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1 Introduction

The promise of school choice programs is to expand students’ access to public schools beyond

their residential boundaries.1 In reality, this promise is tampered by the fact that public schools

face capacity constraints. When too many students demand limited seats at a school, a decision

must be made on who are admitted and who are turned away. Such a decision is to a degree

moderated by the school’s priorities over the applicants, but schools’ priorities are typically very

coarse. For instance, Boston Public Schools (BPS) prioritize applicants based only on sibling

attendance and “walk zone,” leaving many in the same priority class. So the fundamental issue

remains: how to assign scarce seats at schools.

Allocating scarce resources is after all the fundamental role of markets. Competitive markets

allocate goods efficiently based on individuals’ preference intensities since prices of goods adjust

to select those individuals willing to pay the most for them, namely those with the highest

preference intensities. However, selling seats at public schools is not a viable option, nor is it

desirable given the principle of free public education. But the “cardinal”efficiency of school

assignment—that seats at a popular school must go to those who would lose relatively more

by being assigned the next best school—is an important issue.2 Can the market efficiency be

achieved without monetary exchange? We suggest that this is indeed possible, and can be done

by applying the lesson from competitive markets. We show that school choice can be designed to

harness the pricing function of the market and generate a more efficient outcome in the cardinal

sense, and this can be done within the framework of the most popular choice mechanism, namely

Gale-Shapley’s (Gale and Shapley, 1962) student-proposing deferred acceptance (henceforth,

DA) algorithm, without sacrificing much of its beneficial properties.

Since proposed by Abdulkadiroğlu and Sönmez (2003), DA has emerged as one of the most

prominent candidates for school admissions design. In 2003, New York City Department of

Education adopted the DA.3 In 2005, the BPS also adopted DA in place of the existing priority

1Government policies promoting school choice take various forms, including interdistrict and intradis-

trict public school choice as well as open enrollment, tax credits and deductions, education savings ac-

counts, publicly funded vouchers and scholarships, private voucher programs, contracting with private

schools, home schooling, magnet schools, charter schools and dual enrollment. See an interactive map at

http://www.heritage.org/research/Education/SchoolChoice/SchoolChoice.cfm for a comprehensive list of choice

plans throughout the US.
2We use the term “cardinal” in order to distinguish the efficiency we focus on from the ordinal efficiency.

This distinction is made clearer by the example introduced shortly and by subsequent sections.
3The developments in NYC were initiated independently when, being aware of his pioneering work on market

design in the entry level labor markets (Roth, 1984; Roth and E. Peranson, 1999), the New York City Department

of Education contacted Alvin Roth to inquire about the appropriateness of a system like the National Residency

Matching Program for the NYC high school match.
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rule known as the “Boston” mechanism. Beyond school choice, DA has a celebrated history,

having been successfully applied to the matching of doctors to hospital for their internships

and residencies (see Roth, 2008). The algorithm works as follows. Once students submit

their ordinal rankings of schools and school priorities are determined, it iterates the following

procedure in successive rounds: Each student applies to her most preferred school that has not

rejected her yet; each school tentatively admits up to its capacity according to its priority order

from new applicants and those it has kept from the previous round, rejecting (permanently)

those not admitted. The tentative assignment becomes final when no student is rejected.

When school priorities are strict, the DA has several desirable properties. It ensures fairness

by eliminating justified envy; that is, no student ever loses a seat at a desired school to somebody

with a lower priority at that school (Gale and Shapley, 1962; Balinski and Sönmez, 1999;

Abdulkadiroğlu and Sönmez, 2003).4 If schools’ priorities are strict, then the assignment also

Pareto dominates all other fair assignments (Gale and Shapley, 1962). Furthermore, DA is

strategy-proof, meaning that the students have a dominant strategy of revealing their preference

rankings of schools truthfully (Dubins and Freedman, 1981; Roth, 1982).5

These qualities notwithstanding, the DA does not respond to applicants’ cardinal prefer-

ences. When two applicants tie in priority, the DA randomly determines who will be admit-

ted and who will be rejected. That is, when priorities do not determine the allocation, DA

completely ignores the underlying preference intensities of students. Luck of “draw” instead

determines an applicant’s fate. This is in contrast with the competitive markets where the

agents can express their preference intensities via their willingness to pay, and also with the

Boston mechanism where students’ rankings have priority over random lottery numbers. This

apparent “irony” was not lost in the run up to the BPS’ adoption of the DA when parents

observed:

... if I understand the impact of Gale Shapley, and I’ve tried to study it and I’ve met

with BPS staff... I understood that in fact the random number ... [has] preference

over your choices... (Recording from the BPS Public Hearing, 6-8-05).

