one share of a
stock and obtains a loan from the lender with the share as collateral. The borrower
may regain the stock in the future by repaying the lender the principal plus interest or
alternatively surrender the stock. Stock loan valuation has been attracting attentions
of both academic researchers and lending institutions. When a stock holder prefers
not to sell his stock due to either capital gain tax consideration or restrictions on sales
of his stock, a stock loan is a viable alternative for raising cash. In addition, the loan
can help the stock holder hedge against a market downturn. For example, if the stock
price goes down, the borrower may forfeit the stock instead of repaying the loan. On
the other hand, if the stock price goes up, the borrower can repay the loan and regain
the stock.

In Xia and Zhou [16], the stock loan valuation is studied using a pure probabilistic
approach with a classical geometric Brownian model. They pointed out that the
variational inequality (VI) approach cannot be directly applied to stock loan pricing
as in American option pricing because the associated VIs may have infinitely many
solutions. In addition, the corresponding optimal stopping time equals infinity with
positive probability. Nevertheless, the variational inequality approach is very useful
for optimal stopping problems because it is associated with a set of sufficient conditions
that are easy to verify. It is natural for models with regime switching, for instance.
Moreover, the VI approach typically leads to partial differential equations that can
be solved numerically.

In this paper, we first use variational inequalities to solve the stock loan pricing
problem considered in [16]. We overcome the difficulty of possibly infinitely many
solutions to the VIs by pinning down the right solution which is identical to the value
function. Then, we carry this approach over to models in which the underlying stock
price follows a geometric Brownian motion with regime switching. The model with
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regime switching stems from the need of more realistic models that better reflect ran-
dom market environment. The market regime could reflect the state of the underlying
marketplace and the general mood of investors which determines the overall volatility.
The regime-switching model was first introduced by Hamilton [11] in 1989 to describe
a regime-switching time series. Di Masi et al. [5] discuss mean-variance hedging for
regime-switching European option pricing. To price regime-switching American and
European options, Bollen [1] employs lattice method and simulation, whereas Buff-
ington and Elliott [2] use risk-neutral pricing and derive a set of partial differential
equations for the option price. Guo [7] and Shepp [15] use regime-switching to model
option pricing with inside information; see also Guo [8, 9]. Duan et al. [6] establish a
class of GARCH option models under regime switching. For the important issue of fit-
ting the regime-switching model parameters, Hardy [12] develops maximum likelihood
estimation using real data from the S&P 500 and TSE 300 indices. In addition to
option pricing, regime-switching models have also been formulated and investigated
for other problems; see Zhang [19] for the development of an optimal stock selling
rule, Zhang and Yin [20] for applications in portfolio management, and Zhou and Yin
[21] for a dynamic Markowitz problem.

In this paper, we use variational inequalities to establish sufficient conditions in
terms of algebraic equations. The smooth-fit technique used in Guo and Zhang [10]
in connection with stock selling is applied for the stock loan problem. We begin with
the classical geometric Brownian motion model, then study the model with a single
regime jump, and finally extend the results to incorporate the model with a two-state
Markov chain.

To re-cap, the main contributions of this paper include: a) Development of the
variational inequality approach for the stock loan valuation originally treated in Xia
and Zhou [16] via a purely probabilistic method. The main difficult associated with the
VI approach is that the corresponding VIs do not possess the traditional uniqueness
property. Such difficult was overcome by establishing necessary conditions required
to rule out all other solutions except the one identical to the value function, and b)
The VI approach was extended to treat the valuation problem in more general setting
involving models with regime switching. Delicate analysis was carried out to obtain
closed-form solutions.

This paper is organized as follows. In the next section, we formulate the problem
under consideration. In Section 3, we consider the case with no regime change and re-
establish the results derived in [16] using variational inequalities. The case with only
a single regime change and the case with a two-state Markov chain are considered in
Sections 4 and 5 respectively. Sufficient conditions in each of these cases are obtained.
Finally, in Section 6, we consider fair values of various parameters. We also report
numerical examples in each section to illustrate these results.

2. Problem Formulation. Let r > 0 denote the risk-free interest rate, and S0
t

the stock price (under risk-neutral setting) at time t satisfying the equation

dS0
t

S0
t

= rdt + σ(θt)dWt, S0
0 = x,

where θt ∈ M = {1, 2} is a two-state Markov chain, σ(i), i = 1, 2, are constants
and Wt is a standard Brownian motion independent of θt. Here the stock under
consideration pays no dividends.1

1The presence of dividends would add another dimension of complexity. Depending on whether
the dividends are taken by the lender or accrued to the borrower’s account the underlying stock
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The stock loan problem is as follows. A client borrows amount q > 0 from a
bank with one share of the stock as collateral. After paying a service fee 0 < c < q
to the bank, the client receives the amount (q − c). The client has the right (not
obligation) to regain the stock at any time t ≥ 0 by repaying amount qeγt, where
γ > r is the continuously compounding loan interest rate. The main goal of this
paper is to evaluate the loan value defined in (1) below. Such an evaluation can in
turn be used to determine the rational values of the parameters q, c, and γ.

Let Ft denote the filtration generated by (W., θ.) and T denote the class of Ft–
stopping times. Our objective is to evaluate the loan value

v(x, i) = sup
τ∈T

E
[
e−rτ (S0

τ − qeγτ )+I{τ<∞}
∣∣S0

0 = x, θ0 = i
]
,(1)

where x+ = max{0, x}.
Let µ = γ − r > 0 and St = e−γtS0

t . Then, St satisfies the equation

dSt

St
= −µdt + σ(θt)dWt, S0 = x.(2)

The corresponding value function can be written in terms of St

v(x, i) = sup
τ∈T

E
[
eµτ (Sτ − q)+I{τ<∞}

∣∣S0 = x, θ0 = i
]
.

As in [16], it is easy to show that (a) v(0, i) = 0; (b) v(x, i) is nondecreasing in x;
and (c) v(x, i) is convex, for each i ∈M.

Remark 1.. Note that this corresponds to a perpetual American call option with
a negative interest rate (−µ).

