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Abstract

We study stochastic linear-quadratic (LQ) optimal control problems over an infinite time
horizon, allowing the cost matrices to be indefinite. We develop a systematic approach
based on semidefinite programming (SDP). A central issue is the stability of the feedback
control; and we show this can be effectively examined through the complementary duality
of the SDP. Furthermore, we establish several implication relations among the SDP comple-
mentary duality, the (generalized) Riccati equation, and the optimality of the LQ control
problem. Based on these relations, we propose a numerical procedure that provides a thor-
ough treatment of the LQ control problem via primal-dual SDP: it identifies a stabilizing
feedback control that is optimal or determines that the problem possesses no optimal so-
lution. For the latter case, we develop an e-approximation scheme that is asymptotically
optimal.
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1 Introduction

Linear—quadratic (LQ) control is a control model where the system dynamics is linear in both the
state and control variables and the cost functional is quadratic in the two variables. Specifically,

in the deterministic case, it refers to the following dynamic optimization problem:

(DLQ) min J(zo,u(-)) := /0 ()T Qu(t) + u(t)” Ru(t)dt (1)
s.t.  (t) = Az(t) + Bu(t) (2)
.’L‘(O) =xp € §Rn,

where 7 is either finite or infinite, corresponding respectively to models in a finite time horizon
and infinite time horizon. Here A, B,Q) and R are constant matrices, with ) and R being
symmetric matrices (in the finite horizon case, these matrices are all allowed to be time-varying);
and the superscript 17" denotes the transpose of matrices and vectors.

Theoretically LQ control is one of the most important control problems in that, on one
hand, it provides fundamental insights into more general problems and, on the other hand, it
admits elegant, complete solutions. Practically it has wide applications. It has its roots in
least-square estimation, which can be traced back to the era of calculus of variations. The very
first attempt in tackling a deterministic LQ control was made by Bellman, Glicksberg, and
Gross [6, Chapter 4] in 1958. However, Kalman has been widely credited for his pioneering
work [19], published in 1960, in solving the problem in a linear state feedback control form.
(A less well-known work was done by Letov [21], who obtained similar results at almost the
same time.) Since then, the problem has been extensively studied and developed into a major
research field in control theory. In the LQ theory, the ubiquitous Riccati equation (which is a
backward ordinary differential equation for the finite horizon case and an algebraic equation for
the infinite horizon case) plays a key role, and an optimal control can be represented explicitly
via a solution to the Riccati equation. A systematic account on deterministic LQ theory can
be found in the book by Anderson and Moore [4].

In the classical deterministic LQ control, one typically assumes that the matrices ) and R,
the so-called cost weighting matrices, satisfy @ > 0 and R > 0. Under this assumption, the
LQ problem is well-posed and admits unique optimal control. The case when @ is allowed to
be indefinite was investigated by Molinari [26]. On the other hand, R > 0 is in fact necessary
for the LQ problem to be well-posed (cf. [40, Chapter 6, Proposition 2.4]). The case when R is
singular, termed the singular control problem, has attracted substantial research interests; see
[12, 13, 17, 29, 30, 35]. Since the Riccati approach requires the nonsingularity of R, different
techniques, such as impulsive distributions, control dimension reduction, and linear matrix

inequality (LMI), have been utilized to handle the singular problem.



Due to the physical uncertainty present in most of the real-world control systems, it is nat-
ural to extend the LQ control to the stochastic case. Sometimes called the linear—quadratic—
Gaussian (LQG) model, the stochastic LQ model employs white noise to represent the un-
derlying uncertainty, resulting in a dynamic system governed by It6’s stochastic differential
equation. Wonham [36] is the first who solved a stochastic LQ problem making use of the
stochastic Riccati equation. Subsequent development on the problem can be found in [5, 7, 14]
and the references therein. It should be noted that in all those works, the positive definite-
ness/semidefiniteness of the cost weighting matrices, inherited from the deterministic case, was
imposed as a pre-rendered assumption. Recent studies, starting from [9], have, however, made
a case for studying LQQ problems in which R is singular, or even indefinite in the stochastic case.
In particular, a singular (or indefinite) R may naturally arise in a class of problems in which
the control affects the diffusion part of the system dynamics, as we will demonstrate in the
application example below. Further works on this so-called indefinite LQ control can be found
in [11, 10, 1, 37, 18]. Moreover, this theory has been utilized to obtain analytical solutions
to various continuous-time versions of the Nobel prizing winning Markowitz’s mean—variance
portfolio selection problem in finance; see [41, 23, 22].

In this paper we consider the following stochastic LQ control problem in infinite time hori-

(LQ) min J(zo,ul —E/ T Qa(t) + u(t)T Ru(t)]dt (3)
s.t.  dz(t) = [Az(t) + Bu(t)]dt + [Cz(t) + Du(t)]dW (t) (4)
z(0) =29 € R".

Here W(-) is a one-dimensional standard Brownian motion (with ¢ € [0,4+o00) and W(0) = 0),
defined on a filtered probability space (2, F,F;, P); and u(-) denotes the (open-loop) control,
which belongs to L%(Rm), the space of all R™-valued, F;-adapted measurable processes satis-
fying:

ymng 4o

E/ lu(t)]|2dt < +oo.
0

(Allowing multi-dimensional Brownian motion will render no additional difficulty to the results
below.) Note that the dynamics in (4) involve multiplicative noise in both the state and the
control. Also note that we allow the cost matrices Q and R to be singular or even indefinite.
Numerical examples where indefinite L(Q problems are well-posed and solvable can be found in

[1, 37]. However, a motivating application example is described in details as follows.



An application example

Consider the control of a portfolio in a market where there is one bond and one stock, with

price dynamics governed, respectively, by
dpo(t) = ’I"P()(t)dt, P()(O) = Po,
and
dP; (t) =P (t)[bdt + O'dW(t)], P (0) = p1.
Suppose an agent, with an initial endowment zp, wants to track a (stochastic) wealth trajectory
(e.g., an index fund) I(¢) determined by the following equation:
dI(t) = I(t)[brdt + or(t)dW (t)], I(0) = ip.

At any time ¢ > 0 the total wealth of the agent is denoted by z(¢), of which the market value
of the stock is denoted by m(t). If we assume that the stock is traded continuously, and that
there is no transaction cost, dividend payment and withdrawal for consumption, then z(¢) must
satisfy the following (see, e.g., [40, Chapter 2, Section 3.2]):

dz(t) = [rz(t) + (b — r)m(t)]dt + ow(t)dW (t), z(0) = zp.

The objective of the agent is to choose 7(-) so as to minimize the following objective:

J(2(0 _E / e~P2(t) — I()|2dt,
where p is the discount rate.

To transform the above into the formulation in (3) and (4), define the state and control

variables as follows:

(@(t),y(t) = e 2 (2(0), 1(1)),  u(t) = e~ x(2).

Then, the state dynamics become:

dz(t) = [(r— %p)x(t) + (b —r)u(t)]dt + ou(t)dW(t), z(0)= =z,

dy(t) = (br— 3o)u(t) + ory(DaW (1), ¥(0) = .