I’m troubled that you’re considering a system that takes away the little power that

parents have to prioritize... what you call this strategizing as if strategizing is a

dirty word... (Recording from the BPS Public Hearing, 5-11-04).

This lack of responsiveness to cardinal preferences, or the inability by the parents to influence

4Justified envy is mathematically equivalent to the standard notion of blocking pairs in two-sided matching.
5Aside from the ease with which parents make their choice, strategy-proofness “levels the playing field,”

by putting those strategically unsophisticated at no disadvantage relative to those who are more sophisticated

(Abdulkadiroğlu, Pathak, Roth and Sönmez, 2006; Pathak and Sönmez, 2008).
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how they are treated at a tie, entails real welfare loss. The following example illustrates this

drawback of DA.

Example 1. Suppose there are three students, {1, 2, 3}, and three schools, {a, b, c}, each with

one seat. Schools have no intrinsic priorities over students, and students’ preferences are rep-

resented by the following von-Neumann Morgenstern (henceforth, vNM) utility values, where vij

is student i’s vNM utility value for school j:

v1
j v2

j v3
j

j = a 4 4 3

j = b 1 1 2

j = c 0 0 0

Since schools have no priorities, ties have to be broken before applying DA. Consider a DA

algorithm that generates the student rankings at schools by a uniform lottery; that is, ties

among students are broken randomly. By strategy-proofness, all three students submit truthful

rankings of the schools. Consequently, the students are assigned each school with probability

1/3. In other words, the DA mechanism reduces to a pure lottery assignment. The students

obtain expected utility of EUDA
1 = EUDA

2 = EUDA
3 = 5

3
. This assignment makes no distinction

between students 1, 2 and student 3, despite the fact that the first two would suffer more by

being assigned the next best alternative b than student 3.

Not surprisingly, reallocating the assignment probabilities can make all agents strictly better

off. Suppose instead student 3 is assigned school b for sure, and students 1 and 2 are assigned

between a and c with equal probability 1/2. Each student obtains the expected utility of

EUB
1 = EUB

2 = EUB
3 = 2 strictly higher than 5

3
they enjoyed in the DA.6 Moreover, this new

assignment can be implemented in an incentive compatible way. Suppose for instance that the

students are offered the two different lotteries; sure assignment at school b versus a uniform

lottery between a and c. Intuitively, this mechanism offers a 1/2 chance of getting assigned the

best school a, for the “price” of 1/2 chance of getting assigned the worst school c. The first two

students (who will suffer a lot by being placed to the second best school instead of the best)

will pay that price, but the third student (who will not suffer as much) will not. Hence, this

mechanism implements the desirable assignment.

6In fact, the Boston mechanism can implement this better assignment since in equilibrium student 3 ranks

B at the top while the other two rank truthfully. As we mention in Conclusion, our companion paper (Ab-

dulkadiroğlu, Che and Yasuda (2011)) generalizes this observation to show that the Boston mechanism weakly

Pareto dominates DA in every symmetric equilibrium when ordinal preferences over schools are aligned, schools

have no priorities and break ties symmetrically.
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We propose a way to modify the DA algorithm to harness the “pricing” feature of this

mechanism. The idea is to allow the students to signal their cardinal preferences by sending an

additional message, and this message is used to break ties at schools. In what we call “Choice-

Augmented Deferred Acceptance” (CADA) algorithm, each student submits an ordinal list of

schools just as before, but she also submits the name of a “target” school. A school then elevates

the priority standing of those who targeted that school and favor them in breaking ties among

those with the same priority at the school. The iterative procedure of DA is then implemented

with the rankings generated in this way. The CADA inherits the desirable properties of the

standard DA: It is fair in the sense of eliminating justified envy, and strategy-proof with respect

to the ordinal preference lists. Clearly, targeting involves strategic behavior, but its importance

is limited by the priorities. If schools’ priorities are strict, then there are no ties, so CADA

coincides with the standard DA.

