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Abstract

We approach the continuous-time mean—variance (MV) portfolio
selection with reinforcement learning (RL). The problem is to achieve
the best tradeoff between exploration and exploitation, and is formu-
lated as an entropy-regularized, relaxed stochastic control problem.
We prove that the optimal feedback policy for this problem must be
Gaussian, with time-decaying variance. We then prove a policy im-
provement theorem, based on which we devise an implementable RL
algorithm. We find that our algorithm and its variant outperform both
traditional and a deep neural networks based algorithms in our simu-
lation and empirical studies.
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1 Introduction

Applications of reinforcement learning (RL) to quantitative finance (e.g.,
algorithmic and high frequency trading, smart order routing, portfolio man-
agement, etc) have attracted more attentions in recent years. One of the
main reasons is that the electronic markets prevailing nowadays can provide
sufficient amount of microstructure data for training and adaptive learning,
much beyond what human traders and portfolio managers could handle in
old days. Numerous studies have been carried out along this direction. For
example, Nevmyvaka et al. (2006) conducted the first large scale empiri-
cal analysis of RL method applied to optimal order execution and achieved
substantial improvement relative to the baseline strategies. Hendricks and
Wilcox (2014) improved over the theoretical optimal trading strategies of
the Almgren-Chriss model (Almgren and Chriss (2001)) using RL techniques
and market attributes. Moody and Saffell (2001) and Moody et al. (1998)
studied portfolio allocation problems with transaction costs via direct policy
search based RL methods, without resorting to forecast models that rely on
supervised leaning.

However, most existing works only focus on RL optimization problems
with expected utility of discounted rewards. Such criteria are either un-
able to fully characterize the uncertainty of the decision making process in
financial markets or opaque to typical investors. On the other hand, mean—
variance (MV) is one of the most important criteria for portfolio choice.
Initiated in the seminal work Markowitz (1952) for portfolio selection in
a single period, such a criterion yields an asset allocation strategy that
minimizes the variance of the final payoff while targeting some prespecified
mean return. The MV problem has been further investigated in the discrete-
time multiperiod setting (Li and Ng (2000)) and the continuous-time setting
(Zhou and Li (2000)), along with hedging (Duffie and Richardson (1991))
and optimal liquidation (Almgren and Chriss (2001)), among many other
variants and generalizations. The popularity of the MV criterion is not only
due to its intuitive and transparent nature in capturing the tradeoff between
risk and reward for practitioners, but also due to the theoretically interest-
ing issue of time-inconsistency (or Bellman’s inconsistency) inherent with
the underlying stochastic optimization and control problems.

From the RL perspective, it is computationally challenging to seek the
global optimum for Markov Decision Process (MDP) problems under the MV
criterion (Mannor and Tsitsiklis (2013)). In fact, variance estimation and
control are not as direct as optimizing the expected reward-to-go which has
been well understood in the classical MDP framework for most RL problems.



Because most standard MDP performance criteria are linear in expectation,
including the discounted sum of rewards and the long-run average reward
(Sutton and Barto (2018)), Bellman’s consistency equation can be easily
derived for guiding policy evaluation and control, leading to many state-of-
the-art RL techniques (e.g., Q-learning, temporal difference (TD) learning,
etc). The variance of reward-to-go, however, is nonlinear in expectation and,
as a result, most of the well-known learning rules cannot be applied directly.

Existing works on variance estimation and control generally divide into
two groups, value based methods and policy based methods. Sobel (1982)
obtained the Bellman’s equation for the variance of reward-to-go under a
fized, given policy. Based on that equation, Sato et al. (2001) derived the
TD(0) learning rule to estimate the variance under any given policy. In a
related paper, Sato and Kobayashi (2000) applied this value based method
to an MV portfolio selection problem. It is worth noting that due to their
definition of the intermediate value function (i.e., the variance penalized
expected reward-to-go), Bellman’s optimality principle does not hold. As a
result, it is not guaranteed that a greedy policy based on the latest updated
value function will eventually lead to the true global optimal policy. The
second approach, the policy based RL, was proposed in Tamar et al. (2013).
They also extended the work to linear function approximators and devised
actor-critic algorithms for MV optimization problems for which convergence
to the local optimum is guaranteed with probability one (Tamar and Mannor
(2013)). Related works following this line of research include Prashanth and
Ghavamzadeh (2013, 2016), among others. Despite the various methods
mentioned above, it remains an open and interesting question in RL to
search for the global optimum under the MV criterion.

In this paper, we establish and develop an RL framework for studying
the pre-committed solution to the continuous-time MV portfolio selection,
with continuous portfolio (control/action) and wealth (state/feature) spaces.
The continuous-time formulation is appealing when the rebalancing of port-
folios can take place at ultra-high frequency. Such a formulation may also
benefit from the large amount of tick data that is available in most electronic
markets nowadays. The classical continuous-time MV portfolio model is a
special instance of a stochastic linear—quadratic (LQ) control problem (Zhou
and Li (2000)) if the goal of the former is to find the pre-committed optimal
strategies. Recently, Wang et al. (2019) proposed and developed a gen-
eral entropy-regularized, relaxed stochastic control formulation, called an
exploratory formulation, to capture explicitly the tradeoff between explo-
ration and exploitation in RL. In this formulation, the agent randomizes
her controls to explore and learn the black-box environment, and as a re-



sult classical controls are replaced by distributions of controls. (See Wang
et al. (2019) for a detailed discussion about the motivation of using the
control distributions.) They showed that the optimal distributions of the
exploratory control policies must be Gaussian for an LQ control problem in
the infinite time horizon, thereby providing an interpretation for the Gaus-
sian exploration broadly used both in RL algorithm design and in practice.

While being essentially an LQ control problem, the MV portfolio selec-
tion must be formulated in a finite time horizon which is not covered by
Wang et al. (2019). The first contribution of this paper is to present the
global optimal solution to the exploratory MV problem. One of the interest-
ing findings is that, unlike its infinite horizon counterpart derived in Wang
et al. (2019), the optimal feedback control policy for the finite horizon case
is a Gaussian distribution with a time-decaying variance. This suggests that
the level of exploration decreases as the time approaches the end of the
planning horizon. On the other hand, we will obtain results and observe
insights that are parallel to those in Wang et al. (2019), such as the perfect
separation between exploitation and exploration in the mean and variance
of the optimal Gaussian distribution, the positive effect of a random envi-
ronment on learning, an explicitly expressed cost of exploration, and close
connections between the classical and the exploratory MV problems.

The main contribution of the paper, however, is to design an inter-
pretable and implementable RL algorithm to learn the global optimal so-
lution of the exploratory MV problem, premised upon a provable policy
improvement theorem for continuous-time stochastic control problems with
both entropy regularization and control relaxation. This theorem provides
an explicit updating scheme for the feedback Gaussian policy, based on the
value function of the current policy in an iterative manner. Moreover, it
enables us to reduce from a family of general non-parametric policies to a
specifically parametrized Gaussian family for exploration and exploitation,
irrespective of the choice of an initial policy. This, together with a care-
fully chosen initial Gaussian policy at the beginning of the learning process,
guarantees the fast convergence of both the policy and the value function to
the global optimum of the exploratory MV problem.

We then test our RL algorithm via simulation and empirical analyses. In
the simulation study, we compare our method with two other methods ap-
plied to the MV portfolio optimization. The first one is an adaptive control
approach that adopts the real-time maximum likelihood estimation of the
underlying model parameters. The other one is a recently developed continu-
ous control RL algorithm, a deep deterministic policy gradient method (Lill-
icrap et al. (2016)) that employs deep neural networks. The comparisons are



performed under various simulated market scenarios, including those with
both stationary and non-stationary investment opportunities. In nearly all
the simulations, our RL algorithm outperforms the other two methods by a
large margin, in terms of both performance and training time. In the em-
pirical study, we backtest our algorithm, along with a leverage-constrained
variant, on random sets of multiple S&P 500 stocks against several baseline
algorithms and demonstrate the superior performance of our RL method.

The rest of the paper is organized as follows. In Section 2, we present
the continuous-time exploratory MV problem under the entropy-regularized
relaxed stochastic control framework. Section 3 provides the complete solu-
tion of the exploratory MV problem, along with connections to its classical
counterpart. We then provide the policy improvement theorem and a conver-
gence result for the learning problem in Section 4, based on which we devise
the RL algorithm for solving the exploratory MV problem. In Sections 5
and 6, we carry out simulation and empirical tests respectively. Finally, we
conclude in Section 7.

2 Formulation of Problem

In this section, we formulate an exploratory, entropy-regularized Markowitz’s
MYV portfolio selection problem in continuous time, in the context of RL.
The motivation of a general exploratory stochastic control formulation, of
which the MV problem is a special case, was discussed at great length in a
previous paper Wang et al. (2019); so we will frequently refer to that paper.

2.1 Classical continuous-time MYV problem

We first recall the classical MV problem in continuous time (without RL).
For ease of presentation, throughout this paper except Section 6 we consider
an investment universe consisting of only one risky asset and one riskless
asset. The case of multiple risky assets poses no essential differences or
difficulties other than notational complexity.

Let an investment planning horizon 7" > 0 be fixed, and {W;,0 <t < T}
a standard one-dimensional Brownian motion defined on a filtered probabil-
ity space (Q, F,{Ft}o<t<T,P) that satisfies the usual conditions. The price
process of the risky asset is a geometric Brownian motion governed by

dSt:St(/Ldt—FO'th), OStST, (].)

with Sop = sp > 0 being the initial price at ¢ = 0, and 4 € R, ¢ > 0 being
the mean and volatility parameters, respectively. The riskless asset has a



constant interest rate » > 0. ! The Sharpe ratio of the risky asset is defined
by p = =

Denote by {z},0 < ¢t < T} the discounted wealth process of an agent
who rebalances her portfolio investing in the risky and riskless assets with
a strategy u = {u;,0 < t < T}. Here u; is the discounted dollar value
put in the risky asset at time ¢, while satisfying the standard self-financing
assumption and other technical conditions that will be spelled out in details

below. It follows from (1) that the wealth process satisfies
dry = ou(pdt + dWy), 0<t<T, (2)

with an initial endowment being z§ = z9 € R.
The classical continuous-time MV model aims to solve the following con-
strained optimization problem

min Var[z7]
u
subject to E[zf}] = z, (3)

where {z}',0 < t < T} satisfies the dynamics (2) under the investment
strategy (portfolio) u, and z € R is an investment target set at ¢t = 0 as the
desired mean payoff at the end of the investment horizon [0, 7.2

Due to the variance in its objective, (3) is known to be time inconsistent.
The problem then becomes descriptive rather than normative because there
is generally no dynamically optimal solution for a time-inconsistent opti-
mization problem. Agents react differently to the same time-inconsistent
problem, and a goal of the study becomes to describe the different behaviors
when facing such time-inconsistency. In this paper we focus ourselves to the
so-called pre-committed strategies of the MV problem, which are optimal at
t =0 only.?

n practice, the true (yet unknown) investment opportunity parameters p, o and
r can be time-varying stochastic processes. Most existing quantitative finance methods
are devoted to estimating these parameters. In contrast, RL learns the values of various
strategies and the optimal value through exploration and exploitation, without assuming
any statistical properties of these parameters or estimating them. But for a model-based,
classical MV problem, we assume these parameters are constant and known. In subsequent
contexts, all we need is the structure of the problem for our RL algorithm design.

