
The Stochastic Knapsack Revisited:

Switch-Over Policies and Dynamic Pricing

Grace Y. Lin, Yingdong Lu
IBM T.J. Watson Research Center

Yorktown Heights, NY 10598
E-mail: {gracelin, yingdong}@us.ibm.com

David D. Yao∗

IEOR Dept., Research
Columbia University
New York, NY 10027

E-mail: yao@ieor.columbia.edu

(revision: April 2006)

Abstract

The stochastic knapsack has been used as a model in wide ranging applications from
dynamic resource allocation to admission control in telecommunication. In recent years, a
variation of the model has become a basic tool in studying problems that arise in revenue
management and dynamic/flexible pricing; and it is in this context that our study is un-
dertaken. Based on a dynamic programming formulation and associated properties of the
value function, we study in this paper a class of control that we call switch-over policies —
start from accepting only orders of the highest price, and switch to including lower prices
as time goes by, with the switch-over times optimally decided via convex programming. We
establish the asymptotic optimality of the switch-over policy, and develop pricing models
based on this policy to optimize the price reductions over the decision horizon.

1 Introduction

The stochastic knapsack refers in general to a dynamic resource allocation problem in which

a fixed amount of resource is allocated sequentially to random demands of multiple classes.

The problem appears to have many different roots. In Derman et al (1972), a Markov deci-

sion problem is formulated to determine how to assign fixed amount of different resources to

sequential arrivals with random unit returns. In Prastacos (1983), a problem for sequential

investment is analyzed which allows only one acceptance decision to be made over the horizon.

∗Research undertaken while an academic visitor at IBM T.J. Watson Research Center; also supported in part
by NSF grant DMI-0085124 and Hong Kong RGC Grant CUHK4173/03E.

1



In the late 1980’s, the stochastic knapsack was used as a model to study admission control in

telecommunication networks, so-called loss networks in particular; refer to Ross and Tsang [16],

and Ross and Yao [17].

In recent years, one version of the stochastic knapsack has become a basic model in studying

problems in the general area of revenue management. Here the capacity of the knapsack corre-

sponds to a given amount of resource that can be used to fulfill customer demand, over a given

time frame that is typically quite short. Some examples include: rooms in a hotel targeted for

weekend tourists, seats on an airplane that must be sold before departure, fashion items at a

department store designed for a particular season. Refer to Kleywegt and Papastavrou [10, 11],

Papastavrou et al. [15], and Van Slyke and Young [20].

Our study here also falls into this category, although it is motivated by a new application. A

major producer of personal computers (PC’s) from time to time has to liquidate a substantial

inventory of desktop or laptop computers returned from corporate leases. This involves a

number of sales channels — including catalog direct sales, dealers/brokers, and on-line auction

— which differ in both price and batch size. What is needed by practitioners involved in

this process is a tool to support pricing decisions. Specifically, not only what type of “bids”

(customer demand or offer to buy the PC’s) to accept and when (in terms of time and available

inventory), but also how to price the sales over time. Refer to more details in [4, 5].

As evident from previous studies, with prices given, the problem of when to accept or reject

which demand can be formulated and solved using dynamic programming (DP). This, however,

does not in general lead to optimal policies that have simple and easy-to-implement structures;

neither does it result in a tractable value function, upon which pricing optimization can be

carried out. Our approach makes use of certain properties of the DP value function, such as

concavity and submodularity (which have been familiar properties in other application context

such as queueing control, e.g., Lippman [13]), which lead to a lower- and upper-orthant structure

of the optimal policy (see Proposition 1). This structure, in turn, motivates us to focus on a

class of “switch-over” policies.

The switch-over policy is executed in the following manner: it starts from accepting only

orders of the highest price, and gradually switches to including lower prices as time goes by.

There are several advantages in focusing on this class of policies: a) they are consistent with

the lower- and upper-orthant structure associated with the optimal policy; b) they are easy

to identify: the optimal switch-over times are readily derived through convex programming;

and most importantly, c) they are practical for implementation: indeed they follow closely the

prevailing practice in certain industry sectors. Furthermore, we can prove that the switch-over

policy, while sub-optimal in general, is asymptotically optimal in the sense that the relative

2



error between the switch-over and the optimal policies goes to zero as the available inventory

increases to infinity (along with the planning horizon).

One aspect of our work that is a departure from previous studies is that we are concerned

with setting the optimal prices (in addition to deciding order acceptance/rejection). Based

on the switch-over policy, we formulate optimization problems, so that the reduced (“sales”)

prices over the decision horizon can be optimally determined, taking into account that the rate

of demand is a (decreasing) function of the price. A closely related set of papers in revenue

management, although not always making an explicit connection to the stochastic knapsack,

studies problems that are similar to ours in both physical and mathematical aspects. These

include Bitran and Mondschein [1], Brummelle and Walczak [2], Feng and Gallego [6, 7], Feng

and Xiao [8], Lee and Hersh [12], and Zhao and Zheng [21].

Briefly, the rest of the paper is organized as follows. In §2, we start with a dynamic

programming problem formulation, and bring out the structure of the optimal policy. In the

next two sections, we focus on the switch-over policy, starting with the case of constant batch

sizes in §3. The general case of random batch sizes is studied in §4, and the asymptotic

optimality of the switch-over policy is established in §5. We then develop the pricing models in

§6, and conclude with possible extensions in §7.

2 The Dynamic Programming Formulation

Here is a formal description of our model. There are W units of inventory available to supply

the orders at times n = 1, · · · , T , where T is a given integer, representing the planning horizon.

The order (demand) that arrives in each period n takes the form of a bivariate random vector:

(Pn, Qn), where the two components represent the unit offer price and the required quantity.

Suppose (Pn, Qn) are i.i.d. across n, following a joint distribution:

P[Pn = pi, Qn = j] := θij , i = 1, ...,m; j = 1, ...,W. (1)

Here, we assume, for all i and j, pi > 0 and
∑

i

∑

j θij ≤ 1, with

θ0 := 1 −
∑

i

∑

j

θij ≥ 0

representing the probability that there is no order arrival in a period.

In each period, our decision is, after observing the realized (Pn, Qn), whether or not to

supply the order. If we do, a revenue of PnQn is collected; otherwise, we earn nothing. Here,

we assume that each order is either supplied in full, or not at all; i.e., no partial supply is

allowed. In particular, if the inventory available upon an order arrival is less than the order

3



size, then no supply takes place. The objective is to maximize the expected revenue collected

over the planning horizon of T periods and the total available inventory of W units.

Let V (n, d) denote the expected revenue we can collect, under optimal actions, starting from

period n (≤ T ), with d (≤ W ) units of inventory left. Then, we have the following dynamic

programming (DP) recursion:

V (n, d) = V (n + 1, d)[θ0 + Θ(d)]

+
∑

i

∑

j≤d

θij · max{pij + V (n + 1, d − j), V (n + 1, d)}, (2)

where

Θ(d) :=
∑

i

∑

j>d

θij. (3)

Clearly, the first term on the right hand side of (2) corresponds to the case of either no arrival or

the order size exceeds the available inventory; whereas each term under the double summation

compares the two actions: accept (i.e., supply) the order, or reject it. If we supply the order,

then we earn the revenue pjj, and proceed to the next period with j units less in the available

inventory. In the last period, we have

V (T, d) =
∑

i

∑

j≤d

θijpij, (4)

since clearly the best action is to supply any possible order using all the remaining inventory.