If the priorities are coarse, then targeting allows individuals to signal their preference inten-

sities, and in the process serves to “price” the schools based on their demands. Intuitively, if a

school is targeted by more students, one finds it more difficult to raise the odds of assignment

at that school via targeting that school; effectively the price of that school has risen. As will be

seen, this feature of CADA allows competitive markets to operate for a set of popular schools,

attaining ex ante efficiency within these schools. For this reason, for a large economy (both in

the size of student body and school capacities), the CADA performs better in ex ante welfare

than the DA with standard random tie-breaking rules. For instance, in the above example,

the unique Nash equilibrium of the CADA has students 1 and 2 targeting a, and student 3

targeting b, so the desirable outcome is implemented.7

The issue of cardinal welfare, or ex ante efficiency that captures cardinal welfare, has not

received much attention in the debate of school choice design. The existing debate has largely

focused on ex post efficiency or ordinal efficiency as a welfare concept. Cardinal welfare would

not matter much if either students’ preferences are diverse or if the schools’ priorities are strict.

In the former case, the preferences do not conflict, so they can be easily accommodated. In the

latter case, even if the preferences conflict, school priorities pin down the assignment, so there

is no scope for assignment to respond to cardinal welfare.

7All students will submit their rankings truthfully, so a− b− c in this order. Given the targeting behavior,

school a will then rank students 1 and 2 ahead of 3 (but randomly between the first two), and school b will rank

student 3 ahead of 1 and 2 (again randomly between these two). In the first round of CADA, all students apply

to a and it will choose between 1 and 2, and the two rejected students, including student 3, will then apply to

school b in the second round, and school b will admit student 3. Hence, student 3 is assigned b for sure, and

1 and 2 are assigned between a and c with equal probability, thus implementing the superior assignment. It is

routine to check that there is no unilateral profitable deviation from the assumed targeting behavior.
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If neither is true, however, the cardinal welfare issue becomes important. Suppose for an

extreme case that the students have the same ordinal preferences and schools have no priorities.

In that case, as seen in Example 1, it matters how the students are assigned based on their

relative preference intensities of the schools. By contrast, ex post efficiency loses its bite; as

can be seen in the example, all assignments are ex post efficient, thus indistinguishable on

this ground. In particular, the celebrated DA reduces to a pure lottery assignment and CADA

can do strictly better in such a case. Although this extreme scenario is special, it captures

the salient features of the reality. In reality, priorities are coarse and parents tend to value

the similar qualities about schools (e.g., safety, academic excellence, etc.), leading them to

have similar (ordinal) preferences. Indeed, the BPS data exhibits strong correlation across

students’ ordinal preferences over schools. In 2007-2008, only 8 out of 26 schools (at grade

level 9) were overdemanded whereas an average of 22.21 (std 0.62) schools should have been

overdemanded if students’ preferences had been uncorrelated.8 As we point out in this paper,

in such an environment, CADA performs particularly well relative to the DA with standard

random tie-breaking rules.

Besides CADA, we also offer two methodological contributions. Analysis of CADA requires

the understanding of students’ strategic behavior with regard to their targeting. Such an

analysis is not tractable in the general finite economy model. Instead we study a matching

model with a continuum of students and finitely many schools with mass capacities as an

approximation to large finite matching models.9 This model produces a clear insight and

captures salient features of large strategic environments without sacrificing tractability, and is

well founded as the approximation of large finite economy models, as discussed in Section 6.6.

Second, we offer a novel and convenient way of measuring efficiency. Realistic mechanisms often

trade off efficiency for practicality, and thus may not attain full Pareto efficiency. To compare

such mechanisms in efficiency, we introduce the notion “scope of efficiency” which refers to the

set of schools that are allocated efficiently from an ex ante point of view. The size of this set

can measure efficiency, enabling us to rank different mechanisms.

