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Abstract

We investigate a model of a corporation which faces constant liability payments and which
can choose a production/business policy from an available set of control policies with different
expected profits and risks. The objective is to maximize the expected present value of the total
dividend distributions. The main purpose of this paper is to deal with the impact of constraints on
business activities such as inability to completely eliminate risk (even at the expense of reducing
the potential profit to zero) or when such a risk cannot exceed a certain level. We analyze the
case in which there is no restriction on the dividend pay-out rates as well as the case when such a
restriction does exist. By delicate analysis on the corresponding Hamilton-Jacobi-Bellman equation
we compute explicitly the optimal return function and determine the optimal policy.

1 Introduction

Recently there has been an upsurge of interest in diffusion models for optimal dividend optimiza-
tion/risk control techniques (see Jeanblanc Piqué and Shiryaev [10], Asmussen and Taksar [2], Radner
and Shepp [13], Boyle et al. [3], Hgjgaard and Taksar [7], [8], [9], Paulsen and Grjessing [12], and
Taksar and Zhou [15]). In those models the liquid assets of the company are modeled by a Brownian
motion with constant drift and diffusion coefficients. The drift term corresponds to the expected
(potential) profit per unit time, while the diffusion term is interpreted as risk. The larger the diffusion
coefficient the greater the business risk the company takes on. If the company wants to decrease the
risk from its business activities, it also faces a decrease in its potential profit. In other words, different
business activities in this model correspond to changing simultaneously the drift and the diffusion
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coefficients of the underlying process. This sets a scene for an optimal stochastic control model where
the controls affect not only the drift, but also the diffusion part of the dynamic of the system.
Another important consideration in this paper is dividend distribution. Dividends are paid from the
liquid reserve of the company and distributed to the shareholders. In the control model the dividend
distribution plan is represented by an increasing functional, C(¢), whose meaning is the cumulative
amount of dividends paid out up to time ¢t. Moreover, the control model is the so-called singular control
if the dividend pay-out rate is unbounded, while it is a regular control model if the dividend pay-out
rate is bounded. The risk control/dividend distribution policy determines uniquely the dynamics of
the liquid reserve. The company is bankrupt when its liquid assets vanish. The objective is to find
the policy which maximizes the expected cumulative discount dividend pay-outs up to the time of the
bankruptcy.

Insurance is one of the natural areas where those models become widely applied. The risk control
in insurance takes on a natural form of reinsurance. Specifically, if at any fixed time both the drift
and diffusion coefficients of the controlled stochastic process are multiples of one and the same control
parameter a,0 < a < 1, then this would be the limiting case of the so-called proportional reinsurance,
which is employed by a cedent in order to reduce the insurance risks. Other types of reinsurance
schemes result in different types of drift/diffusion control models (see, e.g., [1], [14]).

In this paper we consider a company whose business activities are modeled by a control process
ag, t> 0, which takes on values in the interval [a, (], 0 < @ < # < 400 with risk and potential profit
at any time t proportional to a;. The restriction o > 0 reflects the fact that there are institutional or
statutory reasons (e.g., the company is public) that its business activities cannot be reduced to zero,
unless the company faces bankruptcy. In addition in our model the company has a constant rate of
liability payments, such as mortgage payments on its property or amortization of bonds. In the case
of an insurance company, when the control parameter a; lies within [0, 1] this problem was considered
by Taksar and Zhou [15]. In this regard, the model treated in [15] can be viewed as a limiting case of
a — 0+ and 8 = 1. In addition, we investigate the case in which there are restrictions on the dividend
pay out rate and analyze how those restrictions affect the optimal policy.

The paper is structured as follows. In the next section we give a rigorous mathematical formulation
of the problem and obtain some preliminary results. In Section 3 we analyze the case of unbounded
dividend rate without liability, which is interesting in its own right. In Section 3 we extend the results
to the case of a constant liability payments. In Section 5 we investigate the case of bounded dividend
rate with nonzero liability. Section 6 is devoted to the construction of optimal policies based on the
results of the preceding sections. The last section is devoted to economic interpretation of the obtained
results.

2 Mathematical model

We start with a filtered probability space (€2, F,F;, P) and a one-dimensional standard Brownian
motion W; (with Wy = 0) on it, adapted to the filtration F;. We denote by R} the reserve of the
company at time ¢ under a control policy m = (af,Cf;t > 0) (to be specified below). The dynamic of
the reserve process R is described by

dR{ = (afp — 6)dt + afodW; — CT, (2.1)

with initial condition

Ry =z, (2.2)

where p is the expected profit per unit time (profit rate) and o is the volatility rate of the reserve
process (in the absence of any risk control), § represents the amount of money the company has to



pay per unit time (the debt rate) irrespective of what business activities it chooses, and z is the initial
reserve.

The control in this model is described by a pair of Fi-adapted processes 7 = (af, CJ';t > 0). A control
m = (af,Cl;t > 0) is admissible if @ < af < 3, V¢ > 0, and CT is a non-decreasing, right continuous
process, where 0 < a < 8 < 400 are given scalars. We denote the set of all admissible controls
by A. The control component af represents one of the possible business activities available for the
company at time ¢, and the component CJ corresponds to the total amount of dividends paid out by
the company up to time ¢.

Given a control policy 7, the time of bankruptcy is defined as

7" =inf{t > 0 : R} = 0}. (2.3)

The performance functional associated with each control 7 is

Jw(vr):E</OT

where v > 0 is an a priori given discount factor (used in calculating the present value of the future
dividends), and the subscript z denotes the initial state . The objective is to find

I

thdCZr> , (2.4)

v(z) = sup Jy(7) (2.5)
mEA

and the optimal policy 7* such that
Jo(7*) = v(x). (2.6)

The exogenous parameters of the problem are u,o,d,a,8 and . The aim of this paper is to obtain
the optimal return function v and the optimal policy ezplicitly in terms of these parameters.

A few remarks on the control component af are in order. The way this quantity enters into the
dynamics (2.1) clearly shows that it reduces or increases the risk simultaneously reducing or increasing
the expected profit rate at the same scale. In other words, the diffusion coefficient of the dynamic
system (2.1) depends on the control component af. In [15], the problem is formulated in the context
of an insurance company where 1 —af signifies the reinsurance fraction and the constraint 0 < af <1
is imposed which is a limiting case of @ — 0+ and 8 = 1 (note that while in our analysis below we
require « > 0, the solution we obtain does have a limit when o — 0+ and this limit coincides with
the solution in [15]. In this sense the model in [15] is indeed a special case of the model presented
here). It is certainly meaningful to relax this constraint to one with any arbitrary upper and lower
bounds. Thus for the insurance company case @ > 1 would mean that the company can take an extra
insurance business from other companies (that is act as a reinsurer for other cedents). Moreover, our
formulation can model risk control problems for companies other than insurance ones. On the other
hand, the two general bounds « and § add a new, nontrivial feature to this model, as will be evident
in the sequel.

The main tools for solving the problem are the dynamic programming and Hamilton-Jacobi-Bellman
(HJB) equation (see Fleming and Rishel [5], Fleming and Soner [6], and Yong and Zhou [16], as well
as relevant discussions in [2], [8] and [15]). First of all, the optimal return function v has the following
basic properties.

Proposition 2.1 The function v as defined by (2.5) is a concave, non-decreasing function subject to

v(0) = 0. 2.7)



The proof of this proposition is standard and can be found in [2], [8] and [15].
Next, the dynamic programming principle yields that if the optimal return function v is a C?-function,
then v is a classical solution to the following HJB equation

max (maanaSg (%UQaQV"(w) + (ap — 0)V'(z) — 7V(m)) , 1— V’(m)) =0, >0,

V(0) = 0. 28)

Note that we do not know a priori whether the HJB equation has any solution other than the optimal
return function. However, the following verification theorem, which says that any concave solution V'
to the HJB equation (2.8) whose derivative is finite at 0 majorizes the performance functional for any
policy m, is sufficient for us to identify optimal policies.

Theorem 2.2 Let V be a concave, twice continuously differentiable solution of (2.8), such that
V'(0) < 4+00. Then for any policy m = (a,Cf;t > 0),

V(z) > Jo(m). (2.9)
Proof. Let R be the reserve process given by (2.1) and (2.2). Denote the operator

1 d? d
L' = —¢%a®—— —0)— — 1.
27 @ dz? + (ap )da; 7
Then applying a generalized Ito’s formula (see Dellacherie and Meyer [4, Theorem VIIL.27]) to the
process e "'V (RT), we get (below C™¢ stands for a continuous part of the increasing functional C™)

tAT
TV (RE, ) = V(z) + /0 e~ o™V (RT)dW, (2.10)

tAT " tAT
4 / e~ LEV (RY)ds — / ¢~V (RT)dCT
0 0

+ > e IV(R]) - V(R]) — V'(R{_) (RS — R{_)]

tAT
—V(z) + / e~ aTV! (RT)dW, + / e~ LUV (RT)ds
0 0

tAT
_ / e TVI(RDACT + Y e [V(RY) - V(RL)),
0

S<IAT

where we used the equality R} — R} = —(CT — C7T_). Since V is non-decreasing, concave with finite
derivative at the origin, V'(z) is bounded and the stochastic integral in (2.10) is a square integrable
martingale whose expectation vanishes. In view of the HJB equation (2.8) the quantity L% V (RT) is
always non-positive. Taking expectations of both sides of (2.10), we get

tAT
B IV (R, < V@)~ B [ e VRO (2.11)
0
+E Y e "[V(R]) - V(RL )]
s<tAT
Since V'(z) > 1, the mean-value theorem implies V(R?T) — V(RI_) < RT — RT_ = —(CT — CT).
Combining this with (2.11), we get
tAT
BE(e """ V(RE, ) + E / e~ PV!(RT)ACT < V(z). (2.12)
0
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Note that in view of boundedness of V',
e "DV (R,,) < e 'K (1+ Rjy,) < e 'K (1 +|Rj))

for some constant K. Since R} is a diffusion process with uniformly bounded drift and diffusion
coefficient, standard arguments yield E|R]| < z + K;t for some constant K;. Therefore

Ee """IV(RT, ) =0 (2.13)

as t — 0o. Thus taking limit in (2.12) as ¢ — oo we arrive at
T
Vig) > E / ¢V (RT)ACT = Jo(z).
0

O
The idea of solving the original optimization problem is to first find a concave, smooth function to the
HJB equation (2.8), and then construct a control policy (via solving a Skorohod problem; for details
see Section 6) whose performance functional can be shown to coincide with the founded solution to
(2.8). Then, the above verification theorem establishes the optimality of the constructed control policy.
As a by-product, there is no other concave solution to (2.8) than the optimal return function.