2The original MV problem is to find the Pareto efficient frontier for a two-objective
(i.e. maximizing the expected terminal payoff and minimizing its variance) optimization
problem. There are a number of equivalent mathematical formulations to finding such a
frontier, (3) being one of them. In particular, by varying the parameter z one can trace
out the frontier. See Zhou and Li (2000) for details.

3For a detailed discussions about the different behaviors under time-inconsistency, see



To solve (3), one first transforms it into an unconstrained problem by
applying a Lagrange multiplier w:*
min E[(z%)?] — 22 — 2w (E[z%] — 2) = minE[(z% — w)?] — (w — 2)%.  (4)
u u
This problem can be solved analytically, whose solution v* = {u;,0 <t <T'}

depends on w. Then the original constraint E[z% ] = z determines the value
of w. We refer a detailed derivation to Zhou and Li (2000).

2.2 Exploratory continuous-time MV problem

Given the complete knowledge of the model parameters, the classical, model-
based MV problem (3) and many of its variants have been solved rather
completely. When implementing these solutions, one needs to estimate the
market parameters from historical time series of asset prices, a procedure
known as identification in classical adaptive control. However, it is well
known that in practice it is difficult to estimate the investment opportunity
parameters, especially the mean return (aka the mean—blur problem; see,
e.g., Luenberger (1998)) with a workable accuracy. Moreover, the classical
optimal MV strategies are often extremely sensitive to these parameters,
largely due to the procedure of inverting ill-conditioned variance—covariance
matrices to obtain optimal allocation weights. In view of these two issues,
the Markowitz solution can be greatly irrelevant to the underlying invest-
ment objective.

On the other hand, RL techniques do not require, and indeed often
skip, any estimation of model parameters. Rather, RL algorithms, driven
by historical data, output optimal (or near-optimal) allocations directly.
This is made possible by direct interactions with the unknown investment
environment, in a learning (exploring) while optimizing (exploiting) fashion.
Wang et al. (2019) motivated and proposed a general theoretical framework
for exploratory, RL stochastic control problems and carried out a detailed
study for the special LQ case, albeit in the setting of the infinite time horizon.
We adopt the same framework here, noting the inherent features of an LQ
structure and a finite time horizon of the MV problem. Indeed, although
the motivation for the exploratory formulation is mostly the same, there are
intriguing new insights emerging with this transition from the infinite time
horizon to its finite counterpart.

the seminal paper Strotz (1955). Most of the study on continuous-time MV problem in
literature has been devoted to pre-committed strategies; see Zhou and Li (2000); Li et al.
(2002); Bielecki et al. (2005); Lim and Zhou (2002); Zhou and Yin (2003).

4Strictly speaking, 2w € R is the Lagrange multiplier.



First, we introduce the “exploratory” version of the state dynamics
(2). It was originally proposed in Wang et al. (2019), motivated by repet-
itive learning in RL. In this formulation, the control (portfolio) process
u = {us,0 <t < T} is randomized, which represents exploration and learn-
ing, leading to a measure-valued or distributional control process whose
density function is denoted by 7 = {m;,0 < ¢t < T'}. The dynamics (2) is
changed to

dXtﬂ— = b(TFt) dt + 0~'(’/Tt) th, (5)

where 0 <t <T, X7 = xo,

b = /R pour(u)du, e P (R), (6)

and
o(m) = /R<72u27r(u)du, e P(R), (7)

with P (R) being the set of density functions of probability measures on
R that are absolutely continuous with respect to the Lebesgue measure.
Mathematically, (5) coincides with the relazed control formulation in classi-
cal control theory. Refer to Wang et al. (2019) for a detailed discussion on
the motivation of (5).

Denote respectively by p; and o7, 0 < t < T, the mean and variance
(assuming they exist for now) processes associated with the distributional
control process T, i.e.,

ot = / umg(u)du  and  of = / wlmy(u)du — p? (8)
R R
Then, it follows immediately that the exploratory dynamics (5) become

dX] = popgdt+oy/p? +of dWy, (9)

where 0 < ¢t < T and X[ = z9. The randomized, distributional control
process m = {m;,0 < ¢t < T} is to model exploration, whose overall level is
in turn captured by its accumulative differential entropy

T
H(m) = —/0 /th(u) In ¢ (u)dudt. (10)



Further, introduce a temperature parameter (or exploration weight) A > 0
reflecting the tradeoff between exploitation and exploration. The entropy-
regularized, exploratory MV problem is then to solve, for any fixed w € R:

T
min E [(X% —w)? + )\/ / m(w) Inmy(w)dudt| — (w — 2)%,  (11)
7€A(0,20) 0 R

where A(0,z¢) is the set of admissible distributional controls on [0,77] to
be precisely defined below.> Once this problem is solved with a minimizer
7 = {r},0 <t < T}, the Lagrange multiplier w can be determined by the
additional constraint E[XT | = 2.

The optimization objective (11) explicitly encourages exploration, in con-
trast to the classical problem (4) which concerns exploitation only.

We will solve (11) by dynamic programming. For that we need to define
the value functions. For each (s,y) € [0,T) x R, consider the state equation
(9) on [s,T] with XT = y. Define the set of admissible controls, A(s,y), as
follows. Let B(R) be the Borel algebra on R. A (distributional) control (or
portfolio/strategy) process m = {m, s <t < T} belongs to A(s,y), if

(i) for each s <t < T, m € P(R) a.s,;

(ii) for each A € B(R), {[ m(u)du,s < t < T} is Fp-progressively
measurable;

(iii) B [fST (12 + 02) dt} < o0;

(iv) E U(X%E —w)? + AfsT Jg me(u) lnwt(u)dudﬂ )X;r = y} < 0.

Clearly, it follows from condition (iii) that the stochastic differential
equation (SDE) (9) has a unique strong solution for s < ¢t < T' that satisfies
XTI =uy.

Controls in A(s,y) are measure-valued (or, precisely, density-function-
valued) stochastic processes, which are also called open-loop controls in the

®Mathematically, this problem is equivalent to (in view of an argument of Lagrange
multiplier):

in E[(XF—w)?] — (w—2)? 12
in B [(XT —w)'] — (w—2), (12)
T
subject to/ /Trt(u)lnm(u)dudtzl, (13)
o Jr

where [ > 0 is a parameter corresponding to the temperature parameter A\. The intuition
of this problem is clear: the agent seeks to optimize the original mean—variance criterion
while maintaining a prescribed overall level of exploration. Hence, the accumulative dif-
ferential entropy term in (11) can be interpreted as a penalty for not carrying out enough
exploration.



control terminology. As in the classical control theory, it is important to
distinguish between open-loop controls and feedback (or closed-loop) con-
trols (or policies as in the RL literature, or laws as in the control literature).
Specifically, a deterministic mapping 7(+;-,-) is called an (admissible) feed-
back control if i) 7 (-; ¢, z) is a density function for each (¢, z) € [0, 7] X R; ii)
for each (s,y) € [0,7) xR, the following SDE (which is the system dynamics
after the feedback policy = (-;-, ) is applied)

AXT = b(w(-;t, X)) dt + 6 (w(t, XF))dWy, t € [s,T]; XT =y  (14)

has a unique strong solution {X/,t € [s,T]}, and the open-loop control
m = {m, t € [s,T]} € A(s,y) where m; := w(-;¢t,X]"). In this case, the
open-loop control 7 is said to be generated from the feedback policy = (+; -, )
with respect to the initial time and state, (s,y). It is useful to note that an
open-loop control and its admissibility depend on the initial (s,y), whereas
a feedback policy can generate open-loop controls for any (s,y) € [0,T) x R,
and hence is in itself independent of (s,%).%
Now, for a fixed w € R, define

T
V(s,y;w):= inf E [(X% —w)? + )\/ / mt(u) In Trt(u)dudt’X;T = y} —(w—2)%,
TEA(s,y) 0 R
(15)

for (s,y) € [0,7) x R. The function V(-,;w) is called the optimal value
function of the problem.” Moreover, we define the value function under any
given feedback control :

T
V™ (s,y;w) =E [(Xr}r —w)? + /\/ / m(u) lnwt(u)dudt}X;' = y] —(w—2)?,
s R
(16)
for (s,y) € [0,T) xR, where m = {m, t € [s,T]} is the open-loop control gen-
erated from 7 with respect to (s,y) and { X7, t € [s,T]} is the corresponding
wealth process.

SThroughout this paper, we use boldfaced 7 to denote feedback controls, and the
normal style 7 to denote open-loop controls.

"In the control literature, V is called the value function. However, in the RL literature
the term “value function” is also used for the objective value under a particular control.
So to avoid ambiguity we call V' the optimal value function.

10



3 Solving Exploratory MV Problem

In this section we first solve the exploratory MV problem, and then establish
solvability equivalence between the classical and exploratory problems. The
latter is important for understanding the cost of exploration and for devising
RL algorithms.

