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Abstract. We study the convergence rate of the discrete-time simulated annealing process
(xk; k = 0, 1, . . .) for approximating the global optimum of a given function f . We prove
that the tail probability P(f(xk) > min f + δ)) decays polynomial in cumulative step size,
and provide an explicit rate through a non-asymptotic bound in terms of the model param-
eters. Our argument applies the recent development on functional inequalities for the Gibbs
measure at low temperatures – the Eyring–Kramers law. The result leads to a condition
on the step size to ensure the convergence. Finally, we perform numerical experiments to
corroborate our theoretical result.
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1. Introduction

Simulated annealing (SA) includes a set of stochastic optimization methods, whose goal
is to find the global minimum of a function f : Rd → R, in particular when f is nonconvex.
These methods have many applications in physics, operations research and computer science,
see e.g. van Laarhoven and Aarts (1987); Koulamas et al. (1994); Delahaye et al. (2019).
The stochastic version of SA, independently proposed by Kirkpatrick et al. (1983) and Cerny
(1985), considers a stochastic process related to f which is subject to thermal noise. When
simulating this process, one decreases the temperature slowly over the time. When this is
done right, the stochastic process escapes from saddle points and local optima, and converges
to the global minimum of f with high probability.

In this paper, we study the convergence rate of the discrete-time SA process (xk; k =
0, 1, . . .) defined by

xk+1 = xk −∇f(xk)ηk +
√

2τΘkηkZk, x0
d
= µ0(dx), (1)

where ηk is the step size at iteration k, Θk :=
∑

j≤k ηj is the cumulative step size up to

iteration k, τΘk is the cooling schedule at iteration k, (Zk; k = 0, 1, . . .) are independent and
identically distributed standard normal vectors, and µ0(dx) is some initial distribution. The
algorithm (1) can be regarded as the Euler–Maruyama discretization of the continuous-time
SA process, or the following SA adapted overdamped Langevin equation (Geman and Hwang
(1986)):

dXt = −∇f(Xt)dt+
√

2τt dBt, X0
d
= µ0(dx), (2)

where (Bt; t ≥ 0) is a standard Brownian motion in Rd. For τt ≡ τ constant in time,
the scheme (1) is known as the unadjusted Langevin algorithm (ULA) which approximates

Date: October 2, 2022.

1



2 WENPIN TANG, YUHANG WU, AND XUN YU ZHOU

the Gibbs measure ντ (dx) ∝ exp(−f(x)/τ)dx. The ULA was introduced by Parisi (1981);
Grenander and Miller (1994), and further studied by Roberts and Tweedie (1996); Dalalyan
(2017); Durmus and Moulines (2017).

The goal of this paper is to study the decay in time of the tail probability, i.e. the deviation
bound

P(f(xk) > min f + δ),

under suitable conditions on the function f , the cooling schedule τt, and the discretization
scheme ηk,Θk. There are two motivations for studying this problem.

• First, there are growing interests in the interplay between sampling and optimiza-
tion (Raginsky et al. (2017); Ma et al. (2019, 2021)). The idea is to approximate
the global optimum in nonconvex problems via Langevin dynamics-based stochastic
gradient descent (Raginsky et al. (2017); Chen et al. (2020); Wang and Wu (2020);
Gao et al. (2021)), along with its variants using non-reversibility (Hu et al. (2020))
and replica exchange (Chen et al. (2019); Dong and Tong (2021)). Specifically, one
aims to approximate min f by Ef(xτk) where (xτk; k = 0, 1, . . .) is the ULA with a
small, fixed temperature parameter τ . A drawback of this approach is that one needs
to simulate multiple (many) sample paths to estimate Ef(xτk). The advantage of us-
ing SA processes is that for a suitable choice of time-dependent τΘk , the process xk
converges almost surely to min f as k → ∞. Thus, one only needs to simulate one
sample path to approximate min f .

• Second, there are recent efforts in various noisy gradient-based algorithms (Ge et al.
(2015); Jin et al. (2017); Chen et al. (2020); Guo et al. (2020)) aiming at escaping
saddle points and finding a local minimum of f as a surrogate. While finding a local
surrogate has been proved to be sufficient in many machine learning problems, global
optimization is important in its own right with applications ranging from finding Nash
equilibria in various games (Myerson (1991)) to curriculum learning (Bengio et al.
(2009)). In comparison with the gradient-based methods, SA sets finding global
minima as the priority but at the cost of longer exploration time.

The main tool in our analysis is the Eyring–Kramers law, which is a set of functional
inequalities for the Gibbs measure at low temperatures (see Section 3.1 for details). To study
the convergence rate of the discrete-time SA, it would be helpful to understand the long time
behavior of its continuous analogue. It is well known that the correct order of τt for the
process (2) to converge to the global minimum of f is (ln t)−1, and there is a phase transition
related to the critical depth E∗ of the function f :

(a) If lim supt→∞ τt ln t ≤ E with E < E∗, then lim supt→∞ P(f(Xt) ≤ min f + δ) < 1.