And, the objective function can be rewritten as follows:

TO)y0u() = E [ o)~ y(o)lde

+°° 1, —1 [ ¢
- E/O 2(0), y(0) | l 5 ] lyét; ]dt.

This way, we are in the framework of (3) and (4), with the control cost R = 0, and the state

cost @ = l 11 _11 ] being singular.
Bt



The classical approach

A classical tool in solving LQ control problems is the following (stochastic algebraic) Riccati

equation, with the symmetric matrix P being the unknown:
ATP+PA+Q+C'PC— (PB+C'PD)R+D"PD) ' (B"P+D'PC)=0. (5)
Suppose P* is a solution to the above equation with R+ DT P*D = 0 (positive definite). Then,
u*(t) = —(R+ DTP*D)"Y(BTP* + DTP*C)z*(t) (6)

is an optimal state feedback control for (LQ).

The classical theory has a rather serious limitation in treating the present indefinite LQ
problem: in general, there is no easy way to solve the Riccati equation (5), in particular
since the matrix inverse term also involves the unknown P. In fact, there is no guarantee for
R+ DTP*D » 0, except when R = 0, in which case P* > 0 follows as a solution to (5); see [1,
Corollary 5.1].

A traditional method for solving the Riccati equation (in the case of D = 0) is to consider
the so-called associated Hamiltonian matrix ([8]). In this case it is known that the Riccati
equation has a solution if and only if the associated Hamiltonian matrix admits no pure imag-
inary eigenvalues, a condition that can be verified using a Routh-Hurwitz type test on a set
of polynomial inequalities involving the given matrices. If the associated Hamiltonian matrix
passes this test, then the solution to the Riccati equation can be constructed using the eigen-
vectors of the associated Hamiltonian matrix. This procedure, however, does not apply when
R is indefinite, as the matrix inverse in (5), and hence the Riccati equation and the associated

Hamiltonian matrix themselves, may not be well-defined.

The SDP resolution

To overcome this difficulty, our idea here is to use semidefinite programming (SDP) as a unifying
approach to solve the stochastic LQ control problem, generally in the absence of the positive
definiteness/semidefiniteness of the cost matrices R and Q. SDP is a relatively new optimization
tool developed in recent years following the seminal work of Nesterov and Nemirovski [27]. It
relates intimately to the so-called linear matrix inequalities (LMI) (see [38]). Pioneered by
Yakubovich [39] and Willems [34], a vast literature has since appeared, applying the LMI
approach to both deterministic and stochastic systems; refer to [8] for a systematic exposition
and detailed literature review. However, the definiteness of R has remained a predominant
assumption in the research literature. In a recent work, [1], the relationship between the

Riccati equation in (5) and the associated LMI has been examined under the assumption that



R+ DTPD » 0 for some solution P of the Riccati equation (while R itself is allowed to be
indefinite). This assumption, however, is hard to verify a priori as P is unknown; and even when
this assumption is not satisfied, the corresponding LQ problem may still possess a meaningful
optimal control; see Example 6.1 below.

In contrast, our focus here is to develop a direct connection between the LQ control problem
and the duality theory of SDP. In particular, we demonstrate that to extend beyond the confines
of the classical LQ theory (with positive definite cost matrices) the central issue is stability; and
stability is intimately related to the complementary duality of the SDP associated with the
LQ problem. We establish several equivalence relations between the stability /optimality of
the LQ problem and the duality of the SDP, and demonstrate that a new class of optimal
controls can be constructed based on the dual SDP. Furthermore, exploiting the primal-dual
structure of the SDP also leads to powerful and efficient computational means, based on the
newly developed primal-dual interior-point techniques (refer to, e.g., [31]), to solving the LQ
problem. In short, while the LMI approach is a primal-only method, our primal-dual SDP
approach applies to a more general class of problems, generates new theoretical results, and

leads to practical computational algorithms.

Briefly, the rest of the paper is organized as follows. In §2, we introduce several regularity
conditions relating to stability, and present the preliminaries of SDP. The main results of the
paper are presented in the next two sections: We establish first in §3, the connection between
stability and the dual SDP; and then in §4, several implication relations among the optimality
of LQ control problem, the complementary duality of the SDP, and a generalized version of
the Riccati equation (5) involving a matrix pseudo-inverse. A synthesis of these results is
presented in §5, along with a computational procedure that provides a systematic treatment
of the LQ control problem via SDP. Several examples are collected in §6 to illustrate some
of the key technical issues involved in the SDP approach. For problems that do not possess
an attainable optimal control, an e-approximation scheme is developed in §7, which achieves

asymptotic optimality. Brief concluding remarks are summarized in §8.

2 Preliminaries
2.1 Regularity Conditions

Since we are concerned with an infinite horizon in (LQ), we need to address the general issue

of stability.

Definition 2.1 (i) An open-loop control u(-) is called (mean-square) stabilizing at g, if the

corresponding state z(-) of (4) with the initial state zo satisfies limy_, 1o E[z(t)T z(t)] = 0.



(ii) A feedback control u(t) = Kxz(t), where K is a constant matrix, is called stabilizing, if for
every initial state xg, the solution to the following equation
dz(t) = (A+ BK)z(t)dt + (C + DK)z(t)dW (1),
z(0) = g,

satisfies limy_, 4 oo E[z(t)Tz(t)] = 0.

(iii) The system in (4) is called (mean-square) stablizable if there exists a stabilizing feedback

control of the form u(t) = Kz(t) where K is a constant matrix.

Definition 2.2 (i) An open-loop control u(-) € L%(R™) is called admissible (at z) if it is

stabilizing at z¢. The set of all admissible controls at z, is denoted as U,5.

(ii) An admissible pair (z*(-),u*(-)) is called optimal (at xo) if u*(-) achieves the infimum of
J(zo,u()) over u(-) € U,9.

(iii) The control problem (LQ) is called well-posed (at xg) if

—oo < inf  J(zg,u(-)) < 4oo;
u()EU:(;J

(LQ) is called attainable (at xy) if it is well-posed (at zy) and there exists an optimal

admissible control.

Unless explicitly stated otherwise, we shall assume throughout the paper that the system
under consideration, (4), is mean-square stabilizable. Note that this is a very mild regularity
condition; in particular, it is implied by the well-posedness of (LQ) when @ > 0 and R > 0.
Indeed, the well-posedness of (LQ) yields that there is at least one control whose cost is finite.
As a result, under that control, limy_, o E[z(#)T Qz(¢)] = 0. Thus the control must be stabilizing

due to the nonsingularity of Q.

On the other hand, to appreciate why the admissible controls have to be stabilizing, consider
in the case when @ > 0 and R > 0. In order for the cost objective in (3) to be finite it is
necessary (as shown above) that the corresponding control must be stabilizing. In general, a
non-stabilizing control is ill-behaved, and hence should be excluded.

Attainability of an optimal admissible control is another issue, even when the problem is
well-posed. Consider the following simple (deterministic) LQ problem:

min [;° z(t)%dt
s.t. dz(t) = [—z(t) + u(t)]dt
z(0) = 1.

Clearly, this problem has an infimum value zero. However, there is no control that attains the
zero cost. In general, deciding whether or not a problem has an attainable optimal control is

as hard as solving the (LQ) problem, especially for large problems.