3 Case of unbounded dividend rate without liability

In this section we study the case where the dividend rate is unbounded and there is no debt liability,
namely, § = 0. While being part of a more general case, it is interesting in its own right and will
provide some valuable insights into the general problem.

In this case, the HJB equation reads

max (maxagasg (%UQaQV"(w) +apV'(z) — ’)’V(:L‘)) , 1— V’(x)) =0, z>0,

V(0) = 0. (3.1)

As mentioned, the key is to find a concave, smooth function V satisfying (3.1). While we could
have presented such a solution immediately without any explanation (one would need only to check
if it does satisfy (3.1), which is a relatively easy task), we believe that it is better to unfold the
entire process of finding the solution for the benefit of the readers. Therefore, what we are going to
present below is indeed the original process of tracking down the solution. Suppose such a solution,
V, to the HJB equation (3.1) is found. Then due to concavity, V' is a non-increasing function. Let
zy =inf{z >0 : V'(z) < 1}. Suppose z; > 0. Since V is concave we have V'(z) > 1 for all z < =.
In view of (3.1), V satisfies

1
max (—0’261,2VII(.’13) +auV'(z) — 'yV(w)> =0, Vz <. (3.2)
a<a<p \ 2
Let V()
_ V(=
a(a:) = —m >0, <z, (33)

be the maximizer of 102a?V"(z) + apV'(z) — vV (z) over all a > 0. Since V"(z) < 0, the expression
202a®V"(z) + apV'(z) — vV (z) as a function of a increases on [0, a(z)] and decreases on [a(z), 00).
Assume that a(z) is a non-decreasing function of z (which will be shown a posteriori). Then there
exist 7, and zg, 0 < 2, < 28 < +o00, such that a(z) < a, Vo < 2, and a(z) > 3, Vz > z5; and a(z)
is increasing from « to B on [z4, xg]. Our next step would be to show that z, > 0. To this end it is
sufficient to analyze a(0).



Proposition 3.1 The following holds
a(0) = —a. (3.4)

Proof. Put

d(z, a) = %UZaZV"(x) +apV'(z) —yV(z), >0, a>0. (3.5)

It follows from (3.2) that max,<.<g ¢(0, a) = 0. Let a € [a, ] such that ¢(0, a) = max ¢(0, a) = 0.

a<a<p
Since V(0) = 0 we conclude
—2uV'(0)

On the other hand, ¢(0,a) = a[50%aV"(0) + uV'(0)] where 10?V"(0) < 0. Hence the maximum of
#(0,-) is attained at the lower end of the interval [, 8], namely, @ = a. This proves (3.4). 0

Continuity of a(z) and the inequality a(0) < « shows that for all z in a right neighborhood of 0,
the maximum over a € [a, (] in (3.2) is attained at . Substituting a = « into (3.2) and solving the
resulting second-order linear ordinary differential equation (ODE), we get

V(z) = ki(e, B) (7@ — - (@), (3.6)
where k1 (a, () is a free constant to be determined, and

—p + [1? + 20%4]'/2
2

—p — [1? + 20%]"/?
2

>0, r_(z) =

r1(z) = <0, Vz > 0. (3.7)

z0

From (3.6) and (3.3) it follows

z0

(o) T (@R e BT (r(0) —r_(a)”
(V@)

> 0,

for all z in the right neighborhood of 0. Therefore in the right neighborhood of 0 the function a(z)
increases. Let z, be such that a(z,) = a. From (3.3) and (3.6), we obtain

ORI (- T(O‘)) > 0. (3.8)

a(z) > a. (3.9)

Proof. Suppose there exists 2y > x4 such that a(zg) < a. Then there exists ¢ > 0 such that a(z) < «
for each z with |z — 2| < e. Let 2’ =sup{z < zp: a(z) = a}. Then z, < 2’ < 2y < zo + € and
a(z') = a. Since a(z) < a for all z € [z/, zy + €), the function V satisfies (3.2) with the maximum
there attained at a = a. Therefore

Vi(z) = Kie'+@@2) 4 goer- (@)@ yr e [, 2o +¢). (3.10)
From (3.10) and (3.3), the equation a(z') = « can be rewritten as

p+ ao’r_(a)

K =—Kor_
17".1_(@) 27" (a)/,// + a02T+(a),



which establishes a relation between the constants K; and Ks. Using this relation, we calculate

_ ri(a)—r—(a))(z—2') _ Htaoc’ry(a)
a(z) = —uV'(z) _ H (e( Hee N+“”2Tt(a)2) , Vo € [2, zo+e).  (3.11)
a?V"(z) 42 (T+(a)e<r+(a>—7~_ (@))(@—a') _ L(a)%)

However, we have a(z) < a for z > z/, which after a simple algebraic transformation of (3.11) is
equivalent to e(™+(®)~-(2))(#=2") < 1 This leads to a contradiction. Therefore (3.9) holds. O

In view of a(z,) = a < 8 and (3.9), we have
a<a(r)<p
in the right neighborhood of z,. Therefore
(=, a(z)) = max ¢z, a) =0. (3.12)

_pV'(2)

2

From (3.3), we have V" (z) = (@)
o%a(x

. Substituting this expression for V" into (3.12), we get

pa(z)V'(z)/2 =4V (). (3.13)

Differentiating this equation and again using V" (z) = —£ X;g;, we arrive at

2 2 2
d(z) = “+72‘77_
o

Integrating this equation results in (recall that a(z,) = @)

2 2
+ 20
a(z) = 'HMTV(:E — Iq) + . (3.14)
Let )
Uo

which is obtained by setting a(zg) = 8. Then a < a(z) < 3, Yz € [zo, zg). It follows from (3.13)
that (noting a(z4) = )

V(za) _Hx_ Yo ) (3.16)
Vi(za) 2y (1-T)
where
i 1 po'a 3.17
<T= geny <L =g o (3.17)

Substituting the expression (3.14) for a(z) into (3.3), and then solving the resulting equation for V' (z)
on [z, xg) while taking into account (3.16), we get

_ 1-T
V(z) = 22V (24) <ac To + ya> , o < T < T (3.18)
2y Ya
where the free constant V'(z,) can be determined by
V'(20) = ki@, B) (r4 (@)e"+ (@ —r_(a)er~(¥)e), (3.19)

in view of (3.6) and a smooth fit at £ = z,. Straightforward computations show that the function V'
defined by (3.6) and (3.18) is continuous with continuous first and second derivatives at .

So far, we have obtained the forms of V' on two intervals, [0,z,) and [z4,23), by (3.6) and (3.18),
respectively. Now we proceed to the interval beyond zg. To this end, we first have the following
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Proposition 3.3 For all x > x4
a(z) > .

Proof. By virtue of Proposition 3.2, a(z) > «a for all z > z. Suppose there exists =’ > zp
such that a(z’) < . Then there exists ¢ > 0 such that a(z) < f§ for all z < 2’ + . Let
z =sup{z < 2’ : a(z) = B}. Then 23 < Z < 2’ and a(Z) = B. In addition a < a(z) < B for
all Z < z < z’. Repeating the arguments of Proposition 3.2, we get a(z) = “2::%”27 (z—z)+08>p0
for each £ > Z, which is a contradiction.

The above proposition implies that the maximum in (3.2) is obtained at a = § for £ > zg. The
resulting equation of (3.2) then becomes a second-order linear ODE, whose solution is of the form

V(z) = ki (B)e+P)E21) 4 o (B)er-Blea) | g < g < a4, (3.20)

where z1 > g, as defined earlier, is also the first point such that V"(z;) = 0 (see Proposition 3.4
below).

Proposition 3.4 Let z1 > zg be the first point where V"' vanishes. Then V'(z1) = 1.

Proof. Suppose that V’(z1) > 1. Then there exists € > 0 such that V'(z) > 1 forall z; <z < 1 +e.
Therefore on the interval [z1,z1 + €], the function V satisfies (3.2). In view of Proposition 3.3,
a(z) > 3, and hence on the interval [z1,21 + €], V is of the form given by (3.20). Since V"(z1) =0,
we conclude k1(8)r2(8) = —k2(B8)r2(B8) > 0 (the positivity of k1(8) follows from V' > 0 ). Thus

V"(z) = k1(B)r2(B) (e(”(ﬁ)*“(ﬂ))(“*‘“) — 1). This expression is positive for each z > z;. This con-
tradicts the concavity of V. O

The following corollary is straightforward in view of the above proposition and the inequality V'(z) > 1.
Corollary 3.5 Under the assumption of Proposition 3.4,
V() =1, Vx> z1.