3.1 Optimality of Gaussian exploration
To solve the exploratory MV problem (11), we apply the classical Bellman’s

principle of optimality:

V(t,z;w)= inf E [V s, X1 ;w —l—)\/ /7Tv ) In 7, (u dudv‘Xt —x] ,
TEA(t,x)

forx € Rand 0 <t < s <7T. Following standard arguments, we deduce

that V satisfies the Hamilton-Jacobi-Bellman (HJB) equation

1
ve(t, ; w)—{—ﬂénpl&) (56’2(7r)vm(t,m;w)+b( ) vy (t, 5w —I—A/ u)Inm(u ) =0,
(17)

or, equivalently,

1
v(t, x; w)+ min / <02u2vm(t,aj;fw) + pouv,(t, z;w) + Aln 77(u)> 7(u)du = 0,
TeP(R) Jr \ 2
(18)

with the terminal condition v(T, z;w) = (x —w)? — (w—2)?. Here v denotes
the generic unknown solution to the HJB equation.

Applying the usual verification technique and using the fact that = €
P(R) if and only if

2

/ m(u)du =1 and 7(u)>0ae. onR, (19)
R

we can solve the (constrained) optimization problem in the HJB equation
(18) to obtain a feedback (distributional) control whose density function is
given by

exp (—3 (30U Ve (t, 5 w) + pouvy(t, 23 w)))
fR exp ( % (102u21)mz(t ;w) + PUUUx(t,l';’w))) du
p
g

_ N(”_%@Lw) A )’

Var (b, m5w) 7 020, (8, 75 w)

" (uyt,z,w) =

(20)

11



where we have denoted by N (u|a, 3) the Gaussian density function with
mean « € R and variance § > 0. In the above representation, we have
assumed that vy, (¢, z;w) > 0, which will be verified in what follows.

Substituting the candidate optimal Gaussian feedback control policy (20)
back into the HJB equation (18), the latter is transformed to

2 .2
P2 V2t mw) A 2meA
; : . Hx\Y Sy ) - 1— 1 _— == O, 21
ve(t, T w) 2 o (s 2, 0) + 5 na%m(t,x;w) (21)

with o(T, z;w) = (x —w)? — (w — 2)%. A direct computation yields that this
equation has a classical solution

v

v(t, Ty w) = (x—w)Qg*fﬂ(T*t)—i— 1

(T2 — %) A <p2T —1In 0—2> (T—t)—(w—2z)?
2 TA ’
(22)
which clearly satisfies vy, (¢, z;w) > 0, for any (¢,x) € [0,7] x R. It then
follows that the candidate optimal feedback Gaussian control (20) reduces
to

7 (ust, r,2w) =N (u‘ — B(x —w) , )\ePQ(T_t)> , (t,x) €[0,T] x R.

o 202
(23)
Finally, the optimal wealth process (9) under 7* becomes

A
dX{ = —p*(X{ —w)dt + \/ PP (X} =)’ + Sert T W, X = o (24)

It has a unique strong solution for 0 < ¢ < T, as can be easily verified.
We now summarize the above results in the following theorem.

Theorem 1 The optimal value function of the entropy-reqularized exploratory
MYV problem (11) is given by

0_2

2
V(t,zw) = (33—111)267'02(7“7"/)—i—)\L (T° - t2)—g (pQT —In > (T—t)—(w—2)?,

4 TA
(25)
for (t,x) € [0,T] x R. Moreover, the optimal feedback control is Gaussian,
with its density function given by

o 202

o (ut,z,w) =N (u‘ — B(x —w) , )\epQ(Tt)> . (26)

12



The associated optimal wealth process under ©* is the unique solution of the
SDE

A

2
zeP T —xq

Finally, the Lagrange multiplier w is given by w = T

Proof. For each fixed w € R, the verification arguments aim to show that
the optimal value function of problem (11) is given by (25) and that the
candidate optimal policy (26) is indeed admissible. A detailed proof follows
the same lines of that of Theorem 4 in Wang et al. (2019), and is left for
interested readers.

We now determine the Lagrange multiplier w through the constraint
E[X}] = z. It follows from (27), along with the standard estimate that
E [max,eo.71(X;)?] < oo and Fubini’s Theorem, that

Bx;) = m+E [ [ R~ w) s =+ | L (E[XY] — w) ds.

Hence, E[X}] = (2o — w)e#"t + w. The constraint E[X}] = z now becomes
(z0 — w)e ”’T + w = z, which gives w = Z‘Zzz%”fo [

There are several interesting points to note in this result. First of all,
it follows from Theorem 2 in the next section that the classical and the
exploratory MV problems have the same Lagrange multiplier value due to
the fact that the optimal terminal wealths under the respective optimal
feedback controls of the two problems turn out to have the same mean.®
This latter result is rather surprising at first sight because the exploration
greatly alters the underlying system dynamics (compare the dynamics (2)
with (9)).

Second, the variance of the optimal Gaussian policy, which measures the
level of exploration, is ﬁepz(T*t) at time t. So the exploration decays in
time: the agent initially engages in exploration at the maximum level, and
reduces it gradually (although never to zero) as time passes and approaches
the end of the investment horizon. Hence, different from its infinite horizon
counterpart studied in Wang et al. (2019), the extent of exploration is no
longer constant, but, rather, annealing. This is intuitive because, as the

RL agent learns more about the random environment as time passes, the

8Theorem 2 is a reproduction of the results on the classical MV problem obtained in
Zhou and Li (2000).

13



exploitation becomes more important since there is a deadline T" at which her
actions will be evaluated. Naturally, exploitation dominates exploration as
time approaches maturity. Theorem 1 presents such a decaying exploration
scheme endogenously which, to our best knowledge, has not been derived in
the RL literature.

Third, as already noted in Wang et al. (2019), at any given ¢ € [0, 7], the
variance of the exploratory Gaussian distribution decreases as the volatility
of the risky asset increases, with other parameters being fixed. The volatility
of the risky asset reflects the level of randomness of the investment universe.
This hints that a more random environment contains more learning oppor-
tunities, which the RL agent can leverage to reduce her own exploratory
endeavor because, after all, exploration is costly.

Finally, the mean of the Gaussian distribution (26) is independent of the
exploration weight A, while its variance is independent of the state x. This
highlights a perfect separation between exploitation and exploration, as the
former is captured by the mean and the latter by the variance of the optimal
Gaussian exploration. This property is also consistent with the LQ case in
the infinite horizon studied in Wang et al. (2019).

3.2 Solvability equivalence between classical and exploratory
MYV problems

In this section, we establish the solvability equivalence between the classi-
cal and the exploratory, entropy-regularized MV problems. Note that both
problems can be and indeed have been solved separately and independently.
Here by “solvability equivalence” we mean that the solution of one problem
will lead to that of the other directly, without needing to solve it separately.
This equivalence was first discovered in Wang et al. (2019) for the infinite
horizon LQ case, and was shown to be instrumental in deriving the conver-
gence result (when the exploration weight A decays to 0) as well as analyzing
the exploration cost therein. Here, the discussions are mostly parallel; so
we will make them brief.

Recall the classical MV problem (4). In order to apply dynamic pro-
gramming, we again consider the set of admissible controls, A% (s,y), for
(s,y) € [0,7) x E,

Al(s,y) = {u = {uy,t € [s,T]}: u is Fy-progressively measurable and
[T (uy)? dt] < oo}.
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The (optimal) value function is defined by

V(s,y;w) ;== inf E[(z% — w)? |zt =y] — (w— 2)?, (28)
u€A(s,y)
for (s,y) € [0,T) x R, where w € R is fixed. Once this problem is solved, w
can be determined by the constraint E[z7.] = 2, with {«},t € [0,T]} being
the optimal wealth process under the optimal portfolio u*.
The HJB equation is

1
we(t, z; w)+min (202u2wm(t,m; w) + pou wz(t,x;w)> =0, (t,z)€[0,T)xR,

u€R
(20)
with the terminal condition w(T,z;w) = (z — w)? — (w — 2)%.
Standard verification arguments deduce the optimal value function to be

Ve, zyw) = (z — w)Qe_pz(T_t) — (w — 2)?%,

the optimal feedback control policy to be

u'(t,23w) = ~2 (o — w), (30)
o
and the corresponding optimal wealth process to be the unique strong solu-
tion to the SDE

drj = (&} — w)dt — ple} — w) dWr, ) = 0. (31)

Comparing the optimal wealth dynamics, (27) and (31), of the exploratory
and classical problems, we note that they have the same drift coefficient (but
different diffusion coefficients). As a result, the two problems have the same
mean of optimal terminal wealth and hence the same value of the Lagrange
zePQT—m
er’T—1

We now provide the solvability equivalence between the two problems.
The proof is very similar to that of Theorem 7 in Wang et al. (2019), and is

thus omitted.

multiplier w = ¢ determined by the constraint E[z%.] = z.

Theorem 2 The following two statements (a) and (b) are equivalent.

(a) The functionv(t,x;w) = (a,’—w)zfz_’)2(T_t)—i-ATP2 (T% — %) -3 (p2T —1In %) (T—
t) — (w — 2)%, (t,x) € [0,T] x R, is the optimal value function of the
exploratory MV problem (11), and the corresponding optimal feedback
control is



(b)  The function w(t, z;w) = (x—w)2e P T _(w—2)2, (t,z) € [0, T| xR,
is the optimal value function of the classical MV problem (28), and the
corresponding optimal feedback control is

u*(t,z;w) = —g(x —w).

2
Moreover, the two problems have the same Lagrange multiplier w = %

It is reasonable to expect that the exploratory problem converges to
its classical counterpart as the exploration weight A decreases to 0. The
following result makes this precise.

Theorem 3 Assume that statement (a) (or equivalently, (b)) of Theorem
2 holds. Then, for each (t,z,w) € [0,T] x R x R,

;\l_r% (58, T3W) = Gy (t,a:;w)(') weakly.

Moreover,

lim |V (¢, 2;w) — V(t, z;w)| = 0.

A—=0
Proof. The weak convergence of the feedback controls follows from the
explicit forms of 7* and w* in statements (a) and (b). The pointwise con-
vergence of the value functions follows easily from the forms of V(-) and
Ve(.), together with the fact that

J2

lim —In— = 0.
A—=02  w

]

Finally, we conclude this section by examining the cost of the exploration.
This was originally defined and derived in Wang et al. (2019) for the infinite
horizon setting. Here, the cost associated with the MV problem due to the
explicit inclusion of exploration in the objective (11) is defined by

T
¢ i) = (Vo) =38 | [ [ sttt | x5 = ]
0 R

—VCI(O, o W), (32)

for xg € R, where * = {n},t € [0,T]} is the (open-loop) optimal strat-
egy generated by the optimal feedback law #* with respect to the initial
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condition X{ " = zo. This cost is the difference between the two optimal
value functions, adjusting for the additional contribution due to the entropy
value of the optimal exploratory strategy. As shown in Wang et al. (2019),
it measures the loss in the original (i.e. non-exploratory) objective due to
exploration.