2.2 Semidefinite Programming

SDP is a special form of the so-called conic optimization problem, which is in essence to optimize
a linear function over the intersection of two closed convex sets: one being an affine subspace
and the other, a cone. In SDP, the cone is formed by positive semidefinite matrices in the linear
space of symmetric matrices. Similar to linear programming, an SDP problem can be cast in
various ways. In standard form, an SDP is the following convex optimization problem:

(SDP), min (C,X)

st. (4,X)=0b;, fori=1,...m
X*>0

where C' and A; are n X n symmetric matrices, b; € R™ is a vector, i = 1,...,m, and (X,Y) :=
>_i,; XijYij denotes the matrix inner-product.

The above has an associated dual, which is also an SDP problem:

(SDP)y max bly
st. Y yiAdi+Z=C
Z = 0.

A conic optimization problem is said to satisfy the Slater condition if its feasible region has a
non-empty intersection with the interior of the cone. In our standard primal-dual SDP problems
stated above, the Slater condition has the following characterization. For the primal problem
(SDP),, the Slater condition is equivalent to the existence of a primal feasible solution X° such
that X% - 0. Similarly, for the dual problem (SDP),, the Slater condition is the existence of
a dual feasible solution (y°, Z°) with Z° = 0.

For conic optimization problems, a well-developed duality theory exists; see e.g. [38, 24, 27].

Key points of the theory can be highlighted as follows:

e The weak duality always holds, i.e. any feasible solution to the primal (minimization)
problem always possesses an objective value that is no less than the (dual) objective

value of any dual feasible solution (the dual being a maximization problem).

e In contrast, the strong duality — that the optimal values of the primal and dual problems
coincide — holds if there exists a pair of complementary optimal solutions X* and (y*, Z*),
namely, they satisfy X*Z* = 0. If, furthermore, it holds that X* 4+ Z* > 0, then this pair

of optimal solutions is called strictly complementary.

e Unlike linear programming, SDP may fail to satisfy the strong duality, let alone strict
complementarity. It is known, however, that if the primal problem is feasible and the

dual satisfies the Slater condition, then the primal problem must have a non-empty and



compact optimal solution set. Moreover, if both the primal and the dual satisfy the Slater
condition, then both must have non-empty and compact optimal solution sets, and the

strong duality holds.

In the SDP literature, the Slater type regularity conditions are mostly assumed in order to
avoid pathological cases. In Luo, Sturm and Zhang [24, 25], extensive analysis can be found
addressing the issue of regularity in the context of duality theory, and the related issue of how

to detect the duality status numerically.

The linkage between the L(Q) control problem and the SDP is best understood in the deter-

ministic setting. Consider the deterministic version of (LQ) as follows:

min /O T le(®)TQu(t) + u(t) Ru(t)]dt
s.t.  2(t) = Az(t) + Bu(t)
z(0) = zp € R".

Assume @ = 0 and R > 0. Then, the optimal solution to the above problem is:
u*(t) = —R BT P*z*(t),
where P* is a nonnegative definite solution to the Riccati equation:
Q+ATP+PA—PBR'BTP=0.

It turns out that solutions to the Riccati equation can be found through solving the following
SDP:

max (I, P)
R, BTP
st | pB, Q+aTP4+pa | =Y
Pesmn

where S"*™ denotes the space of n by n symmetric matrices. Note that the above is an SDP
problem because the constraint set can be viewed as an intersection between a linear subspace

and the cone of positive semidefinite matrices. The dual problem is:

min <R7 Zb) + <Q7 Zn)
st. I+Z'B"+BZ,+ Z,A" + AZ, =0

Z = l Zby Zu = 0.

zr  z,




It is interesting to note that both the primal and dual SDP’s above are well-defined even in
the presence of the singularity of R and (). In particular, there is no matrix inverse involved.

Similarly, the primal and dual SDP’s for the stochastic problem in (LQ) can be written as

follows:
(P) max (I,P)
st. L(P)>0
P eS8,
where
L(P) = R+ D"PD, BTP+DTPC _ @)
| PB+CTPD, Q+CTPC+ ATP+PA |’
and

st. I+ ZEBY +BZy + ZyAT + AZy
+CZnCT + DZyCT + CZEDT + DZDT =0

7 = [ ZB, ZU

> 0.
Z[rl;a ZN 0

In the above forms, (P) and (D) are said to satisfy the Slater condition, if there exist primal
and dual feasible solutions, P® and Z°, such that £(P°) = 0 and Z° > 0, respectively. On the
other hand, a primal optimal solution P* and a dual optimal solution Z* are called complemen-
tary optimal solutions if £L(P*)Z* = 0. Furthermore, they are called strictly complementary if
L(P*)+ Z* - 0.

As a least condition in order to apply the SDP approach, we assume throughout the paper
that the feasible set of (P) is nonempty. This assumption is satisfied automatically if the Riccati
equation (5) has a solution P* with R+ DT P*D = 0 (which is the key assumption in [1]) by
virtue of the well-known Schur lemma. It is also satisfied when @) > 0 and R > 0. Therefore,
without this assumption, the original L.QQ problem cannot be solved by either the Riccati or the

SDP approach.

3 Stability

Since we require admissible controls to be stabilizing, we need first to address the issue of
stability, which, as it will become evident below, relates closely to the dual SDP.

The following results from [1, Theorems 2.1, 5.2] will be used later.

10



Proposition 3.1 The following conditions are equivalent.
(i) System (4) is mean-square stabilizable.
(ii) Problem (D) satisfies the Slater condition.

(iii) There exists a matrix K and a symmetric matrix ¥ such that
(A+ BK)Y +Y(A+ BK)T + (C + DK)Y(C + DK)T <0,Y » 0. (8)

In this case the feedback u(t) = Kz(t) is a stabilizing control.
(iv) There exists a matrix K such that for any X there exists a unique solution Y to the

following equation
(A+BK)Y +Y(A+ BK)" + (C+ DK)Y(C + DK)T + X =0. (9)

Moreover, if X > 0 (resp. X > 0) then ¥ > 0 (resp. ¥ > 0). Furthermore, in this case the
feedback u(t) = Kx(t) is a stabilizing control.

(v) There exist a matrix X and a positive definite matrix ¥ > 0 such that

AY +YAT + BX + X"BT CY + DX
YcT + xXTpT -Y

In this case, the feedback u(t) = XY ~'x(t) is a stabilizing control.
Note that the last equivalent condition above is an LMI condition, based on which the mean-
square stabilizability can be verified numerically (cf. [8, 15]). Moreover, to check whether or

not a given feedback control u(t) = Kx(t) is stabilizing, it suffices to check if the LMI’s in (8)

have a feasible solution, which again can be carried out numerically.

Define:
F(P):=ATP+ PA+Q+CTPC — (PB+CTPD)(R+ DTPD)Y(BTP+ DTPC). (11)

Here, M stands for the pseudo-inverse of a matrix M (refer to [28]). Note that when M is a

positive semidefinite matrix, M satisfies the following properties:
Mt =0, MHT=M", M™M=MMT;
MM*M = M, MTMM*™ =M.

Clearly, the equation F(P) = 0 generalizes the classical Riccati equation (5). Hence, we
shall refer to it below as the generalized Riccati equation.