(b) If E ≤ lim inft→∞ τt ln t ≤ lim supt→∞ τt ln t <∞ with E > E∗, then

lim
t→∞

P(f(Xt) ≤ min f + δ) = 1.

The formal definition of the critical depth E∗ will be given in Assumption 2; see also Figure
1 below for an illustration when f is a double-well function. Roughly speaking, E∗ is the
largest hill one needs to climb starting from a local minimum to the global minimum. We
refer to Tang and Zhou (2022) for background and further references.

Building upon earlier works (Miclo (1992); Menz and Schlichting (2014); Menz et al.
(2018)), Tang and Zhou (2022) derive a non-asymptotic bound for the tail probability of
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Figure 1. Illustration of the critical depth of a double-well function.

the continuous-time SA (2) via a “four-step” analysis using the Eyring–Kramers law as a key
technical tool. Their result is summarized as follows. To simplify the notation, we henceforth
assume throughout this paper that

min
Rd

f(x) = 0,

i.e. the global minimum of f is 0 by considering f −min f .

Theorem A. Assume that τt is decreasing in t, τt ∼ E
ln t with E > E∗, and d

dt

(
1
τt

)
= O

(
1
t

)
as t → ∞. Then, under some assumptions on the function f , for any δ > 0 there exists
C > 0 independent of t such that

P(f(Xt) > δ) ≤ Ct−min( δE ,
1
2

(1−E∗
E

)).

Going back to the discrete-time SA process (1), a natural question is whether there is a
similar convergence rate and under what additional conditions especially on the step size ηk.
Our main result, which answers these questions, is outlined as follows. The precise statement
of the result will be given in Section 2.

Theorem B. Assume that τt is decreasing in t, τt ∼ E
ln t with E > E∗, and d

dt

(
1
τt

)
= O

(
1
t

)
as t → ∞. Also assume that Θk → ∞ and lim sup ηk+1Θk < ∞ as k → ∞. Then, under
some assumptions on the function f , for any δ > 0 there exists C > 0 independent of t such
that

P(f(xk) > δ) ≤ CΘ
−min( δE ,

1
2

(1−E∗
E

))
k .

This result of a non-asymptotic deviation bound for the discrete-time SA process is new
to our best knowledge, and its proof is more involved due to discretization errors. It also
gives a practical guidance on the choice of step size: the condition Θk → ∞ indicates that
the step size cannot be chosen too small, while the condition lim sup ηk+1Θk < ∞ suggests
that the step size cannot be chosen too large. For instance, ηk = k−θ with θ ∈ [1

2 , 1]
satisfies the conditions in the theorem to ensure the convergence. Also note that the rate
min

(
δ
E ,

1
2(1− E∗

E )
)

is smaller than 1
2 . Empirical results in Section 5 suggests that this rate

be optimal, but it remains open to prove a matching lower bound. We leave the problem for
future work.

The dependence of the constant C on the dimension d is another interesting problem. It is
also a subtle problem, since most analysis including the Eyring–Kramers law uses Laplace’s
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method. However, the latter may fail if both the dimension d and the inverse temperature
1/τ tend to infinity (Shun and McCullagh, 1995). As explained in (Tang and Zhou, 2022,
Remark 1), an upper bound for C is exponential in d. This suggests the convergence rate
is exponentially slow as the dimension increases, which aligns with the fact that finding the
global minimum of a general nonconvex function is NP-hard.

Note that the discrete-time SA (1) belongs to the general class of stochastic optimization
algorithms of form:

xk+1 = xk − ak∇f(xk) + bkZk, x0
d
= µ0(dx),

where (ak; k = 0, 1, . . .) and (bk; k = 0, 1, . . .) are two positive deterministic sequences. Most
of the existing literature (e.g. Raginsky et al. (2017); Chen et al. (2020)) deals with the ULA
or its variants with a fixed (though small) temperature parameter τ – this corresponds to
the strongly perturbed condition where ak/b

2
k is assumed to be of constant order. It is clear

that the discrete SA process does not satisfy the strongly perturbed condition under which
the process xk converges in distribution to a diffuse measure instead of a Dirac mass. On the
other hand, Gelfand and Mitter (1991) show that for ak = 1

k and bk = b√
k log log k

with some

large b > 0, the process f(xk) converges in probability to min f ; however, they do not give
any convergence rate. Pelletier (1998) prove, under the annealing condition that ak/(b

2
k ln k)

is of constant order, that 4ak
b2k

(f(xk)−min f) converges in distribution to a Gamma random

variable. This corresponds to the central limit theorem or small deviation regime (δ = δk ↓ 0),
while in this paper we are concerned with large deviation regime (δ is fixed) which is more
practically meaningful. Indeed, the special time-annealing nature of the perturbation term
in the discrete SA process makes the problem more challenging, and this is the reason why
the Eyring–Kramers asymptotics in low temperatures is needed. For instance, the condition
ηk+1Θk → 0 stems from the one-iteration estimate via the Eyring–Kramers formula.