The rest of the paper is organized as follows. Section 2 defines CADA more precisely and

8This comparison is based on submitted preferences under the DA introduced in 2005. Since the DA is

strategy-proof and BPS paid significant attention in communicating that feature of the DA to the public, we

assume that those submitted preferences are a good approximation of the underlying true preferences. For the

counter-factual, we generated 100 different preference profiles by drawing a school as first choice for each student

uniformly randomly from the set of schools and computed the number of overdemanded schools given school

capacities.
9Following the initial draft of the current paper, Che and Kojima (2010), Azevedo and Leshno (2011) and

Azevedo (2011) have also adopted continuum models of matching, and the first two study the asymptotic

properties of a model that converges to the same model in the limit.
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shows that it inherits the desired properties of standard DA. Section 3 introduces the formal

model and welfare criterion. Section 4 provides welfare comparison across the three alternative

procedures. Section 5 presents simulation to quantify the welfare benefits of CADA. Section 6

then considers the implication of enriching the message used in the CADA and the robustness

of our results to some students not behaving in a strategically sophisticated way. Section 7

concludes. Appendix contains most of the proofs. Those not contained in the Appendix are

available in the Supplementary Notes (“not for publication”).

2 Choice-Augmented DA Algorithm: Definition and Fi-

nite Economy Properties

This section defines CADA formally in a finite economy setting. To begin, consider an economy

with a finite set I of students and a finite set S of schools such that a school s ∈ S has a finite

number qs of seats. Let ∅ denote a null set, meaning the outcome of not being assigned to

any school. An assignment x is a mapping x : I → S ∪ ∅ such that |x−1(s)| ≤ qs for each

s ∈ S; that is, x is a many-to-one matching with the property that the number of students

assigned to a school does not exceed its capacity. We assume that each student in I has strict

ordinal preferences over schools S, and each school in S has priority ordering of students, which

may contain thick indifference classes. A mechanism refers to a mapping from the profile

of student preferences and school priorities into an assignment. We say that a mechanism is

individually rational if its assignment is weakly preferred to null assignment for each student,

and strategy-proof if each student has a weakly dominant strategy of reporting their ordinal

preferences truthfully. A mechanism eliminates justified envy if there exists no pair of a

student and a school such that the student prefers the school over her assignment and the school

either has a vacant seat or admits a student with a lower priority.

Since standard DA requires the rankings to be strict on both sides, in order to use DA, it

requires a procedure to break ties if schools’ priorities are non-strict. There are two common

procedures for breaking ties. Single tie-breaking (STB) uniform-randomly assigns every

student a single lottery number to break ties at every school, whereas multiple tie-breaking

(MTB) uniform-randomly assigns a distinct lottery number to each student at every school.

Clearly, a DA algorithm is well defined with respect to the strict priority list generated by either

method. We refer to the DA algorithms using single and multiple tie-breaking by DA-STB

and DA-MTB, respectively.

CADA involves an alternative way to break a tie, one that allows students to influence its

outcome based on their messages. It proceeds in the following three steps:
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• Step 1: All students submit ordinal preferences, plus an “auxiliary message,” naming a

“target” school. If a student names a school for a target, she is said to have “targeted” the

school.

• Step 2: The schools’ strict priorities over students are generated based on their intrinsic

priorities and the students’ auxiliary messages as follows. First, each student is uniform-

randomly assigned two lottery numbers. Call one target lottery number and the other regular

lottery number. Each school’s strict priority list is then generated as follows: (i) First consider

the students in the school’s highest priority group. Within that group, rank at the top those

who name the school as their target. List them in the order of their target lottery numbers,

and list below them the rest (who didn’t target that school) according to their regular lottery

numbers. (ii) Move to the next highest priority group, list them below in the same fashion, and

repeat this process until all students are ranked in a strict order.

• Step 3: The students are then assigned schools via the DA algorithm, using each student’s

ordinal preferences from Step 1 and each school’s strict priority list compiled in Step 2.

To illustrate Step 2, suppose there are five students I = {1, 2, 3, 4, 5} and two schools

S = {a, b}, neither of which has intrinsic priority ordering over the students. Suppose students

1, 3 and 4 targeted a and 2 and 5 targeted b, and that students are ordered according to their

target and regular lottery orders the students as follows:

T(I) : 3− 5− 2− 1− 4; R(I) : 3− 4− 1− 2− 5.