Those results enable us to present the function V in the following form:

ki(a, B)(e rr(a)z _ —(04)55)’ 0<z<z,,
1-T
ua ! T— $a+ya
V(z) = V (za) ) ~ To ST <2Tg, (3.21)
m(ﬂ) +(B)(a=) +kz(ﬁ)e“‘ﬁ)“ ", zg <z <,
k1(B) + k2(B) + z — 1, Ty < T,

where 7 (@), r—_(a), r4(8), r—(8), o and zg, and I' and y, are given by (3.7), (3.8), (3.15), and
(3.17) respectively.

The next step is to determine the remaining constants in (3.21). To do so we use the principle of smooth
fit at the points 3 and z;. Namely, we have to choose the unknown constants k1 (53), k2(5), k1 (a, )
and z; in such a way that the function V, its first and second derivatives are continuous at these
points. To this end, first by virtue of Proposition 3.4,

V'(z1) =1, V'(z1) =0.
For V of the form (3.20) this translates into

kL(B)r+(B) + B2 (B)r—(B) = 1, k1(B)r3(8) + k2(B)r” (B) = 0.



As a result,

) r+(8)

k1 (8) = . kao(B) = . 3.22
N 1) O (R () M A () O ey ) (522
Next, let A = 23 — x1, then we can calculate V' and V" at zg as
VI(‘,E,B) = kl(ﬁ)r-F (/B)e'”—(ﬂ)A + k?(ﬁ)r— (/B)eri(ﬂ)Aa (3 23)
V'(wp) = k1 (B)r3 (B)e+ (P2 + ko (B)r2 (B)er- (P2, '
Recall that V" (zg) = _a!;ZEa(caﬁ;[;) = _“(‘T/z'éa:za)’ which results in
_A__ Bo —p+ (1 + 20%9]'/?
R R e ek < ) < (3.24)

On the other hand, a smooth fit, in terms of V’'(zg), for (3.18) and (3.23) while taking (3.19) into
consideration yields

p

(67

T
) = kl(ﬂ)r+(ﬂ)er+(ﬂ)A + kg(ﬁ)’r‘_ (6)67", (,B)A_

(3.25)
Formulas (3.24) and (3.25) determine z; and k1 (a, 3). Note that from (3.22) and (3.24) it follows

ap r(@)ra r—(a)za
ol B) (rela)er (@ —r_(a)er- (@)

r —r_ A r—(B
V(z5) ki (B)em+ (B2 1 ky(B)er— (DA o D7r-UN8 — = up

Vi(zg)  ki(B)r4(B)er+ @A + ko (B)r—(B)er-BA 1o (B)elr+B)=r=BDA —r_ () — 29’

1-T
Therefore limg 5y, 2<z, V(2) = 57V (24) (g) = ’;—fV’(acg) = V(z3), which proves the continuity
of V at zg.
These calculations enable us to formulate the main result of this section.

Theorem 3.6 Let ry(a), r—(a), r+(B8) and r—_(8), T and yo, Ta, 8, 1, ki(B) and k2(B), and
ki(a, B) be given by (3.7), (3.17), (3.8), (3-15), (3.24), (3.22), and (3.25) respectively. Then V(x)
given by (3.21) is a concave, twice continuously differentiable solution of the HJB equation (3.1).

Proof. From the way we constructed V, it must be a twice continuously differentiable solution to the
HJB equation (3.1). What remains to show is the concavity. From (3.21), we deduce that

V" (z) = k1(a, B) (ri’_ (a)e+(@T _ 3 (a)e“(a)z) >0, V0<z<z,,
due to 7_(a) < 0 < k1(, B). Hence on this interval V" is increasing and

V'(2) < V"(2a) = k1(o, B) (r(a)e+(@m — 12 (a)er-(@)=) <o,

due to | ;EZ; _ @)@ and | ()] > 1 (a).
For zo <z < zg, V'(z) = _U’é‘gég) <0. For zg <z < =z,

V"'(:v) _ kl(ﬂ)"'i (ﬁ)em_(ﬁ)(wfm) + kg(,@)r?i (B)e"~ B)@—z1) 0,

since ko(8) and r_(B3) are of the same signs. Thus V"(z) < V"(z1) =0, Vzg < z < 1. Finally,
V"(z) =0, Vo > z;1. This establishes the concavity of V. O



4 Case of unbounded dividend rate with nonzero liability

This section deals with the general model (2.1) where § > 0. In this case the HJB equation is given
by (2.8). Again we are looking for a smooth concave function that solves this equation. As before,
suppose that such a solution V exists and consider £; = inf{z >0 : V'(z) < 1}, then it is obvious
that 1 = 0 if and only if V(z) =z, Vz > 0. Our first step is to characterize the existence of such a
trivial solution to (2.8).

Theorem 4.1 V(z) =z, Vx>0 iff
Bu < 6. (4.1)

Proof. Suppose V(z) = z for each > 0. Then in view of (2.8)

1 " !
Joax, <§aza2V (0) + (ap — 6)V'(0) — 7V(O)> =p0u—46<0.

Conversely, if Bu < §, then due to concavity

1
max (§o2a2V"(:v) + (ap — 8)V'(z) — 'yV(x)) < —4V(z) <0, Vz>0.

Thus, (2.8) is satisfied only if V'(z) =1, Vz > 0. O

Remark 4.2 Proposition 4.1 is a mathematical formulation of the intuition that if a company has a
liability rate not smaller than the maximal expected profit rate, then it is optimal to declare bankruptcy
immediately, distributing the whole reserve as the dividend.

In the rest of this section we assume Sy > . In view of (2.8)

1
0 = max (—JZaQV"(x) + (au — 6)V'(x) — ’yV(:c)) , V<. (4.2)
a<a<p \ 2

For each £ > 0 and a > 0 define
]' 2 2ys1t !
d(z, a) = 50 @ Vi (z) + (ap — 0)V'(z) — vV (). (4.3)

The maximizer of the function ¢(x, a) over a > 0 is given by

pV'(z)

=——F—-<>0, z>0. 4.4
ala) =~ Ly >0« > (4.4
Following the same scheme as in the no-liability case, we will prove that there exist z, < g5 < x1
such that a(z) < a, Vz < x4, and a(z) > B, Vz > x, and the function a(z) increases from « to

on the interval [zo, zg].

As before we start with analyzing a(0).

Proposition 4.3 Let By > 6. Then
2
(i %‘5 < « if and only if a(0) < a. In this case a(0) = %.
(ii) a < 2“—‘5 < B if and only if @ < a(0) < B. In this case a(0) = 2
2

(iii) B < QM—‘S if and only if a(0) > B. In this case a(0) = Zl%-

g
e

10



Proof. Let a € [a, (] be such that

0= max, (%UQGQV"(O) + (ap — 5)V’(O)> = %O’Q&QV”(O) + (ap — 6)V'(0). (4.5)
Comparing (4.5) with (4.4) we obtain
~9 ~ 25
a” —2a(0)a + ;a(O) = 0. (4.6)

From (4.6), it follows a(0) > 2u_5_ Moreover, by definition, a(0) € [a, (] is equivalent to a = a(0),
which is further equivalent to a(0) = QH—‘S € [a, B]. Thus we conclude:

(i) If a(0) < a, then %‘5 < a(0) < a. Conversely, suppose %‘5 < a. If a(0) € [a, ], then by the above
a(0) = i—d < « which is a contradiction. Thus either a(0) < a or a(0) > S. Suppose a(0) > 3, then

a = (3 and by (4.6), a(0) = % < (B (due to %‘5 < a < f#). This is again a contradiction. Hence we
2

have a(0) < a. Then @ = a and in view of (4.6), we get a(0) = %.
(ii) Suppose a < %‘5 < (. Then due to (i) we have a(0) > «. Now we proceed to prove that

a(0) < %‘5 < (. Suppose a(0) > 27‘5. Then a(0) > § = a. On the other hand, in view of (4.6) we have
a(0) = 7/35%’ thus 7/35% > (3, which is equivalent to 2% > (3. This however is a contradiction and
therefore a(0) = %‘5 € [a, B). Conversely, if a(0) € [@, ), then a(0) = QH—J € [a, B).

2

(iii) Suppose < %‘5. Then a(0) > QH—‘S > [, leading to @ = (8 and a(0) = B> Conversely, if

2(Bu—0) =
a(0) > (3, then @ = 3 and a(0) i ) > 3, which is equivalent to QM—‘S > B. O

_
2(uB—o

As it will be seen in the sequel, the structure of the solution to our original optimization problem
depends on the three cases as specified by (i), (ii) and (iii) above. Accordingly in the rest of the
section we will analyze these three cases.

4.1 Case of 27‘5 <

We begin our analysis with an observation that in this case, in view of Proposition 4.3-(i), a(z) < « for
all z in the right neighborhood of 0. Substituting a = « in (4.2) and solving the resulting second-order
linear ODE, we obtain

V(z) = ki(a, B)(em+@® —er-(@)), (4.7)

where k1 (o, () is a free constant to be determined, and

—(21—8) + (21 — 8)* + 20%2%9]"/*

r(z) = 53 ,
oz (4.8)
R AL L
Due to (4.4) and (4.7),
d(z) = LV @) V@V (@) _ —pre(@)r—(@)el 77 (r () ()
o? (V"(z))? o2(V(z))?

for each z in the right neighborhood of 0. Therefore a(z) increases and reaches a at the point z,
given by

o [T (1 + ao’r_ (a)))
ry(a) —r_(a) log <7’+(a) (1 + ac?r (@) > 0. (4.9)

11



Proposition 4.4 For each © > x4,
a(z) > a.