3. The Model without Regime Switching. To appreciate fully why the vari-
ational inequality approach does not work directly for the stock loan valuation prob-
lem, we first focus on the model with constant θt (no jumps). In this case, both σ
and v are independent of i ∈M. The corresponding value function is given by

v(x) = sup
τ∈T

E
[
eµτ (Sτ − q)+I{τ<∞}

∣∣S0 = x
]
,

subject to

dSt

St
= −µdt + σdWt, S0 = x.

Let A denote the corresponding generator

A =
σ2

2
x2 ∂2

∂x2
− µx

∂

∂x
.

The associated VI has the form:

max{(µ +A)f(x), (x− q)+ − f(x)} = 0, f(0) = 0.(3)

loan models can be very different, whereas pricing of the latter is a more technically challenging
problem. In [16] the former case is considered, and in [4] various structures of dividends disposition
are investigated in great details. Here we omit the consideration of dividends to avoid unduly
technicality as the main purpose here is to address the regime switching problem.
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Typically, in the case with a positive interest rate (i.e. µ < 0), the above VI has a
unique nearly smooth solution as prescribed in Øksendal [14] which can be proved
to be identical to the value function. However, with a possibly negative interest rate
(µ > 0), such uniqueness may not exist, as shown below.

To solve (1), one should solve the equation µf + Af = 0 on an interval [0, x0)
for some x0 > q and then smooth-fit the solution with the function f(x) = x − q on
(x0,∞). Let us first consider the case when 2µ/σ2 > 1.

In this case, the general solution to µf +Af = 0 is

f(x) = a1x + a2x
β ,(4)

for β = 2µ/σ2 > 1 and some constants a1 and a2. To paste a1x + a2x
β and x − q

smoothly at x0, we need

a1x0 + a2(x0)β = x0 − q,

a1 + a2β(x0)β−1 = 1.

For fixed 0 ≤ a1 < 1, solve for a2 and x0 to obtain

x0 =
βq

(β − 1)(1− a1)
,

a2 =
(β − 1)β−1

ββ
q1−β(1− a1)β .

It is easy to see that x0 > q, and it can be shown with some calculation that, for each
0 ≤ a1 < 1,

f(x) =





a1x +
(β − 1)β−1

ββ
q1−β(1− a1)βxβ , if x < x0,

x− q, if x ≥ x0,

(5)

is a solution to (1). Hence equation (1) has infinitely many nearly smooth solutions.
A key assumption imposed in [14, Theorem 10.4.1] requires τ∗ < ∞ a.s., where

τ∗ = inf{t : St > x0}. Recall that the expected rate in (2) is negative. This implies
that, for S0 < x0, the probability that τ∗ = ∞ is greater than zero! Therefore,

f(Sτ∗) 6= (Sτ∗ − q)+

with positive probability because Sτ∗ may never reach x0. One therefore needs to
modify the proof in [14] to relax the condition τ∗ < ∞ a.s.

Let f be given by (3) parameterized by some a1. Following the steps in [14,
Theorem 10.4.1] and using Dynkin’s formula and Fatou’s lemma, we can show that

f(x) ≥ v(x), for all x > 0.

We next establish the opposite inequality for some particular value of a1. If x > x0,
take τ∗ = 0 which leads to f(x) = (x− q)+ = v(x). If x < x0, take τ∗ = inf{t : St >
x0}. Then on (0, x0), (µ +A)f(St) = 0. Again, using Dynkin’s formula, we have, for
each N ,

f(x) = E[eµ(τ∗∧N)f(Sτ∗∧N )] ≤ E[eµτ∗f(Sτ∗)I{τ∗≤N}] + E[eµNf(SN )I{τ∗>N}](6)
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The first term on the right hand side converges to

E[eµτ∗f(Sτ∗)I{τ∗<∞}] = E[eµτ∗(Sτ∗ − q)+I{τ∗<∞}].

We need conditions on a1 and a2 to make the second term in (4) go to zero. To this
end, we estimate E[eµN (SN )κ] for some κ ≥ 1. It easy to see that

SN = S0 exp
{
−

(
µ +

σ2

2

)
N + σWN

}
.

It follows that

E[eµN (SN )κ] = Sκ
0 E

[
exp

{
µN − κ

(
µ +

σ2

2

)
N + κσWN

}]
.

Note that

exp
{
−κ2σ2

2
t + κσWt

}

is a martingale. It follows that

E[eµN (SN )κ] = Sκ
0 exp

{(
µ− κ

(
µ +

σ2

2

)
+

κ2σ2

2

)
N

}

= Sκ
0 exp

{
(κ− 1)(κ− β)

σ2N

2

}
.

(7)

This means that the term E[eµN (SN )κ] converges to 0 only for those 1 < κ < β.
Therefore, the linear term in (2) (which corresponds to κ = 1) should be dropped,
i.e., a1 should be set to 0. Moreover, it is easy to see that, for 0 ≤ x ≤ x0,

xβ ≤ Kxκ, for some constant K.

This implies that

E[eµN (SN )βI{τ∗>N}] → 0, as N →∞.

Therefore, for 2µ/σ2 > 1, v(x) = f(x) which has the form (3) with a1 = 0.
To complete the part with constant θt, we consider the case when β = 2µ/σ2 ≤ 1.

First, note that the solution should be linear in x. Using (2), this is clear when
β = 1. When 0 < β < 1, recall the monotonicity and convexity of the value
function. It follows that both the first and second derivatives f ′(x) and f ′′(x)
should be nonnegative. Recall f(x) = a1x + a2x

β given in (2). The condition
f ′(x) = a1 + a2βxβ−1 ≥ 0 implies that a2 ≥ 0 because otherwise f ′(x) → −∞
as x → 0+. Moreover f ′′(x) = a2β(β−1)xβ−2 ≥ 0 leads to a2 ≤ 0. Therefore, a2 = 0.
In what follows, we show that a1 = 1 or f(x) = x. It is clear that f(x) = x is a
solution to the VI in (1). We can show that f(x) = x ≥ v(x) for all x > 0 as in [14,
Theorem 10.4.1]. To establish the opposite inequality, note that

v(x) ≥ E[eµN (SN − q)+], for all N.