The above DP is quite easy to solve – the overall computational effort is, after all, only

O(TW ). Short of any structural properties, however, the solution does not readily translate

into a policy that is easy to implement. We need to pre-compute and store the V (n, d) values

for all n = 1, ..., T and all d = 1, ...,W . Then, after observing the realized demand (Pn, Qn),

we will supply it, if Qn ≤ d and

PnQn + V (n + 1, d − Qn) ≥ V (n + 1, d); (5)

and reject it otherwise. Furthermore, the lack of a tractable form of the value function with

respect to the prices is a severe handicap when it comes to solving the optimal pricing problem.

In the case that all orders are of unit size, the above problem can be reduced to a special

case of a certain queueing control model in Lippman [13], and the value function, V (n, d), can

be shown to be concave in d and submodular in (n, d). These properties have the following

implications:

• For each price type i, if the order is rejected in some state (n∗, d∗), then it is rejected in

all “lower” states (n, d) ≤ (n∗, d∗); if the order is accepted in some state (n∗, d∗), then it

is accepted in all “upper” states (n, d) ≥ (n∗, d∗).

4



To understand the above, we know from the DP recursion, if a type i order is rejected in

state (n∗, d∗), then

pi ≤ V (n∗, d∗) − V (n∗, d∗ − 1).

Hence, for any state (n, d) ≤ (n∗, d∗), we have

V (n∗, d∗) − V (n∗, d∗ − 1) ≤ V (n∗, d) − V (n∗, d − 1) ≤ V (n, d) − V (n, d − 1),

due to the concavity (the first inequality) and submodularity (the second inequality) of V .

Hence,

pi ≤ V (n, d) − V (n, d − 1),

i.e., the same order should also be rejected in state (n, d) as well, which is the lower-orthant

property. On the other hand, if the order is accepted in state (n∗, d∗), then it must be accepted

in any state (n, d) ≥ (n∗, d∗); for if it is rejected in state (n, d), then following the lower-orthant

property, it must also be rejected in state (n∗, d∗).

The above properties, stated in a slightly different but equivalent form below, are the basis

for the switch-over policies that we shall focus on in the rest of this paper.

Proposition 1 Suppose all orders are of the same, constant size. (Hence, without loss of

generality, assume this constant size is unity, i.e., Qn ≡ 1.) Then, the optimal policy has the

following structure: for each inventory level d, there exist time epochs 0 = t0(d) ≤ t1(d) ≤
· · · ≤ tm(d) = T such that a price type k order is accepted (rejected) if and only if n ≥ tk−1(d)

(n < tk−1(d)); and for each k, tk(d) is decreasing in d.

Throughout the paper, we use “increasing” and “decreasing” in the non-strict sense.

3 The Switch-Over Policy

The structural result in Proposition 1 suggests a threshold type policy as follows. For each type

of order i, there is a critical state (ni, di) — supply the order if and only when time has reached

ni or beyond and inventory is at least di. This policy, however, is still difficult to analyze (in

terms of deriving an explicit objective function to be used for pricing optimization). What we

do below is to reduce this two-dimensional threshold policy to a single dimension, in time only.

Specifically, we start with accepting only orders with the highest price, until a time t1, when

we start to accept orders of the top two prices, until a time t2, when we start to accept orders

the top three prices, and so forth. We call this a “switch-over” policy.

5



It is important to note that the switch-over policy essentially follows the time epochs t`(d)

(` = 1, . . . ,m) in Proposition 1 but ignores their dependence on the inventory level d. Conse-

quently, it is suboptimal even in the context of Proposition 1.

In this section, we focus on the case of a constant (unit) batch size, treating the general

case of random batch sizes in the next section.

3.1 Optimizing the Switch-Over Times

We let the switch-over times be the decision variables of an optimization problem, with the ob-

jective to maximize the expected profit over the horizon – the same objective as in the dynamic

programming formulation. (Note, however, since these time epochs are chosen independently

of the level of the available inventory, the switch-over policy is in general sub-optimal.) To

determine the best switch-over times,

0 = t0 ≤ t1 ≤ t2 ≤ · · · ≤ tm−1 ≤ tm = T, (6)

(only t1, ..., tm−1 are decision variables), we consider a continuous-time version of the original

problem, with the order streams following independent Poisson processes with rates λi, i =

1, ...,m, and associated with the price pi, such that

p1 ≥ p2 ≥ · · · ≥ pm. (7)

Let N1k denote the total number of order arrivals of types {1, 2, · · · , k} over the time interval

(tk−1, tk]; N1k follows a Poisson distribution with mean (λ1 + · · · + λk)(tk − tk−1). Let

p1k :=
λ1p1 + · · · + λkpk

λ1 + · · · + λk
, (8)

denote the average unit price of the orders accepted (by the switch-over policy) over the time

interval (tk−1, tk]. Then, we can write the objective function associated with the switch-over

policy as follows:

max p11E [W ∧ N1] + p12E[(W − N11)
+ ∧ N12]

+ · · · + p1mE[(W −
m−1
∑

k=1

N1k)
+ ∧ N1m]

= p11[W − E(W − N11)
+] + p12[E(W − N11)

+ − E(W − N1 − N12)
+]

+ · · · + p1m[E(W −
m−1
∑

k=1

N1k)
+ − E(W −

m
∑

k=1

N1k)
+]

= p11W − (p11 − p12)E(W − N11)
+ − · · · − (p1,m−1 − p1m)E(W −

m−1
∑

k=1

N1k)
+

−p1mE(W −
m

∑

k=1

N1k)
+. (9)

6



Denote

µk := λ1tk + λ2(tk − t1) + · · · + λk(tk − tk−1)

= λ1t1 + (λ1 + λ2)(t2 − t1) + · · · + (λ1 + · · · + λk)(tk − tk−1), (10)

which is the mean (as well as the variance) of N11 +N12 + · · ·+N1k. Let N(µ) denote a Poisson

random variable with mean µ. We can then turn the optimization problem in (9) into the

following equivalent form:

min
0≤t1≤···≤tm−1≤T

(p11 − p12)E[W − N(µ1)]
+ + (p12 − p13)E[W − N(µ2)]

+ + · · ·

+(p1,m−1 − p1,m)E[W − N(µm−1)]
+ + p1mE[W − N(µm)]+. (11)

Denote the distribution function of N(µ) as:

Fn(µ) := P[N(µ) ≤ n] =

n
∑

k=0

µk

k!
e−µ; (12)

and define a function:

H(µ) := E[W − N(µ)]+ =

W
∑

k=0

(W − k)
µk

k!
e−µ = WFW (µ) − µFW−1(µ). (13)

Clearly, H(µ) is decreasing and convex in µ, since (x)+ is increasing and convex, and N(µ) is

stochastically increasing and linear in µ (refer to [18]).