The remainder of the paper is organized as follows. Section 2 presents the assumptions and
our main result. Section 3 provides background on functional inequalities, and sketches the
main idea in proving Theorem A for the convergence rate of the continuous-time SA process.
The latter is useful for the reader to understand the main difficulty in extending the idea
to the discrete-time case. The main result (Theorem 1) is proved in Section 4. Results of
numerical experiments on global optimization are reported in Section 5. We conclude in
Section 6.

2. Main result

In this section, we make precise the informal statement in the introduction, and present
the main result of the paper. We first collect the notations that will be used throughout this
paper.

– The notation | · | is the Euclidean norm of a vector, and a · b is the scalar product of
vectors a and b.

– For a function f : Rd → R, let ∇f , ∇2f and ∆f denote its gradient, Hessian and
Laplacian respectively.
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– The symbol a ∼ b means that a/b → 1 as some problem parameter tends to 0 or
∞. Similarly, the symbol a = O(b) means that a/b is bounded as some problem
parameter tends to 0 or ∞.

We use C for a generic constant which depends on problem parameters (δ, f, E . . .), and may
change from line to line.

Next, we present a few assumptions on the function f . These assumptions are standard in
the study of metastability; see Menz and Schlichting (2014); Menz et al. (2018).

Assumption 1. Let f : Rd → R be smooth, bounded from below, and satisfy the conditions:

(i) f is non-degenerate on the set of critical points. That is, for some C > 0,

|ξ|
C
≤ |∇2f(x)ξ| ≤ C|ξ| for each x ∈ {z : ∇f(z) = 0} and ξ ∈ Rd.

(ii) There exists C,C ′ > 0 such that

lim inf
|x|→∞

|∇f(x)|2 −∆f(x)

|x|2
≥ C, inf

x
∇2f(x) ≥ −C ′.

Let us make a few comments on Assumption 1. The condition (ii) is a version of the
dissipative condition, and it implies that f has at least quadratic growth at infinity. This is
a necessary and sufficient condition to obtain the log-Sobolev inequality (see (Royer, 2007,
Theorem 3.1.21)) which is key to convergence analysis. The conditions (i) and (ii) imply
that the set of critical points is discrete and finite (Menz and Schlichting, 2014, Remark 1.6).
In particular, it follows that the set of local minimum points {m1, . . . ,mN} is also finite,
with N the number of local minimum points of f .

Define the saddle height f̂(mi,mj) between two local minimum points mi,mj by

f̂(mi,mj) := inf

{
max
s∈[0,1]

f(γ(s)) : γ ∈ C[0, 1], γ(0) = mi, γ(1) = mj

}
. (3)

See Figure 1 for an illustration of the saddle height f̂(m0,m1) when f is a double-well function
with m0 the global minimum and m1 the local minimum.

Assumption 2. Let m1, · · · ,mN be the positions of the local minima of f .

(i) m1 is the unique global minimum point of f , and m1, . . . ,mN are ordered in the sense
that there exists δ > 0 such that

f(mN ) ≥ f(mN−1) ≥ · · · ≥ f(m2) ≥ δ and f(m1) = 0.

(ii) For each i, j ∈ {1, . . . , N}, the saddle height between mi,mj is attained at a unique

critical point sij of index one. That is, f(sij) = f̂(mi,mj), and if {λ1, . . . , λn} are
the eigenvalues of ∇2f(sij), then λ1 < 0 and λi > 0 for i ∈ {2, . . . , n}. The point sij
is called the communicating saddle point between the minima mi and mj.

(iii) There exists p ∈ [N ] such that the energy barrier f(sp1) − f(mp) dominates all the
others. That is, there exists δ > 0 such that for all i ∈ [N ] \ {p},

E∗ := f(sp1)− f(mp) ≥ f(si1)− f(mi) + δ.

The dominating energy barrier E∗ is called the critical depth.
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The above two assumptions are also imposed in the continuous-time counterpart of Tang
and Zhou (2022). To get the convergence result for the discrete-time simulated annealing,
we need an additional condition on the function f .

Assumption 3. The gradient ∇f is globally Lipschitz, i.e. |∇f(x)−∇f(y)| ≤ L|x− y| for
some L > 0.

The convergence result for the discrete-time SA process (1) is stated as follows. The proof
will be given in Section 4.

Theorem 1. Let f satisfy Assumptions 1, 2 & 3, and let µ0 satisfy the moment condition:
for each p ≥ 1, there exists Cp > 0 such that∫

Rd
f(x)pµ0(dx) ≤ Cp. (4)

Assume that τt is decreasing in t, τt ∼ E
ln t with E > E∗, and d

dt

(
1
τt

)
= O

(
1
t

)
as t → ∞.

Moreover, assume that Θk →∞ and

lim sup ηk+1Θk <∞, (5)

as k →∞. Then for each δ, ε > 0, there exists C > 0 independent of t such that

P(f(xk) > δ) ≤ CΘ
−min( δE ,

1
2

(1−E∗
E

))+ε

k . (6)

3. Preliminaries

In this section, we recall some basic results of functional inequalities and explain how these
results are applied in the setting of SA. We also highlight the “four step” analysis in proving
the continuous-time counterpart of Theorem 1, which sheds light on how we prove in the
discrete setting and under the difference.