Then the priority list for school a first reorders students {1, 3, 4}, who targeted that school,

based on T(I), to 3 − 1 − 4, and reorders the rest, {2, 5}, based on R(I), to 2 − 5, which

produces a complete list for a:

Pa(I) = 3− 1− 4− 2− 5.

Similarly, the priority list for b is:

Pb(I) = 5− 2− 3− 4− 1.

The process of compiling the priority lists resembles the STB in that the same lottery is used by

different schools, but only within each group. Unlike STB, though, different lotteries are used

across different groups. This ensures that students are treated identically at their non-target

schools conditional on failing to get in their target schools, which plays a role in our welfare

characterization (as will be explained in footnote 17). Besides, this feature has an added fairness

benefit, since a student who has a bad draw at her target school gets a “new lease on life” with

another independent draw for the other schools.

The desirable properties of the DA are all preserved.
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Theorem 1. (i) CADA eliminates justified envy and is strategy-proof with respect to students’

ordinal preferences, namely making it a dominant strategy for each student to rank schools

truthfully. (ii) Given an arbitrary targeting behavior by the students and any realization of

the corresponding CADA assignment, there is no individually rational assignment that every

student strictly prefers over the CADA assignment.

Part (i) follows from the fact that CADA is a form of DA and that the ordinal rankings

submitted by the students under CADA are used in the same way as DA, in particular not to

affect tie-breaking. Part (ii) follows from Theorem 6 of Roth (1982).

3 The Large Economy Model

The main focus of this paper is to understand the cardinal welfare properties of CADA and the

standard DA mechanisms. This requires analysis of students’ strategic behavior with regard

to their targeting of schools under CADA and the resulting ex ante welfare consequences as

well as ex ante welfare properties of the standard DA mechanisms. Such an analysis is difficult

for a general finite economy model. To obtain a clear insight, we instead study a model in

which there are a continuum of students and finitely many schools with mass capacities. For

analytical tractability we also assume that schools have no priorities.

The large economy assumption, we believe, is fairly descriptive of the typical school choice

environment. For instance, NYC serves about a million students at K-12 grade levels and about

100,000 pupils go through a centralized admissions process to be assigned to one of about 700

high school programs. About 60,000 pupils are served at K-12 grade level in Boston. The

assumption that schools have no priorities captures the coarseness of the priority structure in

general. But it applies exactly to several school choice environments. For instance, the school

choice programs in Korea and the second round of NYC programs involve no priorities on the

school side. In addition, a majority of high schools in NYC, including Educational Option

schools for half of the seats and unscreened schools, do not prioritize students.

3.1 Primitives

There are n ≥ 2 schools, S = {1, 2, ..., n}, each with a unit mass of seats to fill. There are

mass n of students who are indexed by vNM values v = (v1, ..., vn) ∈ V := [0, 1]n they attach

to the n schools, where the outside option for students is zero.10 The set of student types, V ,

is equipped with a measure µ. We assume that µ involves no atom and admits strictly positive

10As in Introduction, examples below consider vNM values outside [0, 1]n, for convenience.
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density in the interior of V . The assumptions that the aggregate measure of students (interested

in public schooling) equal aggregate capacities of schools and that all students find every school

acceptable are made for convenience and will not affect our main results (see Subsection 6.5).

The students’ vNM values induce their ordinal preferences. For any v ∈ V , let πk(v) ∈ S
denote the k-th preferred school for the type-v student. Formally, π := (π1, ..., πn) : V → Sn

be such that πi(v) 6= πj(v) if i 6= j and that vπi(v) > vπj(v) implies i < j. That is, π(v) lists

the schools in the descending order of the preferences for a type-v student. Let Π denote the

set of all ordered lists of S. Then, for each τ ∈ Π,

mτ := µ({v|π(v) = τ})

represents the measure of students whose ordinal preferences are τ . By the full support as-

sumption, mτ > 0 for each τ ∈ Π. Finally, let m := {mτ}τ∈Π be a profile of measures of all

ordinal types. Let M := {{mτ}τ∈Π|
∑

τ∈Π mτ = n} be the set of all possible measure profiles.

We say a property holds generically if it holds for a subset of m’s that has the same Lebesque

measure as M.