The following extended Schur’s lemma ([2]) plays an important technical role.

11



Lemma 3.2 Let matrices M = MT N and S = ST be given with appropriate dimensions.

Then the following three conditions are equivalent:

(i) M- NS*NT =0,5»=0,and N(I — SS*) =0.
| M N
(11) [ NT S
T

(i) l 5 N
N M

Theorem 3.3 If a feasible solution of (P), P*, is such that F(P*) = 0, and the feedback

control

> 0.

u(t) = —(R+ DT P*D)* (BT P* + DT P*C)x(t) (12)
is stabilizing, then there exist complementary optimal solutions of (P) and (D). In particular,

P* is optimal to (P); and there exists a complementary dual optimal solution Z*, such that
7% 0.

Proof. Denote K := —(R + DT P*D)* (BT P* + DT P*C). By the stability assumption of the

control (12) and Proposition 3.1-(iv), the following equation
(A+ BK)Y +Y(A+BK)' +(C+DK)Y(C+DK)T +I=0
has a positive solution. Let it be Y* > 0. Furthermore, let
Zh=Y"* Z} = KZ} and Z} = K(Z};)T. (13)
By this construction, we can easily verify that
l Z3, Z;;] B lI, KHO, 0 H I, 0
z)t, zx N 0, I 0, Zy KT I

Moreover, by direct verification, we know

> 0.

I+ (Z5)"BT + BZ} + Z3y AT + AZy + CZnCT + DZ3CT 4+ C(Z3) "' DT + DZE DT = 0.

Therefore, Z* is a feasible solution of (D). Moreover, using extended Schur’s lemma (Lemma

3.2), we have

P l (Z;g, i ]

", Zy
[ 1, ol[R+DTP'D, o0 I, -K Zy, 7
| =KT, I 0, F(P*) 0, I zZp)t, zy
_ [ 1, o] ®+DTPD)(Z; - K(Z)7), R(Z;—KZy)
- | -KT, 1 F(P*)(Z)", F(P*)ZY
[0, 0
— o, 0

12



where in the first equation the decomposition of £(P*) into the product of three matrices (the
Schur decomposition) is possible because L£L(P*) > 0, since P* is a feasible solution to (P);
hence, Lemma 3.2 can be invoked.

Therefore, the above establishes that P* and Z* are complementary solutions; in particular,
P* is optimal to (P) and Z* is optimal to (D). The last statement of the theorem follows from
the fact that Z3, =Y* > 0. O

Note that the assumption in the above theorem, that the control in (12) is stabilizing, is not
automatically satisfied even in the case when R+ D’ P*D > 0; see Example 6.2. The following
result shows, however, that we can possibly obtain a stabilizing feedback control via the dual
SDP.

ZB, ZU
ZIT;a ZN
feedback control u(t) = Zy Zy x(t) is stabilizing.

Theorem 3.4 Let Z = [ ] be a feasible solution of (D) with Zy > 0, then the

Proof. First of all, by feasibility of Z to (D) along with Schur’s lemma we have
Zp = ZuZN'ZE.

Then,

0= I+ZLBT + BZy + ZnAT + AZN + CZnCT + DZyCT + CZEDT + DZp DT
= I+ ZEBT + BZy + ZyAT + AZn + CZNCT + DZyCT + CZEDT + DZy Zy' ZE DT
= ZEBT + BZy + ZnAT + AZn + (CZn + DZy) Z5 (ZnCT + ZEDT).

Applying Schur’s lemma again, we conclude that Proposition 3.1-(v) holds with X = Zy and
Y = Zy = 0. Hence u(t) = Zy Zy x(t) is stabilizing. m

4 Optimality

Here we establish the relationship among the optimality of the original LQ problem, the pri-

mal/dual SDP problems, and the generalized Riccati equation.

Theorem 4.1 If (LQ) is attainable at any zp € R", then (P) must have an optimal solution
P* satisfying F(P*) = 0.

Proof. First, note that since (LQ) has a finite optimal value with respect to any initial value,

it must have a quadratic representation

inf  J(zo,u(")) =z Mxy, Vzo € R
u(-)EUfg

13



see [4, p.21] (note that the proof there, which is for the deterministic case, readily extends to
the stochastic case).

Suppose for the time being that the matrix M is a feasible solution of (P), the validity of
which will be proved later. Let u*(-) be the optimal control and z*(-) be the corresponding
state from the initial zg. Then for any feasible solution P of (P), applying It6’s formula (see,
e.g., [40, p.36]) yields

d(z* ()T Pz (1))

= [(Az*(t) + Bu (1)) Pa* (1) + =" ()T P(Az* (1) + Bu’(1))
+(Ca* (1) + Du* ()T P(C* (1) + Du* (£)) | dt + {...}dW (t)

= [#*WT(ATP + PA+ CTPC)z* (1) + 2u*())T (BT P + DT PC)z*(t) + w* ()T DT PDu* (1) dt
+{..2dW (1),

Integrating the above over [0, 00), taking expectations, and using the fact that E[z* ()T Pz*(¢)] —

0 (as u*(-) is stabilizing), we obtain:

0=z Pzo+E [°[z*(t)T(ATP + PA+ CTPC)z*(t) + 2u*(t)T(BTP + DT PC)z*(t)
+u*(t)T DT PDu*(t)]dt.
(14)

Completion of square yields:

J(zo,u"(-))

E / 2* ()T Q™ (£) + w* ()T Ru(£)]dt
0

= :vOTPwo-I-

E /0 - {lu*(t) - Kz* (&) (R + DTPD)[w*(t) — Ko™ (1)) + =" (1) F(P)a*(t) } dt, (15)

where K := —(R+DTPD)* (BT P+ DT PC). Since P is feasible to (P), we have R+ DT PD = 0
and F(P) = 0 by extended Schur’s lemma. This means that

zy Mzo = J(zo,u* () > zg P, (16)

for any P feasible to (P). Hence M must be optimal to (P). On the other hand, taking P = M in
(15) and noting J(zg,u*(-)) = 2§ Mxo, we conclude that z(t)T F(M)z(t) = 0 for all ¢ € [0, o0).
Since ¢ can be chosen arbitrarily it follows that F (M) = 0. The desired result thus follows.