Making use of Theorem 2, we have the following result.

Theorem 4 Assume that statement (a) (or equivalently, (b)) of Theorem
2 holds. Then, the exploration cost for the MV problem is

* * AT
C* ™ (0,z0;w) = - W€ R, weR. (33)

Proof. Let {n},t € [0,T]} be the open-loop control generated by the feed-
back control v* given in statement (a) with respect to the initial state xg
at ¢ = 0, namely,
wilw) = N (] = 2(X7 ), g
o 202
where {X[,t € [0,7]} is the corresponding optimal wealth process of the

exploratory MV problem, starting from the state xg at ¢ = 0, when 7* is
applied. Then, we easily deduce that

/ 7 () In 7} (u)du = _% In <7T62Ae,,z(m)> '
R

g

The desired result now follows immediately from the expressions of V(-) in
(a) and V() in (b). m

The exploration cost depends only on two “agent-specific” parameters,
the exploration weight A > 0 and the investment horizon T" > 0. Note
that the latter is also the exploration horizon. Our result is intuitive in
that the exploration cost increases with the exploration weight and with the
exploration horizon. Indeed, the dependence is linear with respect to each
of the two attributes: A and 7.7 It is also interesting to note that the cost is
independent of the Lagrange multiplier. This suggests that the exploration
cost will not increase when the agent is more aggressive (or risk-seeking) —
reflected by the expected target z or equivalently the Lagrange multiplier
w.

°In Wang et al. (2019) with the infinite horizon LQ case, an analogous result is obtained
which states that exploration cost is proportional to the exploration weight and inversely
proportional to the discount factor. Clearly, here the length of time horizon, T, plays a
role similar to the inverse of the discount factor.
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4 RL Algorithm Design

Having laid the theoretical foundation in the previous two sections, we now
design an RL algorithm to learn the solution of the entropy-regularized MV
problem and to output implementable portfolio allocation strategies, with-
out assuming any knowledge about the underlying parameters. To this
end, we will first establish a so-called policy improvement theorem as well
as the corresponding convergence result. Meanwhile, we will provide a self-
correcting scheme to learn the true Lagrange multiplier w, based on stochas-
tic approximation. Our RL algorithm bypasses the phase of estimating
any model parameters, including the mean return vector and the variance-
covariance matrix. It also avoids inverting a typically ill-conditioned variance-
covariance matrix in high dimensions that would likely produce non-robust
portfolio strategies.

In this paper, rather than relying on the typical framework of discrete-
time MDP (that is used for most RL problems) and discretizing time and
space accordingly, we design an algorithm to learn the solutions of the
continuous-time exploratory MV problem (11) directly. Specifically, we
adopt the approach developed in Doya (2000) to avoid discretization of the
state dynamics or the HJB equation. As pointed out in Doya (2000), it
is typically challenging to find the right granularity to discretize the state,
action and time, and naive discretization may lead to poor performance. On
the other hand, grid-based discretization methods for solving the HJB equa-
tion cannot be easily extended to high-dimensional state space in practice
due to the curse of dimensionality, although theoretical convergence results
have been established (see Munos and Bourgine (1998); Munos (2000)). Our
algorithm, to be described in Subsection 4.2, however, makes use of a prov-
able policy improvement theorem and fairly simple yet efficient functional
approximations to directly learn the value functions and the optimal Gaus-
sian policy. Moreover, it is computationally feasible and implementable
in high-dimensional state spaces (i.e., in the case of a large number of risky
assets) due to the explicit representation of the value functions and the port-
folio strategies, thereby devoid of the curse of dimensionality; see Section 6.
Note that our algorithm does not use (deep) neural networks, which have
been applied extensively in literature for (high-dimensional) continuous RL
problems (e.g., Lillicrap et al. (2016), Mnih et al. (2015)) but known for un-
stable performance, sample inefficiency as well as extensive hyperparameter
tuning (Mnih et al. (2015)), in addition to their low interpretability.'’

OTnterpretability is one of the most important and pressing issues in the general arti-
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4.1 A policy improvement theorem

Most RL algorithms consist of two iterative procedures: policy evaluation
and policy improvement (Sutton and Barto (2018)). The former provides an
estimated value function for the current policy, whereas the latter updates
the current policy in the right direction to improve the value function. A
policy improvement theorem (PIT) is therefore a crucial prerequisite for
interpretable RL algorithms that ensures the iterated value functions to
be non-increasing (in the case of a minimization problem), and ultimately
converge to the optimal value function; see, for example, Section 4.2 of
Sutton and Barto (2018). PITs have been proved for discrete-time entropy-
regularized RL problems in infinite horizon (Haarnoja et al. (2017)), and for
continuous-time classical stochastic control problems (Jacka and Mijatovié
(2017)).11  The following result provides a PIT for our exploratory MV
portfolio selection problem.

Theorem 5 (Policy Improvement Theorem) Let w € R be fized and
™ = 7w(-, -, w) be an arbitrarily given admissible feedback control policy.
Suppose that the corresponding value function V(- w) € CH2([0,T) x
R)NCY([0,T) x R) and satisfies V.= (t, x;w) > 0, for any (t,x) € [0,T) x R
Suppose further that the feedback policy 7 defined by

o - p V&t s w) A
muit,z,w) =N <u o VE(t, z;w) UQV;};(t,x;w)) (34)

1s admissible. Then,
VT (t,z;w) < V™(t,z;w), (t,z) € [0,T] x R. (35)

Proof. Fix (t,z) € [0,7] x R. Since, by assumption, the feedback policy 7
is admissible, the open-loop control strategy, © = {7, v € [t,T]}, generated
from 7 with respect to the initial condition X = x is admissible. Let
{XT s € [t,T]} be the corresponding wealth process under 7. Applying
1t6’s formula, we have

V™(s,Xs) = V™ (t,z) + / Vi (v, XT) dv—i—/ / 202V (v, XTT)

ficial intelligence applications in financial industry due to, among others, the regulatory
requirement.

" Jacka and Mijatovié (2017) studied classical stochastic control problems with no
distributional controls nor entropy regularization. They did not consider RL and related
issues including exploration. However, the proof of Theorem 5 below is similar to that of
Jacka and Mijatovié¢ (2017).
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VI

—i—pauVZ’(v,Xf))frv(u) dudv—i—/ o </ w7, (u )du) V™ (v, XF)dW,, s € [t,T].
¢ R
(36)
Define the stopping times 7, := inf{s >t : [’ 0 [ u*7y(u)du (V™ (v, X{f"))Q dv >
n}, for n > 1. Then, from (36), we obtain

SN\Tp, _
VTt 2) = E[V“(s AT, XE ) — / V™ (0, X7F)dv
t

SA\Tn, ~ ~
/ / 1 2uPVE (0, X7) + poqu"(v,Xf))ﬁv(u) dudv ‘XZ' = a:}

(37)
On the other hand, by standard arguments and the assumption that V™ is
smooth, we have

1
Vt"(t,x)—i—/ (202u2Vm7;(t, z) + pouV (t,x) + Anm(u; t,a:)) m(uyt, z)du = 0,
R
for any (t,2z) € [0,T) x R. It follows that

1
Vi (t,x)+ min / <202u2vx";(t,a}) + pouV," (t,x) + Aln ﬂ'(u)) 7' (u)du < 0.
R

' €P(R)
(38)
Notice that the minimizer of the Hamiltonian in (38) is given by the feedback
policy 7t in (34). It then follows that equation (37) implies

SN\Tn B
V™(t,x) > E[V’r(s ATn, XZ0 )+ )\/ / Ty (u) In 70y (w) dudv‘XZ' = :c},
t R

for (t,z) € [0,T] x R and s € [t,T]. Now taking s = T, and using that
V™(T,z) = V™(T,z) = (x—w)?—(w—2)? together with the assumption that
7 is admissible, we obtain, by sending n — oo and applying the dominated
convergence theorem, that

v (t,2) > B[V (T, XF)+A /t ' /R o) I, (u) dudo| XF = 2] = V(t,2),

for any (t,z) € [0,7] xR. =

The above theorem suggests that there are always policies in the Gaus-
sian family that improves the value function of any given, not necessarily
Gaussian, policy. Hence, without loss of generality, we can simply focus
on the Gaussian policies when choosing an initial solution. Moreover, the
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optimal Gaussian policy (26) in Theorem 1 suggests that a candidate initial
feedback policy may take the form 7w (u; t, z, w) = N (u|a(z —w), c;eT1).
It turns out that, theoretically, such a choice leads to the convergence of both
the value functions and the policies in a finite number of iterations.

Theorem 6 Let wo(u;t,z,w) = N(u|a(z — w),c1e2TY), with a,c; € R
and c¢; > 0. Denote by {my(u;t,x,w), (t,z) € [0,T] xR,n > 1} the sequence
of feedback policies updated by the policy improvement scheme (34), and
{VTn(t, z;w), (t,x) € [0,T] x R,n > 1} the sequence of the corresponding
value functions. Then,

h—>m ﬂ'n(-;t,w,w) = 7r*<';t,.%',1U) weakly; (39)
and
lim VT (t,zw) = V(t,x;w), (40)

for any (t,z,w) € [0,T] x R x R, where 7w* and V are the optimal Gaussian
policy (26) and the optimal value function (25), respectively.