From (13), we can derive explicitly H ′(µ`), which will become useful below. First, taking

derivative on Fn(µ) in (12), we have,

F ′
n(µ) = Fn−1(µ) − Fn(µ) = −µn

n!
e−µ := −fn(µ). (14)

Hence

H ′(µ) = −WfW (µ) − FW−1(µ) + µfW−1(µ) = −FW−1(µ), (15)

taking into account fW (µ) = µ
W

fW−1(µ). As a by-product, the above also leads to

H ′′(µ`) = fW−1(µ`) ≥ 0,

confirming the convexity of H(µ).

Denote:

πk := p1k − p1,k+1, yk := tk − tk−1, k = 1, ...,m; (16)

7



with p1,m+1 := 0, and recall t0 := 0 and tm := T . Then, the optimization problem in (11) can

be expressed as follows:

min
(y`)

m
∑

`=1

π`H(µ`) s.t.

m
∑

`=1

y` = T ; y` ≥ 0, ` = 1, . . . ,m; (17)

where the new decision variables are (y`); and, following (10) and (16),

µ` = Λ1y1 + Λ2y2 + · · · + Λ`y`, (18)

with

Λ` := λ1 + · · · + λ`. (19)

3.2 Solution Approach

A shortfall of the above formulation is that the objective function in (17) is not separable in

(y`) (although the constraint is). If we make (µ`) the decision variables instead, then both the

objective and the constraint will become separable. From (18), we can solve for (y`):

y` =
µ` − µ`−1

Λ`
, ` = 1, ...,m; (20)

with µ0 := 0. We can then turn the optimization problem in (17) into one with (µ`) as decision

variables as follows:

min
(µ`)

m
∑

`=1

π`H(µ`) (21)

s.t.

m
∑

`=1

(
1

Λ`
− 1

Λ`+1
)µ` ≤ T, (22)

0 ≤ µ1 ≤ · · · ≤ µm; (23)

where Λ−1
m+1 := 0. Also note that in (22) we have changed the original equality constraint (= T )

to an inequality constraint (≤ T ), taking into account that H(·) is a decreasing function, and

π` ≥ 0 as evident from (7, 8,16). Furthermore, as pointed out earlier, H(·) is convex; hence,

we now have a separable convex programming problem. In addition, it has another appealing

property as revealed in the lemma below.

Lemma 2 The ratio of the coefficients in (22) to those in (21), ( 1
Λ`

− 1
Λ`+1

)/π`, is decreasing

in `.

Proof. We need to show:

1

π`−1
(

1

Λ`−1
− 1

Λ`
) ≥ 1

π`
(

1

Λ`
− 1

Λ`+1
), ` = 2, . . . ,m.

8



The above inequalities simplify to:

π`

π`−1

λ`

λ`+1
≥ Λ`−1

Λ`+1
, ` = 2, ...,m − 1; and

πm

πm−1

λm

Λm−1
≥ 1. (24)

To verify these inequalities, write

ρ` :=
∑̀

k=1

λkpk and π` =
ρ`

Λ`

.

First consider ` 6= m. Straightforward algebra yields:

π`Λ`+1

π`−1Λ`−1
=

ρ`Λ`+1 − ρ`+1Λ`

ρ`−1Λ` − ρ`Λ`−1

=
ρ`λ`+1 − p`+1λ`+1Λ`

ρ`−1λ` − p`λ`Λ`−1
.

We want the above to dominate λ`+1/λ`. This is equivalent to

ρ` − p`+1Λ` ≥ ρ`−1 − p`Λ`−1,

or,

p`λ` ≥ p`+1Λ` − p`Λ`−1 = p`λ` − (p` − p`+1)Λ`,

which obviously holds, since p` ≥ p`+1. Next, we show the last inequality in (24). Since

πm =
ρm

Λm
, πm−1 =

ρm−1

Λm−1
− ρm

Λm
,

we have
πm

πm−1
=

ρmΛm−1

ρm−1Λm − ρmΛm−1
.

We want the above to dominate Λm−1

λm
; and this simplifies to

ρmλm ≥ ρm−1Λm − ρmΛm−1,

or ρmΛm ≥ ρm−1Λm, i.e., ρm ≥ ρm−1, which certainly holds. 2

The above lemma suggests an algorithm as follows. Ignoring the constraint in (23), and

with η ≥ 0 denoting the Lagrangian multiplier associated with the constraint in (22), we have

the following optimality equations:

FW−1(µ`) =
η

π`

( 1

Λ`

− 1

Λ`+1

)

, ` = 1, ...,m. (25)

(Recall from (15), we have FW−1(µ) = −H ′(µ).) From (14), we know FW−1(µ) is decreasing in

µ; and from Lemma 2, we know the right hand sides of the equations above are also decreasing

in `. Hence, the solution to these optmiality equations, µ`, must be increasing in `.

9



To solve these equations, we can start with an η value sufficiently close to zero, so that

each of the m equations in (25) has a solution. (Note that FW−1(µ) ↓ 0 when µ → ∞.) This

may very well violate the constraint in (22), as the resource is priced too low. Hence, we will

gradually increase η, to bring down the left hand side of the constraint in (22), until it is

satisfied as an equality. (Note that since FW−1(µ) is decreasing in µ, increasing η will decrease

the value of µ`’s that solve the equation in (25).) As we increase η, it can happen that for some

k, even with µk = 0, we still have

Rk :=
FW−1(0)

1
πk

(

1
Λk

− 1
Λk+1

) < η. (26)

Then, we set µk = 0, as any µk > 0 will only lead to FW−1(µk) < FW−1(0). In this case

we also set µj = 0 for all j < k as well, since Rj ≤ Rk following Lemma 2. Furthermore,

µ1 = · · · = µk = 0 will remain at zero as η further increases. (As η increases, more µ`’s may

become zero, for ` > k.)

Proposition 3 (i) The optimal switch-over times can be obtained from solving the set of single-

variable equations in (25) along with an increasing sequence of η (the Lagrangian multiplier)

until the constraint in (22) becomes binding.

(ii) At optimality, for any price class k we have µk = 0 if and only if Rk < η in (26); and if

µk = 0 for some k, we must have µj = 0 for all j ≤ k.

Proof. What is stated in (i) and (ii) is a summary of the algorithm and the solution it generates.

Hence, what needs to be argued is the optimality of the solution. To do so, in addition to the

Lagrangian multiplier η ≥ 0, let ν` ≥ 0 be the Lagrangian multiplier associated with the

constraint µ` ≥ µ`−1, for ` = 1, . . . ,m (with µ0 := 0). In addition, denote νm+1 := 0. Then,

optimality is reached if and only if (µ1, . . . , µm) and all the multipliers satisfy the following

equations:

π`FW−1(µ`) = η
( 1

Λ`
− 1

Λ`+1

)

− ν` + ν`+1, ` = 1, ...,m; (27)

η
[

m
∑

`=1

(
1

Λ`

− 1

Λ`+1
)µ` − T

]

= 0; (28)

ν`(µ` − µ`−1) = 0, ` = 1, ...,m; (29)

and the constraints in (22) and (23) are satisfied.

