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Abstract

We consider a multiproduct assemble-to-order system. Components are built to stock with
inventory controlled by base-stock rules, but final products are assembled to customer orders
only. There are multiple types of orders, which arrive at the system following batch Poisson
processes. The leadtimes for replenishing component inventory are stochastic. We study the
optimal allocation of a given budget among component inventories so as to minimize a weighted
average of backorders over product types (or, alternatively, the average response time among
orders). We derive several easy-to-compute bounds and approximations for the expected number
of backorders, and use them to formulate surrogate optimization problems. Efficient algorithms
are developed to solve these problems, and numerical examples illustrate the effectiveness of the
bounds and approximations. Our study also generates new insights on several design issues,
both analytically and numerically.
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1 Introduction

Realizing the competitive advantages of being flexible, responsive as well as efficient, and enabled

by advanced technologies, more and more manufacturing companies are reengineering their product

design and delivery processes to move toward mass customization. That is, to produce customized

products in a cost-effective way that is comparable to mass production (see, e.g., Pine 1993).

This requires modularizing the production process so that the product can be quickly assembled

from standardized components and modules in different configurations, based on what customers

individually request. As a result, a new kind of production-inventory system has emerged and is

becoming increasingly popular. This is the assemble-to-order (ATO) system: inventories are kept

only at the component level, and the final products are assembled only after customer orders are

received.

This new system, in turn, presents challenging operational and system design issues to man-

agers. As each customer order typically involves several components, the stockout of any component

will cause a delay in fulfilling the order. So, the optimal stock level of one component should be

determined in conjunction with those of other components to ensure the simultaneous availability.

However, holding inventory of a large number of components requires significant financial commit-

ment, making it impossible to maintain a high level of inventory across all components. Standard

single-item inventory planning tools, while suitable for the mass-production make-to-stock envi-

ronment, are no longer applicable. Therefore, new planning tools are needed to strike the optimal

inventory-service tradeoff in ATO systems.

In this paper we consider an ATO system supporting multiple types of demand, which arrive at

the system following Poisson processes. The inventory of each component is controlled by a base-

stock policy; and the replenishment leadtimes among the components are independent, identically

distributed (i.i.d.) random variables. The system performance measure we focus on is the expected

backorders for each product. Our objective is to minimize a weighted average of backorders over all

product types, subject to a budget constraint on the component inventory. Through Little’s law

(Wolff 1989), this objective relates directly to the response time performance in fulfilling customer

orders. (Also refer to Song 2002).

Another objective of our study is to use both analysis and numerical examples to sharpen our

understanding on the key performance drivers of the ATO system. For instance, the single-item

inventory theory suggests that we should stock enough of each component to cover the leadtime

demand plus some safety stock to protect against variability (of both demand and leadtime). Let

s be the stock level of a component. Then

s = µ + kσ,
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where µ is the average leadtime demand for the component; σ, the corresponding standard devi-

ation; and k, the safety factor, a positive parameter indicative of the level of protection against

uncertainty or variability. What is often followed in practice is the so-called equal fractile rule –

having the same k value across all components. Should this be the case here? What is the impact

of demand or leadtime variability? What is the cost effect of component inventory? What role does

the relative importance of the product play (e.g., high-margin versus low-margin products)? Both

our analytical and numerical results provide insights to these issues. More broadly, the models

and solution approaches developed here can be used to support system designs, such as evaluating

design alternatives of product modules and configurations.

The work reported here extends the single-product ATO system studied in Song and Yao (2002).

Like this previous work, we develop upper and lower bounds for the backorders, and use them as

surrogates in the optimization problem. However, the bounds for the multi-product model here are

more involved and exhibit different structures. For instance, the lower bound in the multi-product

case leads to an optimization problem known as the min-max-sum resource allocation problem

(see, e.g., Kouvelis et al. (2001)), for which known algorithms are limited to the branch-and-bound

types. Here, we are able to identify a special property in our model, what we call a stack structure,

and solve the problem using a much more efficient greedy algorithm. In terms of the upper bound,

we show that a modification of the approach in Song and Yao (2002) produces not only a good

approximation of the average backorder but also a surrogate optimization problem that bears the

same stack structure as the one in the lower-bound approach.

In many ways, this paper can be viewed as a sequel to Lu, Song and Yao (2003a), which also

studies a multi-product ATO system, but focuses on fill-rate performance. Simply put, fill rate takes

the form of a probability of availability (or no-stockout) across all components; whereas backorder,

the performance measure studied here, takes the form of the expectation of a maximum over

backordered components. Mathematically, these two performance measures require very different

approaches. Physically, fill rate has more of a system focus: how much of the exogenous demand

the system can fill; backorder is more customer-oriented: as explained earlier, it is a proxy of the

response time to fulfill a customer order.

A brief review of other related literature is in order. (A more detailed survey of the state-of-

the-art research on ATO systems has recently appeared in Song and Zipkin 2001.) Several authors

have worked on optimization models for ATO systems. These studies are quite different from ours

in the detailed modelling assumptions and approaches. For example, Hausman et al. (1998) studies

a periodic-review (discrete-time) model with multivariate normal demand and constant component

replenishment leadtimes. The paper examines the problem of maximizing the fill rate, which is a

multivariate normal probability, subject to a linear budget constraint. The paper develops heuristic
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methods. The best of these seems to be the equal k-rule mentioned above. (They refer to it as

the equal fractile heuristic, which selects the base-stock levels to equalize the components’ fill rates.

Agrawal and Cohen (2001) assume the same discrete-time framework. Their model minimizes the

total expected component inventory costs, subject to constraints on the order fill rates. Instead of

FCFS allocation rule, they assume a combination of FCFS and a fair-share allocation policy. Their

study leads to quite different solutions from the equal-fractile heuristic of Hausman et al, however.

Cheng et al. (2002) also use the discrete-time formulation. They assume i.i.d. replenishment

leadtimes and FCFS allocation rule. They study the problem of minimizing average component

inventory holding cost subject to product-family dependent fill rate constraints. functions are linear

functions of the item fill rates. An exact algorithm and a greedy heuristic are developed. Using

a continuous-time framework, Gallien and Wein (2001) assume i.i.d. component leadtimes in a

single-product assembly system. Demand is Poisson with rate λ. To keep the analysis tractable,

the paper imposes a synchronization assumption, namely, that components are assembled in the

same sequence they are ordered in. In the context of a repair shop, Cheung and Hausman (1995)

assume i.i.d. leadtimes and multivariate Poisson demand model. This is a special case of ours (the

unit demand case). They use a combination of order synchronization and disaggregation in their

analysis, and their approximate backorder function appears to be quite different from ours. Wang

(1999) considers multivariate compound Poisson demand but the supply process for each component

is capacitated and modeled as a single-server queue. Applying the asymptotic results developed

in Glasserman and Wang (1998), he examines the problem of minimizing average inventory cost

subject to a fill-rate constraint.