If we can show E[eµN (SN − q)+] → S0, then we have f(x) = x. To see this, we write

E[eµN (SN − q)+] = S0

∫

{SN >q}
exp

(
−σ2N

2
+ σu

)
Φ(u, 0, N)du− qHN

= S0

∫

{SN >q}
Φ(u,Nσ,N)du− qHN ,
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where Φ(u,m, Σ) is the Gaussian density function with mean m and variance Σ and
HN = eµNP (SN > q). It is shown in Appendix that HN → 0. Using change of
variable w = (u−Nσ)/

√
N and noticing that

{SN > q} =
{

w >
1√
Nσ

log
q

S0
+

(µ

σ
− σ

2

)√
N

}
,

we have, as N →∞,

E[eµN (SN − q)+] = S0

∫ ∞

AN

Φ(w, 0, 1)dw − qHN →





S0, if
µ

σ
− σ

2
< 0,

S0/2, if
µ

σ
− σ

2
= 0.

(8)

where

AN =
1√
Nσ

log
q

S0
+

(µ

σ
− σ

2

)√
N.

For 2µ/σ2 < 1, this implies f(x) = x = v(x). For 2µ/σ2 = 1, the above approach
does not work. We resort to a two point value problem approach used in [19] for stock
selling. Given two numbers a and b. Suppose 0 < a < q < b. For a < S0 < b, let
τa,b = inf{t : St 6∈ (a, b)}. Then, v(x) ≥ h(x) := E[eµτa,b(Sτa,b

− q)+]. It is shown
in [19] that h(x) is a solution to the two point boundary value differential equation
(TPBVDE)

(µ +A)h(x) = 0, h(a) = 0, h(b) = b− q.

Under the condition 2µ = σ2, the corresponding characteristic equation (µ+A)h(x) =
0 has multiple root 1. The general solution is

h(x) = C1x + C2x log x.

Using the values at the boundaries to determine the values of C1 and C2, we have

h(x) = − (b− q) log a

b(log b− log a)
x +

b− q

b(log b− log a)
x log x.

Sending a → 0 yields

h(x) → b− q

b
x,

which converges to x as b →∞. Thus, v(x) = f(x) = x when 2µ/σ2 = 1.

4. The Model with a Single Regime Switching. In this section, we consider
the case when θt has a single jump. This is the simplest model with stochastic
volatility. Such model is used in [17] to capture volatility smile in connection with
option pricing. Without loss of generality, we assume the generator of θt has the form

Q =



−λ1 λ1

0 0


 , with λ1 > 0.

This means that state 2 is the absorbing state. To compute the value function v(x, i),
we treat the following two cases.
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Case 1: 2µ/σ2(2) ≤ 1.. First, we show that

v(x, 1) = v(x, 2) = x.

Let A denote the generator of (St, θt) given by

Af(x, ·)(1) =
σ2(1)

2
x2 ∂2f(x, 1)

∂x2
− µx

∂f(x, 1)
∂x

+ λ1(f(x, 2)− f(x, 1))

Af(x, ·)(2) =
σ2(2)

2
x2 ∂2f(x, 2)

∂x2
− µx

∂f(x, 2)
∂x

.

The associated VIs have the following form:

max{(µ +A)f(x, ·)(i), (x− q)+ − f(x, i)} = 0, f(0, i) = 0, i = 1, 2.(9)

Using the result in the last section and recall that θt = 2 is absorbing, we have

f(x, 2) = v(x, 2) = x.

It remains to show

f(x, 1) = v(x, 1) = x.

Clearly, f(x, 1) = f(x, 2) = x gives a solution to (1). It follows that f(x, 1) = x ≥
v(x, 1). To establish the opposite inequality, it suffices to find a sequence of stopping
times τN < ∞, a.s. such that

E[eµτN (SτN − q)+] → x, as N →∞.

Take τN = N , N = 1, 2, . . ., and let

cN
i (t, x) = E[eµ(N−t)(SN − q)+|St = x, θu = i, t ≤ u ≤ N ],

which is the expected payoff with τN and constant θt on [t,N ]. Then, 0 ≤ cN
i (t, x) ≤ x.

We can show as in (6) that, if 2µ/σ2(2) < 1,

cN
2 (t, x) → x as N →∞ for all t > 0.

By conditioning on the jump time of θt, we have, as in [17],

E[eµN (SN − q)+|S0 = x, θ0 = 1]

=
∫ N

0

eµt

(∫ ∞

−∞
cN
2 (t, xeu)Φ(u,m1t,Σ1t)du

)
λ1e

−λ1tdt + e−λ1NcN
1 (0, x),

where m1 = −µ−σ2(1)/2 and Σ1 = σ2(1). Recall that 0 ≤ cN
1 (0, x) ≤ x. The second

term e−λ1NcN
1 (0, x) → 0, as N →∞. Also recall that, for 2µ/σ2(2) < 1, cN

2 (t, x) → x
for all t. We have

lim
N→∞

E[eµN (SN − q)+|S0 = x, θ0 = 1]

=
∫ ∞

0

eµt

(∫ ∞

−∞
xeuΦ(u,m1t,Σ1t)du

)
λ1e

−λ1tdt

= x

∫ ∞

0

λ1e
−λ1tdt = x.
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Therefore, f(x, 1) = v(x, 1) = x for 2µ/σ2(2) < 1. If 2µ/σ2(2) = 1, we adopt the two
point boundary value approach. Given 0 < a < q < b, let τa,b = inf{t : St 6∈ (a, b)}.
Then, τa,b < ∞, a.s. Let

h(x, i) = E[eµτa,b(Sτa,b
− q)+|S0 = x, θ0 = i].

Then h must satisfy the equations



(µ +A)h(x, ·)(i) = 0, i = 1, 2

h(a, i) = 0, h(b, i) = x− q.