As described above, when the algorithm ends, it generates a solution that takes the following

form:

0 := µ0 = µ1 = · · · = µk < µk+1 ≤ µk+2 ≤ · · · ≤ µm, (30)

10



for some k ∈ {1, . . . ,m}, along with an η ≥ 0, while (22) is satisfied as an equality – and hence

(28) holds. In addition, (23) follows from (30). Hence, what remains is to verify (27) and (29).

These can be satisfied by letting

ν` = 0, ` = k + 1, . . . ,m; (31)

νk = η
( 1

Λk

− 1

Λk+1

)

− πkFW−1(0); (32)

νj = νj+1 + η
( 1

Λj
− 1

Λj+1

)

− πjFW−1(0), j = k − 1, . . . , 1. (33)

First, the ν’s above are all non-negative: νk > 0 follows from (26); and for j < k, νj > 0

follows recursively from (33), as well as from (26), taking into account Rj ≤ Rk < η for j < k.

Second, the above ν’s, along with the µ’s in (30), satisfy (29). Finally, note that the zero ν`’s

(` = k + 1, . . . ,m) in (31) reduce (27) to the equations (with the same ` indices) in (25) used

by the algorithm; and substituting (32) and (33) into (27) recovers µj = 0 obtained by the

algorithm for j ≤ k. 2

4 The Switch-Over Policy: Random Batch Size

We now extend the switch-over policy of the last section to allow random batch sizes. In this

case, while the structural properties in Proposition 1 do not apply, the asymptotic optimality

results in the next section does provide some justification to the switch-over policy.

4.1 Homogeneous Batches

To facilitate the derivation, we start with assuming that all orders independently follow an

identical batch-size distribution that is independent of the prices, deferring the case of price-

dependent batch sizes to the next subsection. Specifically, the batch size distribution is denoted

by qj = P{Q = j}, for j = 1, ...,W .

With the initial inventory of W units, we apply the switch-over policy in [0, t1]. The cumu-

lative revenue collected by time t1 is:

p1E[W − zT MN1w],

where,

zT := (0, 0, ..., 0, 1), wT := (0, 1, 2, ...,W );

N1 := N1(t1) follows the Poisson distribution with mean λ1t1, and M denotes the following

11



probability transition matrix:

M =













1 0 0 ... 0
q1 1 − q1 0 ... 0
q2 q1 1 − q1 − q2 ... 0

...
qW qW−1 qW−2 ... 1 − q1 − ... − qW













. (34)

That is, the number of remaining units in the system, embedded at the arrival epochs of

orders of price p1, is a Markov chain with the probability transition matrix M . Note that the

dimension of M is W + 1, corresponding to the dimension of the state space of the Markov

chain, {0, 1, ...,W}.
Recall that the generating function of a Poisson variable N with mean µ is:

E[zN ] = e−µeµz.

Hence, we have

p1E[W − zT MN1w] = p1[W − e−µ1zT eµ1Mw].

Here, µ1 follows the notation defined in (18); and the matrix exponent is defined as

eA =

∞
∑

j=0

Ak

k!
,

for any matrix A.

Similarly, for the next interval (t1, t2], when the acceptance includes both price classes p1

and p2, the expected revenue is (using the notation of the last section):

p12E[zT MN1w − zT MN1+N12w]

= p12[z
T (e−µ1eµ1M − e−µ2eµ2M )w].

Comparing the above with the objective function in (9), we know the only difference is that

the terms there,

E(W − N1)
+ and E(W − N1 − N12)

+

are now replaced by

zT e−µ1eµ1Mw and zT e−µ2eµ2Mw.

With this in mind, we further denote

G(µ) := zT e−µeµMw, (35)

12



which is analogous to H(µ) of the last section. The derivatives of G(µ) can be derived as

follows:

G′(µ) = −zT e−µ(I − M)eµMw, G′′(µ) = zT e−µ(I − M)2eµMw. (36)

Note that the spectral radius of the matrix M is unity. Hence, G′(µ) ≤ 0; i.e., G(µ) is a

decreasing function. Furthermore, G(µ) is a convex function, since G′′(µ) ≥ 0.

We can formulate the optimization problem as follows, with µ`, ` = 1, ...,m, as decision

variables:

min
(µ`)

m
∑

`=1

π`G(µ`); s.t.

m
∑

`=1

(
1

Λ`
− 1

Λ`+1
)µ` ≤ T, 0 ≤ µ1 ≤ · · · ≤ µm. (37)

Here, same as in (20),

y` := t` − t`−1 =
µ` − µ`−1

Λ`

, ` = 1, ...,m;

with µ0 := 0.

To solve the optimization problem above, we can follow the same approach as in the last

section; specifically, we can solve the following optimality equations via gradually increasing

the Lagrangian multiplier η until the resource constraint becomes binding:

zT e−µ`(I − M)eµ`Mw =
η

π`
(

1

Λ`
− 1

Λ`+1
), ` = 1, ...,m. (38)

Note that both Lemma 2 and Proposition 3 still apply here.

4.2 Price-Dependent Batches

Now, suppose each price pi, i = 1, . . . ,m, is associated with a batch size Qi, with the distribution

P(Qi = j) = θij, for j = 1, ...,W . The batch sizes are i.i.d. among orders of the same price, and

independent among orders of different prices. Here, instead of a single probability transition

matrix M , we have m such matrices, one for each price pi:

Mi =













1 0 0 ... 0
θi1 1 − θi1 0 ... 0
θi2 θi1 1 − θi1 − θi2 ... 0

...
θiW θi,W−1 θi,W−2 ... 1 − θi1 − ... − θiW













. (39)

Consider the second time interval (t1, t2]. Since orders of both prices p1 and p2 are accepted,

the two Poisson streams will be combined, resulting in the following transition matrix

Γ2 :=
1

Λ2
(λ1M1 + λ2M2).

13



Analogously, denote Γ1 := M1. The expected revenue over this time interval is

p12E[zT MN1

1 w − zT MN1

1 ΓN12

2 w]

= p12[z
T (e−µ1eµ1Γ1 − e−µ2eµ1Γ1e(µ2−µ1)Γ2)w].

In general, denote

Γ` :=
∑̀

j=1

λj

Λ`
Mj .

Replace G(µ`) in the earlier special case of independent batch sizes by the following:

g`(y`) := e−µ` exp(
∑̀

k=1

ΛkykΓk) and G`(y`) := zT g`(y`)w. (40)

(Notice that from (18), we have µ` − µ`−1 = Λ`y`.)

The optimization problem can now be expressed as follows, with y`, ` = 1, ...,m, as decision

variables:

min
y

m
∑

`=1

π`G`(y`); s.t.
m

∑

`=1

y` ≤ T ; y` ≥ 0, ` = 1, ...,m. (41)

From (40), we know that g`(y`) is convex in y; hence, the problem in (41) is a convex program

(albeit no longer separable) and as such can be solved by standard algorithms.