Proof. It can be easily verified that the feedback policy g where 7o (u; t, x, w) =
N (u|a(z—w), c1eT—)) generates an open-loop policy 7y that is admissible
with respect to the initial (¢, z). Moreover, it follows from the Feynman-Kac
formula that the corresponding value function V™0 satisfies the PDE

VI (1, ) + /

1
(50'2'&2‘/;;0 (t,z;w) 4+ pouV,O(t, z;w)
R

+)\ln7r0(u;t,x,w))ﬂo(u;t,x,w)du =0, (41)

with terminal condition V™ (T, z;w) = (z — w)? — (w — 2)?. Solving this
equation we obtain

V(35 w) = (2 — w) eI Ry,

where Fp(t) is a smooth function that only depends on ¢. It is easy to check
that V70 satisfies the conditions in Theorem 5 and, hence, the theorem
applies. The improved policy is given by (34), which, in the current case,
becomes

o 92g2e(2poa+o2a?)(T—t)

ﬁl(u;t,x,w):./\/'<u‘—p(a:—w), A )

Again, we can calculate the corresponding value function as V7™ (¢, z;w) =
(2 —w)2e P (Tt L [ (¢), where F} is a smooth function of ¢ only. Theorem
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5 is applicable again, which yields the improved policy 7y as exactly the
optimal Gaussian policy * given in (26), together with the optimal value
function V' in (25). The desired convergence therefore follows, as for n > 2,
both the policy and the value function will no longer strictly improve under
the policy improvement scheme (34). m

The above convergence result shows that if we choose the initial policy
wisely, the learning scheme will, theoretically, converge after a finite num-
ber (two, in fact) of iterations. When implementing this scheme in prac-
tice, of course, the value function for each policy can only be approximated
and, hence, the learning process typically takes more iterations to converge.
Nevertheless, Theorem 5 provides the theoretical foundation for updating a
current policy, while Theorem 6 suggests a good starting point in the policy
space. We will make use of both results in the next subsection to design an
implementable RL algorithm for the exploratory MV problem.

4.2 The EMYV algorithm

In this section, we present an RL algorithm, the EMV (exploratory mean—
variance) algorithm, to solve (11). It consists of three concurrently ongo-
ing procedures: the policy evaluation, the policy improvement and a self-
correcting scheme for learning the Lagrange multiplier w based on stochastic
approximation.

For the policy evaluation, we follow the method employed in Doya (2000)
for learning the value function V7™ under any arbitrarily given admissible
feedback policy . By Bellman’s consistency, we have

VTt 2) = E [V”(S,XS)—F)\/:/RWU(u) 1n7rv(u)dudv\xt:4 seltT),

(42)
for (t,z) € [0,T] x R. Rearranging this equation and dividing both sides by
s — t, we obtain

E |:V7r($7XS) — Vﬂ-(t?Xt

s—t

| *3 i t /:/RT%(U) In 7 (u)dudv | X; = x] —0

Taking s — ¢ in the left hand side gives rise to the continuous-time Bellman’s
error (or the temproral difference (TD) error; see Doya (2000))

5y = VA / () Iy () d, (43)
R

where V;*© = Vw(HAt’XtZAtt)_Vﬂ(t’Xt) is the total derivative and At is the

discretization step for the learning algorithm.
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The objective of the policy evaluation procedure is to minimize the Bell-
man’s error ;. In general, this can be carried out as follows. Denote by V?
and 7® respectively the parametrized value function and policy (upon using
regressions or neural networks, or making use of some of the structures of
the problem; see below), with 6, ¢ being the vector of weights to be learned.
We then minimize

1 T 1 T .
C(0,¢) = §E [/o |5t|2dt] = §E [/0 }Vte + )\/Rﬂf(u) lnﬂf(u)du’th ,

where 7¢ = {7t € [0,T]} is generated from 7® with respect to a given
initial state Xo = xo at time 0. To approximate C(6, ¢) in an implementable
algorithm, we first discretize [0, T'] into small equal-length intervals [t;, t;11],

i=0,1,---,1, where to = 0 and #;;.1 = T. Then we collect a set of samples
D = {(ti,x;),i=0,1,--- , I+ 1} in the following way. The initial sample is
(0,x0) for i = 0. Now, at each t;, i =0,1,--- ,l, we sample 7122: to obtain an

allocation u; € R in the risky asset, and then observe the wealth x;, 1 at the
next time instant ¢;;. We can now approximate C(6, ¢) by

2
0(9,(,5):% > (Ve(ti,xi)+)\/Rwi(u)ln7rfi(u)du) At. (44

(ti,xi)E'D

Instead of following the common practice to represent VY 7® using
(deep) neural networks for continuous RL problems, in this paper we will
take advantage of the more explicit parametric expressions obtained in The-
orem 1 and Theorem 6. This will lead to faster learning and convergence,
which will be demonstrated in all the numerical experiments below. More
precisely, by virtue of Theorem 6, we will focus on Gaussian policies with
variance taking the form c1e2T—t) which in turn leads to the entropy
parametrized by H(Wf’) = ¢1 + ¢o(T — t), where ¢ = (p1, p2), with ¢ € R
and ¢o > 0, is the parameter vector to be learned.

On the other hand, as suggested by the theoretical optimal value func-
tion (25) in Theorem 1, we consider the parameterized V%, where § =
(90, 91, 92, 93)/, by

VOt z) = (x —w)2e BT 1 0,2 4 01t + 6y, (t,2) €]0,T] x R. (45)

From the policy improvement updating scheme (34), it follows that the
variance of the policy ﬂf is ﬁe%(T_t), resulting in the entropy %ln 7;%)‘ +

%’(T —t). Equating this with the previously derived form ”H(Wf ) = ¢1+
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¢2(T —t), we deduce
o? = el 721 and 63 = 2¢0 = p?. (46)
The improved policy, in turn, becomes, according to (34), that

w(ut,z,w) =N <u‘ _ B(m —w), 2)‘2693(Tt)>
g

g

_ _ 292 2 L 20a(r-t)42611
_N(u‘ \/)\:e 2 (z—w), 9 € ; (47)

where we have assumed that the true (unknown) Sharpe ratio p > 0.
Rewriting the objective (44) using H(7) = ¢1 + ¢o(T — t), we obtain

CO.0) =1 S (Voltir) —Mor+ o — 1) At

(ti,xi)E'D

. 0(t. . —VO(t: -
Note that VO(t;, ;) = v (t”l’m”&t) v (t“ml), with 03 = 2¢5 in the parametriza-
tion of VO(t;, ;). It is now straightforward to devise the updating rules for
(01,02)" and (¢1, ¢2)" using stochastic gradient descent algorithms (see, for

example, Chapter 8 of Goodfellow et al. (2016)). Precisely, we compute

((;901 = 2 (Ve(ti’xi) = A(d1 + 62T — tz‘))) At; (48)

(ti,zi)E'D

2902 = Z (Va(ti, x;) — M1 + 2T — tz))> (t?_H —1?); (49)

(ti,x;)€D
oC
b= 2 (Vnw) — Mo+ oaT — ) A (50)
1 (ti,x;)€D
(‘3gz§ Z (Vg Ly, xz (¢>1 + ¢2(T - tl))) At
2 (ti,x:)ED
. o 2,—2¢p2(T—t;41) ot o L 2 ,—2¢p2(T—1t;) 4.
» (—2<wz+l wfe T s ) 2 2 e =t —A(T—ti))

(51)

Moreover, the parameter A3 is updated with 03 = 2¢o, and 6y is updated

based on the terminal condition VO(T,z;w) = (x — w)? — (w — 2)?, which
yields

00 = —02T2 — 91T — (w — 2)2. (52)
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Finally, we provide a scheme for learning the underlying Lagrange mul-
tiplier w. Indeed, the constraint E[Xp] = z itself suggests the standard
stochastic approximation update

Wnt1 = Wy — o (X7 — 2), (53)

with o, > 0, n > 1, being the learning rate. In implementation, we can
replace X7 in (53) by a sample average %ZJ z3 to have a more stable
learning process (see, for example, Section 1.1 of Kushner and Yin (2003)),
where N > 1 is the sample size and x%w’s are the most recent N terminal
wealth values obtained at the time when w is to be updated. It is interesting
to notice that the learning scheme of w, (53), is statistically self-correcting.
For example, if the (sample average) terminal wealth is above the target z,
the updating rule (53) will decrease w, which in turn decreases the mean
of the exploratory Gaussian policy 7 in view of (47). This implies that
there will be less risky allocation in the next step of actions for learning and
optimizing, leading to, on average, a decreased terminal wealth.!?

We now summarize the pseudocode for the EMV algorithm.

5 Simulation Study

In this section, we carry out simulations to compare the performance of
our RL algorithm, the EMV, with two other methods that could be used to
solve the classical MV problem (3). The first one is the traditional maximum
likelihood estimation (MLE) that relies on the real-time estimation of the
drift ;4 and the volatility ¢ in the geometric Brownian motion price model
(1). Once the estimators of p and o are available using the most recent
price time series, the portfolio allocation can be computed using the optimal
allocation (30) for the classical MV problem. Another alternative is based
on the deep deterministic policy gradient (DDPG) method developed by
Lillicrap et al. (2016), a method that has been taken as the baseline approach
for comparisons of different RL algorithms that solve continuous control
problems.

We conduct comparisons in various simulation settings, including the
stationary setting where the price of the risky asset evolves according to the
geometric Brownian motion (1) and the non-stationary setting that involves
stochastic factor modeling for the drift and volatility parameters. We also

12The discussion here is based on the assumption that the market has a positive Sharpe
ratio (recall (47)). The case of a negative Sharpe ratio can be dealt with similarly.
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Algorithm 1 EMV: Exploratory Mean-Variance Portfolio Selection
Input: Market Simulator Market, learning rates «,ng, 14, initial wealth
xg, target payoff z, investment horizon T, discretization At, exploration
rate A, number of iterations M, sample average size N.

Initialize 6, ¢ and w
for k=1to M do
fori=1to L%J do
Sample (t¥, 2¥) from Market under 7%
Obtain collected samples D = {(t¥, 2¥),1 <i < L%J}
Update 0 < 6 —1nyVC(0, ¢) using (48) and (49)
Update 6y using (52) and 03 < 2¢o
Update ¢ <= ¢ — 14V 4C(6, ¢) using (50) and (51)
end for
Update 7% < N <u ‘ - \/%62(#1271 (x —w), 217r62¢2(T_t)+2¢1_1>
if k mod N==0
Update w +— w — « (lb Z?:k—N-H x{lJ - z)
At
end if
end for

consider a time-decreasing exploration variant which can be easily accom-
modated by the EMV through an annealing A across all the episodes [0, T
in the learning process. In nearly all of the experiments, our EMV algorithm
outperforms the other two methods by large margins.

In the following, we briefly describe the two other methods.