The rest of the paper is organized as follows. We start with model description in §2, followed

by establishing in §3 several properties of the backorder function. In §4, we develop the lower

bounds to backorders, as well as solution approaches to the lower-bound problem. We then turn to

considering upper bounds in §5. Extensions to batch demands are presented in §6, and numerical

studies are summarized in §7.

2 Model Description

Let I := {1, 2, · · · ,m} index the set of m components. Let K := {K ⊂ I} index the set of end-

product types, where K denotes the subset of components (one unit each) required to assemble one

unit of a certain end-product, referred to as a type K product. In §6 we relax the unit demand

assumption and allow random batch size for each component in K. Note that K is not necessarily

the set of all possible subsets of I.

Associated with each product type K is an independent Poisson demand stream, with rate

λK . For each component i, let λi :=
∑

K3i λK . Then, clearly the demand for components also
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form Poisson processes, with rate λi for component i. Note, however, these Poisson processes are

no longer independent. (Throughout the paper we shall use subscripts to index components and

superscripts to index product/demand types.)

Upon the arrival of a demand for product type K, if there is on-hand inventory for each

component i ∈ K, then the demand will be filled immediately. (In other words, the time to

assemble the components into the end-product is assumed negligible.) On the other hand, if there

is a stockout of one or more components in K, then the order will be backlogged. When there are

multiple backorders, they are filled on a first-come-first-served (FCFS) basis.

The inventory of each component is controlled by a base-stock (or, “one-for-one” replenishment)

policy, with si denoting the base-stock level. Specifically, the arrival of each demand K will trigger

the replenishment of one unit of each component i ∈ K, regardless of whether the demand is filled

or backlogged. This way, the inventory position (i.e., the on-hand inventory plus on-order units

minus backorders) of component i is always maintained at a constant level, of si units. Assume

that the replenishment leadtimes for each component are independent and identically distributed

(i.i.d.) random variables, with a common distribution function denoted Gi(·); and the leadtimes

are independent among all components. Denote Gc
i := 1 − Gi. Let Li denote the generic random

variable following the distribution Gi.

With the above model formulation, it is clear that for each component i, the number of out-

standing orders at any time t, denoted Xi(t), is equal to the number of jobs in service in an M/Gi/∞
queue, with arrival rate λi, for i = 1, ..., m. However, since the arrival of any demand of type K

may generate simultaneous arrivals at all the component queues, i ∈ K, these m queues are not

independent. As shown in Lu et al. (2001), under mild regularity conditions, (X1(t), ..., Xm(t)) has

steady-state limit, denoted (X1, ..., Xm), which can be characterized by the following probability

generating function:

ψ(z1, ..., zm) = exp





∑

K∈K
λK

∫ ∞

0
(
∏

j∈K

(Gj(u) + zjGc
j(u))− 1)du



 ,

This is a multivariate Poisson distribution, with the marginal distribution of Xi, i = 1, ..., m,

following a Poisson distribution with mean λiE[Li].

Denote x+ := max{0, x}. We are interested in the following backorder-related performance

measures:

Bi = number of backordered component i = [Xi − si]+,

BK = number of backordered type-K demand,

Furthermore, there is a breakdown of the backordered components Bi into the demand types
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to which they belong:

BK
i :=

Bi
∑

k=1

1k(
λK

λi
) =

[Xi−si]+
∑

k=1

1k(
λK

λi
), (1)

where 1k’s are i.i.d. Bernoulli random variables with parameter λK/λi (i.e., 1k = 1 with probability

λK/λi, and 1k = 0 otherwise). Clearly, under the FCFS rule, we have

BK = max
i∈K

BK
i . (2)

Let ci be the unit cost of component i. Let wK ≥ 0 be a weighting factor for the average

backorder for product K. It measures the relative importance of service provided to type K orders.

Denote s := (s1, ..., sm). Although the decision variables si’s are non-negative integers, below we

shall treat these as non-negative real values, as they are involved in bounds and approximations.

In most applications, si’s are typically large values; hence, ignoring the integrality is appropriate.

We are interested in the following optimization problem:

(P ) min
s

∑

K∈K
wKE[BK(s)] s.t. c1s1 + · · ·+ cmsm ≤ C, s ≥ 0. (3)

where C > 0 is given constant, representing the total inventory budget. In industrial applications,

inventory budget often applies to safety stock only. Since inventory can be divided into WIP and

safety stock, and the WIP part is independent of the base-stock level, the constraint in the above

problem formulation is consistent with practice. (Also see Sherbrooke (1992).) As pointed out in

the Introduction, the objective function in (3) relates to a delay objective via Little’s law: Suppose

we want to

min
s

∑

K∈K
vKE[WK(s)],

where WK denotes the delay (response time) in filling type K orders, and vk is the associated cost.

Then, we can write

vKE[WK(s)] =
vK

λK E[BK(s)];

hence, we can set wK = vK/λK in (3).

3 Structural Properties

We establish here several properties of the backorder functions. We first show that increasing the

base-stock level of any item not only reduces the mean but also the variance of the backorders.

Proposition 1 The following properties hold for the back-order related performance measures.
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• For each i = 1, ...,m, Bi is decreasing and convex in si, and so is BK
i for all K 3 i.

• For each K ∈ K, BK is decreasing and convex in s = (s1, ..., sm), and hence so is
∑

K wKBK .

Consequently, for any increasing and convex function f(x), the above decreasing convexity holds for

Ef(Bi), Ef(BK) and Ef(
∑

K wKBK). In particular, the means — E(Bi), E(BK) and E(
∑

K wKBK)

— are decreasing and convex (in si and in s).

Proof. That Bi is decreasing and convex in si follows from Bi = [Xi−si]+, since [x]+ is increasing

and convex in x. From (1), the decreasing convexity of BK
i follows from the decreasing convexity

of Bi.

Since max and + both preserve monotonicity and convexity these properties (decreasingness

and convexity) apply to BK and
∑

K wKBK as well. Similarly, since these properties are preserved

by any increasing and convex function, the last statement follows. �

Note that in the above results, the convexity of Bi is in the sense of strong stochastic convexity

as defined in Shanthikumar and Yao (1991); whereas the convexity of BK
i is in the sense of “sample

path” (which is weaker than the “strong” version); refer to Shaked and Shanthikumar (1994); also

see Chang et al. (1994), Example 5.3.8.