4.3 A Numerical Example

Example 1 Consider four price classes:

p1 = 1, p2 = 0.8, p3 = 0.65, p4 = 0.45,

with Poisson arrivals at the following rates:

λ1 = 0.2, λ2 = 0.3, λ3 = 0.1, λ4 = 0.4.

The batch size Q is homogeneous among the four classes, following a discretized exponential

distribution with mean 12. (Specifically, P(Q = n) = eλ(n+1) − eλn, for n = 0, 1, 2..., and

1/λ = 12.) Let T = 20, and let W vary from 1 to 100.

We compare the performance of the switch-over policy against the optimal policy (from

DP) and a first-come-first-served (FCFS) policy (i.e. supply any order on arrival as long as

there are units available). The objective values corresponding to the three policies are plotted

in Figure 1. The relative errors of the switch-over policy and the FCFS policy with respect

to the optimal policies are plotted in Figure 2. The performance of the switch-over policy is

remarkably close to the optimal policy, while the performance of the FCFS policy, as expected,

deteriorates quickly as W increases. 2

14



0
10
20
30
40
50
60
70
80
90

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99

Inventory Level: W

O
b

je
ct

iv
e 

V
al

u
e

OPT

SW

FCFS

Fig. 1 Comparison of optimal performance, switch-over policy and FCFS

Fig 2. Comparison of relative errors, switch-over vs. FCFS

5 Asymptotic Optimality of the Switch-Over Policy

In this section, we establish the fact that the switch-over policy is asymptotically optimal, in the

sense that as W increases to infinity, the relative error between the switch-over policy and the

optimal policy (via dynamic programming) will go to zero. (In fact, we show the absolute error

15



is no more than O(
√

W ); hence, the rate of convergence is O(
√

W ). This type of asymptotic

optimality is similar to other recent studies, e.g., [14]). Similar results are shown for various

revenue management problems, see, e.g. [3, 9, 19]. This result applies to both models in the

last two sections; for ease of exposition, we shall focus on the model in §3.
Intuitively, when the available inventory W → ∞, we should expect the switch-over policy

to be optimal in the following two cases: (a) if the decision horizon T remains a constant or is

of lower-order than W , then supplying all orders (i.e., first-come-first-served) would be optimal;

and (b) if T is of higher order than W , then supplying the highest bid only (orders priced at

p1) should be optimal. In both cases the policies can be represented as special cases of the

switch-over policy. Below, we will formally confirm the intuition behind these two special cases,

and also prove the result in the non-trivial case in which T → ∞ in the same order as W .

We start from an upper-bound on the performance of the optimal policy.

Lemma 4 The objective value under the optimal policy (as derived from the dynamic pro-

gramming), denoted V ∗, satisfies the following inequality:

V ∗ ≤ (λ1p1 + · · · + λkpk)T + λk+1pk+1t, (42)

where k = 1, ...,m − 1 and t ∈ [0, T ) are such that ΛkT ≤ W , Λk+1T > W , and

ΛkT + λk+1t = W. (43)

If Λ1T > W , then V ∗ ≤ p1W . If ΛmT ≤ W , then V ∗ ≤ p1mΛmT .

Proof. Note that V ∗ is maximal among all non-anticipative policies; in particular, at each time

t all future order arrivals and their prices are only known in distribution. Now, suppose at time

t = 0 we know all arrivals over (0, T ] and their prices deterministically. Specifically, suppose

over (0.T ], there are N1 orders of price p1, N2 orders of price p2, ..., and Nm orders of price

pm. Then, we will obviously use the W available units to first supply the N1 orders of price p1;

and then, if there is anything left, supply the N2 orders of price p2; and so forth. Clearly, no

non-anticipative policy can do better than this one, which yields an objective value of

p1[W ∧ N1] + p2[(W − N1)
+ ∧ N2] + · · · + pm[(W −

m−1
∑

k=1

Nk)
+ ∧ Nm]

= p1W − (p1 − p2)(W − N1)
+ − · · · − (pm−1 − pm)(W −

m−1
∑

k=1

Nk)
+ − pm(W −

m
∑

k=1

Nk)
+.

Taking expectation on the right hand side above and passing the expectation into (·)+ further

16



increases its value (since the function (x)+ is convex). Hence, we have

V ∗ ≤ p1W − (p1 − p2)(W − λ1T )+ − · · · − (pm−1 − pm)(W −
m−1
∑

k=1

λkT )+

−pm(W −
m−1
∑

k=1

λkT )+

= p1W − (p1 − p2)(W − λ1T ) − · · · − (pk − pk+1)(W − λ1T − · · · − λkT )

= pk+1W + (p1 − pk+1)λ1T + (p2 − pk+1)λ2T + · · · + (pk − pk+1)λkT

= (λ1p1 + · · · + λkpk)T + λk+1pk+1t,

where the last two equalities follow from the relation in (43).

Following the same reasoning also leads to the bounds in the two cases when Λ1T > W or

ΛmT ≤ W . 2

Next, we derive a lower bound on the switch-over policy.

Lemma 5 Let V sw denote the objective value under the best switch-over policy. Then, letting

k and t be defined as in Lemma 4, we have

V sw ≥ p1kW − (p1k − p1,k+1)E[W − N(Λk(T − t))]+

−p1,k+1E[W − N(ΛkT + λk+1t)]
+; (44)

and

V sw ≥ p1E[N(W ) ∧ W ] if Λ1T > W,

V sw ≥ p1mE[N(ΛmT ) ∧ W ] if ΛmT ≤ W.

Proof. Clearly, a feasible switch-over policy, realizable by setting t1 = · · · = tk = 0 and

tk+1 = T − t, is to accept the top k price classes throughout the horizon [0, T ] and the class

k + 1 over [T − t, T ], the last t time units. Hence,

V sw ≥ p1kE[N(Λk(T − t)) ∧ W ] + p1,k+1E{N(Λk+1t) ∧ [W − N(Λk(T − t))]+}

= p1kW − p1kE[W − N(Λk(T − t))]+

+p1,k+1E[W − N(Λk(T − t))]+ − p1,k+1E[W − N(Λk(T − t)) − N(Λk+1t)]
+

= p1kW − (p1k − p1,k+1)E[W − N(Λk(T − t))]+ − p1,k+1E[W − N(ΛkT + λk+1t)]
+

(Recall, p1k is the average price among classes 1 through k, defined in (8), and p1,k+1 is similarly

defined.) If Λ1T > W , then serving class 1 only throughout [0, T ] results in

V sw ≥ p1E[N(Λ1T ) ∧ W ] ≥ p1E[N(W ) ∧ W ].

17



If ΛmT ≤ W , then serving all m classes throughout [0, T ] leads to V sw ≥ p1mE[N(ΛmT ) ∧ W ].

