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Characterizing All Optimal Controls for An
Indefinite Stochastic Linear Quadratic Control

Problem
Hanzhong Wu, and Xun Yu Zhou

Abstract— This paper is concerned with a stochastic linear
quadratic (LQ) control problem in the infinite time horizon,
with indefinite state and control weighting matrices in the cost
function. It is shown that the solvability of this problem is
equivalent to the existence of a so-called static stabilizing solution
to a generalized algebraic Riccati equation. Moreover, another
algebraic Riccati equation is introduced and all the possible
optimal controls, including the ones in state feedback form, of
the underlying LQ problem are explicitly obtained in terms of
the two Riccati equations.

Index Terms— Indefinite stochastic LQ control, solvability,
generalized algebraic Riccati equation, static stabilizing solution

I. INTRODUCTION

Linear quadratic (LQ) control is one of the most funda-
mental and widely used tools in modern engineering. Recently,
there has been extensive research (see [1], [2], [3], [6], [7] and
the references therein) on the so-called indefinite stochastic
LQ problems where the control affects not only the drift
component of the systems but also the diffusion part, and
the control and state weighting matrices in the cost function
are singular or even indefinite. This class of problems arise
naturally in many practical situations especially in finance;
see [3], [4], [7], [8] for example.

In [2] an infinite stochastic LQ problem in the infinite time
horizon was studied. To accommodate the possible matrix
singularity due to the indefiniteness of the problem, a so-called
generalized algebraic Riccati equation (GARE) involving the
Moore–Penrose pseudo inverse was introduced to study the
well-posedness and solvability of the LQ problem. On the
other hand, to cope with the stability issue due to the infinite
time horizon, two types of solutions to the GARE, namely,
stabilizing solution and static stabilizing solution, were intro-
duced. It was then shown that the solvability of the underlying
LQ problem is equivalent to the existence of a stabilizing
solution to the GARE. Moreover, all optimal controls are
represented as the sum of two parts, one linear state feedback
part and one nonhomogeneous part. However, each of the
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two parts involves an unknown process, hence the optimal
controls have not really been obtained especially in view of
the implementation of them.

This paper is a continuation of [2], aiming to greatly
improve the results there. Specifically, we will show that the
solvability of the LQ problem is necessary and sufficient for
the existence of a static stabilizing solution to the GARE. In
addition, we will again represent any optimal control as the
sum of a linear state feedback part and a nonhomogeneous
part. However, we will identify the unknown process in the
feedback part, as presented in [2] and mentioned above, via an
additional algebraic Riccati equation introduced in this paper.
One should note that it is the feedback part that matters as far
as the implementation is concerned.

The rest of the paper is organized as follows. In Section
II the LQ problem is formulated and some preliminaries are
presented. Section III is devoted to the equivalence between
the solvability of the LQ problem and the existence of a
static stabilizing solution to GARE. In Section IV all the
optimal controls are identified explicitly. Finally, an illustrative
example is given in Section V.

II. PROBLEM FORMULATION AND PRELIMINARIES

Let
�������	��

�������

be a given standard filtered probabil-
ity space with a standard scalar Brownian motion � ����� on� ���������

(with � ������� � ). The Brownian motion is assumed
to be one-dimensional only for simplicity; there is no essen-
tial difficulty with the multi-dimensional case. Consider the
following controlled Itô stochastic differential equation!#"�$ �%���&�'� ( $ �����)�+*-,)�%���/. " �0�1� 2 $ �����0�435,6�����/. " � �����7�$ �%���8� $:9-;=<?> �

(1)
where

(
,
*

,
2

and
3

are matrices of sizes @4AB@ , @�ADC ,@EAF@ and @EADC , respectively. The associated cost function
is as follows:G � $H9 ��,)��I ���&� J+K6LNM9 � $ ������O)P $ �����0��QR,6������ONS $ ������T,6����� ONU ,)�%���/. " � (2)

where
P

and
U

are symmetric matrices and
S

a matrix, all of
appropriate sizes. Throughout this paper, the superscript “ V ”
denotes the transpose of a matrix.

Set

W&XY � <�Z �\[]� !#^ ��I �?[H� �:������� A �`_a < Z�b ^ ��I � is
� �

-adapted
�

measurable,
J KcL0M9 d ^ ���e��f8� d X " �?g`���h�
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which is a Hilbert space with the inner
product

J4K6L0M9 ^ ����� O � ����� " �
for
^ � I �

,
� ��I � ; W XY � < Z � . Define� � $ 9 ��� W XY � <�� � , the set of admissible controls (at

$ 9
), as

the collection of such
,)��I � ; W XY � <�� � that the corresponding

solution
$ � I ��� $ � I � $ 9 ��,6� I ���

of (1) satisfies
$ � I � ; W XY � <?> � .