Proof. Suppose there exists z' > 1, such that a(z) < @ and let Z = sup{z <z’ : a(z) = a}. Then
To <T <z, a(Z) =a, and a(z) < a for T < z < z’. Substituting a = « into (4.2) and solving the

resulting second-order linear ODE, we get V() = kie"+(®(@2) 4 kyer-(2)(@-2) Therefore

a(z) = __“V’(w) _ K kiry (o)er+(@-r-(0)(@=2) 4 kor_(a)

= L st < I.
2V(z) © 02 ki (@) e r @ @)@ D) | k()] © TS

Since a(Z) = «, we have

kiry(a) (1 + %’L(av = —kory () (1 4222 Z_(a)> .

Thus, for Z < £ < z' the inequality a(z) < a is equivalent to e("+(®=7-(2))(z=2) <« 1 which is a

contradiction.

O

By virtue of Proposition 4.4, @ < a(z) < § in the right neighborhood of z,. In this case we have

P(z, a(z)) = Joax, ¢(z, a) =0.

Substituting
" _ —,uV'(x)
Vile) = o?a(x)
—uV'(z)

g

into (4.10), differentiating the resulting equation and substituting V" (z) =
pa' (x) pd  p?+ 2y0?

arrive at 2 + 2a(z) 952 . As a result
2 2 2
d(a) = - S
po a(z)

with
c=20u/(u? + 2vyo?).

ntegrating equation (4. we get Gla(z)) = 2 +2y0? T — o)+ G(a), where
I i ion (4.12 G e d G h

po?

G(u) = u + clog(u — ¢).

Therefore ) )
2
o) =67 (25 a0 6 ).
Thus a(z) is increasing and a(zg) = B for
2 2 2
uo Uo po“c B—c
=__HT . S - 1 .
59 = A0 IG(6) ~ Gla)] + 20 = (- )+ 10 =)

Solving equation (4.11) we obtain

T y
Viz) =V(za) + V'(;ga)/ exp (—%/ d_u> dy, o <z < zg,
X

To

12

(4.10)

(4.11)

To(z) OLCE moTe, we

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)



where V(z,) and V'(z,) are free constants. Choosing V (z,) and V’(z,) as the value and the derivative
respectively of the right hand side of (4.7) at z,, we can ensure that the function V given by (4.7)
and (4.17) is continuous with its first and second derivatives at the point z, no matter what the
choice of k(a, ) is. (Note that due to the HJB equation continuity of V' and its first derivative at z,
automatically implies continuity of the second derivative as well.)

Next we are to simplify (4.17). First, changing variables a(u) = 6 we get

r 2/3/ du ) po? /“(z) c <0—c>_F
— —dy) = —"—— 1 do < .
/zanp( ulo wea(w) ) T 1242902 Jo S ) Ta ST Tp

On the other hand, relations (4.9) and (4.7) imply

au — 26
Vizg) = %V’(za).

Simple algebraic transformations yield

2
uo c z—c\ zu—20
<u2+2wﬂ> (5-5) - s V>0, (4.18)

where c is given by (4.13) and

2

7
= ———. 4.19
/'LQ + 270-2 ( )
Therefore r
—9 N
V(r) = V’(wa)”a($) i (a(w) C) , T < T < zB. (4.20)
2y a—c

Now, we proceed to the next piece of V' on the interval beyond zg.

Proposition 4.5 For each z > wg,
a(z) > .

Proof. Suppose that there exists ' > zg such that a(z) < 8. Since ' > z, we have § > a(z) > a.
Denote Z = sup{z < 2’ : a(z) =0}. Thenzg <z <z’ a(Z)=0,and a <a(zr) < fforz <z <z
Thus a(z) satisfies (4.12) for Z < z < z’ and

M@=G1<£%§f@—@+cw0>a

This is a contradiction. O

In view of the above proposition,
oz, B) = max ¢(z, a) =0, 25 <z <z, (4.21)
where z1, which is defined earlier, is also the first point such that V”(z1) = 0. This results in
V(z) = ki1 (8)e+P)@=21) 4 ko (B)em- BN a—21) zg <z < 1, (4.22)

where k1(8) and ka(3) are two free constants also to be determined.

Proposition 4.6 For x > x1,
V'(z) = 1.

13



Proof. Suppose that there exists £’ > 1 such that V" (z') < 0. Since 2’ > zg inequality a(z) > £ holds.
Let & = sup{z <z’ : V"(x) = 0}. For any z € (z, '], we have V (z) = K/e"+B)@=2) 1 K} or-(B)=—2)
Equality V"(z) =0 results in0 < K{r2(8) = —K4r? (B). Consequently V' (z) = K!r2 (8)e"+P)e=2) 4
Kir2 (B)e™-B)==2) = Kir2 (B) (e ( r+(B)@-z) _ e"—(ﬂ)(z_i)) > 0. This contradicts the concavity of the
function V. O

From Proposition 4.6 it follows
V(z) =z —x1+ ki(B) + k2(8), z > 1.
To compute the free constants k1(3) and ko(f3), we use the relationship
V'(z1) =1, V'(z1)=0.
From (4.22) it follows
kL (B)r+(B) + k2 (B)r—(B8) = 1, ka(B)r(B) + ka(B)r2(B) = 0.

As a result

—r(B) r+(8)
r(B)(r+(B) —r-(8)) r—(B)(r+(B) —r-(B))

To determine the remaining unknown constants we apply the principle of smooth fit at the point 4.
Let A =g — z1. By (4.22) we have

V'(z5) = k1(B)ry (B)e™+B)A 4 ky(B)r_(B)er B2,

k1 (ﬁ) = >0, kg(,@) = < 0. (4.23)

V"(zg) = k1 (,3)7‘_21_ (ﬂ)em_(ﬂ)A + ko (B)r2 (B)e"- (B)A (4.24)
However, the relation (4.11) (recall that a(zg) = B) yield V"' (zg) = —uVé 5)  This leads to
1 a%B
1 R
Tp- o= A= lo i <o, 4.25
o m@—u@)g(quﬁ (4.25)
r+(8) I

which determines z; and, in turn, determines V'(zg) via (4.24). To proceed, simple but tedious
algebraic transformations show that from (4.20) and (4.17) it follows

V!(2a) = V'(zp) (ﬁ - C)F. (4.26)

a—cC

As in the previous section this implies the continuity of V' at zg. Finally, the continuity of V at z,
gives rise to

V'(zp) (ﬂ C)
kl (Oﬁ, /8) = r+(a)er+( Q)Ta _ r,(a)e’- (@)za *

This enables us to establish the main result of this section.

Theorem 4.7 Suppose %‘5 < a. Let ki(o, B), r+(@), r—(a), r+(8), r—(B), Ta, g, z1 k1(B), k2(B),

a(z), ¢, T, and V'(za) be given by (4.27), (4.8), (4-9), (4-16), (4.25), (4-23), (4-15), (4-13), (4.19),
and (4.26) respectively. Then

(4.27)

kl(a, 13) ( (Oz)ﬂ? _ e"'— (a)x) s 0 S Tz < T
a(x a(x)—c -r
Vo) { Ve () T cacay 028
1w)“mwxn+ka“@“ﬂ% 5 <a <o,
ki(B) + k() + 7 — a1, 22

is a concave, twice continuously differentiable solution of the HJB equation (2.8).
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Proof. As before we need only to show the concavity. To do this consider V"”'. From (4.28), we get

V'"(z) = ki(a, B) (ri’_(a)e”(a)w — r?i(oz)e“(a)z) >0, 0<z< x4,
V" (z) = *:2‘2(5535) + “22((52)(‘;))(2@ >0, To <z < g,

Vi (z) = klri(ﬁ)eu(ﬂ)(zﬂ“) + ko(B)73 (B)e"-Bz—21) > q, zg <z < 1.

Thus V"(z) < V"(z1) = 0 for each z < z1. On the other hand, V"(z) = 0 for each z > z;. These
lead to the concavity of V. O

4.2 Caseofag%‘s<ﬁ

20
Applying Propositions 4.3 and 4.4, we see that in this case a(0) = — > « and a(z) > « for all z > 0.
W

Then in the right neighborhood of 0, a < a(z) < 8. It follows that for ¢ given by (4.3), equation
(4.10) holds. Proceeding as in Section 4.1, we see that a(z) satisfies (4.12). Therefore

a(z) = G (%m + G(25/u)) €[26/u, o0), (4.29)
where @ is given by (4.14). As a result a(z) increases and a(z) = 8 where
vy = 1 1G() — 6@ = T 525/ + (i) (a3
Integrating (4.4), we get
Vi) = v/ =2 (= ) o<ecn, (1.31)

By virtue of Proposition 4.5 we have a(z) > § for © > z3. Let ; be such that V"(z1) = 0. Then for
g <z < I,
V(z) = ki (B)e"+ D=1 4 ky(B)er Pa—m), (4.32)

Using the principle of smooth fit for V' in (4.32) at x1, we see that k1 (5) and ko(53) are given by (4.23).
Put A = zg — 1. Applying the principle of smooth fit at zg for V' and V", we deduce that A is given
by (4.25). Therefore

_1_ 4 o8
-T1=$,3+A:-Tﬂ+r ) “). (4.33)

1
r—(
1 a?B
7+(B) T

1 1
@ —r-(B) *©

Theorem 4.8 Suppose a < QN—‘i < B. Leta(z), ¢, T, zg, x1, r1(B), r—(B), k1(B), and ka2(B) be given
by (4.29), (4.13), (4.19), (4.30), (4.33), (4.8), and (4.23) respectively. Let V'(0) be determined from
(4.26), in which z, and a are replaced by 0 and 25/ p respectively. Then

a(z)=26 (a(z)—c\ T
V'(0)% (2)7 (zé/;fc) ) 0 <z < xg,
V(@) =1 ky(B)er+®E@—21) 1 ky(B)er-O—21) | 35 < 5 < 2y, (4.34)
k1(B) + ko (B) + = — =1, T > 1

is a concave, twice continuously differentiable solution of the HJB equation (2.8).
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Proof. The proof of this theorem is similar to that of Theorem 4.7. (One needs only to repeat the
proof of Theorem 4.7, substituting z,, zg and z; by 0, 3 and z; respectively.) O

Remarks 4.9 Denote by V,, g(z) the concave solution to the HJB equation (2.8) corresponding to
the parameters (a, 3). Then the results of this section show that

Va, p(z) = Vas_g(z), x>0,
w?

for each a < 2. Tt is interesting to notice that as a — 04 and 8 = 1, Theorem 4.8 gives us a different
expression for V' than the one in [15]. However, one can show that those are two different expressions
of the same function.