Mazximum likelihood estimation (MLE)

The MLE is a popular method for estimating the parameters p and o in
the geometric Brownian motion model (1). We refer the interested readers
to Section 9.3.2 of Campbell et al. (1997) for a detailed description of this
method. At each decision making time ¢;, the MLE estimators for y and o
are calculated based on the most recent 100 data points of the price. One
can then substitute the MLE estimators into the optimal allocation (30)

2
zeP T —xq
er?T 1

the allocation u; € R in the risky asset. Such a two-phase procedure is
commonly used in adaptive control, where the first phase is identification
and the second one is optimization (see, for example, Chen and Guo (2012),
Kumar and Varaiya (2015)). The real-time estimation procedure also allows
the MLE to be applicable in non-stationary markets with time-varying p and

and the expression of the Lagrange multiplier w = to compute
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g.

Deep deterministic policy gradient (DDPG)

The DDPG method has attracted significant attention since it was intro-
duced in Lillicrap et al. (2016). It is a neural network-based, general-purpose
algorithm designed to work in high-dimensional cases to overcome the curse
of dimensionality. It has been taken as a state-of-the-art baseline approach
for continuous control (action) RL problems, albeit in discrete time. The
DDPG learns a deterministic target policy using deep neural networks for
both the critic and the actor, with exogenous noise being added to encour-
age exploration, e.g. using OU processes; see Lillicrap et al. (2016) for
details.'® To adapt the DDPG to the classical MV setting (without entropy
regularization), we make the following adjustments. Since the target policy
we aim to learn is a deterministic function of (x — w) (see (30)), we will
feed the samples x; — w, rather than only x;, to the actor network in order
to output the allocation u; € R. Here, w is the learned Lagrange multi-
plier at the decision making time ¢;, obtained from the same self-correcting
scheme (53). This modification also enables us to connect current allocation
with the previously obtained sample average of terminal wealth in a feed-
back loop, through the Lagrange multiplier w. Another modification from
the original DDPG is that we include prioritized experience replay (Schaul
et al. (2016)), rather than sampling experience uniformly from the replay
buffer. In the current MV problem setting, the sampled experience includes
the sequence of pairs (t;,z;), with the last one (T, zr) being the terminal
experience. We select the terminal experience with higher probability from
the replay buffer to train the critic and actor networks, to account for the
fact that the MV problem has no running cost, but only a terminal cost
given by (z7 — w)? — (w — 2) (cf. (4)). Such a modification significantly
improves learning speed and performance.

5.1 The stationary market case

We first perform numerical simulations in a stationary market environment,
where the price process is simulated according to the geometric Brownian
motion (1) with constant y and 0. We take 7' = 1 and At = 5, indicat-
ing that the MV problem is considered over a one-year period, with daily
rebalancing. Plausible values of the annualized return and volatility will

be taken from the sets p € {—50%, —30%, —10%, 0%, 10%, 30%, 50%} and

13This is essentially Gaussian exploration which, however, is a pure heuristic, rather
than based on theoretical results as with our EMV algorithm.
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o € {10%, 20%, 30%, 40%}, respectively. These values are usually considered
for a “typical” stock for simulation purpose (see, for example, Hutchinson
et al. (1994)). The annualized interest rate is taken to be r = 2%. We
consider the MV problem with a 40% annualized target return on the ter-
minal wealth starting from a normalized initial wealth o = 1 and, hence,
z=1.41in (3). These model parameters will be fixed for all the simulations
considered in this section.

For the EMV algorithm, we take the total training episodes M = 20000,
and take the sample size N = 10 for learning the Lagrange multiplier w.
The temperature parameter A = 2. Across all the simulations in this section,
the learning rates are fixed as a = 0.05 and 7y = 1y = 0.0005.

We choose the same M and N for the DDPG algorithm for a fair com-
parison. The critic network has 3 hidden layers with 10,8,8 hidden units
for each layer, and the actor network has 2 hidden layers with 10,8 hidden
units. The learning rates for the critic and actor are 0.0001, fixed across all
simulations in this section. The replay buffer has size 80, and the minibatch
size is 20 for the stochastic gradient decent. The target network has the
soft update parameter 7 = 0.001. Finally, we adopt the OU process for
adding exploration noise; see Lillicrap et al. (2016) for more details. All the
simulations using the DDPG algorithm were trained in Tensorflow.

We summarize in Table 1 the simulation results for the three methods,
EMV, MLE and DDPG, under market scenarios corresponding to different
combinations of p’s and ¢’s. For each method under each market scenario,
we present the annualized return and standard deviation of the last 2000
values of the terminal wealth, and the corresponding annualized Sharpe
ratio.

A few observations are in order. First of all, the EMV algorithm outper-
forms the other two methods by a large margin in several statistics of the
investment outcome including return, standard deviation and Sharpe ratio.
In fact, based on the comparison of Sharpe ratios, EMV outperforms MLE
in all the 28 experiments, and outperforms DDPG in 23 out of the total 28
experiments. Notice that DDPG yields rather unstable performance across
different market scenarios, with some of the return below —100% indicat-
ing the occurrence of bankruptcy. The EMV algorithm, on the other hand,
achieves positive annualized return in all the experiments. The advantage
of the EMV algorithm over the deep learning DDPG algorithm is even more
significant if we take into account the training time (all the experiments
were performed on a MacBook Air laptop). Indeed, DDPG involves ex-
tensive training of two deep neural networks, making it less appealing for
high-frequency portfolio rebalancing and trading in practice.
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Table 1: Comparison of the annualized return, standard de-
viation, Sharpe ratio and average training time (per experi-
ment) for EMV, MLE and DDPG.1°

Market scenarios EMV MLE DDPG

= —50%, 0 — 10% | 39.6%; 7.8%: 5107 | 55.6%; 13.0%; 4.284 | 29.7%; 32.7%; 0.908
w=—-30%,0 =10% | 39.0%; 12.7%; 3.039 | 21.5%; 11.8%; 1.833 | 40.1%; 5.5%; 7.076
1= —10%,0 = 10% | 33.0%; 27.2%: 1.218 | 5.6%:; 117%; 0.482 | -9.9%: 11.8%; -0.833
w=0%, o=10% | 20.4%; 113%; 0.180 | -7.4%; 620%; -0.012 2.9%; 19.5%; 0.147
0=10%, o=10% | 31.8%; 41.4%: 0.769 | 0.9%: 67.3%; 0.014 | -4.9%: 8.9%; -0.541
w=30%, o=10% | 38.5%; 13.8%; 2.785 | 17.9%; 24.3%; 0.737 |-77.6%; 32.2%; -2.405
0=50%, o=10% | 39.4%; 8.4%: 4772 | 45.9%: 11.4%; 3.983 | 47.8%; 81.7%; 0.717
w=—50%,0 =20% | 38.7%; 14.8%; 2.606 | 31.0%; 22.4%; 1.387 | -155%; 65.2%; -2.379
1= —30%,0 = 20% | 35.9%; 22.6%: 1.598 | 20.5%: 115%; 0.178 | 97.3%: 63.6%; 1.531
1= —10%,0 = 20% | 30.9%; 49.5%: 0.625 | 3.6%: 148%:; 0.024 | 34.9%: 60.7%; 0.575
w=0%, o=20% | 10.5%; 85.3%; 0.123 | -7.9%; 262%; -0.301 | -1.2%; 37.3%; -0.033
0=10%, o=20% | 22.1%; 56.0%: 0.395 | 4.5%: 260%; 0.017 | 24.3%: 59.5%; 0.408
w=30%, o=20% | 34.5%; 24.9%; 1.387 | 15.5%; 132%; 0.117 | 36.0%; 22.4%; 1.613
1=50%, o=20% | 38.5%; 16.4%: 2.350 | 23.7%: 114%; 0.208 | 38.5%: 6.3%; 6.496
w=—50%,0 =30% | 35.3%; 21.0%; 1.682 | 33.3%; 308%; 0.108 |-72.8%; 166%; -0.438
1= —30%, 0 =30% | 32.3%; 32.6%: 0.992 | 9.2%: 238%: 0.039 |-96.6%: 96.1%; -1.005
w=—10%,0 =30% | 31.7%; 83.4%; 0.380 4.5%; 423%; 0.011 | 37.1%; 89.0%; 0.417
w=0%, o=230%| 7.9% 85.2%: 0.092 |-45%; 537%; -0.008 | T7.0%: 86.7%; 0.081
w=10%, o =30% | 28.2%; 94.1%; 0.300 |-11.5%; 491%; -0.023 | 24.3%; 90.8%; 0.268
1=30%, o=30% | 33.4%: 36.2%; 0.921 |-11.4%: 494%; -0.023 | 21.0%; 96.0%; 0.218
1=50%, o=230% | 35.0%; 22.1%: 1.583 | 23.8%: 274%:; 0.087 |-39.0%: 37.8%; -1.030
w=—50%,0 =40% | 34.2%; 24.7%; 1.385 | 28.4%; 334%; 0.085 | 32.8%; 70.8%; 0.463
1= —30%, 0 = 40% | 32.0%; 38.2%: 0.839 | 14.5%:; 182%: 0.080 | 21.2%: 40.0%; 0.531
w=—10%,0 = 40% | 24.1%; 84.1%; 0.287 | -2.1%; 282%; -0.007 | 33.5%; 119%; 0.282
W=0%, o=40% | 5.7%; 82.0%: 0.070 | -5.0%: 562%; -0.009 | 6.4%; 121%; 0.053
w=10%, o =40% | 15.5%; 76.9%; 0.202 5.3%; 302%:; 0.017 | 24.2%; 122%; 0.198
1=30%, o=40% | 32.0%; 44.5%: 0.716 | 8.3%: 418%; 0.020 |-82.1%; 124%; -0.663
w=>50%, o=40% | 32.9%; 27.9%; 1.174 | -3.7%; 657%; -0.006 | -139%; 126%; -1.107

Training time < 10s < 10s ~ 3hrs

151f the hyperparameters are allowed to be tuned on a scenario-by-scenario basis (i.e.,
not for comparison purpose), the performance of EMV can be further improved with the
Sharpe ratio close to its theoretical maximum, whereas improvement is more difficult to
achieve with DDPG by hyperparameter tuning.
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Another advantage of EMV over DDPG is the ease of hyperparameter
tuning. Recall that the learning rates are fixed for EMV and DDPG respec-
tively across all the experiments for different u’s and ¢’s. The performance
of the EMV algorithm is much less affected by the choice of the learning rate
than the DDPG algorithm. Indeed, DDPG has been noted for its notori-
ous brittleness and hyperparameter sensitivity in practice (see, for example,
Duan et al. (2016), Henderson et al. (2018)), issues also shared by other deep
RL methods for continuous control problems. Our EMV algorithm does not
suffer from such issues, as a result of avoiding deep neural networks in its
training and decision making processes.