2

We shall also need the following result: For the Poisson variate with mean a, denoted N(a),

E[a − N(a)]+ ∼
√

a

2π
, a → ∞; (45)

which can be directly verified via the Poisson distribution (along with the Stirling formula), or

via the normal approximation of the Poisson distribution.

Proposition 6 The switch-over policy is asymptotically optimal, in the sense that V sw/V ∗ →
1 when W → ∞.

Proof. To start with, suppose while W → ∞, T remains a constant. This corresponds to the

case of ΛmT < W in Lemmas 4 and 5, and we have

p1mΛmT ≥ V ∗ ≥ V SW ≥ p1mE[N(ΛmT ) ∧ W ]

→ p1mE[N(ΛmT ) = p1mΛmT,

where the limit follows from monotone convergence as W → ∞. Hence, in this case we have

V ∗ = V SW = p1mΛmT .

Now, suppose T → ∞; and without loss of generality, suppose as a function of W , T (W )

satisfies the following:

0 ≤ c := lim inf
T (W )

W
≤ ∞.

That is, we allow T to be of lower or higher order than W , as well as of equal order to W .

First, suppose Λ−1
1 ≤ c ≤ Λ−1

m . Then, we can assume the relation between W and T in (43) to

hold, for some k. Note that the upper bound in (42) can be written as:

(λ1p1 + · · · + λkpk)T + λk+1pk+1t

= Λkp1kT + λk+1pk+1t

= p1kW − (p1k − pk+1)λk+1t.

Hence, combining (42) and (44), we have

0 ≤ V ∗ − V sw

≤ −(p1k − pk+1)λk+1t + (p1k − p1,k+1)E[W − N(Λk(T − t))]+

+p1,k+1E[W − N(ΛkT + λk+1t)]
+. (46)

Since

p1k(Λk+1 − λk+1) = λ1p1 + · · · + λkpk = p1,k+1Λk+1 − pk+1λk+1,

18



we can write

(p1k − pk+1)λk+1t = (p1k − p1,k+1)[W − Λk(T − t)].

Furthermore,

E[W − N(Λk(T − t))]+ = E[W − Λk(T − t) + Λk(T − t) − N(Λk(T − t))]+

≤ W − Λk(T − t) + E[Λk(T − t) − N(Λk(T − t))]+,

where the inequality follows from W ≥ Λk(T − t). Hence, the first two terms on the right hand

side of (46) can be combined to yield the following:

0 ≤ V ∗ − V sw

≤ (p1k − p1,k+1)E[Λk(T − t) − N(Λk(T − t))]+] + p1,k+1E[W − N(W )]+.

From (45), we know the two terms on the right side above are of order O(
√

T ) and O(
√

W ),

respectively. On the other hand, V ∗ is clearly of order O(W ) — both the upper and lower

bounds in Lemmas 4 and 5 are of order O(W ). Hence, dividing both sides above by V ∗ and

letting W → ∞ results in V SW /V ∗ → 1.

Next, consider the case of c > Λ−1
1 , which corresponds to the case of Λ1T > W . From

Lemmas 4 and 5, we have

0 ≤ V ∗ − V sw ≤ p1W − p1E[W ∧ N(W )]+

= p1E[W − N(W )]+ ∼ O(
√

W ).

In this case, V ∗ is still of order O(W ); and hence, V SW/V ∗ → 1. Finally, in the case of c < Λ−1
m ,

which corresponds to ΛmT < W , we have

0 ≤ V ∗ − V sw ≤ p1mΛmT − p1mE[W ∧ N(ΛmT )]+

≤ p1mΛmT − p1mE[ΛmT ∧ N(ΛmT )]+

= p1mE[ΛmT − N(ΛmT )]+ ∼ O(
√

T ).

In this case, V ∗ is of order O(T ); hence, V SW/V ∗ → 1 follows when T → ∞. 2

Example 2 We continue with the example in §4.3, but suppose the batch size Q follows neg-

ative binomial distributions:

P[Q = k] =

(

k + r − 1

r − 1

)

pr(1 − p)k, k = 0, 1, 2, · · · ;

and hence,

E[Q] =
r(1 − p)

p
, Var[Q] =

r(1 − p)

p2
.

19



W (r, p) Optimal Switch % off Equal % off

20 (4,0.33) 17.59 17.47 0.67% 17.34 1.37%
(8,0.5) 17.68 17.50 0.99% 17.28 2.27%

40 (4,0.33) 34.39 34.16 0.67% 33.99 1.18%
(8,0.5) 34.60 34.26 0.97% 34.14 1.34%

60 (4,0.33) 50.08 49.62 0.92% 48.74 2.69%
(8,0.5) 50.39 49.84 1.09% 49.14 2.48%

160 (4,0.33) 101.43 100.87 0.55% 72.85 28.18%
(8,0.5) 102.38 101.84 0.52% 72.72 28.97%

180 (4,0.33) 104.54 104.37 0.16% 72.69 30.47%
(8,0.5) 105.48 105.31 0.16% 73.14 30.66%

200 (4,0.33) 105.74 105.69 0.05% 72.73 31.20%
(8,0.5) 105.78 105.76 0.01% 72.56 30.82%

Table 1: Performance of the policies as W increases (with fixed T ).

W,T (r, p) Optimal Switch % off W,T (r, p) Optimal Switch % off

20, 20 (4,0.33) 17.59 17.47 0.67% 40, 40 (4,0.33) 36.74 36.55 0.52%
(8,0.5) 17.68 17.50 0.99% (8,0.5) 36.87 36.60 0.73%

60, 60 (4,0.33) 55.62 55.38 0.43% 80, 80 (4,0.33) 75.11 74.95 0.21%
(8,0.5) 55.71 55.41 0.54% (8,0.5) 75.14 74.97 0.23%

Table 2: Performance of the switch-over policy with simultaneous increase of both W and T .

We choose (r, p) to be (4, 0.33) and (8, 0.5). While both distributions have the same mean 8,

their coefficients of variation are 3 and 2, respectively.

In Table 1, we compare the performance between the optimal policy and the switch-over

policy, with the switch-over times optimized (the column under “Switch”). Fixing T = 20, we

increase the value of W . The relative error between the two policies first has a slight increase,

and then quickly decreases as W becomes large (8-10 times the value of T ). In addition, we list

in the table the performance of a switch-over policy with equally spaced switch-over times (the

column under “Equal”), i.e., yi = T/4 = 5 for all i. The results indicate that the performance

of this policy deteriorates rather severely as W increases. That is, it is crucial to optimize the

switch-over times.

Next, in Table 2, we increase T simultaneously with W . The relative error of the switch-over

policy appears to decrease monotonically. 2

6 Pricing Models

As mentioned in the introductory section, an important motivation for us to study the switch-

over policy is to use it as a means to solve optimal pricing problems. (In this sense, the prices

20



derived below are only optimal with respect to the switch-over policy.) Suppose, instead of

assuming all prices are given, and ordered as in (7), it is now our decision to come up with the

m − 1 “discount” prices, p2 ≥ · · · ≥ pm. The original price p1 is still given, and p1 ≥ p2. (The

case when p1 is also a decision variable is discussed at the end of this section.)