4.3 Case of g < %

Since in this case, a(0) > 3, we can apply Proposition 4.5 to conclude a(z) > 8, Vz > 0. Substituting
a=fin (4.2), we get

V(z) = ki (B)e+P)@=m0) 4 gy (B)er-B@=a) 0 <z < . (4.35)

Using the principle of smooth fit at z1, we get that ki (5) and k2(3) are given by (4.23). Using the
initial condition V' (0) = 0, we obtain

A=—z = log (’i( )> (4.36)
(B —r_(B) 28)) '

Note that the expression on the right hand side of (4.36) is negative if and only if |r(8)| < |r—(8)].
The later is true iff

)
— < B (4.37)
1
see (4.8).
Theorem 4.10 Suppose % < B < 2“—5. Let k1(B), k2(B), 7+(B), 7—(B), and x1 be given by (4.23),
(4.8), and (4.36) respectively. Then

(4.38)

Vie) = kl(g)eu(ﬂ)(vwl) + kQ(g)er—(ﬁ)(wfwl), 0<z<z,
| Ei(B) + ke(B) +x — 11, T > 1

is a concave, twice continuously differentiable solution of the HJB equation (2.8).

Proof. The proof of this theorem follows the lines of the proof of Theorem 4.8, in which one replaces
zg and z1 by 0 and xz; respectively. O

Remark 4.11 The case when (4.37) fails is a trivial case; see Theorem 4.1.

Remark 4.12 From the expressions for V,, g obtained in this subsection and the previous subsection,
one can see that

li = li — _
im Vo, g(z) = oo, Bli)%va,[j(m) 0, Vz >0

B—00
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5 Case of bounded dividend rate with nonzero liability

When the pay-out rate of dividends is bounded, the functional CJ in (2.1) is absolutely continuous
with respect to ¢ and the dynamics of the reserve process can be represented as

dR} = (afp — 8)dt + aTodW; — &fdt, RE ==, (5.1)

where a™ = (af;t > 0) and ™ = (c];t > 0) are two Fy-adapted processes such that @ < af < § and
0<cf <M,Vt>0, P-ass, with M > 0 being a given bound on dividend rate. Thus, instead of the
control process m = (a™,C™;t > 0) we can consider 7 = (a™,c™;t > 0), which we will call hereafter an
admissible control. So we are now in the realm of the regular control.

The optimal return function v can be defined as

o(2) = sup .

where A stands for the set of all admissible controls.

™

e_%c?dt) , (5.2)

Proposition 5.1 The optimal return function v is a concave, mon-decreasing function subject to
v(0) =0 and

0 < v(z) < % vz > 0. (5.3)

Proof. The concavity and the monotonicity as well as the boundary condition, v(0) = 0, are standard
and can be found in [2], [8] and [15]. To show (5.3), consider

OSE(/OT

e"ﬂcfdt) < M/ e Vdt = —.
0 v

O

If the optimal return function v is twice continuously differentiable, then it must be a solution to the
following HJB equation

0 = maXa<a<B0<c<M (%azaQV”(a:) + (ap— 6 —)V'(z) =7V (z) + c)
= maxacacs (30%a2V"(3) + (o — O)V'(z) =V (@) + M (1= V'(z))7), (5.4)
0= V(0),

where z7 = max(z, 0). This equation is rather standard and its derivation can be found in [6], [5],
[16]; see also [8] and [9].

As before, we are looking for a concave, smooth solution to (5.4). Assume that such a solution, V,
has been found. Let

1 =inf{z >0 : V'(z) <1} (5.5)
Then for 0 < z < z1, (5.4) becomes
0 = max (EUQaQV"(x) + (ap — §)V'(z) — 'yV(a:)) (5.6)
a<a<p \ 2 ’
while for z > z1, (5.4) can be rewritten as
1
0 = max (—02a2V"(x) + (ap — 6 — M)V'(z) =V (z) + M) . (5.7)
a<a<p \ 2
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We start with seeking a smooth solution to (5.7). Obviously if V/(0) < 1, then ;1 = 0 and (5.4) is
equivalent to (5.7) for all z > 0.

Proposition 5.2 If Sy < 4, then V'(0) < 1.

Proof. 1t follows from (5.4) that there exits @ € [, ] such that

0:%ﬁ#v%m+am—®vmn+mu1—vwm+. (5.8)
If Bu < 4, then each of the first two terms on the right hand side of (5.8) is non-positive with the
second being strictly negative. Therefore M (1 — V'(0))" > 0, which implies V’(0) < 1. The same
argument goes if By = § and V”(0) < 0. In this case either the first or the second term on the right
hand side of (5.8) is strictly negative. If Sy = § and V" (0) = 0, then the maximizer of the right hand
side of (5.4) is equal to g for all z in a right neighborhood of 0 (recall that V'(0) > 0). Substituting
a = 3 either into (5.6) or into (5.7) and solving the resulting linear ODE with constant coefficients we
get a function V whose second derivative at 0 does not vanish, which is a contradiction. O

Remark 5.3 When the dividend rates are unrestricted, the condition Sy < § makes the problem
trivial (see Theorem 4.1). This is not the case when the dividend rates are bounded. Even if Sy < §
the second derivative of V' at 0 is strictly negative which makes the problem nontrivial in contrast to
a similar situation in the case of unrestricted dividends.

Now we analyze the solution to (5.7) under the condition Su > §. As we will see later the qualitative
nature of this solution depends on whether a(z1) < a or a < a(z1) < 8 or a(z;) > §, where a(zx) is
defined by (3.3). Let

—(zp— 00— M)+ /(21— 6 — M)? + 270222
252 ’

71(2) Py (5.9)

—(zu— 00— M) —/(zu— 8§ — M)2 + 2vy0222
2202

T (2) =

First suppose that a(z1) > (. Using the same arguments as in the proof of Proposition 4.5, we deduce
that a(x) > B for each z > x1. Substituting ¢ = 8 into (5.7) and solving the resulting equation, we
get

. 2>0. (5.10)

M .
Vizg)=—+ K/je“(ﬂ)(z_“), Vx > .
Y

Here Kz is a constant which takes on either the value —% or ;_—l(mdepending respectively on the
fact whether z1 in (5.5) is zero or not. Then straightforward calculations show that a(z) = %ll(ﬁ)
o?r_
Thus, the condition a(x1) > [ is equivalent to
2u(d + M
g= 2O M) (5.11)
ue + 2vo

Next suppose a < a(r1) < . The same arguments as in the proof of Proposition 4.4 show that
a(z) > «a for all z > z1. As a result, @ < a(z) < f in a right neighborhood of z;. Substituting
V(z) = @) into (5.7), we get

a2a(x)

pa(z)

0:2

V'(z) = (6 + M)V'(z) — vV (z) + M. (5.12)

18



Differentiating (5.12) and again substituting V"' (z) = —£ ‘2/;((;)) into the resulting equation, we obtain

p? + 20%y
po?

a(z)d' (z) = (a(z) — ©) (5.13)
Suppose there exists z' > z1 such that a(z') < ¢ (respectively a(z') > ¢), then from (5.13) we deduce

that a(z) < ¢ (respectively a(z) > ¢), for each z > z’. Thus, by integrating (5.13) we obtain

p? + 20%y

o Vo > 1. (5.14)
o

a(z) —a(z') + ¢ log (M) = (z—2)
a(z') — ¢
From (5.12) and (5.3) we see that a(z) < %JZ—Ml, Vx > x1. Therefore, the left hand side of (5.14)
is bounded. This is a contradiction and we conclude that a(z) = ¢, for each z > z;. In view of the
above, the condition o < a(z1) < (8 can be rewritten as a < ¢ < . Now, substituting a = ¢ into (5.7)
¢

and solving the resulting equation (noting that 7_(¢) = _UT)’ we get

M - e,
V(iz) = —+Ke # @=21) " g > 4,
v

where K is a constant which takes on either the value of —% or —-4- depending respectively on

o2¢
whether 1 =0 or 21 > 0.
Finally, suppose that a(z1) < a. Then it follows from the above that ¢ < «. Therefore a(z) < «
for all z in a right neighborhood of z;. Substituting a = « into (5.7) and solving the resulting linear
differential equation, we get

M . .
Viw) = -+ Ki(@)e ) 4 K@)t @), (5.15)

where Ki(a) and Ka(a) are free constants. If Ki(a) > 0, then the right hand side of (5.15) is
unbounded on [z1,00), which contradicts (5.3). If Kj(a) < 0, then the right hand side of (5.15)
becomes negative for z large enough, which again is a contradiction. Hence K1(a) = 0. On the other
hand, we have Ks(a) < 0 in view of V"(0) < 0. Therefore

Viz) = M 4 Koef-@@a)
Y

where K, is a constant that takes on either the value — or f,l(a) depending on whether z; is zero

or not. Combining the above results, we can formulate the following theorem.