The (indefinite) stochastic LQ optimal control problem can
be stated as follows:
Problem (LQ) For a given

$ 9 ;4<?>
, find

,)��I � ; � � $H9 �
so

that the cost function (2) is minimized.
If it holds that 	�

������ ������������� G � $H9 ��,)��I �������T�h�

then we say that Problem (LQ) is well-posed at
$ 95;E<?>

. If
there exists a  ,N� I � ; � � $H9 � such thatG � $ 9 �  ,6� I ���&� 	!

������ ��������� � � G � $ 9 ��,6� I �����"�T� � (3)

then we say that (LQ) is solvable or attainable at
$ 9-;=<?>

. If
there is only one optimal control satisfying (3), then (LQ) is
called uniquely solvable or attainable at

$ 9 ;D<?>
.

Another important term related to the LQ problem is the
stability. System (1) is called (mean-square) stabilizable if
there exists a feedback control

,)��I � �$# $ � I �
with a con-

stant matrix
#

, such that the corresponding solution
$ � I �

of the system (1), for any initial state
$ 9'; <?>

, satisfies% 	!& �(' L0M J
� $ �%��� O $ ������.	� � . In this case, the matrix
#

is
called a (mean-square) stabilizing feedback operator and the
feedback control

,)��I �h�)# $ ��I �
is called a (mean-square)

stabilizing control.
The following standard assumption is imposed throughout

this paper.
Assumption 1: System (1) is stabilizable.
Under Assumption 1, we can further assume, without loss of

generality, that the uncontrolled system of (1) (i.e., the system
(1) with

,)�%���*� �
) is (mean-square) stable. Indeed, let

#
be

a stabilizing feedback operator and put
,6� I ���+# $ � I �6�-, ��I �

in (1). Then (1) is turned to"�$ �����8�'� (/. $ �����)�+*0, �%���/. " �0�1� 21. $ �%���0�+32, �%���/. " � �%���e� (4)

where
( . �h(4� *0#

and
2 . � 2��E33#

. So the system (4)
with

, �%����� �
is stable.

Based on the above argument, we assume throughout this
paper:

Assumption 2: The uncontrolled system of (1) is stable.
The following technical lemma, proved in [6], is useful in

the sequel.
Lemma 1:

� � $H9 �8� W XY � <�� � for any
$:9-;=<?>

.
Next, we introduce the Riccati equation necessary for solv-

ing Problem (LQ). For any matrix 4 , there exists ([5]) a
unique matrix 465 satisfying4747584 � 4 � 475847475 � 475 �� 4 5 4 � O � 4 5 4 � � 474 5 � O � 474 5:9
475 is called the (Moore–Penrose) pseudo inverse of 4 .
When 4 is invertible, its pseudo inverse coincides with the
conventional inverse, i.e., 4;5 � 4=< . .

The generalized algebraic Riccati equation (GARE, for
short), introduced in [2], is as follows:>? @ A �CB ���ED��(B ��OGF �CB � 5 DT�CB �&�1���� HI�JF �(B � 5 F �(B �/.KDT�CB �8�h���F �CB ��L �:� (5)

where >? @ A �(B �\[]�h(TOMB �NB�(4��2 OMB 2 �4P �F �(B �?[]� U �43
OOB�3F�DT�CB �?[ � SF�+* O Bh�43 O B 2 9 (6)

Definition 1: A solution
B

to the GARE (5) is called
stabilizing if for any initial state

$ 9 ;+<?>
there exist an

� �
-

adapted, C A @ matrix process P � I � and a Q ��I � ; W XY � <�� �
such that the following control is admissible:,6����� � �SRTF �(B � 5 DT�CB �0�h� H��JF �(B � 5 F �(B ��. P �����VU $ ������ � HI�JF �(B � 5 F �(B �/. Q �����

(7)
where

$ � I � ; W XY � <?> � is the solution of (1) under the above
control with the initial state

$H9
. Moreover,

B
is called static

stabilizing if there exists a constant, non-random matrix P
such that for any initial state

$ 9 ;D<?>
the following feedback

control is admissible:,)�%��� �7�XW8F �(B � 5 D��(B �0�1� H0�YF �CB � 5 F �CB �/. P2Z $ �����7� (8)

where
$ � I � ; W XY � <?> � is the solution of (1) under the above

control with the initial state
$ 9

.
Remark 1: The terms of stabilizing and static stabilizing

solutions to the GARE (5) were first introduced in [2].
Obviously, a solution

B
to the GARE (5) is stabilizing if

and only if for any initial state
$H9 ; <?>

there exists someQ � I � ; W XY � <�� � such that the following control is admissible:,)�%��� �7�[F �CB � 5 D��(B � $ �����)�h� HI�JF �(B � 5 F �(B �/. Q �����e� (9)

where
$ � I � ; W XY � <?> � is the solution of (1) under the above

control with the initial
$H9

.