Here, m is also assumed to be given. That is, we limit the number of price takedowns that

can take place over the horizon. Furthermore, we assume the time horizon is divided into m

equal segments, with one price for each segment. Without loss of generality, assume T = m,

hence each segment is of unit length. Note that the equal-length segments do not contradict the

earlier models, where the time lengths y` corresponding to accommodating different prices are

decision variables, and hence may vary in `. It can happen that in the derived pricing solution

we have p` = p`+1, for instance, then the price p` will apply to two time segments instead of

one.

Consider the model in §4.1, i.e., batch Poisson order arrivals, with the batch size independent

of the price (hence, we are not modeling phenomena such as quantity discount); however, let the

arrival rate be a decreasing function of the price, λ(p), which is also assumed to be differentiable.

Following the analysis that leads to the problem formulation in (37), and noticing that

p1i becomes pi here, since now there is only a single price in each time segment, we have the

following optimization problem:

max p1[W − G(µ1)] + p2[G(µ1) − G(µ2)] + · · · + pm[G(µm−1) − G(µm)]

= p1W1 − (p1 − p2)G(µ1) − · · · − (pm−1 − pm)G(µm−1) − pmG(µm), (47)

where (p2, ..., pm) are decision variables, satisfying the ordering in (7); and

µi = Λi = λ(p1) + · · · + λ(pi), i = 1, ...,m.

Equivalently, we can solve the following minimization problem:

min
p2,...,pm

(p1 − p2)G(µ1) + · · · + (pm−1 − pm)G(µm−1) + pmG(µm), (48)

s.t. p1 ≥ p2 ≥ · · · ≥ pm ≥ 0.

The above problem, although no longer separable, can still be solved by a standard nonlinear

(convex) programming algorithm. Below, we present an approximation algorithm that is easy

to run and appears to work quite well.

Apply a transformation of variable: let the new decision variables be

rm := pm; ri := pi − pi+1, i = 1, ...,m − 1. (49)

21



The optimization problem in (48) then becomes as follows:

min
r

m
∑

i=1

riG(µi), s.t. r1 + · · · + rm = p1; ri ≥ 0, i = 1, ...,m. (50)

Write the derivatives

λ′
i := λ′(pi), Λ′

i := λ′
1 + · · · + λ′

i.

We can derive, for any i and j,
∂µi

∂rj
= Λ′

i∧j.

This follows from noticing that when i > j, pi = ri + · · · + rm does not involve rj .

Therefore, the optimality equations are:

G(µj) +

m
∑

i=1

riG
′(µi)Λ

′
i∧j = η, j = 1, ...,m. (51)

Taking the difference between two consecutive equations above, we have

G(µj) − G(µj−1) + λ′
j

m
∑

i=j

riG
′(µi) = 0, j = 2, ...,m;

From the above, we can derive:

rj =
G(µj−1) − G(µj)

λ′
jG

′(µj)
− 1

G′(µj)

m
∑

i=j+1

riG
′(µi) j = 2, ...,m. (52)

Now, ignoring the second term on the right hand side above, we have the following approxima-

tion:

rj =
G(µj−1) − G(µj)

λ′
jG

′(µj)
, j = 2, ...,m. (53)

Observe that

λj = λ(rj + · · · + rm) = λ(p1 − r1 − · · · − rj−1)

only involves (r1, ..., rj−1); and hence, so does µj. That is, the right hand side of (53), for each

j, only involves (r1, ..., rj−1). Therefore, following the recursion, we can relate r2, ..., rm all to

r1, and then derive r1 through a simple line search via the equation

r1 + r2 + · · · + rm = p1. (54)

In executing this recursion, we have noticed that when p1 is not large enough, r1 might

become negative while we solve the equation in (54). This is because the other rj ’s, j 6= 1, are

all positive, as evident from (53). One way to avoid this from happening is to first replace p1

22



(W ; a, b) i = 1 2 3 4 5 6 7 8 obj. val.

(40; 15, 14) pi 1 0.69 0.69 0.69 0.69 0.69 0.68 0.62 25.64
(40; 40, 37.33) pi 1 0.63 0.61 22.94

(40; 15, 2) pi 1 0.60 0.60 0.60 0.60 0.60 0.59 0.56 20.77
(40; 40, 2) pi 1 0.55 0.54 19.95

(40; 2, 1.5) pi 1 0.57 0.57 0.57 0.57 0.57 0.54 0.37 20.46
(40; 5.33, 1.5) pi 1 0.52 0.44 20.10

Table 3: Optimal pricing under linear, exponential and power demand functions.

by Cp1, where C is a large positive number. Once all the rj’s are derived and r1 is positive,

divide each of these by C.

In the following examples, we consider three commonly used functions, the linear, exponen-

tial and power functions, that model the relation between the arrival rate and the price:

λ(p) = a − bp, λ(p) = ae−bp, λ(p) =
a

pb
; (55)

where a and b are positive parameters in all three cases. The corresponding derivatives are:

λ′(p) = −b, λ′(p) = −bλ(p), λ′(p) = − b

p
λ(p).

Example 3 In this example we choose p1 = 1, and consider the linear, exponential and power

functions in (55) with different parameters (a, b), along with different W values. The choice of

the parameters (a, b) is such that all three functions coincide at p = 1; the linear and exponential

functions also coincide at p = 0; while the power function coincides with the linear function at

a point close to the origin.

We list both the optimal solutions and the approximations following (53). In each case, we

consider both m = 8 and m = 3. The results are summarized in Table 3, where listed under

“obj. val.” are the original, maximal objective values following (47) (in particular, including

the p1W term).

Example 4 Next, we examine the optimal price reduction with respect to the available inven-

tory W . We take the exponential demand case above, fix m = 8 and (a, b) = (15, 2), while

changing W . The results are displayed in Table 4.

Example 5 Finally, we examine the approximation scheme in (53), which solves the optimality

equations approximately. We take the above cases under m = 3. We also examine non-optimal

alternatives that offer different levels of discount at different periods or no discount at all. (For

23



W i = 1 2 3 4 5 6 7 8 obj. val.

50 pi 1 0.52 0.52 0.52 0.52 0.52 0.52 0.52 21.28

30 pi 1 0.73 0.73 0.73 0.73 0.73 0.71 0.61 19.35

25 pi 1 0.82 0.82 0.82 0.82 0.81 0.78 0.65 18.12

20 pi 1 0.93 0.93 0.93 0.93 0.92 0.86 0.69 16.43

15 pi 1 1 1 1 1 1 1 0.78 14.00

10 pi 1 1 1 1 1 1 1 0.88 9.90

Table 4: Optimal pricing under various inventory levels.