Proposition 2 For any convex function f(x), Ef [BK
i − E(BK

i )] is decreasing in si. In particular,

Var(BK
i ) is decreasing in si, for each i and each K 3 i; and Var(Bi) is decreasing in si, for all i.

Proof. We first show that Var(Bi) is decreasing in si. Recall, Bi = [Xi − si]+. Hence, it suffices

to show

E[(Xi − si)+]2 − E[(Xi − si − 1)+]2

≥ [E(Xi − si)+]2 − [E(Xi − si − 1)+]2. (4)

We have,

(Xi − si)+ − (Xi − si − 1)+ = 1(Xi ≥ si + 1),

(Xi − si)+ + (Xi − si − 1)+ = (2Xi − 2si + 1)1(Xi ≥ si + 1).

(Note that we are treating Xi’s, as well as si’s as integer valued.) Hence,

E{[(Xi − si)+]2 − [(Xi − si − 1)+]2}

= E[(2Xi − 2si + 1)1(Xi ≥ si + 1)];

7



where as

[E(Xi − si)+]2 − [E(Xi − si − 1)+]2

= [E(Xi − si)+ + E(Xi − si − 1)+][E(Xi − si)+ − E(Xi − si − 1)+]

= E[(2Xi − 2si + 1)1(Xi ≥ si + 1)]P(Xi ≥ si + 1).

Hence, the inequality in (4) holds.

Next, write BK
i,n as BK

i conditioning upon Xi − si = n, for n = 0, 1, .... From (1), since Xi

is independent of the Bernoulli variables involved, it suffices to show that Ef [BK
i,n − E(BK

i,n)] is

increasing in n.

Denote Mn := BK
i,n − E(BK

i,n). From (1), clearly, {Mn} forms a martingale (e.g., Ross 1996).

Hence, the convexity of f implies that {f(Mn)} is a submartingale, which, in turn, implies that

Ef(Mn) is increasing in n, and hence decreasing in si, which is what is desired.

Letting f(x) = x2, we have E(M2
n) = Var(BK

i,n). Note that we can write

Var(BK
i ) = E[Var(BK

i |Xi)] + Var[E(BK
i |Xi)]. (5)

The first term on the right hand side above is decreasing in si, since Var(BK
i,n) is increasing in n

given Xi − si = n as argued above. The second term, following (1), is equal to (λK/λi)Var(Bi);

hence, it is also decreasing in si, from what has already been shown for Var(Bi). Therefore, we can

conclude that Var(BK
i ) is decreasing in si. �

The next result says that, in terms of reducing the expected number of backorders, it pays to

have a higher base-stock level for a component that has a longer mean leadtime and a lower unit

cost, provided there is also a higher overall demand for this component.

Proposition 3 If for any two items i and j we have λjE[Lj ] ≥ λiE[Li], λj ≥ λi, and cj ≤ ci, then

the optimal solution to (3), with equal weights in the objective function, must satisfy sj ≥ si.

Recall the outstanding orders for item i, Xi, has a Poisson distribution with mean λiE[Li].

Using the single-item inventory formula we have

si = λiE[Li] + ki
√

λiE[Li],

where ki is the safety factor. Now, suppose items i and j have exactly the same demand charac-

teristics and the same leadtimes, i.e., λi = λj and E[Li] = E[Lj ]. Assume, however, item i is less

expensive, i.e., ci < cj . Then, applying the above proposition we should have ki > kj . That is, we

would like to keep higher safety stock for the cheaper item. This shows that the commonly used

equal fractile rule is not effective; the protection level k should not be a constant across all items.
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After some reflection, the result is actually quite intuitive. Since both items have the same demand

characteristics, they are equally important to the system responsiveness. But the inexpensive item

consumes less money, so it is more economical.

Now, consider another interesting case: The two items have the same mean leadtime demand,

λiE[Li] = λjE[Lj ]. Also, they have the same cost, ci = cj . Then, the proposition indicates that the

item that has higher aggregate rate (λj > λi) should have larger safety factor (i.e., kj ≥ ki). This,

too, is intuitive. Since both items have the same cost, allocating one more unit to item j would

result in bigger chance to fulfill an demand, and hence have bigger effect on improving system

responsiveness.

The above proposition is an extension of a similar result in Song and Yao (2002) for assemble-

to-order systems with a single product type. (With a single product, λi = λj = λ.) The proof

also follows the approach there, with added complexity due to multiproduct types. The main

idea is to use the joint likelihood ratio ordering of Shanthikumar and Yao (1991a), along with the

rearrangement inequalities in Chang et al (1994). Details of the proof are available in a technical

report; see Lu, Song and Yao (2003b).

4 The Lower-Bound Approach

Applying Jensen’s inequality to (2), we have

E[BK ] ≥ max
i∈K

E[BK
i ] = max

i∈K
{λK

λi
E[Bi]}.

Hence,

E[
∑

K∈K
wKBK ] ≥

∑

K∈K
max
i∈K

{wKλK

λi
E[Bi]}. (6)

We now use the lower bound in (6) as a surrogate for the objective function in (3):

(LB) min
s

∑

K∈K
max
i∈K

{wKλK

λi
E[Bi(si)]} (7)

s.t. c1s1 + · · ·+ cmsm ≤ C; s ≥ 0.

Although the objective function in (LB) is much easier to evaluate (involving the marginal

distributions only), its inseparability still presents great challenge in optimization.

4.1 The Stack Structure

Now we further relax the integer requirement in (LB), and treat each si as a nonnegative real

variable. Let Rm
+ denote the m-dimensional nonnegative real vector space. The relaxed problem is
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then

(LB′) min
s

∑

K∈K
max
i∈K

{wKλK

λi
E[Bi(si)]} (8)

s.t. c1s1 + · · ·+ cmsm ≤ C; s ≥ 0.

Obviously, the resulting objective value is a lower bound for (LB), which in turn still a lower

bound on the original problem. In the rest of this section we discuss how to solve (LB′) efficiently.

Once we obtain a solution for (LB′), we round it to the nearest integer solution as an approximate

solution for the original problem.

A change of variable will better reveal the structure of (LB′). Since

bi(si) = E[Bi(si)] = E[Xi − si]+

is strictly decreasing in si ∈ R1
+, its inverse function b−1

i (·) is well defined, and is also decreasing

and convex. Since limsi→∞ bi(si) = 0, we denote b−1
i (0) = +∞. Hence, for each i = 1, 2, ...,m,

define

zi :=
bi(si)

λi
, or si = b−1

i (λizi) := hi(zi); (9)

and z := (z1, ..., zm). The problem (LB′) is equivalent to

(LB′) min
z

∑

K∈K
wKλK max

i∈K
zi (10)

s.t.
∑

i

cihi(zi) ≤ C; z ∈ Rm
+ .