What remains is to show the primal feasibility of M. To this end we consider a perturbation
on the problem (LQ). That is, we keep all the data A, B, C' and D unchanged, and let R, =
R+ el and Q. = @ + el where € > 0 is a small positive number.
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Under the perturbation (e > 0), the corresponding SDP’s,

(P.) max (I,P)

ot R+ el + DTPD, BTP + DTPC .0
v PB+CTPD, Q+el+CTPC+ATP+PA |~
Pesvm

and

(De) min (R+e€l,Zp)+(Q +€l, Zn)
st. I+ ZEBT 4+ BZy + ZyAT + AZy
+CZnCT + DZyCt + 0ZEDT + DZpDT =0

[ Zp, Zy

=0
Zga ZN

both satisfy the Slater condition (the former does because the feasible set of (P) is assumed to be
nonempty, and the latter because of the mean-square stabilizability assumption and Proposition
3.1-(ii)), and therefore complementary optimal solutions exist ([38]). Observe that the feasible
set of (D) is independent of e. Take any dual feasible solution Z°. By weak duality, we have

tr P=(I,P) < (R+€l,Z%) +(Q + €I, Z%). (17)

Let P be a feasible solution of (P), which exists by our assumption. Certainly, P is feasible to
(P,) for all e > 0. Theorem 5.5 in [1] asserts that for € > 0, the unique optimal solution for
(P.), denoted by P*, dominates any other feasible solutions. Hence, P < P’ for all € > 0.
This, together with (17), implies in particular that P* are contained in a compact set, with
0 <e<e (e > 0is a pre-determined constant). Now, take a convergent subsequence such
that
lim P! = Py

71— 00
with ¢, = 0 as 1 — oo.
Clearly, Py is a feasible solution of (P) since the feasible region of (P.) monotonically shrinks

as € | 0. We now show that Py = M. Define the perturbed cost function

T.(z0,u(-)) = E /0 Tl ()T Qe (t) + u(t)T Reu(t)]dt.
Similar to (15), we can show

Je(zo,u(-)) = 2§ Przo+ E [5°{[u(t) — Kez()]" (Re + DT P! D)[u(t) — Kex(t)]
+a(t)TFe(P)x(t) }dt,
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for any u(-) € U9, where K, := —(R.+ DT P! D)™ (BT P} + DTP.C) and F. is the “perturbed”
Riccati operator with @ and R in (11) replaced by Q. and R, respectively. In [1], Theorems 5.4
and 5.5, it is stated that if the problem (P.) is strictly feasible (which is the case here) with an
optimal solution P*, then the corresponding feedback control u(t) = K.z (t) must be stabilizing
(and hence admissible), and P} must be the unique optimal solution to (P¢) satisfying the

corresponding Riccati equation F¢(P) = 0. Thus u(t) = K.z(t) must be optimal, and

inf J.(zo,u(-)) = zd P’xo,
u(-)EU:g

which further yields

w¥Przo = inf J(zo,u(’)) > inf J(zo,u(-)) =z M.
¢ u(-)EUY u(-)EUY
Letting ¢; — 0, we obtain

xg Pixo > 23 Mxg.

On the other hand, (16) gives rise to the opposite inequality since Pj is feasible to (P). Thus
we have M = Fj. This establishes that M is indeed a primal feasible solution. a

An important implication, which is the contrapositive of the above theorem is this: If (P)
has no optimal solution, or if (P) has optimal solutions but none of them satisfies the generalized
Riccati equation F(P) = 0, then (LQ) has no attainable optimal control; in particular, it does
not have any optimal feedback control.

A natural question to ask at this point is whether or not the converse of the above statement
is true. Namely, if (P) admits an optimal solution P* satisfying F'(P*) = 0, then does (LQ)
have an attainable optimal control? Recall that in the finite horizon case an optimal feedback
control is represented as u*(t) = —(R + DT P*D) " Y(BTP* + DT P*C)z*(t) (cf. [9, Theorem
3.2]). However in the present case R+ DT P*D may be singular, therefore we naturally expect

that an optimal feedback control should be
uw*(t) = —(R+ D" P*D)" (BT P* + DT P*C)z*(t). (18)

The following result establishes that this control is indeed optimal if it is stabilizing. (Recall

that in the infinite horizon case, stability is essential.)

Theorem 4.2 If a feasible solution of (P), P*, is such that F(P*) = 0, and the feedback
control u*(t) in (18) is stabilizing, then it must be optimal for (LQ).
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Proof. For any admissible control u(:) € U.J, an argument similar to that in proving (15)

leads to

J(zo,u(-))
— E / T Qa(t) + u(®)” Ru(t)]dt
TP

To
+E /000 {[U(t) — Kz(t)]"(R + DTP*D)[u(t) — Kz(t)] + :c(t)TF(P*)x(t)} dt
P

Z
+E / [u(t) — Kz(8)]" (R + DT P*D)[u(t) — Kx(t)|dt, (19)

where K := —(R+ DT P*D)* (BT P* + DT P*C). Since u*(t) = Kz*(t) is stabilizing, the above

shows that «*(-) must be optimal. O

As mentioned earlier, the stability of the control in (18) can be examined numerically via
the LMIs as stipulated in Proposition 3.1-(iii). On the other hand, by Theorem 3.3, in order
for this control to be stabilizing, it is necessary that there exist complementary solutions P*
and Z* of (P) and (D), respectively, with Z3 > 0. It is interesting that under these (weaker)
conditions, one can prove the existence of an explicitly representable optimal feedback control
of (LQ) in (22) below (which is not necessarily in the same form as the control in (18)).

First we need a lemma.

Lemma 4.3 Suppose (P) and (D) have complementary optimal solutions, P* and Z*, respec-
tively. Then, F(P*) = 0.

Proof. We have the following decomposition:

I, 0HR+DTP*D, 0 HI —K]’ (20)

Lp7) = [ —KT, T 0, F(P*)

where K := —(R + DT P*D)* (BT P* + DT P*C). From the relation £(P*)Z* = 0, it follows
that

[ R+DTP*D, 0 I, -K Zy,  Zf
0, F(P*) | |0, I (Ze)*, Zy
[ (R+DTP*D)(Z3 — K(Z}))T), (R+DTP*D)(Z; — KZ})
i F(P*)(Z§)T, F(P*)Zx
[0, 0
= |0 o ] (21)
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Therefore,
F(P)(Z)T =0,  F(P)Zy =0
and
Z;F(P*) =0, ZNyF(P*)=0.
On the other hand, the dual nonnegativity constraint, together with the extended Schur’s
lemma, yields
Zy = ZH(Z8) N (Z)T = 0,
and
2 (I - Zi (Z3)") = .
Multiplying F'(P*) on both sides of the dual equality constraint and making use of the above

relations, we obtain

0 = F(PYI+0zyCt+Dzict + 0Tz D + DZL DY) F(PY)
= F(P(I+CzZyCT + Dz CT + CT 75D + DZ5(Z3) T (Z5) DT F(PY)
= F(P")’+ F(P")[CZy + DZp)(Zy) " [ZNCT + (Z5)" DT]F(PY)
This means, F(P*) = 0. O

Theorem 4.4 Assume that solving (P) and (D) yields complementary optimal solutions P*
and Z*, with Z3, > 0. Then F(P*) =0, and (LQ) has an attainable optimal feedback control
given by

u*(t) = Zy(Zy) " e (). (22)

Proof. First, that F/(P*) = 0 is seen from Lemma 4.3 (even without the assumption Z3, > 0).
Next, for any feasible solution P of (P) and any (stabilizing) control u(-) € U9, along with

the corresponding state z(-), an argument similar to the one that proved (15) leads to

-'170’ ())
_ E / + u(t)T Ru(t)]dt
= 1) Pz

+E /0 N {[u(t) - Ko@) (R + DTPD)[u(t) - Ku(t)] + () F(P)z(t) } dt, (23)

where K := —(R+ DTPD)*(BTP + DT PC). Since P is feasible to (P), we have F(P) = 0.
This means that
J(zo,u()) >zl Pz, Yu(-) € U,
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for any P feasible to (P).