Theorem 5.4 Let 7 (a), 7—() and ¢ be the constants given by (5.10) and (5.11) respectively. Let
z1 be defined by (5.5). Then for ©1 =0 (respectively for x1 > 0) the following assertions hold.
(i) If ¢ > B, then

M i
V(:L‘) = — 4 Kﬂer,(ﬁ)(z—acl)’ T > (516)
Y
is a concave, twice differentiable solution of the HJB equation (5.7) on [z1,00), where Kg is equal to

M - 1
- (respectively to E (G ).
(ii) If a« < ¢ < B, then

M . o—ag
V(z) = — + Keots@ ) 5> (5.17)

is a concave, twice differentiable solution of the HJB equation (5.7) on [z1,00), where K is equal to

M . u
-5 (respectively to — 3= ).
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(iii) If ¢ < «, then
M _
Viz) = o + Ky (@@= g > g (5.18)

is a concave, twice differentiable solution of the HJIB equation (5.7) on [z1,00), where K, a constant
equal to —% (respectively to ﬁ ).

Corollary 5.5 If z1 = 0, then the solution to (5.4) subject to (5.3) is given by

% (1 _ ef_(ﬂ)w) , ifé> B,

Vi) = %(1_52‘%””), ifa<é<B, V>0

% <1 — e’:—(a)x) , ifc<a,
Corollary 5.5 shows that the qualitative nature of the solution depends on the relation between 2/76’
a and B. Accordingly, we will consider three cases. However, in contrast to the situation with
the unbounded dividend rates, each case here will consist of several subcases, each subcase being
associated with a different range for the value of M. In the previous section, it was also shown that
the qualitative nature of the solutions to (5.6) depends on a(0); see Proposition 4.3. Thus in the spirit
of this proposition, we will distinguish the cases as follows.

5.1 Case of 27‘5 <

Let ¢ be given by (5.11) and

2 2 4 202
on )“ T s (5.19)

W2 +20%) 2
Then, ¢ > B (respectively ¢ = 3 ) is equivalent to M > Mg (respectively M = Mpg). This is the first
subcase we will consider.

Mzz<z

5.1.1 Case of M > Mg

Our assumptions imply that in this case, a(z1) > £, which is equivalent to z; > zg > 0. Combining
the results of Section 4 and Theorem 5.4-(i) we can write a general form of the solution to (5.4) and
(5.3):

Ki(a, B) (e”(a)x — e’"*("‘)“) , 0 <z <z,
a(z)—26 (a(z)—c\~ T
Vig)={ V'@a)® el o) ; To ST < g, (5.20)
Kl(ﬂ)er-i-(ﬂ)(w*xl) + KQ(ﬂ)eT_(ﬂ)(JC*wl)’ x,@ S Tz < 1,
% +z l(ﬁ)eff(ﬂ)(w_wl)a T 2> T,

where r (o), r_(a), r+(8) and r_(8), 2o and zg are given by (4.8), (4.9) and (4.16) respectively,
and K1(0), K2(08), Ki(a, ) and z1 are unknown constants to be determined. Continuity of the first
and the second derivatives at x; results in

V,(.’El) = 1, V”(:Cl) = 7:_(,3).
This gives us two equations

1= K1(B)r+(B) + K2(B)r—(B), 7~ (B) = K1(B)r.(8) + K2(8)r? (B),
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whose solutions are

(B —r_(B) r+(B8) —7-(8)
Kl = B ) ) ) (rs () — - (B)

Put A = x5 — z1. As before, using the principle of smooth fit at =5, we get
1 (r+(8) =7 (8)) (u+ Bo’r_(P)) )
A= 1 — . 5.22
(B - (B) ( (B =) (u+ Brs (B) (>:22)

The expression on the right hand side of (5.22) is negative due to ¢ > £. In view of (5.22) and (5.21)
we can derive a simplified expression for V'(z3):

Ky (B) =

(5.21)

Tg—T1 =

aT+(B) —7-(B)
p+ Bory(B)

The principle of smooth fit for V' at z, yields V'(z,) = Ki(a, ) (r+(a)e’"+(°‘)xa - T,(a)e“("‘)“a) .
Combining this equality with (4.26), we get

V(zg) = Bo?er-(P)

V'(zp) (%)F

ry (a)er+(@za —p (q)er—(@)za’

Ki(a, B) = (5.23)

Theorem 5.6 Let a(x) be a function given by (4.15) and r4 (o), r—(a), r+(B), r—(8), za, 23, ¢, T,

7—(8), K1(08), K2(B), Ki(a, B), and z1 be given by (4.8), (4.9), (4.16), (4.13), (4.19), (5.10), (5.21),
(5.23), and (5.22) respectively. If %‘5 < aand M > Mg, then V given by (5.20) is a concave, twice
differentiable solution of the HJB equation (5.4), subject to (5.3).

Proof. The proof of this theorem results from Theorem 4.7 and Theorem 5.4-(i). O

5.1.2 Case of M, < M < Mg

Expression (5.19) shows that 8 > ¢ > « if and only if Mg > M > M,. From (4.15) we see that the
condition 8 > ¢é > « is equivalent to 8 > a(z1) > a. In view of Theorem 5.4, a(z) < a(z1) < 3, for all
& > 0. This also implies V’(z;) = 1. As a result K = —%. Taking into account, (5.17) we can write
the expression of V' as follows

Ki(a, P) (e’”r(o‘)w — e’"—(a)w) , 0<z < zq,

-r
V)= Vo) G (402e)  sa<a<a,

2y c
P AN
% B %e 5 ml)a T 2>z

For a(z) given by (4.15), the root of the equation a(z;) = ¢ can be written as

2 é 2(é— 29) 2 5

o udu no=(c o c—c

1= zﬂ 2 / ) 5+ 2,u s 18|55 — |- (5.24)
w4 204y Bu—c B+ 20%y  pc+ 204y o

r
The principle of smooth fit for V' at z1 leads to V'(z,) = ( i:i) . Consequently

M

(5.25)



Theorem 5.7 Let a(zx) be a function given by (4.15) and ri(a), r—(a), Ki(a, B), %o, z1, ¢, T,
and ¢ are given by (4.8), (5.25), (4.9), (5.24), (4.18), (4.19), and (5.11) respectively. If QM—J < a and
My < M < Mg, then

Ki(a, B) <e“r(°‘)“c - er—(a)z) , 0<z<x,,

T
V(.’L‘) — Ma(g?yf% (a(éw_)gc) ’ To < T < T1, (526)
- gty x> 1

is a concave, twice differentiable solution of the HIB equation (5.4) subject to (5.3).

Proof. The proof of this theorem follows from combining Theorem 4.7 and Theorem 5.4-(ii). O

Now suppose that M < M,. Then a(z) < a(z1) < a for each z > 0 (since a(z) is increasing on [0, z1)
and is constant for z > z1; see Theorem 5.4). If V'(0) > 1, then z; > 0 and V'(z1) = 1. As a result
K, = F_l(a). In view of (5.18), the function V is given by

ki(a, B) (er+(@z —er—(e)z) = 0 < g < g4,
V@) =1 u 1 _F(a)(z—=21) ) > (5.27)
7+7~._(a)6 y r ~Z I.
The smoothness of V' requires
Vizi—) =1, V" (z1—) =7_ (),
which translates into
Bi(a, B) (re(e)e @™ —r_(a)er=(m) =1, (5.28)
ki, B) (P (a)e @ — 12 (@)= @7) = 7_(a).
Excluding ki («, 3), we get an equation for z;
e(r+(a)—r—(a))z _ r—(a) (r—(a) — f*(a)) ) (5.29)
r+(a) (r4(a) —7-(a))
This equation has a positive solution if and only if
__dPa’y
M > My(a) = an =) (5.30)

This proves the following

Proposition 5.8 If QN—‘S < «, then

2 2
' 1 iff M> 27
Vi)>1 iff M> 3o — 9)
Let M, be given by (5.19) and
22a%y )
M, = —
o(2) 2 (en—10)’ Vz > .
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A simple analysis shows that f(z) = My(z) — M, is a decreasing function of z and f (2;76) = 0. Similarly,

we claim that My(z) is decreasing for z < %‘5 and increasing for z > %‘5. Thus, we derive the following
inequalities

2 2
MO(;(S) < Mo(e) < M, < Mg, if ;‘5 <a (5.31)
20 . 20
20 . 20

Since the qualitative behavior of the solution to (5.6) (respectively to (5.7)) depends on the value of
a(0) (respectively of a(z1)), in accordance with (5.31) we will distinguish and study the remaining
subcases in the following subsections.

5.1.3 Case of My(a) < M < M,

This is the case when (5.29) has a positive solution z; given by

L g () ),

ri(a) —r(a) ri(a) (ri(a) —7(a))

Ty = (5.34)

Theorem 5.9 Let ry(a), r—(a), 7—(a) and z1 are given by (4.8), (5.10) and (5.34) respectively and
ki(a, B) be determined by (5.28). If 2M_5 < a and My(a) < M < M,, then V given by (5.27) is a
concave, twice continuously differentiable solution of (5.4) subject to (5.3).