Suppose {z∗i , i = 1, · · · ,m} is the optimal solution to (10). Denote uK := maxi∈K z∗j . Without

loss of generality, rename the product types in ascending order of uK :

uK1 ≤ uK2 ≤ · · · .

We now argue that z∗i , for i ∈ K1, should all have the same value. Suppose this is not the case.

That is, there exists i0 ∈ K1 such that

z∗i0 < uK1 := max
j∈K1

z∗j .

Then, increasing z∗i0 to uK1 will not change the objective value, and at the same time will not

violate the constraint because hi0(·) is a decreasing function.

Similarly, since uK2 := maxj∈K2 z∗j is the second smallest uK values, for any i ∈ K2 \ K1, if

z∗i < uK2 , we can increase its value to uK2 without changing the objective value or violating the

constraint.
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Continuing this argument, we can conclude that the optimal solution z∗ to (10) satisfies a

stack-like structure that can be formalized as follows.

Suppose K = {K1, . . . , Kn}, i.e., there are n product (or, demand) types. Note that we can

write the set of all components as

I = ∪n
`=1K` := {1, ..., m}.

Consider a particular order (permutation) of the n subsets, π = (π1, π2, . . . , πn). Form n new

subsets inductively as follows:

K∗
π1

= Kπ1 , K∗
π`

= Kπ`\(K
∗
π1
∪ · · · ∪K∗

π`−1
), ` = 2, ..., n. (11)

Then, clearly, (K∗
π1

, . . . , K∗
πn

) is a partition of I (whereas (Kπ1 , . . . , Kπn) is not).

Proposition 4 There exists an optimal solution z∗ to (10) satisfying the following stack-like struc-

ture. Suppose π = (π1, π2, . . . , πn) is a permutation such that maxi∈Kπ`
z∗j is increasing in `. Denote

uπ` := maxj∈Kπ`
z∗j , and hence

uKπ1
≤ uKπ2

≤ · · · ≤ uKπn
.

Let (K∗
π1

, . . . ,K∗
πn

) be the partition of I specified in (11). Then, we have,

z∗j = uKπ`
, ∀ j ∈ K∗

π`

for all ` = 1, ..., n.

4.2 The Optimization Algorithm

To simplify notation, denote, for each permutation π = (π1, π2, . . . , πn),

λπ` := λKπ` wπ` := wKπ` uπ` := uKπ`
.

Furthermore, based on Proposition 4.1, denote

g`(z) :=
∑

i∈K∗
π`

cihi(z).

We can then rewrite the optimization problem in (10) as follows.

(LB′) min
π

min
n

∑

`=1

wπ`λπ`uπ` (12)

s.t.
n

∑

`=1

g`(uπ`) ≤ C, (13)

uπ1 ≤ · · · ≤ uπn , (u1, · · · , un) ∈ Rn
+.
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Hence, given the permutation π, denote the inner minimization part of the above problem,

including the constraints, as (LB′
π). We can solve (LB′

π) for all π; the one that yields the smallest

objective value is then the optimal solution to the original problem (LB′).

For each π, (LB′
π) is greedily solvable, via a marginal allocation algorithm. To describe this

algorithm, reformulate the problem with yet another transformation of variables:

y1 := uKπ1
; y` := uKπ`

− uKπ`−1
, ` = 2, ..., n.

Hence,

uKπ`
= y1 + · · ·+ y`, ` = 2, ..., n.

Also denote y := (y1, . . . , yn);

v` := uKπ1
+ · · ·+ uKπ`

` = 2, ..., n.

Then, (LB′
π) becomes the following:

(LB′
π) min

y

n
∑

`=1

v`y` (14)

s.t.
n

∑

`=1

g`(y1 + · · ·+ y`) ≤ C, y ∈ Rn
+.

The marginal allocation scheme works as follows: Start with y = 0; hence, the zero objective value.

In each step, allow an increase of ∆ > 0 of the objective value, with ∆ a prespecified constant.

This corresponds to allowing yk to increase by an amount ∆/ak, for each k = 1, ..., n, which, in

turn, corresponds to the decrease of the left hand side of the constraint by the following amount:

n
∑

`=1

[g`(y1 + · · ·+ yk + · · ·+ y`)− g`(y1 + · · ·+ yk + ∆/ak + · · ·+ y`)].

(Recall, g`(·) is a decreasing function, for all `.) Therefore, select the k that yields the largest

such decrease, and update yk to yk + ∆/ak. Repeat this procedure until the left hand side of the

constraint is reduced to C.

4.3 Heuristics

Although for each π, (LB′
π) is greedily solvable, we still need to solve n! such problems. One

heuristic is to do pairwise improvement: Start from any permutation, say, (1, . . . , n). Compare this

with all other permutations that result from interchanging 1 with ` 6= 1. This involves solving n

marginal allocation problems like (LB′
π) above. Suppose (π1, 2, ..., n) gives the smallest objective

value. Next, fix π1 at the first position, apply the same pairwise interchange to the remaining n−1
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elements of the permutation, and so forth. This heuristic requires solving n(n− 1)/2 (as opposed

to n!) marginal allocation problems.

An even simpler heuristic is to apply the marginal allocation scheme that solves (LB′
π) directly

to the problem (LB′) in (12). The details are as follows:

• Start with π = (1, ..., n), and set uπ` = 0 for all `.

• Suppose the current solution is (uπ`), corresponding to some permutation π = (π`). For each

k = 1, ..., n, do:

(a) increase uπk to uπk + ∆/λπk ; rearrange the u values, and let πk denote the resulting

permutation;

(b) evaluate the left hand side of the constraint in (13)

Select k∗ as the one corresponding to the smallest value in (b) above (i.e., the one that yields

the largest decrease in the left hand side of the constraint). Update uπk∗ to uπk∗ + ∆/λπk∗ ;

and π to πk∗ .

• Repeat the above until the left hand side of the constraint in (13) is reduced to C.

Remarks. Note that with any given permutation the original discrete lower bound surrogate

problem in (7) is a separable discrete convex programming, which can be easily solved by a greedy

algorithm. So the heuristic algorithm above can also be applied to solve the problem in (7).