Note that as yet we cannot conclude that the control in (18) is optimal, since we do not know
whether or not the control is stabilizing, whereas (23) holds only for stabilizing controls. To
get around, let us define a feedback control u*(t) = Z};(Z3)~'z*(t), which, following Theorem
3.4, is stabilizing. Hence (23) with u(-) = u*(-) and P = P* yields

T(20,u* () = 2} P*ag + E /0 Tt ) = K2t ()] (R + DTP*D)ut(t) — K*z*()|dt,  (24)
with K* := —(R+ DT P*D)* (BT P* + DT P*C). Next, we show that
[u*(t) — K*z*(t)]T(R + DT P*D)[u*(t) — K*z*(t)]

[w*(t) — Z3;(Z3) " =* ()] (R + DT P*D)[u* () — Zg(Zy) " *(1)] (25)
0.

To this end, apply the complementary duality. From the relation £L(P*)Z* = 0, it follows that

[ R+DTP*D, 0 ] l I, —K* ] [ Zy, 7% ]

I 0, FP* |0, I (Z)t, Zy
| B+ D"P*D) (2} — K*(2)T), (R+ DTP*D)(Zf — K*Z}%) ]
| F(P*)(Zg)", F(P)Zy
[ (R+D"P*D)Z5 + (B"P* + DT P*C)(Z)", (R+ DTP*D)Z} + (BT P* + DTP*C)Z3%
| F(P*)(Zp)T, F(P*)Zy
[0, 0 ]

10, 0

Therefore,
(R+ D"P*D)z} = —(B"P* + DT P*C)Z},. (26)

Repeatedly using the above identity, we get
0 = [u"(t) — Zy(Zy) " =" (1)) (R +DUP*D)u*(t) — Z5(Zy) "t (1))
= w*(t)T(R + DTP*D)u*(t) — 2u* (t)T (R + DT P*D) Z}(Z}) ta*(t)
+z* ()T (Zy) N (Z5)T (R + DTP*D)ZE(Z}*v)’I:v*(t)
= w*(t)T(R+ DTP*D)u*(t) + 2u* (t)" (BT P* + DT P*C)z*(t)
+z* ) (Z3) N (Z5) T (R+ D" P*D)(R+ DT P*D)Y (R + DT P*D) Z}(Z}) o™ (t)
= w*(t)"(R+ DTP*D)u*(t) + 2u* (t)" (BT P* + DT P*C)z*(t)
+z*(t)T(P*B + CTP*D)(R + DT P*D)* (BT P* + DT P*C)z*(t)
= [u*(t) — K*z*(t)]" (R + DT P*D)[u*(t) — K*z*(t)).
This proves (25). Tt then follows from (23) and (24) that

J(zo,u*(-)) = zd P*zo < J(z0,u(-)), Vu(-) € U3
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Hence, u*(-) is optimal. O

A sufficient condition for Theorem 4.4 to hold is the strict complementarity of the SDP’s
(P) and (D), as the following proposition asserts.

Proposition 4.5 Suppose that (P) and (D) have strictly complementary optimal solutions P*
and Z* respectively, i.e. L(P*)Z* =0 and L(P*) + Z* = 0. Then, Z} > 0.
Proof. Following Lemma 4.3 and (20) we have
£(P*) = (H YHYTdiag(R+ DTP*D,0)H !
where
ji= l o ] and K = —(R+ DTP*D)* (BT P* + DTP*C).

Let Z*:= H'Z*(H 1)T.

It is readily seen that Z% = Z%. Moreover, diag (R + DT P*D,0) = HTL(P*)H and
Z* = H='Z*(H~')T are nonnegative definite and they are complementary to each other. We
shall further show that they stay strictly complementary. To see this we first note that the
range space of L(P*), range(L(P*)), and the range space of Z*, range(Z*), form an orthogonal
decomposition of the whole space. Clearly, range(H? £(P*)H) has the same dimension as
that of range(L(P*)); and range(Z*) has the same dimension as that of range(Z*). Finally,
range(H” L(P*)H) and range(Z*) remain orthogonal to each other. Hence they span the whole
space too. Therefore,

HTL(P)H + Z* » 0.
As we noted before, the last diagonal block of the above matrix is Z3,. Hence, Z} > 0, as the

proposition stipulates. O
If P* and Z* are strictly complementary optimal solutions with
R+D'P*D -0, (27)

and Z3} > 0, then by (26), the feedback control in (22) coincides with the one in (12). But if
R + DTP*D is singular, then these two controls can indeed be different; see Example 6.1.

5 Synthesis

To summarize the results we have so far obtained, consider the following statements:

(a) (LQ) is attainable at any zo € R™.
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(b) (P) has an optimal solution P* that satisfies:

(i) the generalized stochastic Riccati equation F'(P) = 0;

(ii) the corresponding feedback control u*(t) of (18) is stabilizing.

(c) (P) and (D) have complementary optimal solutions P* and Z*, with Z3 > 0.

The following is a summary of our main results:
Theorem 5.1 The following implications hold:

e (a) = (b(i)): Theorem 4.1.

(b) = (a), with the control in (18) being optimal: Theorem 4.2.

(b) = (¢): Theorem 3.3.

(¢) = (a), with the control in (22) being optimal: Theorem 4.4.

Some remarks are in order. Among the above statements, (a) is a direct statement about
the solution of the original problem (LQ); (b) and (¢), on the other hand, provide two com-
putational approaches to (LQ) via SDP — note that they both imply (a) with the respective
optimal feedback controls explicitly given. There are differences, however, between the two; in
particular, they have different requirements, and lead to different controls. Computationally,
(c) appears to have an edge over (b), as most SDP solvers are based on primal-dual interior
point methods. This implies that the iterative solutions produced by such a solver will likely
to converge to the analytic centers of the primal and dual optimal sets respectively, which are
known to be “maximally complementary” to each other. Therefore, if there is indeed any dual
optimal solution with Z3 > 0, then the solver will return such a solution. In this respect,
checking Z3% > 0 is much easier than verifying the stabilizing condition in (b(ii)).

Furthermore, Theorem 5.1 also reveals the relationship between (b) and (¢): (b) implies
(c), whereas (c) implies (b(i)) via (a). That (c¢) cannot imply the stabilizing condition in
(b(ii)) is in itself an interesting fact, which suggests that the two controls in (18) and (22) are
in general intrinsically different. Even when the former is stabilizing, and hence both controls
are optimal — since we then have (b) = (c) = (a) — they can still be different (except for

the special case of (27), where (b) and (c¢) become equivalent); see Example 6.1.

If (b(ii)) is satisfied, then (b) is reduced to (b(i)). Consequently, (a), (b) and (c) are

equivalent. Hence we have the following result.
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Corollary 5.2 Suppose that the control in (18) is stabilizing, Then, (a), (b) and (c) are

equivalent.

An important special case is when
Q >0, R > 0. (28)

In this case, (P) satisfies the Slater condition because P = 0 is a strictly feasible solution, and
so does (D) because of the mean-square stabilizability assumption of the original LQ problem.
Therefore, (¢) holds. On the other hand, by [1], Corollary 5.1, the control in (18) must be
stabilizing. Hence Corollary 5.2 stipulates that (a) and (b) must hold true as well.