The MLE method, although free from any learning rates tuning, needs to
estimate the underlying parameters p and ¢. In all the simulations presented
in Table 1, the estimated value of ¢ is relatively close to its true value, while
the drift parameter p cannot be estimated accurately. This is consistent
with the well documented mean—blur problem, which in turn leads to higher
standard deviation of the terminal wealth (see Table 1) when one applies
the estimated p and o to select the risky allocation (30).

In addition to comparing the three methods, we can also investigate the
approximation accuracy of the EMV approach, relative to the ground truth
values for p? and the minimal variance V' (0, zg) given in (28). The learned
value for p? is given by 63, according to (46), while the estimated variance
of terminal wealth is taken to be the sample variance of the last 50 terminal
wealth values at the end of the training process (see also Figure 2). We say
a p-accuracy is achieved if the relative error between the learned/estimated
value and the ground truth is less than p (e.g., ‘03%2"2' < p). Out of the 28
market scenarios presented in Table 1, a 5%-accuracy is achieved in 2 and 1
scenarios, respectively, for approximating p? and the true minimal variance.
Among them, the joint 5%-accuracy of the two is attained only in 1 scenario.
If we choose p = 20%, 7 and 4 scenarios are observed to be 20%-accurate for
estimating p? and the minimal variance respectively, while jointly there are
3 scenarios that are 20%-accurate. These are not spectacular results, but,
we need to note that these accuracy results heavily depend on the values of
the hyperparameters for the EMV algorithm. Although a direct comparison
to the ground truth is possible and somewhat necessary in the simulation
study, we believe that it is more important to compare the effectiveness and
efficiency of our algorithm with other representative algorithms, because,
after all, in most real applications ground truth is not available and all we
need to achieve is to find the best possible approach.

Finally, we present the learning curves for the three methods in Figure
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1 and Figure 2. We plot the changes of the sample mean and sample vari-
ance of every (non-overlapping) 50 terminal wealth values, as the learning
proceeds for each method.'® From these plots, we can see that the EMV
algorithm converges relatively faster than the other two methods, achieving
relatively good performance even in the early phase of the learning process.
This is also consistent with the convergence result in Theorem 6 and the
remarks immediately following it in Section 4.1.
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Figure 1: Learning curves of sample means of terminal wealth (over every
50 iterations) for EMV, MLE and DDPG (u = —30%, 0 = 10%).

6Note the log scale for the variance in Figure 2.
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Figure 2: Learning curves of logarithm of sample variances of terminal
wealth (over every 50 iterations) for EMV, MLE and DDPG (u = —30%, 0 =
10%).

5.2 The non-stationary market case

When it comes to the applications of RL, one of the major differences be-
tween quantitative finance and other domains (such as AlphaGo; see Silver
et al. (2016)) is that the underlying unknown investment environment is
typically time-varying with the former. In this subsection, we consider the
performance of the previously studied three methods in the non-stationary
scenario where the price process is modeled by a stochastic factor model. To
have a well-defined learning problem, the stochastic factor needs to change at
a much slower time-scale, compared to that of the learning process. Specifi-
cally, we take the slow factor model within a multi-scale stochastic volatility
model framework (see, for example, Fouque et al. (2003)). The price process
follows

dSt:St(,utdt—{—atth), 0<t<T, Sy=s9>0,

with g, 04, t € [0,T], being respectively the drift and volatility processes
restricted to each simulation episode [0, 7] (so they may vary across differ-
ent episodes). The controlled wealth dynamics over each episode [0,77] is
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therefore
dzi = opu(prdt + dWy), 0<t<T, x5=uz9€R (54)
For simulations in this subsection, we take
dp = 6dt and do; = oy(6dt +V6dW}E), 0<t<MT,  (55)

with pg € R and op > 0 being the initial values respectively, 6 > 0 being a
small parameter, and the two Brownian motions satisfying d(W, W), = ~dt,
with |y| < 1. Notice that the terminal horizon for the stochastic factor model
(55) is MT (recall M = 20000 and 7" = 1 as in Subsection 5.1), indicating
that the stochastic factors p; and oy change across all the M episodes. To
make sure that their values stay in reasonable ranges after running for all
M episodes, we take § to be small with value § = 0.0001, and pg = —3.2,
o9 = 10%, corresponding to the case g = —30% initially. We plot the
learning curves in Figure 3 and Figure 4. We also report that the Sharpe
ratios (over the last 50 terminal wealth values) for EMV, MLE and DDPG
are 4.43, 3.61 and 6.67, respectively. Clearly, the EMV algorithm displays
remarkable stability for learning performance, compared to the other two
methods even in the non-stationary market scenario.
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Figure 3: Learning curves of sample means of terminal wealth (over every 50
iterations) for EMV, MLE and DDPG for non-stationary market scenario
(1o = —30%, o9 = 10%, & = 0.0001,~ = 0).
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Figure 4: Learning curves of logarithm of sample variances of terminal
wealth (over every 50 iterations) for EMV, MLE and DDPG for non-
stationary market scenario (pg = —30%, o9 = 10%,d = 0.0001,~v = 0).

5.3 Decaying exploration

A decaying exploration scheme is often desirable for RL since exploitation
ought to gradually take more weight over exploration, as more learning it-
erations have been carried out.!” Within the current entropy-regularized
relaxed stochastic control framework, we have been able to show the con-
vergence of the solution of the exploratory MV to that of the classical MV
in Theorem 3, as the tradeoff parameter A — 0. Putting together Theorem
3 and Theorem 6, we can reasonably expect a further improvement of the
EMV algorithm when it adopts a decaying A scheme, rather than a constant
A as in the previous two subsections. Here we take a specifically chosen A
process that decreases over the M episodes, given by

200(k — M
)\k—)\0<1—exp<00(]w)>>, for k=0,1,2,..., M. (56)

Tt is important to distinguish between decaying during a given learning episode [0, T
and decaying during the entire learning process (across different episodes). The former
has been derived in Theorem 1 as the decay of the Gaussian variance in ¢t. The latter
refers to the notion that less exploration is needed in later learning episodes.
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Figure 5 shows the histograms of the last 2000 values of the terminal wealth
generated by the original EMV algorithm with constant A = 2 and by the
EMYV algorithm with the decaying A scheme starting from A\g = 2. We can
see that with the decaying A the histograom is slightly more concentrated,
indicating a more robust performance. The Sharpe ratio also increases from
3.039 to 3.243.18
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Figure 5: Histograms of the last 2000 values of the terminal wealth for EMV
with constant A and decaying A (u = —30%, o = 10%).

6 Empirical Analysis

In this section, we examine the efficiency of the EMV algorithm on real data
and compare its performance against several baseline approaches, including
the DDPG, the classical Markowitz allocation (Markowitz (1952)), and the
equally-weighted allocation (DeMiguel et al. (2007)). In contrast to the set-
ting in the previous sections, we now include multiple stocks in our empirical
study with a 10-year investment horizon and monthly rebalancing. In this
multi-dimensional setting, the exploratory MV solutions can be derived in a

'8The result in Figure 5 corresponds to the stationary market case; the case for non-
stationary market demonstrates similar improvement by adopting the decaying exploration
scheme.
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similar fashion as in the one-dimensional case, which is carried out in Wang
(2019). Specifically, denoting by d the number of risky assets, Wang (2019)
derives the optimal multivariate Gaussian policy to be
* -1 P LA ()
o (ut, o, w) =N u‘—a plz —w) , (/o) 56’”” , (57)

and the corresponding value function to be

/ Ad
Vit zw) = (x —w)?e P PT0 4 Zp’p (T? - #?)

/
—¥ (p’pT— éln ‘i;’) (T —t) — (w— 2)2, (58)
for (t,x) € [0,T] x R. Here, the vector p € R? is the market price of risk and
the matrix ¢ € R?? is the volatility matrix assumed to be non-singular.
See Wang (2019) for a more detailed discussion of the multi-dimensional
EMYV problem, as well as the theoretical results analogous to Theorem 5
and Theorem 6.

With the explicit functional forms for the multivariate Gaussian policy
(57) and the value function (58), the EMV algorithm can be similarly ex-
tended to the d-dimensional setting. However, unlike in the simulation study
in Section 5, we are unable to generate unlimited data to train the EMV al-
gorithm in an empirical study using real data. The same issue exists for the
DDPG algorithm which, as a deep learning based algorithm, is dependent
on large amount of samples for training.

The limited data availability may arise for different reasons. For in-
stance, the prevailing non-stationarity of financial data dictates that only
the relatively recent periods of data should be used for training an RL algo-
rithm. In some situations, especially for long-term, low-frequency rebalanc-
ing strategies, only a few thousands data points are available for algorithm
training. For example, in the 10-year monthly rebalancing test we are con-
ducting here, the training includes the monthly price data from 08-31-1990
to 08-31-2000, and the backtesting involves monthly data from 09-29-2000
to 09-30-2010. In view of the typical dimensions (e.g., d = 20) of portfo-
lio allocation problems in practice, such an amount of training data is not
sufficient.

We adopt the universal training method proposed in Wang (2019) to
handle the limited data for training the EMV and DDPG algorithms. Set-
ting d = 20, we artificially generate randomness during the whole training
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process by randomly selecting d stocks from the S&P 500 stocks pool for
each training episode. The performance of the universal training method
has been shown to be robust and accommodating to a volatile market, when
compared to the classical batch RL training method; see Wang (2019) for
more detailed discussion and comparison.

We compare the performances of the following five asset allocation strate-
gies. The first two are generated by the EMV and its variant, EMV (L =
200%) with an additional gross leverage constraint L = 200%. Specifically,
for each allocation vector u; € R? generated by the EMV algorithm, we
modify it to i Ly, where || - ||1 denotes the I; norm. The third strategy
is derived from the DDPG (L = 200%), with the same leverage constraint
L = 200%. The horizon T = 10 years for all these three strategies with
monthly rebalancing. The last two are the classical single-period (the period
being one month), rolling horizon Markowitz solution and the simple 1/d
equally-weighted solution. The Markowitz approach runs month by month
for the same 10 years and uses a rolling window that contains 120 monthly
price data points for estimating the mean return vector and the variance-
covariance matrix to compute the allocation strategy, while at each time
step the most recent data point is added to the rolling window and the most
obsolete data point is deleted from the window.