Each school has no priorities on students and is willing to admit any student if it has a

vacant seat. This latter assumption is consistent with the policy that every student is entitled

to a public school seat. Given this assumption, we focus throughout on assignment in which all

students are assigned to public schools. Formally, an assignment, denoted by x, is a probability

distribution over S, and this is an element of a simplex, ∆ := {(x1, ..., xn) ∈ Rn
+|
∑

a∈S xa = 1}.
We are primarily interested in how a procedure determines the assignment for each student ex

ante, prior to conducting the lottery. To this end, we define an allocation to be a measurable

function φ := (φ1, ..., φn) : V 7→ ∆ such that
∫
φa(v)dµ(v) = 1 for each a ∈ S, with the

interpretation that student v is assigned by mapping φ = (φ1, ..., φn) to school a with probability

φa(v). Let X denote the set of all allocations.11

11Since the allocation specifies a lottery for an individual with each type v, one may wonder whether a chosen

allocation is decomposable, namely whether the lotteries for the individuals can be implemented via a lottery

over deterministic assignments. This issue does not arise for the three alternative mechanisms we consider since

they are variants of DA with explicit rules for tie-breaking. Decomposition may be an issue for the set X of

feasible allocations against which the welfare of the three mechanisms are evaluated later. In the continuum

economy, however, the decomposition does not pose any conceptual problem since, due to the law of large

numbers (e.g., Uhlig (1996)), individual lotteries can be resolved independently. A more relevant question is

whether the allocations are decomposable in the large finite economy that the continuum model approximates;

but for such finite economy models, a standard result such as Birkhoff-von Neumann theorem (see Budish et al

(2011) for a general version) applies.
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3.2 Welfare Standards

To begin, we say allocation φ̃ ∈ X weakly Pareto dominates allocation φ ∈ X if, for almost

every v, ∑
a∈S

vaφ̃a(v) ≥
∑
a∈S

vaφa(v), (1)

and that φ̃ Pareto dominates φ if the former weakly dominates the latter and if the inequality

of (1) is strict for a positive measure of v’s. We also say φ̃ ∈ X ordinally dominates φ ∈ X
if the former has higher chance of assigning each student to her more preferred school than the

latter in the sense of first-order stochastic dominance: for a.e. v,

k∑
i=1

φ̃πi(v)(v) ≥
k∑
i=1

φπi(v)(v), ∀k = 1, ..., n− 1, (2)

with the inequality being strict for some k, for a positive measure of v’s.

Our welfare notion concerns the scope of efficiency, measured by the subset of schools that

are efficiently allocated. To this end, fix any allocation φ. A within-K reallocation of φ ∈ X is

an element of a set

XK
φ := {φ̃ ∈ X |φ̃a(v) = φa(v),∀a ∈ S \K and for a.e. v ∈ V}.

We then look for a within-K reallocation of allocation φ in which students have exhausted the

(mutually beneficial) opportunities for trading shares of schools within K.

Definition 1. (i) For any K ⊂ S, an allocation φ ∈ X is Pareto efficient (PE) within

K if there is no within-K reallocation of φ that Pareto dominates φ. (ii) For any K ⊂ S, an

allocation φ ∈ X is ordinally efficient (OE) within K if there is no within-K reallocation

of φ that ordinally dominates φ. (iii) An allocation is PE (resp. OE) if an allocation is PE

(resp. OE) within S. (iv) An allocation is pairwise PE (resp. pairwise OE) if it is PE

(resp. OE) within every K ⊂ S with |K| = 2.

These welfare criteria are quite intuitive. Suppose the students are initially endowed with ex

ante shares φ of schools, and they can trade these shares among them. Can they trade mutually

beneficially if the trading is restricted to the shares of K? The answer is no if allocation φ is

PE within K. In other words, the size of the latter set represents the restriction on the trading

technologies and thus determines the scope of markets within which efficiency is realized. The

bigger this set is, the less restricted the agents are in realizing the gains from trade, so the

more efficient the allocation is. Clearly, if an allocation is Pareto efficient within the set of all

schools, then it is fully Pareto efficient. In this sense, we can view the size of such a set as a

scope of efficiency.
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A similar intuition holds with respect to ordinal efficiency. In particular, ordinal efficiency

can be characterized by the inability to form a cycle of traders who can beneficially swap their

probability shares of schools. Formally, let Bφ be the binary relation on S defined by

aBφ b⇐⇒ ∃V ⊂ V , µ(V ) > 0, s.t. va > vb and φb(v) > 0,∀v ∈ V ;

that is, if a positive measure students prefer a to b but are assigned to b with positive proba-

bilities. We say that φ admits a trading cycle within K if there exist a1, a2, ...al ∈ K such that

a1Bφ a2, ..., al−1Bφ al, and alBφ a1. The next lemma is adapted from Bogomolnaia and Moulin

(2001).