Corollary 5.3 Suppose (28) holds. Then, all the three statements (a), (b), and (¢) hold true.

Based on the results obtained earlier, it is possible to develop a computational procedure as
follows to provide a complete treatment of the stochastic LQ control problem, and in particular
to answer if the problem has an optimal feedback control representable as in (18) or in (22). The
procedure only involves solving some LMIs, an SDP and its dual, for which numerical algorithms
have been extensively developed (among others see [16, 32, 33]). Insofar as the complementary
primal SDP solution satisfies the generalized Riccati equation (see Lemma 4.3), the procedure

can also be viewed as a numerical approach to solving the Riccati equation.

Step 1. Check if the feasible set of (P) is nonempty (which is an LMI condition). If not, then
stop: the LQ problem cannot be solved by either the SDP approach or by the Riccati

equation; else continue.

Step 2. Check if (D) satisfies the Slater condition, which amounts to solving a system of strict
LMIs. If not, then stop: the LQ problem is not mean-square stablizable according to

Proposition 3.1-(ii) and hence ill-posed; else continue.

Step 3. At this point we know that (P) is feasible and (D) satisfies the Slater condition, and
hence (P) has an optimal solution (see, e.g., [24, Theorem 5]). Check if there is any
optimal solution of (P) that satisfies F/(P) = 0. If not, then stop: the LQ problem has

no attainable optimal feedback control according to Theorem 4.1; else continue.

Step 4. Check if the control in (18) is stabilizing (which can be checked by LMIs according to

Proposition 3.1-(iii)). If yes, then stop: the control is optimal; else continue.

Step 5. Check if (P) and (D) have complementary optimal solutions P* and Z* with Z} > 0.
If yes, then stop: the control u*(t) = Z}(Z%) 'x*(t) is optimal; otherwise (LQ) cannot
be solved by our SDP approach, neither can it be solved by any other existing method.
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Notice that in practical implementation one might as well starts solving (P) and (D) by
means of a primal-dual interior point code (e.g., that of using the homogeneous self-dual em-
bedding technique; see [32]), i.e., running Step 5 first. If the result turns out to be positive, then
Steps 1-4 are not necessary. On the other hand, even if the result is negative, the algorithm
will still tell the feasibility of (P) and (D). This makes it easier to carry out Step 1, followed by

subsequent steps.

6 Examples

The first example below demonstrates how the LQ control problem can be solved by the SDP
approach developed here, even in the presence of the singularity of R + DT P*D. It also shows
that optimal stabilizing controls can be obtained by both SDP approaches in (b) and (c) of
Theorem 5.1, leading to different optimal controls in (18) and (22), respectively.

Example 6.1 Let m=n=1; A=C=-1,B=D=1; Q =1 and R = —1. Namely, the

problem is this:

min E [(°[z(t)? — u(t)?]dt
s.t. da(v(;f) = [—z(t) + u(t)]dt + [—z(t) + u(t)|dW (t)
z(0) = xy.

This system is mean-square stabilizable, as u(t) = ax(t) is stabilizing for any « with |a| < 1. To

see this, applying It6’s formula to the system (1) under the above feedback control, we obtain

dE[z(t)?] = (a? — 1)E[z(t)2)dt, E[z(0)?] = 2.

Hence
Elo(t)?] = el V'af, (29)
which converges to 0 as t — +o0.
Now, the primal SDP is
max p
—1+p, 0
1. >~ 0.
s.t [ 0, 1—p |~ 0

The above has an optimal solution p* = 1 (the only feasible solution), which also satisfies the
generalized Riccati equation F'(p) =1 —p = 0. (Note that singularity occurs in this solution).
The feedback control given by (18) reduces to u*(¢t) = 0, which is stabilizing as shown above

(a = 0 < 1). Therefore, all the tests in Steps 1-4 of the computational procedure presented in
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§5 are passed. Consequently, u*(t) = 0 is one optimal control of the LQ problem. Moreover,

the corresponding objective value is

o o
E[ o @Pdt=af [ et =}, (30)
0 0
where the first equality is due to (29) with a = 0.

Next, we can obtain additional — in fact, infinitely many more — optimal controls by virtue
of (c¢). Indeed, the dual SDP in this case is:

min —2zp + 2z,
st. 142z,—2,=0,

5= [ Zby  Ru

> 0.
Zuy Rn

It can be directly verified that the above has multiple optimal solutions:

(Zb, Zuy Zn) = (Zb, 2y, 1+ Zb),

parameterized by (zy, z5) with
25 >0, 22 < z(1+ z). (31)

In particular, note that the above ensures z, = 1+ 2, > 0. Furthermore, these (parameterized)
solutions are all complementary to the primal optimal solution p* = 0. Hence, the test in Step

5 of the numerical procedure is passed, which gives rise to (multiple) optimal controls
uw*(t) = zyz, 2 (t) = az*(t).
Notice that the feedback gain « satisfies

|a| — ZU < VZb(].+Zb) — zb < 1
142y — 14 2 V1+z

where the first inequality follows from (31). Therefore, these controls are indeed stabilizing by

(29). Finally, the optimal cost corresponding to these controls is:

J= E[°(1—a?)[z(t)]?dt
= z(1—a?) [¢° el@® 1)t gy
_= :[,‘(2),

which coincides with (30).

The next example illustrates two points: First, when the primal SDP solution satisfies the
Riccati equation (i.e., (b(i)) holds), and moreover (27) holds, the resulting feedback control
may still not be stabilizing (i.e., (b(ii)) fails). When this does happen, the complementarity
condition in (c¢) fails. Second, there indeed exist well-posed stochastic control problems which,
however, do not have any attainable optimal control. This calls for approximation methods,

which will be presented in the next section.
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Example 6.2 Suppose m=n=1;A=C=0,B=D=1; Q =4 and R = —1. The control

system is as follows:
min E [{°[4z(t)? — u(t)?]dt
s.t.  dz(t) = u(t)dt + u(t)dW (¢)
z(0) = zo.

Consider a feedback control u(t) = —kz(t). Applying It6’s lemma yields
d[z(t)]” = (k* — 2k)[(1)]* — 2k[z(2)*dW (t).

Clearly, such a feedback control is stabilizing if and only if k2 — 2k < 0, or, 0 < k < 2. In
particular, this implies that u(t) = —xz(t) is stabilizing while u(t) = —2xz(¢) is not.
For any 0 < k < 2, it follows that E [{°[z(t)]°dt = z%/(2k — k?). Therefore, the control
u(t) = —kz(t) has a cost
(4— k2)E/OOO[x(t)]2dt — (14 D).

As k1 2 we see that the cost can be arbitrarily close to 2z3. Nevertheless, this optimum is not
attainable when zy # 0.

In terms of the corresponding SDPs, the primal reads

max p

—1+p, p

s.t.
Ds 4

= 0.

This problem has only one feasible solution p* = 2, which is necessarily the optimal solution.

It clearly satisfies the Riccati equation:

The control in (18) is hence:

wH(t) = —— 1p+ (1) = =22°(0)

which is not stabilizing as we discussed before.
Since (b(ii)) does not hold, we expect (c) to fail as well, as (b) and (c) are equivalent
under (27). So, let us now examine the dual:

min 4z, — 2
s.t. 1422, + 2, =0,

z:z[zb’ Fu = 0.