3.1. Functional inequalities and the Eyring-Kramers law. Let ντ be the Gibbs mea-
sure with landscape f(·) and temperature τ defined by

ντ (dx) =
1

Zτ
exp

(
−f(x)

τ

)
dx, (7)

where Zτ :=
∫
Rd exp(−f(x)/τ)dx is the normalizing constant. It is well known that under

suitable conditions on f , ντ (dx) is the stationary distribution of the overdamped Langevin
equation

dXt = −∇f(Xt)dt+
√

2τ dBt, X0
d
= µ0(dx). (8)

The difference between the overdamped Langevin process (8) and the continuous-time SA
(2) is that the temperature τt of the latter is decreasing in time. Due to the time dependence,
the limiting distribution of the solution to (2) is unknown. As we will see in Section 3.2,
the idea is to approximate (2) by a process of Gibbs measures with temperature τt. Since
τt decreases to 0 in the limit, the problem boils down to studying Gibbs measures at low
temperatures.

Now we present functional inequalities of Gibbs measures at low temperatures (τ → 0).
Let µ and ν be two probability measures on Rd such that µ is absolutely continuous relative to
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ν, with dµ/dν the Radon-Nikodym derivative. Define the relative entropy or KL-divergence
H(µ|ν) of µ with respect to ν by

H(µ|ν) :=

∫
log

(
dµ

dν

)
dµ =

∫
dµ

dν
log

(
dµ

dν

)
dν, (9)

and the Fisher information I(µ|ν) of µ with respect to ν by

I(µ|ν) :=
1

2

∫ ∣∣∣∣∇(dµdν
)∣∣∣∣2(dµdν

)−1

dν. (10)

We say that the probability measure ν satisfies the log-Sobolev inequality (LSI) with constant
α > 0, if for all probability measures µ with I(µ|ν) <∞,

H(µ|ν) ≤ 1

α
I(µ|ν). (11)

The constant α is called the LSI constant for the probability measure ν. For instance, the
LSI constant α = 1 for ν the multivariate Gaussian with mean 0 and covariance matrix Id.

Assume that the Gibbs measure ντ defined by (7) satisfies the LSI with constant ατ > 0.
The subscript ‘τ ’ in ατ suggests the dependence of the LSI constant on the temperature τ ,
and we are interested in the asymptotics of ατ at low temperatures as τ → 0. This problem
was considered by (Menz and Schlichting, 2014, Corollary 3.18), who derived a sharp lower
bound for ατ as τ → 0.

Lemma 1. Let f satisfy Assumptions 1 & 2. Then the Gibbs measure ντ defined by (7)
satisfies the LSI with constant ατ > 0 such that

ατ ∼ C exp

(
−E∗
τ

)
as τ → 0, (12)

where C > 0 depends on f, d.

The Eyring–Kramers law provides an estimate on the spectral gap of the overdamped
Langevin equation (8). Lemma 1 is the LSI version of the Eyring–Kramers law, which is
stronger than the spectral gap estimate implied by the Poincaré inequality (Bovier et al.
(2004, 2005)).

Define the Wasserstein distance W2(µ, ν) between µ and ν by

W2(µ, ν) := inf
Π

√∫
|x− y|2Π(dx, dy), (13)

where the infimum is over all joint distributions Π coupling µ and ν. We say that the prob-
ability measure ν satisfies Talagrand’s inequality with constant γ > 0, if for all probability
measure µ with H(µ|ν) <∞,

W2(µ, ν) ≤ 2

γ
H(µ|ν). (14)

It follows from (Otto and Villani, 2000, Theorem 1) that the LSI implies Talagrand’s in-
equality with the same constant, namely, if ν satisfies the LSI with constant α > 0, then ν
also satisfies Talagrand’s inequality with constant γ = α. Combining with Lemma 1, we get
a lower bound estimate of Talagrand’s inequality constant for the Gibbs measure ντ .
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Lemma 2. Let f satisfy Assumptions 1 & 2. Then the Gibbs measure ντ defined by (7)
satisfies Talagrand’s inequality with constant γτ > 0 such that

γτ ∼ C exp

(
−E∗
τ

)
as τ → 0 (15)

where C > 0 depends on f, d.

3.2. Proof sketch of Theorem A. Here we sketch the proof of Theorem A in Tang and
Zhou (2022), which will help understand the proof techniques in Section 4.

Let µt be the probability measure of Xt defined by (2). The key idea is to compare µt with
the time-dependent Gibbs measure ντt given by

ντt(dx) =
1

Zτt
exp

(
−f(x)

τt

)
dx,

where Zτt :=
∫
Rd exp(−f(x)/τt) is the normalizing constant. Note that ντt will concentrate

on the minimum point of f as t→∞ since τt → 0 as t→∞. We will see that ντt is close to
µt in some sense as t→∞. The proof of Theorem A is broken into four steps.

Step 1: Reduce µt to ντt. Let (X̃t; t ≥ 0) be a process whose distribution is ντt at time t.
By a simple coupling argument and Pinsker’s inequality, we have

P(f(Xt) > δ) ≤ P(f(X̃t) > δ) +
√

2H(µt|ντt). (16)

So the problem boils down to estimating P(f(X̃t) > δ) and H(µt|ντt).