Solve these equations to obtain



h(x, 1) = A1x
β1 + A2x

β2 + φ(x)

h(x, 2) = B1x + B2x log x,

where Ai, Bi, i = 1, 2, are constants and



β1 =
1

σ2(1)



µ +

σ2(1)
2

+

√(
µ− σ2(1)

2

)2

+ 2σ2(1)λ1



 > 1,

β2 =
1

σ2(1)



µ +

σ2(1)
2

−
√(

µ− σ2(1)
2

)2

+ 2σ2(1)λ1



 < 1,

(10)

and φ(x) is a special solution

φ(x) =
[
B1 +

1
λ1

(
σ2(1)

2
− µ

)
B2

]
x + B2x log x.

Using the two point boundary values, we have




B1 = − (b− q) log a

b(log b− log a)
,

B2 =
b− q

b(log b− log a)
.

Sending a → 0, we have φ(x) → (b− q)x/b. Similarly, using




A1a
β1 + A2a

β2 + φ(a) = 0,

A1b
β1 + A2b

β2 + φ(b) = b− q,

(11)

and dividing both sides of the first equation by aβ2 , we have

A1a
β1−β2 + A2 − (b− q) log a

b(log b− log a)
a1−β2 +

b− q

b(log b− log a)
a1−β2 log a = 0.

Recall that β1 > 1 and β2 < 1. Sending a → 0 yields A2 → 0. Also send a → 0 in the
second equation in (3) to obtain A1 → 0. Therefore, as a → 0,

h(x, 1) → b− q

b
x.

This implies that f(x, 1) = x = limb→∞ h(x, 1) ≤ v(x, 1).
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Case 2: 2µ/σ2(2) > 1.. Recall that state 2 is absorbing. Using the results with
constant θt, we have

f(x, 2) = v(x, 2) =





B2x
α2 if x < x2,

x− q if x ≥ x2,

(12)

where α2 = 2µ/σ2(2), x2 = qα2/(α2 − 1), and

B2 =
(α2 − 1)α2−1

αα2
2

q1−α2 .

With f(x, 2) given in (4), we solve the equation

µf(x, 1) +
σ2(1)

2
x2 ∂2f(x, 1)

∂x2
−µx

∂f(x, 1)
∂x

+ λ1(f(x, 2)− f(x, 1)) = 0, f(0, 1) = 0,(13)

on the continuation region (0, x1) for some x1. We consider two separate subcases.

Subcase 1: q < x1 ≤ x2.. We first solve equation (5) on (0, x1). Note that
f(x, 2) = B2x

α2 on this interval. A special solution to (5) can be given as

φ(x) = A0x
α2 ,

where

A0 = −λ1B2

(
µ− λ1 +

σ2(1)
2

α2(α2 − 1)− µα2

)−1

,

assuming the denominator does not equal zero.
Let β1 > 1 and β2 < 1 be as given in (2). In view of the estimate in (5), we drop

the term involving xβ2 . The general solution to (5) is given by

f(x, 1) = A1x
β1 + A0x

α2 , for x ∈ (0, x1).

Smoothly fit this solution at x1 with f(x, 1) = x− q on (x1,∞) to obtain




A1x
β1
1 + A0x

α2
1 = x1 − q,

A1β1x
β1−1
1 + A0α2x

α2−1
1 = 1.

Eliminating A1 from both equations leads to

A0(β1 − α2)xα2
1 = (β1 − 1)x1 − β1q.(14)

Therefore,

A1 =
1−A0α2x

α2−1
1

β1x
β1−1
1

.

Being a solution to the VIs (1), it also requires, for all x > 0,

f(x, 1) ≥ (x− q)+ and

(µ +A)f(x, ·)(1) ≤ 0.
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An equivalent condition for the preceding second inequality is

µ(x− q)− µx + λ1(B2x
α2 − (x− q)) ≤ 0 on (x1, x2).

This is also equivalent to the following inequality:

λ1(B2x
α2
1 − (x1 − q)) ≤ µq.(15)

Theorem 2.. Let x1 be a solution to (6) with q < x1 ≤ x2 and λ1(B2x
α2
1 − (x1−

q)) ≤ µq. Let

f(x, 1) =





A1x
β1 + A0x

α2 if x < x1,

x− q if x ≥ x1,

f(x, 2) =





B2x
α2 if x < x2,

x− q if x ≥ x2.

Assume f(x, 1) ≥ (x− q)+, for all x > 0. Then

f(x, i) = v(x, i), i = 1, 2,

and the stopping time

τ∗ = inf
{

t : (St, θt) 6∈ (0, x1)× {1} ∪ (0, x2)× {2}
}

(16)

is optimal.
Proof. It suffices to show f(x, 1) ≤ v(x, 1) because the opposite inequality can be
obtained using Dynkin’s formula and Fatou’s lemma as in [14, Theorem 10.4.1].

If θ0 = 1 and x ≥ x1 (or θ0 = 2 and x ≥ x2), take τ∗ = 0. Then

f(x, i) = (x− q)+ = E[eµτ∗(Sτ∗ − q)+].

If θ0 = 1 and x < x1 (or θ0 = 2 and x < x2), take τ∗ as in (8). Then, for t < τ∗, we
have (µ +A)f(St, ·)(θt) = 0. Applying Dynkin’s formula, we have, for each N ,

f(x, 1) = E[eµ(τ∗∧N)f(Sτ∗∧N , θτ∗∧N )]

≤ E[eµτ∗f(Sτ∗ , θτ∗)I{τ∗≤N}] + E[eµNf(SN , θN )I{τ∗>N}].

The first term on the right hand side converges to

E[eµτ∗f(Sτ∗ , θτ∗)I{τ∗<∞}] = E[eµτ∗(Sτ∗ − q)+I{τ∗<∞}],

as N →∞. It remains to show the second term goes to zero. For κ ≥ 1, we write

Sκ
t = Sκ

0 Yt exp
{∫ t

0

(
−κµ + (κ2 − κ)

σ2(θs)
2

)
ds

}
,

where

Yt = exp
{∫ t

0

−κ2σ2(θs)
2

ds +
∫ t

0

κσ(θs)dWs

}
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is a martingale. Recall that 2µ/σ2(i) > 1 for i = 1, 2. There exists δ > 0 such that

σ2(i)
2

< µ− δ, for i = 1, 2.