5 The Upper-Bound Approach

We now switch to using the upper bound as a surrogate for the objective function in the backorder

minimization problem in (3). This is based on a simple inequality: for a set of non-negative

variables, xi ≥ 0, we have

max
i
{xi} ≤ a +

∑

i

(xi − a)+, (15)

which holds for any a, and can be directly verified. Hence, minimizing the right hand side above,

with respect to a, yields an upper bound for maxi{xi}. Note, however, when a < 0, the right hand

side becomes

a +
∑

i

(xi − a) ≥
∑

i

xi.

So, in minimizing the right hand side of (15), we only need to consider a ≥ 0.

13



When (xi) is a vector of non-negative random variables, the upper bound has the advantage of

involving only the marginal distributions. Hence, applying this to (2), we have

BK := max{BK
i } ≤ aK +

∑

i∈K

(BK
i − aK)+, (16)

where aK is a parameter; and hence,

∑

K∈K
wKBK ≤

∑

K∈K
wK [aK +

∑

i∈K

(BK
i − aK)+].

Consequently, we have

E[
∑

K∈K
wKBK ] ≤

∑

K∈K
wKaK +

∑

K∈K
wK

∑

i∈K

E(BK
i − aK)+.

Therefore, using the above upper bound as a surrogate objective, and writing a := (aK)K∈K

(and s := (si)i∈I as before), we have the following optimization problem:

(UB) min
(a,s)

∑

K∈K
wKaK +

∑

K∈K
wK

∑

i∈K

E(BK
i − aK)+ (17)

s.t. c1s1 + · · ·+ cmsm ≤ C, s ≥ 0.

In the above problem, minimizing over a is not as important as minimizing over s, as the former

is meant to improve on the upper bound. (In fact, as we shall illustrate below, we could very well

forgo the minimization over a by fixing it at a specific value.) Hence, we propose to use a common

(scalar) a for all product type K, and then optimize a. This way, the problem becomes,

(UB) min
(a,s)

a
∑

K∈K
wK +

∑

K∈K
wK

∑

i∈K

E(BK
i − a)+ (18)

s.t. c1s1 + · · ·+ cmsm ≤ C, s ≥ 0.

For fixed a, (UB) is a separable convex programming, which is greedily solvable. We can then

conduct a line search on a. Also note that taking derivative on the objective with respect to a, we

have
∑

K∈K
wK −

∑

K

wK
∑

i∈K

P[Xi > si + a].

When the service level is high, which is the case in most applications, P[Xi > si + a] is low, and

hence the above derivative will be positive; i.e., it is optimal to have a = 0.
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Another approach is the following. Since the upper bound in (16) holds for any aK , we can pick

a set of such parameters, ai, i ∈ K:

BK ≤ ai +
∑

i∈K

[BK
i − ai]+, i ∈ K.

In particular, selecting ai = E(BK
i ), we have:

BK ≤ max
i∈K

E(BK
i ) +

∑

i∈K

[BK
i − E(BK

i )]+.

Hence, we have the following problem:

(UB′) min
s

∑

K

wK
{

max
i∈K

[
λK

λi
EBi(si)] +

∑

i∈K

E[BK
i (si)− EBK

i (si)]+
}

(19)

s.t. c1s1 + · · ·+ cmsm ≤ C, s ≥ 0.

We can go one step further to change the sum over i in the second part of the objective in

(19) to max over i. This might result in an objective that is no longer an upper bound; however,

numerical results have demonstrated that this serves as a very good approximation of the objective

value.

(UB′′) min
s

∑

K

wK max
i∈K

{λK

λi
EBi(si)] + E[BK

i (si)− EBK
i (si)]+

}

(20)

s.t. c1s1 + · · ·+ cmsm ≤ C, s ≥ 0.

Applying Proposition 2, we know, like EBi(si), E[BK
i (si) − EBK

i (si)]+ is also decreasing in si,

since [x]+ is a convex function. Hence, in (UB′′) we have a problem of the same structure as the

lower-bound problem in the last section, hence same optimization and heuristic algorithms can be

applied.

6 Extensions to Batch Demand

We now extend our model to allow batch demand. Suppose each arrival of type K requires QK
i

units of component i. In Lu et al. (2002) the probability generating function is derived for the

joint distribution of outstanding orders in steady state, (X1, . . . , Xm):

ψ(z1, ..., zm) := E[
m
∏

j=1

zXj
j ]

= exp

[

∑

K∈K
λK

∫ ∞

0
(ψQK

(G1(u) + z1Gc
1(u), ..., Gm(u) + zmGc

m(u))− 1)du

]

, (21)
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where ψQK
(z1, ..., zm) denotes the generating function of QK = (QK

i )i∈K .

Based on the above, the marginal distribution of Xi, for each component i, can be derived; and

hence, the expected number of backordered component E(Bi) = E[Xi− si]+. For instance, the first

two moments of Xi are:

E[Xj ] =
∂

∂zj
|zj=1ψ(z1, ..., zm) = E[Lj ]

∑

K∈Kj

λKE[QK
j ] (22)

and

E[X2
j ] = (

∂2

∂z2
j

+
∂

∂zj
)|zj=1ψ(z1, ..., zm)

= E[Xj ] + (E[Xj ])2 +
∑

K∈Kj

λK(E[(QK
j )2]− E[QK

j ])
∫ ∞

0
[Gc

j(u)]2du. (23)

Recall from (1), BK
i is the number of backlogged units of component i that are due to type K

demand. In the case of single-unit demand, the number of backorders of type K is then simply

BK = maxi∈K BK
i , following (2). When demand arrives in batches, however, we must first translate

BK
i into batches:

BQ,K
i := inf{n :

n
∑

m=1

QK
i (m) ≥ BK

i }, (24)

where QK
i (m), m = 1, . . . , n, are independent copies of QK

i . Then,

BK = max
i∈K

BQ,K
i .

Here, BK
i , the number of backlogged units of component i due to demand of type K, can be derived

as follows:

BK
i =

Bi
∑

k=1

1k

(

λKE[QK
i ]

∑

J∈Ki
λJE[QJ

i ]

)

,

where 1k(p)’s are i.i.d. Bernoulli random variables with parameter p, same as in (1). Taking

expectations on both sides, and applying Wald’s identity (Ross 1996) to the summation on the

right hand side, we have

E[BK
i ] =

λKE[Bi]E[QK
i ]

∑

J∈Ki
λJE[QJ

i ]
. (25)

On the other hand, following (24), we have

BQ,K
i
∑

m=1

QK
i (m) ≥ BK

i .
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Applying Wald’s identity again, we have

E[QK
i ]E[BQ,K

i ] ≥ E[BK
i ]. (26)

Hence, making use of Jensen’s inequality along with (25) and (26), we have:

E[BK ] = E[max
i∈K

BQ,K
i ] ≥ max

i∈K
E[BQ,K

i ]

≥ max
i∈K

E[BK
i ]

E[QK
i ]

= max
i∈K

{

λKE[Bi]
∑

J∈Ki
λJE[QJ

i ]

}

. (27)

Using the above lower bound we obtain the counterpart of the surrogate problem in (7), ex-

tending the latter to the case of batch demand:

min
s

∑

K∈K
wKλK max

i∈K
{ E[Bi(si)]
∑

J∈Ki
λJE[QJ

i ]
} (28)

s.t. c1s1 + · · ·+ cmsm ≤ C; s ≥ 0.