Step 2: Long-time behavior of f(X̃t). Apply Laplace’s method to show that for each
ε ∈ (0, δ), there exist C > 0 independent of t such that

P(f(X̃t) > δ) ≤ Ct−
δ−ε
E . (17)

Step 3: Differential inequality for H(µt|ντt). Apply the Fokker-Planck equation of the
over-damped Langevin equation and integration by parts to show

d

dt
H(µt|ντt) ≤ −2τtI (µt|ντt) +

d

dt

(
1

τt

)
Ef(Xt) (18)

for any τt decreasing in t.

Step 4: Estimating H(µt|ντt) via the Eyring–Kramers law. Note that there are two
terms on the right hand side of (18). It is easy to show that

Ef(Xt) ≤ C(1 + t)ε. (19)

Hence, by Lemma 1 and the inequalities (18), (19), we have

d

dt
H(µt|ντt) ≤ −2τtαtH(µt|ντt) +

C

t
Ef(Xt)

≤ −Ct−(E∗
E
−ε)H(µt|ντt) + Ct−1+ε,

where αt is the LSI constant for the Gibbs measure ντt . By Grönwall’s inequality, we get

H(µt|ντt) ≤ Ct−1+E∗
E

+2ε. (20)

Combining (16), (17) and (20) proves Theorem A.
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4. Proof of Theorem 1

This section is devoted to the proof of Theorem 1. The idea is built upon that employed
for the continuous-time SA process sketched in Section 3.2. However, the analysis is more
complicated due to discretization.

Recall that ηk is the step size at iteration k, and Θk :=
∑

j≤k ηj is the cumulative step size

up to iteration k. Let µk be the probability density of xk defined by (1), and

ντΘk
(dx) =

1

ZτΘk

exp

(
−f(x)

τΘk

)
dx, (21)

where ZτΘk
:=
∫
Rd exp(−f(x)/τΘk)dx is the normalizing constant. We divide the proof into

four steps.

Step 1: Reduce µk to ντΘk
. This step is similar to Steps 1 & 2 for the continuous-time case

described in Section 3.2. Let (x̃k; k ≥ 0) be a sequence whose distribution is ντΘk
at epoch k,

coupled with (xk; k ≥ 0) on the same probability space. Fix δ > 0. The same argument as
in (16) shows that

P(f(xk) > δ) ≤ P(f(x̃k) > δ) +
√

2H(µk|ντΘk
). (22)

Assume that Θk → ∞ and τΘk ∼ E
ln Θk

as k → ∞ with E > E∗. Similar to (17), we get a

bound for the first term on the right hand side of (22). That is, for each ε ∈ (0, δ), there
exists C > 0 independent of t such that

P(f(x̃k) > δ) ≤ CΘ
− δ−ε

E
k . (23)

So it remains to estimate H(µk|ντΘk
), which is the task of the next three steps.

Step 2: Continuous-time coupling. To make use of continuous-time tools, we couple the
sequence (xk; k ≥ 0) by a continuous-time process (Xt; t ≥ 0) such that (XΘk ; k ≥ 0) has
the same distribution as (xk; k ≥ 0). To do this, define the process X by

dXt = −∇f(xk)dt+
√

2τΘkdBt, t ∈ [Θk,Θk+1), (24)

where we identify XΘk with xk. So X on [Θk,Θk+1) is Brownian motion with drift −∇f(xk)
and covariance

√
2τΘkId. As mentioned in Step 3, Section 3.2, the Fokker–Planck equation

plays an important role in the analysis of the continuous-time SA process. It is desirable to
get a version of the Fokker–Planck equation for the coupled process (24). The result is stated
as follows.

Lemma 3. For t ∈ [Θk,Θk+1), the probability density µt of Xt defined by (24) satisfies the
following equation:

∂µt
∂t

= ∇ ·
(
τΘkντΘk

∇
(
µt
ντΘk

))
+∇ · (µt E[∇f(xk)−∇f(Xt)|Xt = x]) . (25)

Proof. Let µt|s(x|y) be the conditional probability P(Xt = x|Xs = y). By conditioning on
XΘk = xk, we have

∂µt|Θk(x|xk)
∂t

= ∇ · (µt|Θk(x|xk)∇f(xk)) + τΘk∆µt|Θk(x|xk). (26)
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Integrating (26) against µΘk and using the fact that µt|Θk(x|xk)µΘk(xk) = µt(x)µΘk|t(xk|x),
we get

∂µt
∂t

= ∇ · (µt(x)E[∇f(xk)|Xt = x]) + τΘk∆µt. (27)

Further by the Fokker–Planck equation of the overdamped Langevin equation, we have

∇ ·
(
τΘkντΘk

∇
(
µt
ντΘk

))
= ∇ · (µt∇f(x)) + τΘk∆µt. (28)

Combining (27) and (28) yields (25). �

There are two terms on the right hand side of (25). The first term is the usual Fokker–
Planck term, while the second term corresponds to the discretization error.