It follows that

E[eµNSκ
N ] = Sκ

0 E

(
YN exp

{∫ N

0

(
(κ− 1)

(
κ

σ2(θs)
2

− µ

))
ds

})

≤ Sκ
0 E

(
YN exp

{∫ N

0

((κ− 1) (κ(µ− δ)− µ)) ds

})

= Sκ
0 exp {(κ− 1) (κ(µ− δ)− µ)N} → 0,

for 1 < κ < µ/(µ − δ). Moreover, there exists a constant K such that, for x ∈
(0, max(x1, x2)),

xβ1 ≤ Kxκ and xα2 ≤ Kxκ.

This implies that

E[eµNf(SN , θN )I{τ∗>N}] → 0.

The proof is completed. 2

Subcase 2: q < x2 < x1.. In this case, f(x, 2) consists of two pieces on (0, x1).
Using the vector form of the first order differential equation, we can find a special
solution to (5) given by φ(x) = F (log x) where

F (z) =
2λ1

σ2(1)(β1 − β2)

∫ z

0

(
−eβ1(z−u) + eβ2(z−u)

)
f(eu, 2)du,

where β1 > 1 and β2 < 1 are given in (2). The general solution to (5), after dropping
the term xβ2 , is given by

f(x, 1) = A1x
β1 + φ(x).

Similarly as in the previous subcase, we obtain




A1x
β1
1 + φ(x1) = x1 − q,

A1β1x
β1−1
1 + φ′(x1) = 1.

These lead to

β1φ(x1)− x1φ
′(x1) = (β1 − 1)x1 − β1q,(17)

and

A1 =
1− φ(x1)

β1x
β1−1
1

.
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Moreover, it is easy to check

(µ +A)(x− q) ≤ 0 for x > x1.

Theorem 3.. Let x1 be a solution to (9) with q < x2 < x1. Let

f(x, 1) =





A1x
β1 + φ(x) if x < x1,

x− q if x ≥ x1,

f(x, 2) =





B2x
α2 if x < x2,

x− q if x ≥ x2.

Assume f(x, 1) ≥ (x− q)+, for all x > 0. Then

f(x, i) = v(x, i), i = 1, 2,

and

τ∗ = inf{t : (St, θt) 6∈ (0, x1)× {1} ∪ (0, x2)× {2}}
is optimal.
Proof. Note that

F (z) ≤ 2λ1

σ2(1)(β1 − β2)

∫ z

0

eβ2(z−u)f(eu, 2)du.

Using (4), for each 0 < κ < µ/(µ− δ), we can show by direct computation that there
exists K such that

φ(x) ≤ Kxκ,

for x ∈ (0, max(x1, x2)). The rest of the proof is similar to that of Theorem 2. 2

Example 4.. In this example we take

µ = 0.03, σ2(1) = 0.02, σ2(2) = 0.04, λ1 = 2, q = 1.

Here 2µ/σ2(2) = 1.5 > 1, and it is easy to verify that all the conditions in Theorem 2
are satisfied. We plot the corresponding value functions in Figure 1 in which x1 =
2.851 and x2 = 3. We then vary λ1. The results are summarized in Table 1. Recall
that 1/λ1 is the mean time for θt to remain in state 1. We expect that as λ1 gets
smaller, the corresponding x1 should converge to x0

1 = α1q/(α1 − 1) = 1.5 (In this
example, α1 = 2µ/σ2(1)), a threshold level when there is no jump and θt = 1 (for all
t) and as λ1 gets bigger, x1 should be closer to x2. These are confirmed in Table 1.

Economically, the table shows that the sooner the regime is likely to switch to a
more volatile state the more valuable the underlying stock loan (hence the higher the
threshold level to regain the stock).

λ1 0.001 0.01 0.1 1 2 3 4 5

x1 1.554 1.855 2.433 2.794 2.851 2.878 2.893 2.905

Table 1. x1 with varying λ1.
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Fig. 1. Value functions with a single jump.

5. The Model with a General Two-State Regime Switching. In this sec-
tion, we consider the model (2) in which θt is a two-state Markov chain generated

by Q =



−λ1 λ1

λ2 −λ2


 with both λ1 > 0 and λ2 > 0. The generator for the pair

(St, θt) has the form:

Af(x, ·)(1) =
σ2(1)

2
x2 ∂2f(x, 1)

∂x2
− µx

∂f(x, 1)
∂x

+ λ1(f(x, 2)− f(x, 1)),

Af(x, ·)(2) =
σ2(2)

2
x2 ∂2f(x, 2)

∂x2
− µx

∂f(x, 2)
∂x

+ λ2(f(x, 1)− f(x, 2)).

The associated VIs are given by

max
{

(µ +A)f(x, ·)(i), (x− q)+ − f(x, i)
}

= 0, f(0, i) = 0, i = 1, 2.(18)

We begin by solving the equations (µ + A)f(x, ·)(i) = 0, i = 1, 2. Using (µ +
A)f(x, ·)(1) = 0, we write f(x, 2) in terms of f(x, 1) and its derivatives. Substi-
tuting it into the second equation (µ + A)f(x, ·)(2) = 0, we obtain a fourth order
ordinary differential equation. Its characteristic equation is given by

g1(β)g2(β) = λ1λ2,

where

gi(β) =
σ2(i)

2
β2 −

(
µ +

σ2(i)
2

)
β + µ− λi, i = 1, 2.
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Let ψ(β) = g1(β)g1(β) − λ1λ2. Then, ψ(1) = 0, ψ(∞) = ψ(−∞) = ∞. Let η1 < 1
and η2 > 1 denote the roots of g1. Then both ψ(η1) and ψ(η2) equal −λ1λ2 < 0. It
is easy to see that

ψ′(1) = λ1

(
µ− σ2(2)

2

)
+λ2

(
µ− σ2(1)

2

)
= (λ1 +λ2)

(
µ−

(
ν1

σ2(1)
2

+ ν2
σ2(2)

2

))
,

where ν1 = λ2/(λ1 + λ2) and ν2 = λ1/(λ1 + λ2) are the stationary distributions of θt.
Let βi, i = 1, 2, 3, 4, denote the zeros of ψ(β). The intermediate value property

implies that they are real numbers. We consider the following three cases.
Case 1: ψ′(1) < 0 (or γ < r + (ν1σ

2(1) + ν2σ
2(2))/2). In this case,

β1 < η1 < β2 < β3 = 1 < η2 < β4.