(W ; a, b) i = 1 2 3 obj. val. % off opt

(40; 40, 37.33) pi 1 0.66 0.45 21.82 (approx) 5%
pi 1 1 1 8.00 (non-opt) 65%

(40; 40, 2) pi 1 0.68 0.35 19.10 (approx) 4%
pi 1 0.90 0.90 17.32 (non-opt) 13%

(40; 5.33, 1.5) pi 1 0.68 0.36 19.84 (approx) 1%
pi 1 1 0.50 18.21 (non-opt) 10%

Table 5: Approximations and non-optimal pricing schemes.

instance, in the second case, (1, 0.90, 0.90) indicates full price in period 1, and 10% discount in

the remaining two periods.) The results are summarized in Table 5, where the last column is

the percentage off the objective value under optimal pricing.

From the above results, we observe that

(a) reducing the number of price markdowns from 7 (m = 8) to 2 (m = 3) has a rather minor

effect on the objective values;

(b) with more inventory available for sale, price reduction becomes more substantial and

starts earlier, as expected;

(c) the approximation scheme in (53) performs quite well in all three cases;

(d) applying the optimal pricing results in a substantial advantage over other ad-hoc schemes.

The model and analysis discussed above extend readily to the case where, in addition to

the discount prices, the original price p1 is also a decision variable. The optimization problem

now becomes

max
p1,r

p1W −
m

∑

i=1

riG(µi) (56)

s.t. r1 + · · · + rm ≥ p1; p1 ≥ 0; ri ≥ 0, i = 1, ...,m.

24



The Lagrangian is

p1W −
m

∑

i=1

riG(µi) + η(r1 + · · · + rm − p1),

with η being the multiplier. Therefore, the optimality equations in (52) still apply; and in

addition, we have η = W (from setting the partial derivative with respect to p1 to zero).

Similarly, the recursion in (53) also applies, assuming p1, as well as r1, is given; and r1 is still

obtained from the summation constraint: r1 + · · · + rm = p1. (That this constraint must be

binding follows from the fact that the term,
∑m

i=1 riG(µi), is increasing in (r1, ..., rm), which

can be directly verified.) Finally, p1 can be obtained from another line search to enforce η = W .

7 Concluding Remarks

The models discussed here can be extended in a number of ways. First, the demand function

in the pricing model as represented by the Poisson arrival rate can depend on time (period), i,

as well as on price pi, to take the form λ(i, pi). For instance, a discount that takes place earlier

might attract more (or, less) demand. The results in §6 will continue to hold, since the only

change needed is from µi = λ(pi) to µi = λ(i, pi).

Second, the available inventory W can be made a decision variable too. This amounts to

constructing a newsvendor problem on top of the switch-over or pricing models developed here.

It is readily verified that all the objective functions (for maximization) involved are concave

in W . Hence, with the addition of replenishment and salvage costs, the resulting newsvendor

model can be routinely solved, once the optimal switching points or optimal prices are obtained

(for each given W ).

Third, in the switch-over policy, we can incorporate a service measure such as the acceptance

rate for each price class k: recall, it will not be accepted until the time interval (tk−1, tk].

Consider the model in §4.1, for instance. We know the total expected number of accepted

units, over the time interval (tk−1, tk] is G(µk−1) − G(µk), of which the share of class k is

proportion to λk/Λk. Hence, the expected number of accepted units for class k over the entire

horizon (0, T ] is:
m

∑

`=k

[G(µk−1) − G(µk)]
λk

Λ`
.

The above divided by the expected number of class k arrivals over the horizon, λkTE(Q), is

what we call average acceptance rate for class k, denoted αk. We can hence derive αk after the

optimal switch-over points are derived; or, include a minimal requirement for αk as a constraint.

25



References

[1] Bitran, G. and Mondschein, S., An Application of Yield Manangement to the Hotel

Industry Considering Multiple Day Stays. Operations Research, 43 (1995), 427-443.

[2] Brummelle, S. and Walczak, D., Dynamic Airline Revenue Management with Multiple

Semi-Markov Demand. Operations Research, 51 (2003), 137-148.

[3] Cooper, W. Asymptotic Behavior of an Allocation Policy for Revenue Management,

Operations Research, 50, 720-727.

[4] Bicheler, M., et al., Applications of Flexible Pricing in Business-to-Business Electron-

ics Commerce. IBM System Journal, (April, 2002).

[5] Cao, H., Jang, Y., and Lu, Y., Bid Pricing with Incomplete Data via an EM Approach.

Working paper, IBM T.J. Watson Research Center, 2002.

[6] Feng, Y. and Gallego, G., Optimal Stopping Times for End of Seasons Sales and

Optimal Stopping Times for Promotional Fares. Management Science, 41 (1995), 1372-

1391.

[7] Feng, Y. and Gallego, G., Perishable Asset Revenue Management with Markovian

Time Dependent Demand Intensities. Management Science, 46 (2000), 941-956.

[8] Feng, Y. and Xiao, B., Optimal Policies of Yield Management with Multiple Predeter-

mined Prices. Operations Research, 48 (2000), 332-343.

[9] Gallego, G. and van Ryzin, G., A multiproduct dynamic pricing problem and its

applications to network yield management, Operations Research, 45 (1997), 24-41.

[10] Kleywegt, A.J. and Papastavrou, J.D., The Dynamic and Stochastic Knapsack Prob-

lem. Operations Research, 46 (1998), 17-35.

[11] Kleywegt, A.J. and Papastavrou, J.D., The Dynamic and Stochastic Knapsack Prob-

lem with Random Sized Items. Operations Research 49 (2001), 26-41.

[12] Lee, T.C. and Hersh, M., A Model for Airline Seat Inventory Control with Multiple

Seat Booking. Transpotation Sci. 27 (1993), 1252-1265.

[13] Lippman, S., Applying a New Device in the Optimization of Exponential Queueing Sys-

tems, Operations Research, 23 (1975), 687-710

[14] Maglaras, C. and Zeevi, A., Pricing and Design of Differentiated Services: Approxi-

mate Analysis and Structural Insights. Preprint, Graduate School of Business, Columbia

University, 2002.

[15] Papastavrou, J.D., Rajagopalan, S., and Kleywegt, A.J., The Dynamic and

Stochastic Knapsack Problem with Deadlines. Management Science, 42 (1996), 1706-1718.

26



[16] Ross, K.W. and Tsang, D., The Stochastic Knapsack Problem. IEEE Transactions on

Communications, 34 (1989), 47-53.

[17] Ross, K.W. and Yao, D.D., Monotonicity Properties of the Stochastic Knapsack. IEEE

Transactions on Information Theory, 36 (1990), 1173-1179.

[18] Shanthikumar, J.G. and Yao, D.D., Strong Stochastic Convexity: Closure Properties

and Applications. Journal of Applied Probability, 28 (1991), 131-145.

[19] Talluri, K. and van Ryzin, G., A randomized linear programming method for com-

puting network bid prices, Transportation Science 33, 1999, 207-216.

[20] Van Slyke, R. and Young, Y., Finite Horizon Stochastic Knapsacks with Applications

in Yield Management. Operations Research, 48 (2000), 155-172.

[21] Zhao, W. and Zheng, Y., Optimal Dynamic Pricing for Perishable Assets with Nonho-

mogeneous Demand. Management Science, 46 (2000), 375-388.

27