Proof. The proof follows from combining Theorem 4.7 and Theorem 5.4-(iii). O

5.1.4 Case of M < My(a)

By virtue of Proposition 5.8, this assumption results in V/(0) < 1. As a consequence, z1 = 0. As
shown in Theorem 5.4, this leads to a(z) = a(0) for each z > 0. Since M, > My(«a), we can apply
Corollary 5.5 to deduce a(0) < a.

Theorem 5.10 Let 7_(«) be a constant given by (5.10). If QIL—‘S < a and M < My(«), then

M .
V(z) == (1-€-(@%)  z>0, 5.35
(=) == ( ), =2 (5.35)

is a concave, twice continuously differentiable solution of (5.4) subject to (5.8).

Proof. See Corollary 5.5. O

5.2 Caseofag%‘s<ﬂ

In this subsection, we will investigate the second main case of @ < a(0) < .
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5.2.1 Case of M > Mg

As in Subsection 5.1.1, consider the case of z1 > zg. This case is characterized by M > Mpg, which
is also equivalent to ¢ > 3. As a result, we get V'(z1) = 1. This leads to Kg = ﬁ (see Theorem
5.4-(i)). Then using (4.31), (4.32) and Theorem 5.4-(i), V' can be represented in the following form

-r
V’(O) Ma(-’g?yf% ag_az)_;c ’ 0<z< g,
V(z) = Kl(ﬂ)eu(ﬂ)(me‘JFKz(ﬂ)er_(,a)(zfxl)’ 25 < @ < 11, (5.36)
ot -0, oo

where a(z), Ki(8), Ko(3) and z; are given by (4.29), (5.21) and (5.22) respectively. Let A = x5 —z
be given by (4.16). Continuity of V at zg yields

r
2 ()
uB—20 %fc
o Kl(ﬂ)eT‘F(/B)A —|— K2(ﬁ)eT_(,3)A.

Theorem 5.11 Let V'(0), a(z), ¢, T, K1(8), K2(B), =1, and & are given by (5.37), (4.29), (4.13),
(4.19), (5.21), (5.22) and (5.11) respectively. If a < 27‘5 < B and M > Mg, then V(z) given by (5.36)
is a concave, twice continuously differentiable solution of (5.4) subject to (5.3).

V'(0) (5.37)

Proof. The proof results from combining Theorem 4.8 and Theorem 5.4-(ii). O

To classify the remaining cases, suppose M < Mpg. Let V'(0) > 1. In this case z1 defined by (5.5) is
positive. Therefore, using (4.31) and Theorem 5.4, we can represent V as

-T
1oy pa(z)—20 [ alz)—c <
vig={ O 2 (;—f—cL y Oseo<m, (5.38)
R A P
where a(z) and ¢ are given by (4.29) and (5.11) respectively. As a consequence, we get
a(zr) = ¢. (5.39)
Continuity of V'(z) at z = 21 (see (4.12) for the expression of the derivatives of a(z)) along with
(5.39) results in
. r
é—c
m
Substituting (5.40), (5.39) and (5.19) into (5.38), we obtain
M o%
Vit)= —— —. 5.41
(1) o (5.41)

The unknown constant z; is the root of the equation (5.39). Recalling (4.29), we see that (5.39)
admits a positive solution if and only if

20 26202
M> M=) =227
p p

(5.42)
Proposition 5.12 Suppose a < 2“_6 < (B. Then
, , 26
Vio)>1 f M> MO(H).

In view of this proposition, we distinguish the remaining subcases as follows.
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5.2.2 Case of Mo(%) <M < Mg
Substituting (4.29) into (5.39), we obtain

2 F: 2(5_ 26 2 ~

o udu po* (¢ ) o c—c

T = 2M 2 / 2 5+ ZH 5o l08 | 55— |- (5.43)
w4+ 204y Bu—c pe+20%y  pc+ 204y wC

Theorem 5.13 Let a(x), ¢, T, ¢, and x1 be given by (4.29), (4.13), (4.19), (5.11), and (5.43) respec-
twely. If a < QN—‘E < B and My(2) < M < Mg, then

I
{ pa(z)—26 (a(x)—c)’r, 0<z<m,

5_
M _ g%, )
ol M ’

o

(5.44)

c

T > 1T

q

is a concave, twice continuously differentiable solution of (5.4) subject to (5.3).

Proof. The proof of this theorem is obtained by combining Theorem 4.8, Theorem 5.4-(ii) and formula
(5.41). O

5.2.3 Case of M < My(%)
Note that in this case, V'(0) < 1 due to Proposition 5.12. From (5.32), it follows that a(0) = ¢ < .

Theorem 5.14 Suppose o < %‘5 <band M < Mo(%). Let ¢ and 7_(c) be given by (5.11) and (5.10)
respectively.
(i) If a < QM—‘S and o < ¢, then
M e
V(iz)=—(l—e 2%"), >0 5.45
(2) == ( ) (5.45)
is a concave, twice continuously differentiable solution of (5.4) subject to (5.3).
(ii) If a = QN—‘S or ¢ < a, then
M i
Viz)=— (1—€-@%) >0 5.46
(@)= ( ) (5.46)

is a concave, twice continuously differentiable solution of (5.4) subject to (5.3).

Proof. See Corollary 5.5. O

8 26
5.3 Caseof;<6§;

We now investigate the final main case, ¢ < 3 < %. Suppose V'(0) > 1. Then z; defined by (5.5) is
positive. Therefore, using (4.35), (5.41) and Theorem 5.4-(i), V' can be represented as follows

K (er+B)z _ or—(B)z 0<z<
Vi) =1 ( L e ))’ o (5:47)
7+F_(ﬂ)er— rTr) x> x.
The principle of smooth fit for V' at x; yields
V/(@1—) = K (r(B)e+Pm —r_(g)em-O)m) =1, (5.48)

V' (z1-) =7 (B).
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Thus
L+ (®=r—(B)ar _ T=(B) (r—(6) = 7_(B))

r+(B) (r+(8) —7-(8))’

(5.49)

which admits a positive solution zy iff

212
M>m@=ﬁ%%-

(5.50)
Proposition 5.15 If% <pB< 27‘5, then

V'(0) > 1 iff M > My(p).
Proof. The proof of this proposition follows from the calculations in this and in the previous subsec-
tions. O

In view of the above proposition we need only to treat two subcases, namely, M > My(8) and
M < My(B), to complete our analysis.

5.3.1 Case of M > My(3)

In this case, (5.49) has a positive solution z; given by

L g (OB )y,
r+(8) —r-(B) r+(8) (r+(8) —7-(B))
Theorem 5.16 Let z1, r+(8), and r—(B) and 7—(0) be given by (5.51), (4.8), and (5.10) respectively
and let K be a constant determined from (5.48). If% <p < %‘5 and M > My(B), then V given by
(5.47) is a concave, twice continuously differentiable solution of (5.4) subject to (5.3).

Ty = (5.51)

Proof. By differentiating the expression (5.47), we obtain
Vvel(z) =K (1"3_(ﬂ)e’"+(ﬂ)“C —r (ﬁ)e“(ﬂ)w) >0, 0<z<u.

As a result, V"(z) < V'(z1) = 0 and V'(z) > V'(z1) = 1. This proves that V is concave. O

5.3.2 Case of M < My(pf)
In this case, in view of Proposition 5.15, V/(0) < 1. Therefore, z; defined by (5.5) equals zero.

Theorem 5.17 Suppose that either 8 < %, or % <p< 27‘5 and M < My(B). Let 7—(B), 7—(c) and ¢
be given by (5.10) and (5.11) respectively.
(i) If M > Mg, then
M -
Vig)=—(1—€¢-®2)  z>0 (5.52)
(2) =2 ( )
is a concave, twice continuously differentiable solution of (5.4)subject to (5.3).
(it) If Mo < M < Mg, then
M e
V(z)=— (1—e o%"), z2>0
(2) == ( )
is a concave, twice continuously differentiable solution of (5.4) subject to (5.3).

(iii) If M < M, then

Viz) = % (1 - ei‘(a)m) ) z>0

is a concave, twice continuously differentiable solution of (5.4) subject to (5.3).
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Proof. In the case of g < %, the inequality V'(0) < 1 holds due to Proposition 5.15. Then by applying

Corollary 5.5, the desired result follows. On the other hand, if £ < § < 2 and M < My(f), then
V'(0) <1 (see Proposition 5.2). Thus, in view of (5.33), Corollary 5.5 can be applied again to obtain
the results. 0

6 Optimal Policies

In this section we construct the optimal control policies based on the solutions to the HJB equations
obtained in the previous sections. We first consider the case of unbounded dividend rates with nonzero
liability. Recall that z is the smallest number such that V" vanishes. For each z < z; define

a*(r) = arg max (102a2V"($) + (ap — §V'(z) — 'yV(x)) : (6.1)
a<a<p \ 2

As evident from below the function a*(z) represents the optimal feedback control function for the

control component af,¢ > 0. More precisely, the value a*(z) is the optimal risk that one should take

when the value of the current reserve is z. From the analysis in Section 4, it follows that a*(z) can

be represented as

a, 0 <z < x4,
a*(z) =< a(z), zq <z <z, (6.2)
0, T > zg.