Case 2: ψ′(1) = 0 (or γ = r + (ν1σ
2(1) + ν2σ

2(2))/2). In this case, β = 1 is a
multiple root. Therefore,

β1 < η1 < β2 = β3 = 1 < η2 < β4.

Case 3: ψ′(1) > 0 (or γ > r + (ν1σ
2(1) + ν2σ

2(2))/2). In this case,

β1 < η1 < β2 = 1 < β3 < η2 < β4.

Next we show that the value functions v(x, i) = x in the first two cases. Note
that f(x, i) = x is a solution to the VIs. Therefore, v(x, i) ≤ x. It remains to show
the opposite inequalities in these two cases.

Case 1: γ < r + (ν1σ
2(1) + ν2σ

2(2))/2.. We use the two point boundary value
approach. Given 0 < a < q < b, let h(x, i) = E[eµτa,b(Sτa,b

−q)+], where τa,b = inf{t :
St 6∈ (a, b)}. It is easy to see that

0 ≤ h(x, i) ≤ v(x, i) ≤ x.(19)

As shown in [19], h is a C2 solution to the following TPBVDE




(µ +A)h(x, ·)(i) = 0,

h(a, i) = 0, h(b, i) = b− q.

Note that

h(x, 2) = − 1
λ1

(
(µ− λ1)h(x, 1) +

σ2(1)
2

x2 ∂2h(x, 1)
∂x2

− µx
∂h(x, 1)

∂x

)
.

There are constants Ai, i = 1, 2, 3, 4, such that the general solutions




h(x, 1) = A1x
β1 + A2x

β2 + A3x + A4x
β4 ,

h(x, 2) = κ1A1x
β1 + κ2A2x

β2 + A3x + κ4A4x
β4 ,

where κi = −g1(βi)/λ1, i = 1, 2, 3, 4. Note that κ3 = 1 and κi are independent of the
choice of (a, b). Note also that the coefficients Ai are functions of (a, b). In view of
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(2), Ai = Ai(a, b) are bounded on 0 < a < b < ∞. Moreover, since g1 is a quadratic
function with zeros η1 < 1 and η2 > 1, it follows that

κ1 < κ2 and κ4 < 1.

Using the boundary conditions at a, we have

a−β1h(a, 1) = A1 + A2a
β2−β1 + A3a

1−β1 + A4a
β4−β1 = 0.

Sending a → 0+, we have A1 → 0. Similarly, recall that κ1 6= κ2 and note that

a−β2(h(a, 2)− κ1h(a, 1)) = (κ2 − κ1)A2 + (1− κ1)a1−β2 + (κ4 − κ1)A4a
β4−β2 = 0

implies A2 → 0 as a → 0+. With a little abuse of notation, we keep using A3 and A4

as their limits. Then the boundary conditions at b give




A3b + A4b
β4 = b− q,

A3b + κ4A4b
β4 = b− q.

Dividing both sides of the first equation by bβ4 and sending b → ∞ yields A4 → 0.
Similarly, multiplying the first equation by κ4 and subtracting the second equation
leads to

(κ4 − 1)A3b = (κ4 − 1)(b− q).

Send b →∞ to obtain A3 → 1. Hence, sending a → 0+ and then b →∞, we have

h(x, i) → x, i = 1, 2.

It follows that v(x, i) = x, i = 1, 2.

Case 2: γ = r+(ν1σ
2(1)+ν2σ

2(2))/2.. In this case, note that β = 1 is a multiple
root. Therefore, the general solution has the form





h(x, 1) = A1x
β1 + A2x + A3x log x + A4x

β4 ,

h(x, 2) = κ1A1x
β1 + A2x + A3

(
x log x +

1
λ1

(
µ− σ2(1)

2

)
x

)
+ κ4A4x

β4 .

We can show also κ1 6= 1 and κ4 6= 1. Following the similar procedure as in Case 1,
we have

A1 → 0 and A3 → 0 as a → 0+,

and then

A2 → 1 and A4 → 0 as b →∞.

Therefore, we have h(x, i) → x, which implies v(x, i) = x, i = 1, 2.

Case 3: γ > r+(ν1σ
2(1)+ν2σ

2(2))/2.. We consider the following three subcases.
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Subcase 1: q < x1 < x2.. In view of (5), we consider the solution on (0, x1) to
be of the form 




f(x, 1) = A3x
β3 + A4x

β4 ,

f(x, 2) = κ3A3x
β3 + κ4A4x

β4 ,

where κi = −g1(βi)/λ1, i = 3, 4. Then, on (x1, x2), f(x, 1) = x− q, and

f(x, 2) = B1x
γ1 + B2x

γ2 + φ(x),

where 



γ1 =
1

σ2(2)



µ +

σ2(2)
2

+

√(
µ− σ2(2)

2

)2

+ 2σ2(2)λ2



 > 1,

γ2 =
1

σ2(2)



µ +

σ2(2)
2

−
√(

µ− σ2(2)
2

)2

+ 2σ2(2)λ2



 < 1,

(20)

and a special solution (assuming µ 6= λ2)

φ(x) = x +
λ2q

µ− λ2
.

The smooth-fit conditions at x1 and x2 require



A3x
β3
1 + A4x

β4
1 = x1 − q,

A3β3x
β3
1 + A4β4x

β4
1 = x1,




κ3A3x
β3
1 + κ4A4x

β4
1 = B1x

γ1
1 + B2x

γ2
1 + φ(x1),

κ3A3β3x
β3
1 + κ4A4β4x

β4
1 = B1γ1x

γ1
1 + B2γ2x

γ2
1 + x1φ

′(x1),



B1x
γ1
2 + B2x

γ2
2 + φ(x2) = x2 − q,

B1γ1x
γ1
2 + B2γ2x

γ2
2 + x2φ

′(x2) = x2.