Zuy <n

This problem is strictly feasible, since the original L(Q problem is stabilizable. For instance,

(2b, 2u, 2n) = (1,—1,2) is a strictly feasible solution. Hence ([38, Theorem 3.1]), the infimum of
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the dual objective value must coincide with the supremum of the primal objective value, which
is 2. This means, should the dual optimal solution z* exist, it must satisfy 4z; — z; = 2, or
zy = (24 2z;)/4. This, along with z;; = —(1 + 2;)/2, leads to

2 * 1 *\2
da=a- B UHAR Gy

which violates z > 0. Consequently, the dual does not have an attainable optimal solution, and

the complementary duality fails.

The third example below illustrates a situation opposite to Example 6.2: (b(i)) fails while
(b(ii)) holds. Namely, when R + D P*D = 0, the optimal primal solution P* may not satisfy
the generalized Riccati equation F(P) = 0 (and wvice versa), even when the corresponding
control is stabilizing. In this case, Theorem 4.1 shows that the L.Q problem has no attainable

optimal control.

Example 6.3 Let m =n=1; A=-1,B=1,C=D=0; Q =1and R = 0. This is
actually a deterministic system that is mean-square stabilizable, as u(t) = 0 is stabilizing. The

corresponding SDP reads:
max p

0, P
s.t. [ p, 1—2p

The above has a unique feasible solution p* = 0, which is hence optimal too. However, the

> 0.

generalized Riccati equation in this case is F/(p) = 1 — 2p = 0, which has a unique solution
p= % Therefore, the two solutions are completely different.

Moreover, notice that while (b(i)) fails in this case, (b(ii)) does hold: uw*(t) = 0 is indeed
stabilizing. On the other hand, in view of Theorem 5.1, (¢) = (a) = (b(i)), we expect (c) to
fail. Indeed, the dual SDP is

min 2z,
s.t. 142z, — 22, =0,

z::lzb’ Zu = 0.

ZU7 Zn

This dual problem is strictly feasible, and it has an infimum equal to 0, which is the supremum
of the primal. However, the dual optimal solution is not attainable, because whenever z, = 0

we must have z, = 1/2, and hence it is impossible to have z > 0.

7 e-Approximation

Examples 6.2 and 6.3 have illustrated that the LQ control problem could be well-posed, but still

there exists no attainable optimal control. When this happens we propose to consider (LQ,),
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obtained by keeping all the data A, B, C and D in (LQ) unchanged, and letting R, = R + €I
and Q¢ = @ + el with € > 0; such a perturbation was already considered in the proof of
Theorem 4.1. Recall that the associated SDPs for (LQ.) are

(P) max (I,P)

R+ el +DTPD, BTP+ DTPC
PB+CTPD, Q+el+CTPC+ ATP+ PA
Pesmm

and
(De) min (R+e€l,Zp)+(Q +¢€l, Zy)
st. I+ ZLB" + BZy + ZyAT + AZyn
+CZNC" + DZyCT + CZEDT + DZgDT =0
ZB, Zu
Z[:,;a ZN
Assuming that the LQ is stablizable and (P) is feasible, both (P.) and (D) satisfy the Slater

condition.

= 0.

Theorem 7.1 Suppose (LQ) is well-posed. Let Jf(z¢) and J*(zo) be the optimal values of
(LQ¢) and (LQ), respectively. Then,

leiﬁ)l JI (xo) = J*(z0).
Proof. Let the optimal solution of (P¢) be P. In the proof of Theorem 4.1, we proved that
u¢(t) = —(R. + DTP'D)* (BT P* + DTP.C)x5(t) (32)

is optimal for (LQ,), with the corresponding optimal objective value equal to J*(zq) = z{ P’ zo.
Following the same argument as in the proof of Theorem 4.1, we know that P is contained
in a compact set, with 0 < € < e9. Moreover, since by definition J(z() decreases monotonically
as € | 0, so does PF. Therefore, P’ itself also converges as € | 0.
What remains is to show that z} Pjzo is equal to the true infimum of (LQ), now denoted
as J*(zp). To this end, first note that

x} Prag = J¥ () > J* (x0),
where the inequality is due to the positive perturbation in (P.). Letting € — 0, we obtain
T p* *
zo Pyzo > J* ().

On the other hand, since Py is feasible to (P) (see the proof of Theorem 4.1), it follows from
(23) that
J*(xo) = inf  J(zo,u(-) >z Pizo.
u(-)EU;g
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This completes the proof. O

The above theorem says that the objective value achieved by the perturbed problem is
asymptotically optimal. The next result is concerned with the asymptotic optimality of the

feedback control.

Theorem 7.2 The feedback control uf(-) constructed by (32) is asymptotically optimal for
(LQ), namely,

lim J (2o, u(:)) = J*(z0).

el0

Proof. Denote by Je(xg,u(-)) the cost of the perturbed problem (LQ) under an admissible

control u(-) € U,9 w.r.t. the initial state zo. Then for any n > 0, there is an ¢ such that when

0<e<ep:
J (o) < J(wo,u())
< Je(@o,u ("))
= Ji(wo)
< JH(xo) + 1,
where the last inequality is due to Theorem 7.1. This proves our claim. O

Consider Example 6.2. With perturbation, the corresponding primal SDP becomes

max p

—1+e+p, p

s.t. D, At e

= 0.

Solving this problem yields

. Atet+/E+e2+4d+e)(—1+¢)
Pe = 5 :

Clearly, pf = 2 + O(+/€), and hence the optimal value of (P.), piz3, converges to 2x3 as € | 0.

8 Conclusions

We have developed a systematic approach to the stochastic LQ control problem based on
primal-dual SDP, allowing indefinite cost matrices. We have shown that, in addition to its ob-
vious computational advantage, the SDP duality theory provides critical qualitative information
about the LQ control problem, in particular, regarding issues such as stability and optimality.

Among the three statements presented in §5, the strongest is (b), which consists of two

parts: (i) the optimal solution to the primal SDP satisfies the generalized Riccati equation, and
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(ii) the corresponding feedback control is stabilizing. It implies (¢): the SDP complementary
duality, which, in turn, implies (a): the existence of an optimal control to the LQ problem.
Both (b) and (c¢) hence provide useful computational approaches to solving the LQ problem.

Conversely, our results also provide new insight as to when the LQ problem does not possess
an optimal solution: Since, (b(i)) is implied by (a), if no primal SDP solution satisfies the
generalized Riccati equation, then the LQ problem has no attainable optimal control. (For
such problems we have developed an e-approximation scheme that yields asymptotic optimal
solutions.) However, as the SDP in general possesses multiple optimal solutions, and most SDP
solvers usually return a single optimal solution, this result is of more theoretical, as opposed to
computational, interest. This limitation is reflected in Step 3 of the procedure outlined in §5:
it requires checking if there is any optimal solution of (P) satisfying F'(P) = 0.

Finally, the gap alluded to in the last step of the same procedure points to an open problem:
whether our SDP approach might fail to find an optimal control (a counter-example), or this

is simply impossible (a proof).
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