Note that the values of the critical points z,, 23 as well as the function a(z) depend on the three
different cases studied in Section 4. Specifically, in the case of 2u_5 < « the values of z, and zg are

specified by Theorem 4.7 while a(z) is given by (4.15); in the case of a < QM—‘S < B, To = 0 and zg is

given by Theorem 4.8 while a(z) is determined by (4.29); and in the case of § < 2/75’ To =xg = 0.

To determine the other component of the optimal control, Cf,t > 0, which is the singular control in
the terminology of control theory, we need to involve the so-called Skorohod problem. Let (R}, C})
be a solution to the following Skorohod problem on t > 0:

Rf =z + [{(a*(RY)p — 8)ds + [} a*(RE)odW; — Cf,
Rz‘ S T, (63)

Existence of a solution to such a Skorohod problem follows from Lions and Sznitman [11].

Theorem 6.1 Let V be a concave, twice continuously differentiable solution of the HJB equation
(2.8), and (R;,Cy;t > 0) be a solution to the Skorohod problem (6.3). Then for m* = (a*(Rj}),Cf;t >
0), we have

Jo (%) =V (z), Vz >0. (6.4)

Proof. For simplicity assume that the initial position z < z;. In this case both processes R; and C}
as a solution to the Skorohod problem are continuous. In view of (6.1) and (5.7)

L "IV (Ry) =0, (6.5)

where the operator L® is defined in the proof of Theorem 2.2. Repeating the arguments of the proof
of Theorem 2.2 and applying (6.5), we see that (we write 7 instead of 7 below, since there would be
no confusion)

tAT
E(e""IV(R:, ) = V(z) — E/ e *V'(Ry)dCy. (6.6)
0
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Since V'(z1) =1 and in view of (6.3)
Rs—edC; = dC, (6.7

we can replace V'(R}) in the integrand on the right hand side of (6.6) by V'(R})1r: =z, = V(1)1 Rz =z,,
to obtain

tAT

tAT
Ble "V (R\) = V@)~ B [ e V(@) lingmdCi =B [ e TVI(@)dCy, (69
0 0

where in the last equality we used (6.7) once more. Taking limit as ¢ — oo, and applying (2.13), we
obtain the desired result. O

Combining Theorems 2.2 and 6.1, we get the following result immediately.

Corollary 6.2 The function V presented in the previous sections is the optimal return function and

w* is the optimal policy.

Finally, let us briefly mention the case of bounded dividend rates, where the idea of obtaining the
optimal policy is similar (in fact simpler in view of the fact that no Skorohod problem has to be
involved in this case).

Suppose V is a concave solution to the HJB equation (5.4). Define

a*(z) = arg max (%JQaQV"(w) + (ap — O)V'(z) —yV(z) + M (1 — V'(:v))+) ,

a<a<p

and
M*(I) = Ml{zle},

where z; is defined by (5.5). The function a*(z) is the optimal feedback risk control function while
the function M*(x) represents the optimal dividend rate payments, when the level of the reserve is z.

Theorem 6.3 Let R;;t > 0, be a solution to the following stochastic differential equation

AR} = [a* (B — & — M*(R})] dt + a* (R} )odW,, 69
Ry =z. ’
Then for m* = (af,ci;t > 0) = (a*(R}), M*(Rf);t > 0), we have

Jp(n*) =V (z), Vz >0. (6.10)

Corollary 6.4 The function V presented in Section 5 is the optimal return function and ©* is the
optimal policy.

The proofs of Theorem 6.3 and Corollary 6.4 are similar to those of Theorem 6.1 and Corollary 6.2
which are omitted here.
Next we summarize all the results we obtained in the following tables for easy reference.
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21 is the first

R f Risk « Risk g point the
ange for .
3 To zg a*(x) ever ever x1 possible
u attained| attained maximal risk
is attained at
positive | positive | (i) a, for z € [0, z,];
and and (ii) increases from positive;
ZM—‘S <a finite; finite; a to Bon [za, Tgl; yes yes see no
see see see (4.15); (4.25)
(4.9) (4.16) (iii) B, for x > zp
positive (i) increases from s
a<2<p anfl 25/ to B o positive;
—t—1 0 finite; . yes see no
W@ see on [0, zgl; yes (4.33)
(4.30) (ii) B, for z > zg
positive;
S op< % 0 0 8 no yes see no
(4.36)
no ( optimal
S >p policy is
o
0 0 any N/A N/A 0 to declare
(trivial case) bankruptcy
immediately)

Table 1: The case of M = x
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x is the
first point
Range for . Risk a Risk g the .
o T zg a*(x) ever ever z1 possible
attained| attained maximal
risk is
attained at
positive | positive | (i) a, for z € [0,z,];
and and (if) increases from positive;
M > Mg finite; finite; a to B on [za, zg]; yes yes see no
see see see (4.15); (5.22)
(4.9) (4.16) (iil) B, for x > zg
(i) o, for z € [0,z4];
positive (ii) increases from
My < M < Mg Enfi o to % no positive;
7 =l nite; ) on [T, 1]; yes ves see yes
A see see (4.15); (5.24)
(49) (i) 240200)
for x >
positive;
My(a) < M < M,| oo oo a yes no see no
(5.34)
M < My(a) o0 o0 e yes no 0 yes

Table 2: The case of M < oo
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x; is the first
Range for Risk a Risk g point the
Y Ta zg a*(x) ever ever x1 possible
attained attained maximal risk
is attained at
gr(i(s;tlve (lgilr;(;r%ases from ves, if o
m a=2. positive;
M > Mg 0 finite; on [0, zs]; o, if ’ yes see no
see see (4.29); 25 (5-22)
430) | Gi)B, forz>ay | “7
(i) increases from
% to i’ég;ﬂg yes, if e
My(3) <M <My | o on [0, a1); a=2; | no positive;
M = Mg o see (4.29); no, if yes ?2643) yes
(i) 20500 g | 0> 2 :
p>+2vy02? Iz
T 2>T
My, <M< Mo(%) 0 00 % no no 0 yes
M< M, 0 00 «a yes no 0 yes

26
Table 3: The case of M < o0 and o < — < £.
1

x; is the first
Range for Risk Risk g point the
ﬁ/l To zg a*(z) ever ever 1 possible
attained| attained maximal risk
is attained at
positive;
M > My(B) 0 0 8 no yes see no
(5.51)
Mg < M < | 0 0 B no yes 0 yes
Mo (B)
M, < M < Mg 2u(5+ M) no
3 =01, 0 () T 2y0 ves no 0 yes
M < M, 00 00 a no no 0 yes

Table 4: The case of M < oo and % <pB< QM—‘S
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7 Economic Interpretation and Conclusions

The optimal policies obtained in the previous sections have clear economic meaning and are very easy
to implement. Let us now elaborate.

First consider the case when the dividend distribution rate can be unbounded. The risk control policy
is characterized by two critical reserve levels: z, and zg. The values of these two levels are further
determined by the three parameters: the minimum risk allowed («), the maximum risk allowed (53),
and the ratio between the debt rate and profit rate (%) If the company has very little debt compared
to the potential profit (so that 2 < a), then both the critical reserve levels, z, and zg, are positive
and finite. In this case, the company will minimize the business activity (i.e., take the minimum risk
a) when the reserve is below the level z,, then gradually increase the business activity when the
reserve is between z, and zg, and then maximize the business activity (i.e., take the maximum risk
() when the reserve ever reaches or goes beyond the level z4.

Next, if the company has a higher debt-profit ratio (so that a < QH—‘S < f3), then the company has to be
a bit more aggressive in the sense that z, = 0 and zg is positive and finite. In this case, no matter
how small the reserve is the company will never take the minimum risk; rather it will start with the
risk level QM—‘S and gradually increase to the maximum risk level 3 when the reserve hits the level zg
and goes above this level. This can be explained by the fact that when the debt rate is high one
needs to gamble on the higher potential profits in order to get out of the ?bankruptcy zone” as fast as
possible, even at the expense of assuming higher risk. The company becomes more aggressive when
the debt-profit ratio is even higher (precisely when % <p< E), in which case the maximum allowable
risk 3 is taken throughout while the two critical levels x, and zg are both zero. Finally, when the
debt-profit ratio is so high that the debt-profit ratio is greater than the maximum risk possible, then
the company should declare bankruptcy and go out of business immediately. This is due to the fact
that the expected net cash flow is negative in this case, no matter what the company’s policy might
be.

On the other hand, the optimal dividend policy is always of a threshold type with the threshold being
equal to £1. Namely, the reserve should be kept below the critical level z1 while distributing any excess
as dividends. Moreover, in the case of unbounded dividend rate, the maximum business activity is
always taken before dividend distributions ever take place.

As for the case of bounded dividend rate, the situation is much more complicated, depending on the
value of the maximum dividend rate allowed. However, the fundamental structure of the optimal
policies is the same as that of the case of the unbounded dividend rate. That is, the optimal risk
control policy is characterized by two critical reserve levels, x, and xg, while the optimal dividend
distribution policy is determined by another critical reserve level ;. One striking difference, however,
is that company may need to pay dividends before the maximum risk level § is ever taken; refer
to Tables 2—4 for details. The economic reason for such a behavior is the following. When there
is a significant constraint on the dividend rate there might be not necessary to pursue the business
aggressively because the accumulated liquid assets could not be paid out as dividends fast enough
anyway.

In conclusion, we would like to point out at an intricate interplay between the liability and restric-
tions on the risk control of a financial company. The sheer number of qualitatively different optimal
policies, which appears due to different possible relationship between exogenous parameters, shows
the multiplicity of different economic environments which a financial company faces depending on the
size of the debt and on the size of available business activity.
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