Eliminating Ai and Bi, we obtain


x−γ1
1

x−γ2
1


 F1(x1) =




x−γ1
2

x−γ2
2


 F2(x2),(21)

where

F1(x) =




1 1

γ1 γ2




−1 





κ3 κ4

κ3β3 κ4β4







1 1

β3 β4




−1


x− q

x


−




φ(x)

xφ′(x)





 ,

F2(x) =




1 1

γ1 γ2




−1 


x− q − φ(x)

x− xφ′(x)


 .
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We can prove the next theorem as in Theorem 2.
Theorem 5.. Let x1 and x2 be solutions to (4) with q < x1 ≤ x2. Let

f(x, 1) =





A3x
β3 + A4x

β4 if x < x1,

x− q if x ≥ x1,

f(x, 2) =





κ3A3x
β3 + κ4A4x

β4 if x < x1,

B1x
γ1 + B2x

γ2 + φ(x) if x1 ≤ x < x2,

x− q if x ≥ x2.

Assume f(x, i) ≥ (x− q)+, for all x > 0, and λ1(f(x, 2)− (x− q)) ≤ µq on (x1, x2).
Then

f(x, i) = v(x, i), i = 1, 2,

and the stopping time

τ∗ = inf
{

t : (St, θt) 6∈ (0, x1)× {1} ∪ (0, x2)× {2}
}

(22)

is optimal.

Subcase 2: q < x2 < x1.. As in the previous subcase, consider f(x, i) on (0, x1)
to be of the form





f(x, 1) = A3x
β3 + A4x

β4 ,

f(x, 2) = κ3A3x
β3 + κ4A4x

β4 .

On (x2, x1),




f(x, 1) = x− q, and

f(x, 2) = B1x
γ̃1 + B2x

γ̃2 + φ̃(x),

where




γ̃1 =
1

σ2(1)



µ +

σ2(1)
2

+

√(
µ− σ2(1)

2

)2

+ 2σ2(1)λ1



 > 1,

γ̃2 =
1

σ2(1)



µ +

σ2(1)
2

−
√(

µ− σ2(1)
2

)2

+ 2σ2(1)λ1



 < 1,

(23)

and a special solution (assuming µ 6= λ1)

φ̃(x) = x +
λ1q

µ− λ1
.
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Smooth-fitting these pieces at x1 and x2 gives




κ3A3x
β3
2 + κ4A4x

β4
2 = x2 − q,

κ3A3β3x
β3
2 + κ4A4β4x

β4
2 = x2,




A3x
β3
2 + A4x

β4
2 = B1x

γ̃1
2 + B2x

γ̃2
2 + φ̃(x2),

A3β3x
β3
2 + A4β4x

β4
2 = B1γ̃1x

γ̃1
2 + B2γ̃2x

γ̃2
2 + x2φ̃

′(x2),



B1x
γ̃1
1 + B2x

γ̃2
1 + φ̃(x1) = x1 − q,

B1γ̃1x
γ̃1
1 + B2γ̃2x

γ̃2
1 + x1φ̃

′(x1) = x1.

Similarly, we obtain by eliminating Ai and Bi




x−γ̃1
1

x−γ̃2
1


 F̃1(x1) =




x−γ̃1
2

x−γ̃2
2


 F̃2(x2),(24)

where

F̃1(x) =




1 1

γ̃1 γ̃2




−1 


x− q − φ̃(x)

x− xφ̃′(x)


 ,

F̃2(x) =




1 1

γ̃1 γ̃2




−1 





1 1

β3 β4







κ3 κ4

κ3β3 κ4β4




−1


x− q

x


−




φ̃(x)

xφ̃′(x)





 .

We can prove the next theorem.
Theorem 6.. Let x1 and x2 be solutions to (7) with q < x2 ≤ x1. Let

f(x, 1) =





A3x
β3 + A4x

β4 if x < x2,

B1x
γ̃1 + B2x

γ̃2 + φ̃(x) if x2 ≤ x < x1,

x− q if x ≥ x1,

f(x, 2) =





κ3A3x
β3 + κ4A4x

β4 if x < x2,

x− q if x ≥ x2.

Assume f(x, i) ≥ (x− q)+, for all x > 0, and λ2(f(x, 1)− (x− q)) ≤ µq on (x2, x1).
Then

f(x, i) = v(x, i), i = 1, 2,
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and the stopping time

τ∗ = inf
{

t : (St, θt) 6∈ (0, x1)× {1} ∪ (0, x2)× {2}
}

(25)

is optimal.

Subcase 3: x1 = x2.. In this subcase,

f(x, 1) =





A3x
β3 + A4x

β4 if x < x1

x− q if x ≥ x1,

f(x, 2) =





κ3A3x
β3 + κ4A4x

β4 if x < x1

x− q if x ≥ x1.

The smooth-fit conditions are given by




A3x
β3
1 + A4x

β4
1 = x1 − q,

A3β3x
β3
1 + A4β3x

β4
1 = x1,




κ3A3x
β3
1 + κ3A4x

β4
1 = x1 − q,

κ3A3β3x
β3
1 + κ3A4β3x

β4
1 = x1.

Therefore, A3 = κ3A3 and A4 = κ4A4. These imply that f(x, 1) = f(x, 2). Hence,
σ2(1) = σ2(2) from the VIs (1). This corresponds to the case when there is no jump.

Example 7.. In this example, we take

µ = 0.03, σ2(1) = 0.02, σ2(2) = 0.04, λ1 = λ2 = 2, q = 1.

These parameters fall into Case 3 discussed earlier. Moreover, noting that σ2(1) <
σ2(2), we expect accordingly that x1 < x2. We then use the setting of Subcase 1 to
solve for the value functions. In this case, x1 = 2.009, x2 = 2.060. These functions
are plotted in Figure 2. In this example, all the conditions of Theorem 5 are satisfied.

We next examine the monotonicity of these threshold levels (or, equivalently, the
values of the underlying stock loans) with varying σ2(1), λ1, and q. It can be seen from
Table 2, when varying σ2(1), that the pair (x1, x2) increase in σ2(1). This suggests
that bigger σ2(1) implies a higher payoff and therefore a higher threshold levels.