Lemma 1. An allocation φ is OE within K ⊂ S if and only if φ does not admit a trading cycle

within K.

Before proceeding further, we observe how different notions relate to one another.

Lemma 2. (i) If an allocation is PE (resp. OE) within K, then it is PE (resp. OE) within

K ′ ⊂ K; (ii) if an allocation is PE within K ⊂ S, then it is OE within K; (iii) for any K with

|K| = 2, if an allocation is OE within K, then it is PE within K; (iv) if an allocation is OE,

then it is pairwise PE.

Part (i) follows since a Pareto improving within-K ′ reallocation constitutes a Pareto im-

proving within-K reallocation for any K ⊃ K ′. Likewise, a trading cycle within any set forms a

trading cycle within its superset. Part (ii) follows since if an allocation is not ordinally efficient

within K, then it must admit a trading cycle within K, which produces a Pareto improving

reallocation. Part (iii) follows since, whenever there exists an allocation that is not Pareto effi-

cient within a pair of schools, one can construct a trading cycle involving a (positive-measure)

set of agents who would benefit from swapping their probability shares of these schools. Part

(iv) then follows from Part (iii).12

3.3 Alternative School Choice Procedures

We consider three alternative procedures for assigning students to the schools: (1) Deferred

Acceptance with Single Tie-breaking (DA-STB), (2) Deferred Acceptance with Multiple Tie-

Breaking (DA-MTB), and (3) Choice-Augmented Deferred Acceptance (CADA).

12These characterizations are tight. The converse of Part (iii) does not hold for any K with |K| > 2. In

Example 1 from the introduction, the DA allocation is OE but not PE. Likewise, an allocation that is PE within

K need not be OE within any K ′ % K, since an allocation could be Pareto improved upon only via a trading

cycle that includes a school in K ′\K. In that case, the allocation may be PE within K, yet it will not be OE

within K ′.
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The alternative procedures differ only in the way the schools break ties. The tie-breaking

rule is well-defined for DA-STB and DA-MTB, and it follows from Step 2 of Section 2 in the

case of CADA. These rules can be extended to the continuum of students in a natural way.

The formal descriptions are provided in the Supplementary Notes; here we offer the following

heuristic descriptions:

• DA-STB: Each student draws a number ω ∈ [0, 1] at random according to the uniform

distribution. A student with a lower number has a higher priority at every school than does a

student with a higher number.

• DA-MTB: Each student draws n independent random numbers (ω1, ..., ωn) from [0, 1]n

according to the uniform distribution. The a-th component, ωa, of student’s random draw then

determines her priority at school a, with a lower number having a higher priority than does a

higher number.

• CADA: Each student draws two random numbers (ωT , ωR) ∈ [0, 1]2 according to the

uniform distribution. Each school then ranks those students who targeted that school, based

on their values of ωT , and then ranks the others based on the values of 1 + ωR (with a lower

number having a higher priority in both cases). In other words, those who didn’t target the

school receive a penalty score of 1.

For each procedure, the DA algorithm is readily defined using the appropriate tie-breaker

and the students’ ordinal preferences as inputs. The supplementary notes provide a precise

algorithm, which is sketched here. At the first step, each student applies to her most preferred

school. Every school tentatively admits up to unit mass from its applicants according to its

priority order, and rejects the rest if there are any. In general, each student who was rejected in

the previous step applies to her next preferred school. Each school considers the set of students

it has tentatively admitted and the new applicants. It tentatively admits up to unit mass from

these students in the order of its priority, and rejects the rest. The process converges when the

set of students that are rejected has zero measure. Although this process might not complete

in finite time, it converges in the limit and the allocation in the limit is well defined. We focus

on that limiting allocation.