III. SOLVABILITY OF LQ PROBLEM

In this section we characterize the solvability of Problem
(LQ) by the existence of a static stabilizing solution to the
GARE (5). First we need the following technical lemma.

Lemma 2: If Problem (LQ) is solvable at any
$ 9 ; <?>

,
then GARE (5) has a solution

B
such that, for any optimal

control  ,)��I � at
$ 9

, there exists some Q � I � ; W XY � <�� � satisfying ,)�%���&�\�[F �CB � 5 DT�CB �  $ �����0�1� HI�JF �(B � 5 F �CB �/. Q �%���e� (10)

where  $ � I � is the corresponding optimal state trajectory with
the initial

$H9
.

Proof: By Theorem 4.1 in [2], GARE (5) must have a
stabilizing solution

B
. Hence with this

B
the desired result

follows from Remark 1.
Theorem 1: Problem (LQ) is solvable at any initial state$:9 ; <?>

if and only if GARE (5) admits a static stabilizing
solution

B
with

B�OB��B
.

Proof: The “if” part is standard; it follows from Theorem
2.1 of [2] along with the fact that a static stabilizing solution is,
by definition, a stabilizing solution. Now we prove the “only
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if” part. Assume that Problem (LQ) is solvable at any initial
state

$ 9 ; <?>
. By Theorem 4.1 in [2], GARE (5) must have

a stabilizing solution
B

(but not necessarily static stabilizing).
Define >��? ��@

( . []� ( � * F �CB � 5 D��(B �7�2 . [ � 2 � 3IF �CB � 5 D��(B �e�*X.�[]� *	� H0�YF �CB � 5 F �CB �/./�3 .T[]�13D� H0�YF �CB � 5 F �CB �/. 9 (11)

Then consider the following controlled system! "�$ �����8�'� (/. $ �����)�+*�.����%���/. " �0�1� 21. $ �%���0��3 .��������/. " � �����7�$ ����� � $:9 ;F< > �
(12)

where
����I � ; W XY � <�� � is the control. Denote by � � $ 9 � the set

of all admissible controls
����I � ; W XY � <�� � for the system (12)

whose corresponding solution
$ � I �

satisfies
$ � I � ; W XY � <?> � .

Note that one does not know a priori if the controlled system
(12) is stabilizable or not (even under the assumption that
the original system (1) is stabilizable). Therefore we are not
able to apply relevant results in stochastic LQ literature where
stabilizability is typically assumed. However, it follows from
Lemma 2 that, for any

$ 9 ;�<?>
, � � $ 9 � is nonempty, for at

least the process Q ��I � identified in Lemma 2 for an optimal
control  ,6� I � is an element of � � $ 9 � .

Let � and � be any given positive definite matrices. Using
the same argument as in the last part of the proof of Theorem
5.1 in [6], we can prove that the following (new) algebraic
Riccati equation� � (TO .�� � � (X. ��2 O.�� 2�.&� �� � � *�.c�42 O. � 32. �7� � �43
O. � 32.7� < . ��*-O. � �43
O. � 2�. �

(13)
admits a maximal solution, which is a positive semidefinite
matrix solution

�
such that

���%��� �7� � � �43 O. � 32.7� < . ��* O. � �43 O. � 2�. � $ ����� (14)

is a stabilizing feedback control for the controlled system (12).
Plugging the above control in the system (12), one easily sees
that the control in the form (8) with

P []�'� � �43 O. � 32.7� < . �%* O. � �43 O. � 2�. �
is admissible for the original system (1). This proves the
desired claim.

Remark 2: In Theorem 4.1 of [2] it is proved that the
solvability of (LQ) implies the existence of a stabilizing
solution to the GARE (5). Moreover, in [2], the process P � I �
in (7) is not specified while here it is explicitly given in the
form (8) through the new Riccati equation (13). Hence the
above result improves that of [2].

IV. OPTIMAL CONTROLS

In this section we shall explicitly represent all the optimal
controls of Problem (LQ) when it is solvable.

Theorem 2: Assume that Problem (LQ) is solvable at any
initial state

$ 9 ;`<?>
and

B
is the static stabilizing solution

to the GARE (5). Then a control  ,N��I � is optimal at
$ 9

if and
only if there is some

, � I � ; W XY � <�� � such that

 ,6����� � �SRTF �(B � 5 DT�CB �0�h� HI�JF �(B � 5 F �(B ��. P U $ �%���� � H��JF �(B � 5 F �CB �/.K, �%���e�
	 � ; � ���������e�
(15)

with P � � � �43 O. � 3 . � < . ��* O. � �+3 O. � 2 . �e�
where  $ � I � is the corresponding solution of (1) under  ,6� I � with
the initial

$H9
, and

�
is the maximal solution of the Riccati

equation (13) as specified in the proof of Theorem 1 with �
and � given to be positive definite.