Step 3: One-step analysis of H(µk|ντΘk
). Here we use the coupled process (24) to study

the one-step decay of H(µk|ντΘk
).

Lemma 4. Let f satisfy Assumptions 1, 2 & 3, and assume that the condition (4) for µ0

holds. Assume that τt is decreasing in t, τt ∼ E
ln t with E > E∗, and d

dt

(
1
τt

)
= O

(
1
t

)
as

t→∞. Also assume that Θk →∞ and ηk+1Θk → 0 as k →∞. Then, for each ε > 0, there
exist C,C ′ > 0 independent of t such that

H(µk+1|ντΘk+1
) ≤

(
1− Cηk+1Θ

−(E∗
E

+ε)

k

)
H(µk|ντΘk

)

+ C ′(η2
k+1 + η3

k+1 ln Θk + ηk+1Θ−1+ε
k ). (29)

Proof. Write

H(µk+1|ντΘk+1
) = H(µk+1|ντΘk

)︸ ︷︷ ︸
(a)

+ (H(µk+1|ντΘk+1
)−H(µk+1|ντΘk

))︸ ︷︷ ︸
(b)

. (30)

We first use the coupled process (24) to study the term (a). Note that

d

dt
H(µt|ντΘk

) =

∫
∂µt
∂t

ln

(
µt
ντΘk

)
dx+

∫
µt
d

dt
ln

(
µt
ντΘk

)
dx

=

∫
∇ ·
(
τΘkντΘk

∇
(
µt
ντΘk

))
ln

(
µt
ντΘk

)
dx

+

∫
∇ · (µt E[∇f(xk)−∇f(Xt)|Xt = x]) ln

(
µt
ντΘk

)
dx︸ ︷︷ ︸

(c)

+
d

dt

∫
µt(dx)

= −2τΘkI(µt|ντΘk
) + (c), (31)

where we use (25) in the second equation, and the fact that
∫
∇·
(
τtντt∇

(
µt
ντt

))
ln
(
µt
ντt

)
dx =

−2τtI(µt|ντt) in the third equation. Now we need to estimate the term (c) in (31). By
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integration by parts and the fact that a · b ≤ 1
τΘk

|a|2 +
τΘk

4 |b|
2, we get

(c) = E
(

(∇f(Xt)−∇f(xk)) · ∇ ln

(
µt
ντΘk

))
≤ 1

τΘk

E|∇f(Xt)−∇f(xk))|2 +
τΘk

4
E
∣∣∣∣∇ ln

(
µt
ντΘk

)∣∣∣∣2
≤ L2

τΘk

E|Xt − xk|2 +
τΘk

2
I(µt|ντΘk

), (32)

where the expectation E is with respect to µt(dx), and L is the Lipschitz constant of ∇f in

Assumption 3. Recall from (24) that Xt − xk = −∇f(xk)(t−Θk) +
√

2τΘk(t−Θk)Z, where
Z is standard normal. Hence

E|Xt − xk|2 = (t− xk)2E|∇f(xk)|2 + 2τΘk(t− xk)d
≤ η2

k+1E|∇f(xk)|2 + CτΘkηk+1. (33)

According to Lemma 2, ντΘk
satisfies Talagrand’s inequality with constant γτΘk

∼ κ exp(−E∗/τΘk).
Moreover, by (Vempala and Wibisono, 2019, Lemma 10),

E|∇f(xk)|2 ≤
C

γτΘk

H(µk|ντΘk
) + C. (34)

Combining (32) with (33), (34) and the fact that τΘk ∼ E
ln Θk

as k →∞, we have

(c) ≤ C
(
η2
k+1Θ

E∗
E
k ln Θk

)
H(µk|ντΘk

) + C(ηk+1 + η2
k+1 ln Θk) +

τΘk

2
I(µt|ντΘk

). (35)

Injecting (35) into (31) and further by Lemma 1, we get

d

dt
H(µt|ντΘk

) ≤ −3

2
τΘkI(µt|ντΘk

) + C ′
(
η2
k+1Θ

E∗
E
k ln Θk

)
H(µk|ντΘk

) + C ′(ηk+1 + η2
k+1 ln Θk)

≤ −3

2
CΘ

−(E∗
E

+ε)

k H(µt|ντΘk
) + C ′

(
η2
k+1Θ

E∗
E

+ε

k H(µk|ντΘk
) + (ηk+1 + η2

k+1 ln Θk)

)
.

Now by a Grönwall argument, we have

H(µk+1|ντΘk
) ≤ e−

3
2
Cηk+1Θ

−(E∗
E

+ε)

k

(
(1 + C ′η3

k+1Θ
E∗
E

+ε

k )H(µk|ντΘk
) + C ′(η2

k+1 + η3
k+1 ln Θk)

)
≤ e−

5
4
Cηk+1Θ

−(E∗
E

+ε)

k H(µk|ντΘk
) + C ′(η2

k+1 + η3
k+1 ln Θk)

≤
(

1− Cηk+1Θ
−(E∗

E
+ε)

k

)
H(µk|ντΘk

) + C ′(η2
k+1 + η3

k+1 ln Θk), (36)

where we use the fact that ηk+1Θ
E∗
E
k → 0 as k →∞ in the second inequality.