Note that the objective function in (28) has exactly the same form as the one in (7). Hence, the

solution technique in §4 applies.

7 Numerical Studies

Consider an ATO system with six components and the following six product types,

{2, 5}, {3, 5}, {1, 2, 5}, {1, 3, 6}, {1, 3, 4, 5}, {1, 3, 4, 6}.

The overall demand arrival rate is λ = 4, which splits into the six product types as follows:

q25 = 0.10, q35 = 0.40, q125 = 0.15, q136 = 0.10, q1345 = 0.20, q1346 = 0.05.

The component leadtimes follow independent exponential distributions with means

(E[L1], E[L2], ...,E[L6]) = (1, 1, 1, 1, 2, 2).

Consider two sets of cost data: c(1) = (1, 1, 1, 1, 1, 1) and c(2) = (2, 2, 3, 2, 1, 1), with respective

weights w(1) = (1, 1, 1, 1, 1, 1) and w(2) = (1, 1, 1.2, 1.5, 1.2, 1.5), and various inventory budget

levels: C = 20, 24, 32 for c(1); and C = 30, 40, 50 for c(2).

In Tables 1 and 2, we summarize the solutions obtained by (i) an exhaustive search via sim-

ulation, (ii) the lower-bound approach along with the heuristic algorithm in §4.3, (iii) the upper-

bound approach based on (UB), and (iv) the approximation approach based on (UB′′). For each
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approach, we report the optimal base-stock levels, the corresponding objective value, and the result-

ing weighted average backorder. Note that while the last two measures are equal for the simulation

based optimal solution, they are different for the other three approaches. For instance, the objec-

tive value corresponding to (ii) is necessarily a lower bound of the objective value of (i); whereas

the weighted average backorder corresponding to (ii) is obtained from using the optimal base-stock

levels derived from the lower-bound approach (to evaluate analytically the original objective).

In Tables 3 and 4, we repeat the same example with λ = 8, and modified budget levels:

C = 30, 36, 45 for c(1); and C = 40, 50, 60 for c(2).

[INSERT TABLE 1-4 HERE]

The results indicate that solutions from the surrogate problems are very close to the true optimal

solution in all cases.

In Table 5 we report the optimal safety factors associated with the optimal base-stock levels

in the previous four tables. From these safety factors, we can derive the component fill rates from

a normal distribution table. For instance, k = 1.00 corresponds to a fill rate of Φ(1) = 84.13%,

where Φ(x) denotes the distribution function of the standard normal variate; k = 2 corresponds to

a fill rate of Φ(2) = 97.72%, and so forth. As can be observed from the table, the optimal safety

factors vary widely among components, confirming that the equal fractile rule in general cannot be

optimal.

[INSERT TABLE 5 HERE]

Next, we consider a simplified version of the personal computer example studied in Cheng et

al. (2002). Suppose there are six components that play a key role in differentiating demand types.

These are: (1) Ethernet card, (2) standard hard drive (e.g., 7GB disk drive), (3) high profile hard

drive (e.g., 13 GB disk drive), (4) video graphics card, (5) standard processor (e.g., 450 MHz board),

(6) high profile processor (e.g., 600 MHz). The average component leadtimes and cost data are as

follows:

(E[Li])6i=1 = (1.7, 3, 3, 1, 2, 2), (ci)6i=1 = (1.0, 2.4, 2.8, 1.4, 2.7, 7.1).

Suppose there are four product types, configured as follows:

{2, 5}, {1, 2, 5}, {1, 3, 6}, {1, 3, 4, 6}.
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Note that the first two are “low-end” machines, while the last two are “high-end” machines. Con-

sider λ = 4.

Suppose, over a certain period of time, due to price reduction on the high-end machines, part

of the demand on the low-end machines shifts to the high-end machines, resulting in the following

four cases:

Case1 : q25 = 0.30, q125 = 0.25, q136 = 0.30, q1346 = 0.15;

Case2 : q25 = 0.30, q125 = 0.15, q136 = 0.30, q1346 = 0.25;

Case3 : q25 = 0.20, q125 = 0.15, q136 = 0.35, q1346 = 0.30;

Case4 : q25 = 0.10, q125 = 0.10, q136 = 0.40, q1346 = 0.40.

In Table 6, we report the optimal base-stock levels corresponding to the above cases for various

levels of inventory budget, 80, 90, 100 and 110. We can observe that the base-stock levels for

components 3 and 6, hard drive and processor used in the high-end machines, steadily increase

over the period; while the base-stock levels for components 2 and 4, which are associated with low-

end machines, steadily decrease. On the other hand, the base-stock level for component 1, which

is used in all but one product type, has very little change over the period. These results support

the importance of judicious inventory planning when demand shifts among product types. Also

observe the ordering among base-stock levels as dictated in Proposition 3. For instance, consider

components 2 and 3, which have the same mean leadtime. Since c2 < c3, and λ2 < λ3 in Cases 3

and 4 (where (λ2, λ3) = λ(.35, .65) and λ(.30, .80), respectively), we have s2 ≤ s3 in these cases.

The same holds for components 5 and 6, also in Cases 3 and 4.