Proof: We first prove the “if” part. The key is to show that
the control given by (15), for any

, ��I � ; W XY � <�� � , must be
admissible (i.e., the corresponding  $ � I � ; W XY � < > � ). Following
the proof of Theorem 1, define! ( X [ �1( . � * . � � �43
O. � 3 . � < . �%*-O. � �43
O. � 2 . �e�2 X []�12 . � 3 . � � ��3
O. � 3 . � < . �%*-O. � �43
O. � 2 . �e�

(16)
where

(X. ��*�. � 21.
and
32.

are defined in (11). Consider the
controlled system! "�$ �%���&� � ( X $ �%���N�4*X. , �%���/. " �0�1� 2 X $ �%���0�+32. , �%���/. " � �%���e�$ �%� � � $H9 ; U > �

(17)
where

, � I � ; W XY � <�� � is the control. By the construction
of
�

and the proof of Theorem 1,
, �����S�#�

is a stabilizing
control for the system (17). Hence it follows from Lemma 1
that
W XY � <�� � is the set of admissible controls for the system

(17) at any initial state. This in turn implies that, by definition
of admissibility, the control given by (15) is admissible for the
original control system (1). Hence the assumption of Theorem
2.1 in [2] is satisfied, which yields that

,6� I �
must be optimal.

Conversely, if  ,6� I � is an optimal control at
$ 9

with the
corresponding state trajectory  $ ��I � , then by Lemma 2,  ,6� I � can
be represented by (10) where Q � I � ; W XY � < � � . Now define, �����&� Q �����H� � � � 3 O. � 32. � < . �%* O. � �E3 O. � 2�. �  $ ����� 9 (18)

It is clear that
, ��I � ; W XY � <�� � . Combining (10) and (18) yields

that we have the representation (15).
Remark 3: It was shown in Theorem 4.1 of [2] that any

optimal control must be of the form (7) for some (unknown)���
-adaptable C AE@ order matrix process P � I � and Q � I � ;W XY � <�� � . The above theorem gives the mathematical formula

for all optimal controls while one feedback law is provided
through taking

, ��I � � �
in (15). From (15) it also follows

immediately that, assuming that it is solvable at any initial
state

$H9 ; <?>
, Problem (LQ) is either uniquely solvable at

any initial state, or solvable with at least two different optimal
controls at any initial state.

V. AN EXAMPLE

Here we consider Example 6.2 in [2], which was stated to be
attainable, but all possible optimal controls were not explicitly
given.
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Example 1: Consider a two-dimensional LQ problem with
the following data in the system dynamics(1��� ��� �:������ ��� � * �	� � � ������
� �

2 � � ��� � ��:� ��� � 3#� � � � ���� ��� �
and with the following cost weighting matricesP � � �
�H� ��� ���� ��� � � � S �1��� U � � ����� ���� ��� 9

It was shown in [2] thatB � � ��� ��:� ���
is a static feedback stabilizing solution to the GARE (5).

Obviously,
F �CB �&�1�

, and then(/.��1( � *�.��1*
� 21. �h2�� 3 .��h3 9
Now we choose

� � � ��� ��:���
� � � � � ����� �������� ��� 9
The corresponding Riccati equation (13) admits the maximal
solution � �	� � � �������� 9

By Theorem 2, all optimal controls are given as follows:

 ,N�%���&� � �:� ��:�����  $ �����0� , �%���e�
with

, ��I � ; W XY � <�� � . Moreover, one feedback law is

 ,)�%��� � � �:� ��:�	���  $ �%��� 9
Next, we would like to see how the choice of � and � might

affect the form of the optimal controls. Take the following
matrices

��� � � �8��� � ���� �&����� � � Z � � ����� � ���������� � ����� �
parameterized by

�
and
�

with
b � b g .X and

� g �	g!�#"
. Both

� � and � Z are positive definite and the corresponding Riccati
equation (13) admits the maximal solution

� �%$ Z ��& � � �
�:� �'�\��� � �(���*) ��� +. L � �-, 9

In this case, it follows from Theorem 2 that all optimal controls
of the original LQ problem can also be given as follows:

 ,N�����8� & ��� �
������� ) ��� +. L � ,  $ �����0� , �����e�

with
, ��I � ; W XY � <�� � . Hence, a different optimal feedback law

is  ,6����� ��& ��� �
������� ) ��� +. L � ,  $ ����� 9

It is interesting to note that the optimal controls above do not
dependent on the parameter

�
.
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