Now we consider the term (b) in (30). Note that

H(µk+1|ντΘk+1
)−H(µk+1|ντΘk

) = ln

(
ZτΘk+1

ZτΘk

)
+

(
1

τΘk+1

− 1

τΘk

)
Ef(xk+1)

≤ Cηk+1

Θk
Ef(xk+1), (37)
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since τt is decreasing in t, and d
dt

(
1
τt

)
= O

(
1
t

)
as t → ∞. We claim that for each

ε > 0, Ef(xk+1) ≤ C ≤ CΘε
k. We argue by contradiction and assume that the sequence

(Ef(xk), k = 0, 1, . . .) is unbounded. Choose C > 0 sufficiently large, and let Ef(xk+1) be
the first term exceeding C. By Assumption 3,

f(xk+1) ≤ f(xk)− ηk|∇f(xk)|2 +
√

2τΘkηk∇f(xk) · Zk +
L

2
|ηk∇f(xk) +

√
2τΘkηkZk|2

Further by taking expectation, we get

Ef(xk+1)− Ef(xk) ≤ −ηk
(

1− ηkL

2

)
E|∇f(xk)|2 + LdτΘkηk. (38)

Thus, Ef(xk+1)− Ef(xk) ≤ LdτΘkηk which implies that Ef(xk) > C − 1 for k large enough.
Next we prove that E|∇f(xj)|2 is bounded from below as j → ∞. By Assumption 1, f
has quadratic growth at infinity. This implies that for x sufficiently large, say |x| > R, we
have |∇f(x)|2 > Af(x) for some A > 0. Take C ′ sufficiently large, so Ef(xk) > C ′ implies
that E(f(xj)1{xj>R}) > C ′/2. Consequently, E|∇f(xj)|2 ≥ E(|∇f(xj)|21{xj>R}) > AC ′/2.

Combining with (38), we have Ef(xk) > Ef(xk+1) ≥ C. This contradicts the fact that
Ef(xk+1) is the first term exceeding C. Now by (37), we get

H(µk+1|ντΘk+1
)−H(µk+1|ντΘk

) ≤ Cηk+1Θ−1+ε
k . (39)

Combining (30) with (36), (39) yields (29). �

Step 4: Estimating H(µk|ντΘk
). We use Lemma 4 to derive an estimate for H(µk|ντΘk

).

Under the condition (5), the term ηk+1Θ−1+ε
k dominates η2

k+1, η3
k+1 ln Θk as k → ∞. Thus,

the recursion (29) yields

H(µk+1|ντΘk+1
) ≤

(
1− Cηk+1Θ

−(E∗
E

+ε)

k

)
H(µk|ντΘk

) + C ′ηk+1Θ−1+ε
k .

Since E∗/E < 1, a similar argument as in Step 4, Section 3.2 shows that

H(µk+1|ντΘk+1
)− CΘ

−(1−E∗
E
−2ε)

k+1 ≤
(

1− C ′ηk+1Θ
−(E∗

E
+ε)

k

)(
H(µk|ντΘk

)− CΘ
−(1−E∗

E
−2ε)

k

)
.

Applying the above inequality recursively, we get

H(µk|ντΘk
) ≤ CΘ

−(1−E∗
E
−2ε)

k +

k−1∏
j=k0

(
1− C ′ηjΘ

−(E∗
E

+ε)

j

)(
H(µk|ντΘk0

)− CΘ
−(1−E∗

E
−2ε)

k0

)
.

(40)
By the sum-integral trick, we have

k∑
j=k0

ηjΘ
−(E∗

E
+ε)

j ≥
∫ Θk

Θk0

z−(E∗
E

+ε)dz,

which diverges to ∞ as E > E∗ and Θk →∞ as k →∞. Combining (40) and the fact that∏
j(1− xj) ≤ e

−
∑
j xj yields

H(µk|ντΘk
) ≤ CΘ

−(1−E∗
E
−2ε)

k . (41)

By injecting (23) and (41) into (22) we obtain (6).
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5. Numerical results

This section presents numerical experiments to corroborate our main result (Theorem 1).
We consider two nonconvex functions commonly used in global optimization:

Ackley function: for xxx = (x1, . . . , xd) ∈ Rd,

f(xxx) = −a exp

−b
√√√√1

d

d∑
i=1

x2
i

− exp

(
1

d

d∑
i=1

cos(cxi)

)
+ a+ exp(1), (42)

where a, b, c > 0 are parameters, and d is the dimension. The Ackley function attains its
global minimum at xxx∗ = (0, . . . , 0) with f(xxx∗) = 0. In the sequel, we take a = 20, b = 0.2,
c = 2π and d = 2 for numerical experiments.

Rastrigin function: for xxx = (x1, x2) ∈ R2,

f(xxx) = 20 + x2
1 + x2

2 − 10 cos(2πx1)− 10 cos(2πx2). (43)

The Rastrigin function attains its global minimum at xxx∗ = (0, 0) with f(xxx∗) = 0. See Figure
2 for the landscape of the Ackley and the Rastrigin function in R2.