[INSERT TABLE 1-4 HERE]

8 Conclusions

The focus of this study is on the inventory-service tradeoff in a multi-product assemble-to-order

system — how to allocate a given budget among component inventories so as to optimize cus-

tomer service, in terms of minimizing the average backorders (or, alternatively, the average order

response times) among different product types. We have brought out the importance of backorder

as a measurement for customer service, derived analytical expressions for the expected backorder,

developed bounds and approximations for it, and used them as surrogate objectives. These result

in several optimization problems that exhibit appealing structures and lend themselves to efficient
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algorithms. Through both analytical and numerical results, we have shown that the model devel-

oped here can be used as a tool to garner managerial and operational insights, as well as to support

system design.
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Coefficients Weight Budget Algorithms s1 s2 s3 s4 s5 s6 Objective Ave. BackOrder Rel. Err. (%)
(1,1,1,1,1,1) (1,1,1,1,1,1) C=20 Optimal 3 2 4 1 8 2 1.4312 1.4312

Lower Bound 3 2 3 2 8 2 0.8675 1.5052 5.17
Upper Bound 3 2 4 1 8 2 2.7470 1.5052 0.00
Approximation 3 2 4 1 8 2 1.7808 1.4312 0.00

C=24 Optimal 3 2 5 2 10 2 0.7694 0.7694
Lower Bound 3 2 5 2 9 3 0.4097 0.7918 2.91
Upper Bound 4 2 5 2 9 2 1.7035 0.7859 2.14
Approximation 3 2 5 2 10 2 0.8620 0.7694 0.00

C=32 Optimal 5 3 6 3 12 3 0.1857 0.1857
Lower Bound 5 3 6 3 11 4 0.0959 0.2037 9.69
Upper Bound 5 3 6 3 12 3 0.6654 0.1857 0.00
Approximation 5 3 6 3 12 3 0.2602 0.1857 0.00

(2,2,3,2,1,1) (1,1,1,1,1,1) C=30 Optimal 3 2 2 2 8 2 1.5052 1.5052
Lower Bound 3 2 2 2 8 2 0.9676 1.5052 0.00
Upper Bound 3 2 2 2 8 2 3.1790 1.5052 0.00
Approximation 3 2 2 2 8 2 2.3844 1.5052 0.00

C=40 Optimal 3 2 4 2 11 3 0.7999 0.7999
Lower Bound 3 2 4 2 10 4 0.4357 0.8253 3.18
Upper Bound 3 2 4 2 11 3 1.7740 0.7999 0.00
Approximation 3 2 4 2 10 4 0.9352 0.8253 3.18

C=50 Optimal 4 3 5 3 11 4 0.3188 0.3188
Lower Bound 4 3 5 3 11 4 0.1671 0.3188 0.00
Upper Bound 4 3 5 3 11 4 0.8513 0.3188 0.00
Approximation 4 3 5 3 11 4 0.3670 0.3188 0.00

Table 1: System: Six product: q25=0.1,q35=0.4, q125=0.15, q136=0.1,q1345=0.2, q1346=0.05
Six items: L=(1,1,1,1,2,2)
Overall Arrival rate=4



Coefficients Weights Budget Algorithms s1 s2 s3 s4 s5 s6 Objective Ave. BackOrder Rel. Err. (%)
(1,1,1,1,1,1) (1,1,1.2,1.5,1.2,1.5) C=20 Optimal 3 2 4 1 8 2 1.8138 1.8138

Lower Bound 3 2 3 2 8 2 0.8942 1.8507 2.03
Upper Bound 3 2 4 1 8 2 3.1732 2.0296 11.90
Approximation 3 2 4 1 8 2 2.0001 1.8138 0.00

C=24 Optimal 4 2 4 2 9 3 0.9976 0.9976
Lower Bound 3 3 4 2 9 3 0.4333 1.0606 6.32
Upper Bound 3 3 5 2 9 2 2.0304 1.0809 8.36
Approximation 3 2 5 2 10 2 0.8620 1.0139 1.64

C=32 Optimal 5 3 6 3 11 4 0.2236 0.2236
Lower Bound 5 3 6 3 11 4 0.0669 0.2236 0.00
Upper Bound 5 3 6 3 12 3 0.8942 0.2455 9.83
Approximation 5 3 6 3 12 3 0.2784 0.2455 9.83

(2,2,3,2,1,1) (1,1,1.2,1.5,1.2,1.5) C=30 Optimal 3 2 3 1 7 2 2.4270 2.4270
Lower Bound 2 3 3 1 7 2 1.1662 2.5966 6.99
Upper Bound 2 3 2 2 8 2 3.2222 2.6642 9.77
Approximation 3 2 2 2 8 2 2.6039 2.4699 1.77

C=40 Optimal 3 2 5 2 9 2 1.1570 1.1570
Lower Bound 3 2 5 2 9 2 0.4507 1.1570 0.00
Upper Bound 3 2 4 2 11 3 2.0991 1.2087 4.47
Approximation 3 2 5 2 9 2 1.2384 1.1570 0.00

C=50 Optimal 4 3 5 3 12 3 0.4097 0.4097
Lower Bound 4 4 5 2 12 3 0.1743 0.4634 13.10
Upper Bound 5 2 5 3 12 3 0.8907 0.4432 8.16
Approximation 4 3 5 3 12 3 0.4339 0.4097 0.00

Table 2: System: Six product: q25=0.1,q35=0.4, q125=0.15, q136=0.1,q1345=0.2, q1346=0.05
Six items: L=(1,1,1,1,2,2)
Overall Arrival rate=4



Coefficients Weight Budget Algorithms s1 s2 s3 s4 s5 s6 Objective Ave. BackOrder Rel. Err. (%)
(1,1,1,1,1,1) (1,1,1,1,1,1) C=30 Optimal 4 2 6 2 14 2 3.6992 3.6992

Lower Bound 4 2 5 2 13 4 2.1184 3.9141 5.81
Upper Bound 4 2 6 2 14 2 6.1314 3.6992 0.00
Approximation 4 2 6 2 14 2 5.2077 3.6992 0.00

C=36 Optimal 5 3 7 3 15 3 2.1585 2.1585
Lower Bound 5 3 6 3 15 4 1.2252 2.2591 4.66
Upper Bound 5 3 7 3 15 3 3.7673 2.1585 0.00
Approximation 5 3 7 3 15 3 2.7572 2.1585 0.00

C=45 Optimal 6 4 9 4 18 4 0.7906 0.7906
Lower Bound 6 4 8 4 18 5 0.4027 0.8076 2.15
Upper Bound 6 4 9 4 18 4 1.7213 0.7906 0.00
Approximation 6 4 8 4 18 5 0.8303 0.8076 2.15

(2,2,3,2,1,1) (1,1,1,1,1,1) C=40 Optimal 3 2 4 2 12 2 5.8115 5.8115
Lower Bound 3 2 4 2 12 2 3.1483 5.8115 0.00
Upper Bound 3 1 3 1 16 3 8.3235 6.0408 3.95
Approximation 3 2 4 2 12 2 5.9234 5.1901 0.00

C=50 Optimal 4 2 5 2 16 3 3.6540 3.654
Lower Bound 4 2 6 2 13 3 1.8405 3.9222 7.34
Upper Bound 4 2 5 2 16 3 5.3085 3.654 0.00
Approximation 4 2 6 2 13 13 4.0001 3.9222 7.34