All the price data are collected from the Wharton Research Data Services
(WRDS). The two RL algorithms, EMV and DDPG, are trained using the
universal method on S&P 500 stocks monthly price data from 08-31-1990 to
08-31-2000, followed by testing on the period from 09-29-2000 to 09-30-2010.
We choose the initial wealth to be normalized as 1 and set the 10-year target
to be z = 8 (corresponding to a 23% annulized return or a 1.74% monthly
return), except for the 1/d strategy. Notice that, since we consider very low
frequency transactions (monthly rebalancing), the transaction cost is not
included in the current empirical analysis.

In our empirical study, we take 100 sets of stocks, each set containing
d = 20 randomly selected stocks. For each set of stocks, we apply the five
strategies respectively. The averaged wealth processes of these strategies
each over the respective 100 portfolios are plotted in Figure 6. We also
provide the 95% confidence bands in Figure 6.
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Figure 6: Averaged wealth processes of the five strategies for 10-year horizon
with monthly rebalancing (d = 20).

It is evident from Figure 6 that the EMV and EMV (L = 200%) algo-
rithms outperform the other approaches, especially the DDPG algorithm, in
terms of the average wealth. However, the unconstrained EMV algorithm,
designed for the original unconstrained MV problem, may not be practically
applicable because it often evokes extremely high leverage which should be
typically avoided in investment practice. This is also signaled by the dras-
tic increase over a very short period at the start as well as the huge spikes
around the time of financial crisis. On the other hand, the exogenously
leverage-constrained EMV (L = 200%) algorithm demonstrates a more sta-
ble and realistic performance when backtested on real data. All these being
said, the unconstrained EMV algorithm indeed achieves the terminal payoff
target z = 8 with minimal variance most of the time (as indicated by the
confidence band), showing the efficiency and effectiveness from purely an
algorithmic perspective (instead of an investment perspective).

To check the robustness of the performance comparison of the five strate-
gies, we repeat the same test for 11 rolling 10-year horizons. For EMV, EMV
(L = 200%) and DDPG (L = 200%), the training set contains the 10-year
monthly data immediately before each testing period. The Markowitz strat-
egy remains to estimate the mean return vector and the variance-covariance
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matrix using the rolling, immediate prior 10-year monthly data. For each
testing period, all the five strategies are tested for 100 randomly selected sets
of stocks, each set consisting of d = 20 stocks. We report the annualized
returns, standard deviations and Sharpe ratios in Table 2. The results show
that EMV and EMV(L=200%) consistently outperform the other strategies
in terms of return and robustness. The DDPG algorithm fares worst overall;
it frequently generates negative returns or even negative terminal wealth in
some tests.

We also present the kurtosis of the total return, averaged over the 11
experiments, for each strategy in Table 2. There is no really significant
difference in these values. The return distributions under EMV(L=200%)
and DDPG are platykurtic (i.e. the kurtosis values are less than 3), implying
there are fewer extreme outliers than the standard normal.

We note the performance gap between DDPG and EMV increases con-
siderably when we move from simulation to empirical study. We believe the
main reason is because DDPG, as a deep neural networks based method,
inherently demands a large amount of real data for training, which is not
available in the current setting. Our result shows that EMV, when facing
the same limited data availability, exhibits remarkable data efficiency and
robustness, even if we work only with a small set of 10-year monthly data.

7 Conclusions

In this paper we have developed an RL framework for the continuous-time
MYV portfolio selection, using the exploratory stochastic control formulation
recently proposed and studied in Wang et al. (2019). By recasting the MV
portfolio selection as an exploration/learning vs. exploitation/optimization
problem, we are able to derive a data-driven solution, completely skip-
ping any estimation of the unknown model parameters which is a noto-
riously difficult, if not insurmountable, task in investment practice. The
exploration part is explicitly captured by the relaxed stochastic control for-
mulation and the resulting exploratory state dynamics, as well as by the
entropy-regularized objective function of the new optimization problem. We
prove that the feedback control distribution that optimally balances explo-
ration and exploitation in the MV setting is a Gaussian distribution with a
time-decaying variance. Similar to the case of general LQ problems stud-
ied in Wang et al. (2019), we establish the close connections between the
exploratory MV and the classical MV problems, including the solvability
equivalence and the convergence as exploration decays to zero.
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Table 2: Annualized return (R), standard deviation (SD), Sharpe ratio (SR)
and kurtosis of total return (K) under different strategies for various 10-year
horizons with monthly rebalancing.

EMV DDPG Equal

Testing Period EMV (L = 200%) (L = 200%) Weight

Markowitz

23.03% (R) 10.76% (R) —211.61% (R)  578% (R)  4.20% (R)

09-29-2000—09-30-2010 6.30% (SD) 13.50% (SD) 231.48% (SD)  7.80% (SD)  8.85% (SD)
367 (SR)  0.80(SR)  —0.91 (SR) 0.74 (SR) 0.47 (SR)

23.00% (R) 13.01% (R)  —5.49% (R)  947% (R)  5.73% (R)

09-28-2001—09-30-2011 28.66% (SD) 16.75% (SD) 111.69% (SD)  9.80% (SD) 13.48% (SD)
080 (SR)  0.78 (SR)  —0.05 (SR) 0.96 (SR) 0.42 (SR)

23.01% (R)  21.33% (R) 8.17% (R)  12.80% (R)  8.78% (R)

09-30-2002—09-28-2012 6.28% (SD) 12.17% (SD)  317.35% (SD) 15.72% (SD) 19.84% (SD)
3.66 (SR) 1.75 (SR) 0.03 (SR) 0.81 (SR) 0.44 (SR)

23.09% (R)  20.54% (R) 2.27% (R)  12.60% (R)  8.84% (R)

09-30-2003—09-30-2013 13.12% (SD)  14.03% (SD)  217.49% (SD) 13.06% (SD) 17.48% (SD)
1.76 (SR) 1.46 (SR) 0.01 (SR) 0.92 (SR) 0.51 (SR)

23.01% (R)  19.62% (R)  —9.07% (R) 12.58% (R)  7.94% (R)

09-30-2004—09-30-2014 6.71% (SD) 12.86% (SD) 145.40% (SD) 12.64% (SD) 18.70% (SD)
3.43 (SR) 153 (SR)  —0.06 (SR) 0.99 (SR) 0.42 (SR)

22.80% (R) 16.94% (R) —35.18% (R) 10.75% (R)  7.57% (R)
09-30-2005—09-30-2015 14.63% (SD) 12.23% (SD) 142.12% (SD)  8.63% (SD) 17.24% (SD)

156 (SR)  1.39 (SR)  —0.25(SR)  1.25(SR)  0.44 (SR)

23.03% (R)  17.50% (R)  —7.66% (R) 11.01% (R)  8.64% (R)

09-29-2006—09-30-2016 5.20% (SD) 11.58% (SD) 143.55% (SD)  9.11% (SD) 17.68% (SD)
443 (SR) 151 (SR)  —0.05(SR) 121 (SR) 0.9 (SR)

23.03% (R)  18.47% (R) —187.90% (R)  10.90% (R)  7.91% (R)

09-28-2007—09-29-2017 5.22% (SD) 11.42% (SD)  79.46% (SD)  9.16% (SD) 14.77% (SD)
441 (SR) 162 (SR)  -2.36 (SR)  1.19 (SR)  0.54 (SR)

23.01% (R)  22.84% (R) —204.85% (R) 15.15% (R)  9.87% (R)

09-30-2008—09-28-2018 5.25% (SD) 12.96% (SD) 226.41% (SD) 15.92% (SD) 21.19% (SD)
438 (SR)  L77(SR)  —0.90 (SR)  0.95(SR)  0.47 (SR)

23.05% (R)  23.08% (R)  —8.33% (R) 14.51% (R)  14.06% (R)

09-30-2009—09-30-2019 8.21% (SD)  6.72% (SD) 100.38% (SD) 14.53% (SD) 28.28% (SD)
2.81 (SR) 343 (SR)  —0.08 (SR)  1.00 (SR)  0.50 (SR)

23.07% (R)  22.13% (R) —16.26% (R) 11.17% (R)  11.10% (R)

09-30-2010—04-30-2020  27.58% (SD) 57.71% (SD)  110.64% (SD) 14.62% (SD) 20.84% (SD)
0.84 (SR) 038 (SR)  —0.15(SR)  0.76 (SR)  0.53 ( R)

Kurtosis of total return 3.34 (K) 2.60 (K) 2.84 (K) 3.42 (K) 3.98 (K)
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The RL framework of the classical MV problem also allows us to design a
competitive and interpretable RL algorithm, thanks in addition to a proved
policy improvement theorem and the explicit functional structures for both
the value function and the optimal control policy. The policy improvement
theorem yields an updating scheme for the control policy that improves the
objective value in each iteration. The explicit structures of the theoretical
optimal solution to the exploratory MV problem suggest simple yet efficient
function approximators without having to resort to black-box approaches
such as neural network approximations. The advantage of our method has
been demonstrated by various numerical simulations with both stationary
and non-stationary market environments, as well as by an empirical study
with multiple S&P 500 constituent stocks.

It should be noted that the MV problem considered in this paper is
almost model-free, in the sense that what is essentially needed for the un-
derlying theory is the LQ structure only, namely, the incremental change in
wealth depends linearly on wealth and portfolio, and the objective function
is quadratic in the terminal wealth. The former is a reasonable assumption
so long as the incremental change in the risky asset price is linear in the price
itself (including but not limited to the case when the price is lognormal and
the non-stationary case studied in Section 5.2), and the latter is an intrinsic
property of the MV formulation due to the variance term. Therefore, our
algorithm is data-driven on one hand yet entirely interpretable on the other
(in contrast to a complete black-box approach).

An interesting open question is to design an endogenous, “optimal” de-
caying scheme for the temperature parameter \ as learning advances, an
essential quantity that dictates the overall level of exploration and bridges
the exploratory MV problem with the classical MV problem. This is left for
further investigations.
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