Figure 2. The landscape of the Ackley and the Rastrigin function in R2.
Left: Ackley function with a = 20, b = 0.2, c = 2π; Right: Rastrigin function.

Experiments for the Ackley function: It is clear that the Ackley function satisfies
Assumptions 1 – 3. Further we choose ηk = k−0.7, Θk =

∑
j≤k ηj (so that Θk → ∞ and

ηk+1Θk → 0), and τΘk
= E

log(1+Θk) for some range of E. It follows from the deviation bound

(6) that

P(f(xk) ≥ δ) ≤

CΘ
− 1

2
(1−E∗

E
)+ε

k for E∗ ≤ E < E∗ + 2δ,

CΘ
− δ
E

+ε

k for E ≥ E∗ + 2δ.

In general, the exact value of E∗ is intractable, and to the best of our knowledge, no previous
work has considered how to estimate the critical depth E∗ of a nonconvex function. With
different values of E we expect to observe different patterns of the discrete SA algorithm,
and this provides a way to find the numerical value of E∗ as we will explain.
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Here we initialize the process with x0 = (1.0, 1.0), and consider for the range of values
{0.02, 0.03, . . . , 0.50}, and E ∈ {0.02, 0.04, 0.06, ..., 2.00}. For each pair of (E, δ), we run
the discrete SA process (1) for 5000 times to generate Monte-Carlo estimates of the tail
probabilities for the first 20000 iterations, that is P(f(xk) ≥ δ), k = 1, 2, ..., 20000. Denote
these estimates

PE,δ = (p
(1)
E,δ, p

(2)
E,δ, ..., p

(20000)
E,δ ) and Θ = (Θ1,Θ2, ...,Θ20000).

It is key to note that the discrete SA process may get trapped in a local minimum if the
value of E is too small compared to E∗. To illustrate, Figure 3 displays an extract of the
Monte Carlo estimates PE,0.5 for different E’s.

Figure 3. Monte Carlo estimates PE,0.5 for E ∈ {0.02, 0.04, 0.06, ..., 2.00}.

For small E’s (e.g. 0.02 – 0.10), the Monte Carlo estimates p
(k)
E,0.5 remains unchanged for

all k. The sequence p
(k)
E,0.5, k = 1, 2, ..., 20000 is observed to be decreasing from E = 0.14

on. This suggests an estimate of E∗ which lies between 0.12 and 0.14. Moreover, with the
estimates PE,δ recorded, we take the logarithmic values and run linear regressions of form:

log p
(k)
E,δ = βE,δ log Θk + γE,δ.

The estimated −β̂E,δ then approximates the decay rate of the tail probability P(f(xk) ≥ δ)

relative to Θk. For each pair of (E, δ), we compare −β̂E,δ (dubbed “coef” in the legends)

and δ
E . As shown in Figure 4, for all values of δ, as the value of E becomes large, −β̂E,δ fits

perfectly with δ
E . We also observe “peaks” in the “coef” curves before they coincide with the

respective δ
E curves. This is due to the fact that for E∗ ≤ E < E∗ + 2δ, the rate 1

2(1 − E∗
E )

increases as E increases. Moreover, the “peaks” occur later when δ is larger since the term
δ
E comes into dominance later.

Experiments for the Rastrigin function: We also choose ηk = k−0.7, Θk =
∑

j≤k ηj ,

and τΘk = E
log(1+Θk) for some range of E. We initialize the process with x0 = (1.0, 1.0) and

consider for the range of values δ ∈ {0.02, 0.03, . . . , 0.50}, and E ∈ {0.05, 0.10, 0.15, ..., 27.00}.
For each pair of (E, δ), we run the discrete SA (1) for 20000 iterations for 5000 times. The
results are similar to those for the Ackley function, as displayed in Figure 5. In particular, the
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(a) δ = 0.02 (b) δ = 0.05 (c) δ = 0.1

(d) δ = 0.2 (e) δ = 0.3 (f) δ = 0.4

Figure 4. Ackley: plots of β̂δ,E and δ
E against E for different δ’s.

estimated E∗ lies between 0.05 and 0.10, which is consistent with the fact that the Rastrigin
function is flatter than the Ackley function.

(a) δ = 3 (b) δ = 5 (c) δ = 7

(d) δ = 9 (e) δ = 11 (f) δ = 13

Figure 5. Rastrigin: plots of β̂δ,E and δ
E against E for different δ’s.
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6. Conclusion

In this paper, we study the convergence rate of discrete SA processes. The main tool
is functional inequalities for the Gibbs measure at low temperatures. We prove that the
tail probability exhibits a polynomial decay in time and provide a non-asymptotic deviation
bound. The decay rate is given as a function of the model parameters. More importantly, we
derive a condition on the step size to ensure the convergence to the global minimum. This
condition is useful in tuning the step size as illustrated by numerical experiments.

There are a few directions to extend this work. For instance, one can study the discrete
SA with heavy-tailed perturbation under a suitable cooling schedule. Another direction is
to study the dependence of the convergence rate in the dimension d. Both problems are
challenging but worth exploring.
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