Then we vary λ1. The results in Table 3 indicate that the pair (x1, x2) also
increase. This is because a larger λ1 implies shorter time for θt to stay in state 1.
The corresponding average volatility increases in λ1.

Finally, we vary q in Table 4. Both x1 and x2 increase in q. This is because a
larger q implies a larger amount of money borrowed from the bank which needs to be
matched with higher threshold levels.

In summary, the higher the volatility or the loan size the more valuable the stock
loan contract.
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Fig. 2. Value functions with a two-state Markov chain.

σ2(1) 0.001 0.005 0.01 0.02 0.03

(x1, x2) (1.419,1.587) (1.536,1.669) (1.673,1.779) (2.009,2.060) (2.049,2.219)

Table 2. (x1, x2) with varying σ(1).

λ1 1 2 3 4 5

(x1, x2) (1.740,1.842) (2.009,2.060) (2.045,2.148) (2.167,2.258) (2.291,2.355)

Table 3. (x1, x2) with varying λ1.

q 0.2 0.4 0.6 0.8 1

(x1, x2) (0.390,0.420) (0.783,0.818) (1.175,1.224) (1.578,1.636) (2.009,2.060)

Table 4. (x1, x2) with varying q.

6. Fair Values of the Parameters. In this section, we consider the fair values
for γ, q, and c. Clearly, the borrower initially pays an amount S0−(q−c) in exchange
of the right implied by the stock loan. Hence S0− (q− c) > 0 and, moreover, the fair
values of q, c, and γ should satisfy the condition that the value of the stock loan is
exactly (S0 − q + c), i.e., v(S0, i) = S0 − q + c.

We use the model with the two-state Markov chain, and consider the following
three cases.

Case a. γ ≤ r +(ν1σ
2(1)+ ν2σ

2(2))/2. In this case, v(S0, i) = S0. The equation
v(S0, i) = S0 − q + c implies that the amount the borrower receives is q − c = 0. In
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other words, in this case the lender is not interested in doing the business because the
loan interest rate is too low. This is clearly not an interesting case.

Case b. γ > r + (ν1σ
2(1) + ν2σ

2(2))/2 and v(S0, i) = S0 − q.
This is not an interesting case either because the optimal time to regain the stock

is τ∗ = 0, i.e., as soon as the borrower received the loan, he needs to regain the stock
back right away. He does so because the terms of the loan are not favorable to him
(e.g., the loan size is too small and/or the loan rate is too high) so there is no actual
exchange initially.

Case c. γ > r + (ν1σ
2(1) + ν2σ

2(2))/2 and v(S0, i) > S0 − q.
In this case, both the lender and the borrower have enough incentives to do the

business. The fair values for q, c and γ should meet the following conditions:

γ > r +
ν1σ

2(1) + ν2σ
2(2)

2
, S0 < x1 if θ0 = 1 and S0 < x2 if θ0 = 2,

c = v(S0, i)− S0 + q.

For example, if we take

q = 5, r = 0.05, γ = 0.15, σ(1) = 0.15, σ(2) = 0.4, λ1 = λ2 = 4,

then x1 = 7.945 and x2 = 9.300. If θ0 = 1, the dependence of service fee c on S0 is
given in Table 5.

S0 2 3 4 5 6 7

c 3.143 2.346 1.647 1.052 0.563 0.188

Table 5. Dependence of c on S0 when θ0 = 1.
Similarly, if θ0 = 2, the dependence of c on S0 is given in Table 6.

S0 2 3 4 5 6 7

c 3.147 2.354 1.662 1.075 0.598 0.233

Table 6. Dependence of c on S0 when θ0 = 2.
It can be seen from these two tables that the service fees decrease in S0. This

makes perfect sense as when S0 increases, the loan-to-value decreases (recall that the
loan size is fixed at q = 5) and hence the service fee gets less (since the bank bears
less risk). Notice that this decrease is very rapid. On the other hand, the service
fees in Table 6 are uniformly higher than those in Table 5 because the corresponding
volatility σ(2) is greater than σ(1) hence the loans corresponding to the former are
more valuable.

7. Conclusion. In this paper, we considered the valuation of stock loans under
regime switching models. A key assumption is that the market mode θt is observable
at each time t. It would be interesting to study the case when θt is not completely
measurable. In this connection, Wonham filter can be used to come up with condi-
tional probability of θt = i given the historical price S(u), u ≤ t. Extension along this
direction will make the results more useful in practice. Finally, stock loan contracts
are relatively new financial product and have yet reached the stage of being traded
in major exchanges as stock options. Should market data become available, it would
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be interesting to compare the theoretical loan value obtained in this paper with its
market value. Further research topics could emerge from these studies.

8. Appendix. In the section, we give a technical lemma used in the paper. Let

SN = S0 exp
{
−

(
µ +

σ2

2

)
N + σWN

}
.

Lemma 1.

eµNP (SN > q) → 0, as N →∞.

Proof. Note that

P (SN > q) =
∫

{SN >q}
Φ(u, 0, N)du =

∫ ∞

1
σ log q

S0
+(µ

σ + σ
2 )N

Φ(u, 0, N)du.

With a change of variable w = u/
√

N , we have

P (SN > q) =
∫ ∞

FN

Φ(w, 0, 1)dw,

where

FN =
1√
Nσ

log
q

S0
+

(µ

σ
+

σ

2

)√
N.

Using the inequality (see Chow and Teicher [3, p. 49])
∫ ∞

x

e−
u2
2 du <

1
x

e−
x2
2 ,

for all x > 0, we have

P (SN > q) <
1√

2πFN

exp
(
−1

2
(FN )2

)
.

It follows that

eµNP (SN > q) <
1√

2πFN

exp
(
−1

2
GN

)

where

GN =
1

Nσ2

(
log

q

S0

)2

+
2
σ

(
log

q

S0

) (µ

σ
+

σ

2

)
+

(µ

σ
− σ

2

)2

N.

It is easy to see FN → ∞ as N → ∞. Therefore, the right hand side of the above
inequality goes to 0 as N →∞. 2
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