C=60 Optimal 5 3 7 3 14 3 2.5787 2.5787
Lower Bound 5 3 7 3 15 4 1.0385 2.5787 0.00
Upper Bound 5 3 6 3 17 3 3.5718 2.6443 2.54
Approximation 5 3 7 3 14 3 2.5598 2.5787 0.00

Table 3: System: Six product: q25=0.1,q35=0.4, q125=0.15, q136=0.1,q1345=0.2, q1346=0.05
Six items: L=(1,1,1,1,2,2)
Overall Arrival rate=8



Coefficients Weights Budget Algorithms s1 s2 s3 s4 s5 s6 Objective Ave. BackOrder Rel. Err. (%)
(1,1,1,1,1,1) (1,1,1.2,1.5,1.2,1.5) C=30 Optimal 4 3 5 2 13 3 4.6977 4.6977

Lower Bound 3 4 5 2 13 3 2.7525 5.2219 11.16
Upper Bound 4 3 5 2 14 2 7.1485 4.9309 4.96
Approximation 3 4 5 2 13 3 5.5713 5.2219 11.16

C=36 Optimal 4 4 7 3 15 4 2.6205 2.6205
Lower Bound 5 4 6 3 15 4 1.5072 2.6381 0.67
Upper Bound 4 4 7 3 15 4 3.7673 2.6205 0.00
Approximation 4 4 7 3 15 4 2.8011 2.6205 0.00

C=45 Optimal 6 4 8 4 18 5 1.0377 1.0377
Lower Bound 6 5 8 4 18 4 0.4719 1.0931 5.33
Upper Bound 6 5 8 4 18 4 1.8007 1.0931 5.33
Approximation 6 4 8 4 18 5 1.0984 1.0377 0.00

(2,2,3,2,1,1) (1,1,1.2,1.5,1.2,1.5) C=40 Optimal 3 2 4 1 15 2 6.3911 6.3911
Lower Bound 3 3 4 1 12 3 4.0054 6.6257 3.67
Upper Bound 3 2 4 2 12 3 9.7655 6.4639 1.14
Approximation 3 2 4 1 15 2 6.7800 6.3911 0.00

C=50 Optimal 4 2 5 2 16 3 4.2470 4.2470
Lower Bound 4 3 5 2 13 4 2.5485 4.4930 5.79
Upper Bound 4 2 5 2 16 3 5.3085 4.2470 0.00
Approximation 4 2 6 2 13 4 4.5020 4.4007 3.62

C=60 Optimal 5 4 6 3 15 3 2.8692 2.8692
Lower Bound 5 4 6 3 15 3 1.4638 2.8692 0.00
Upper Bound 5 2 6 3 18 4 3.8970 3.0192 5.23
Approximation 6 3 6 3 15 3 2.9403 2.9007 1.10

Table 4: System: Six product: q25=0.1,q35=0.4, q125=0.15, q136=0.1,q1345=0.2, q1346=0.05
Six items: L=(1,1,1,1,2,2)
Overall Arrival rate=8



ArrivalRate Coefficients Weight Budget k 1 k 2 k3 k4 k5 k6
4 (1,1,1,1,1,1) (1,1,1,1,1,1) 20 0.71 1.00 0.58 0.00 0.46 0.73

24 0.71 1.00 1.15 1.00 1.23 0.73
32 2.12 2.00 1.73 2.00 1.99 1.64

(2,2,3,2,1,1) (1,1,1,1,1,1) 30 0.71 1.00 -0.58 1.00 0.46 0.73
40 0.71 1.00 0.58 1.00 1.61 2.56
50 1.41 2.00 1.15 2.00 1.61 2.56

(1,1,1,1,1,1) (1,1,1.2,1.5,1.2,1.5) 20 0.71 1.00 0.58 0.00 0.46 0.73
24 1.41 1.00 0.58 1.00 0.84 1.64
32 2.12 2.00 1.73 2.00 1.61 2.56

(2,2,3,2,1,1) (1,1,1.2,1.5,1.2,1.5) 30 0.71 1.00 0.00 0.00 0.46 0.73
40 0.71 1.00 0.58 1.00 0.84 1.64
50 1.41 2.00 1.15 2.00 1.61 1.64

8 (1,1,1,1,1,1) (1,1,1,1,1,1) 30 0.00 0.00 0.00 0.00 0.11 -0.26
36 0.50 0.71 0.41 0.71 0.38 0.39
45 1.00 1.41 1.22 1.41 1.19 1.03

(2,2,3,2,1,1) (1,1,1,1,1,1) 40 -0.50 0.00 -0.82 0.00 -0.43 0.39
50 0.00 0.00 0.00 0.00 0.11 1.03
60 0.50 0.71 0.41 0.71 0.38 1.03

(1,1,1,1,1,1) (1,1,1.2,1.5,1.2,1.5) 30 0.00 0.71 -0.41 0.00 -0.16 0.39
36 0.00 1.41 0.41 0.71 0.38 1.03
45 1.00 1.41 0.82 1.41 1.19 1.68

(2,2,3,2,1,1) (1,1,1.2,1.5,1.2,1.5) 40 -0.50 0.00 -0.82 -0.71 0.38 -0.26
50 0.00 0.00 -0.41 0.00 0.65 0.39
60 1.00 0.71 0.00 0.71 0.38 1.03

Table 5: Optimal safety factor



C=80
Case S1 S2 S3 S4 S5 S6 E[B]

1 6 8 5 1 5 4 2.5162
2 5 6 6 2 5 4 2.8598
3 6 5 7 2 3 5 3.1933
4 5 3 8 2 2 6 3.9448

C=90
Case S1 S2 S3 S4 S5 S6 E[B]

1 6 8 6 1 6 4 2.0028
2 6 6 7 2 5 5 2.2392
3 6 5 8 2 4 5 2.6248
4 6 3 9 2 2 6 3.2930

C=100
Case S1 S2 S3 S4 S5 S6 E[B]

1 7 9 7 1 6 5 1.2669
2 7 7 8 2 5 5 1.6107
3 7 5 8 2 4 6 2.1991
4 7 3 10 2 2 7 2.5152

C=110
Case S1 S2 S3 S4 S5 S6 E[B}

1 7 10 7 2 7 5 0.9597
2 7 8 8 2 6 6 1.1432
3 7 6 9 2 4 7 1.5371
4 7 4 11 3 3 8 1.5954

Table 6.  Optimal base-stock level with changes in demand rates