Strategy-proofness of DA-STB and DA-MTB with respect to students’ ordinal preferences

is well-known in the finite case (Dubins and Freedman 1982, Roth 1982) and it extends to

CADA in the finite case (Theorem 1). More importantly, all three procedures continue to be

ordinally strategy-proof in the large economy:

Theorem 2. (Ordinal strategy-proofness) In each of the three procedures, it is a (weakly)

dominant strategy for each student to submit her ordinal preferences truthfully.

Proof: The proof is in the supplementary notes.
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3.4 Characterization of Equilibria

� DA-STB and DA-MTB

In either form of DA algorithm, the resulting allocation is conveniently characterized by the

“cutoff” of each school — namely the highest lottery number a student can have to get into

that school. Specifically, the DA-STB process induces a cutoff ca ∈ [0, 1] for each school a such

that a student who ever applies to school a gets admitted by that school if and only if her

(single) draw ω is less than or equal to ca. We first establish that these cutoffs are well defined

and generically distinct. 13

Lemma 3. DA-STB admits a unique set of cutoffs {ca}a∈S for the schools. Each cutoff is

strictly positive and one of them equals 1. For a generic m, the cutoffs are all distinct.

Importantly, these cutoffs pin down the allocation of all students. To see this, consider any

student with v and a school a with cutoff ca. Suppose school b has the highest cutoff among

those schools that are preferred to a by that student. If the cutoff of school b has cb > ca, then

the student will never get assigned to school a since whenever she has a draw ω < ca (good

enough for a), she will get into school b or better. If cb < ca, however, then she will get into

school a if and only if she receives a draw ω ∈ [cb, ca]. The probability of this event is precisely

the distance between the two cutoffs, ca − cb. Formally, let S(a,v) := {b ∈ S|vb > va} denote

the set of schools more preferred to a by type-v students. Then, the allocation φS arising from

DA-STB is given by

φSa (v) := max{ca − max
b∈S(a,v)

cb, 0},∀v,∀a ∈ S,

where c∅ := 0.

DA-MTB is similar to DA-STB, except that each student has independent draws (ω1, ..., ωn),

one for each school. The DA process again induces a cutoff c̃a ∈ [0, 1] for each school a such

that a student who ever applies to school a gets assigned to it if and only if her draw for school

a, ωa, is less than c̃a. These cutoffs are well defined.14

Lemma 4. DA-MTB admits a unique set of cutoffs {c̃a}a∈S. Each cutoff is strictly positive

and one of them equals 1. For a generic m, the cutoffs are all distinct.

13That the DA-STB admits a unique set of cutoffs can be also deduced from the fact that DA algorithm is

well-defined (Theorem 0 in the Supplementary Notes), along with the law of large numbers. We thank Eduardo

Azevedo for pointing this out. We provide a self-contained proof for the uniqueness of the cut-offs in the

Appendix, since it also explicitly constructs the cut-offs. The same remark applies to Lemma 4 below.
14Extending our analysis of cut-offs, Azevedo and Leshno (2011) characterize stable matchings in a large

economy school choice model.
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Given the cutoffs {c̃a}a∈S, a type v-student receives school a whenever she has a rejectable

draw ωb > c̃b for each b ∈ S(a,v) she prefers to school a and when she has an acceptable draw

ωa < c̃a for school a. Formally, the allocation φM from DA-MTB is determined by:

φMa (v) := c̃a
∏

b∈S(a,v)

(1− c̃b),∀v,∀a ∈ S,

with the convention c̃∅ := 0.

� CADA

As with the two other procedures, given the students’ strategies on their messages, the DA

process induces cutoffs for the schools, one for each school in [0, 2]. Of particular interest is

the equilibrium in the students’ choices of messages. Given Theorem 2, the only nontrivial

part of the students’ strategy concerns her “auxiliary message.” Let σ = (σ1, ..., σn) : V 7→ ∆

denote the students’ mixed strategy, whereby a student with v targets a with probability σa(v).

Non-atomic distribution of types leads to existence of a pure-strategy Nash equilibrium.

Theorem 3. (Existence) There exists an equilibrium σ∗ in pure strategies.

We say that a student applies to school a if she is rejected by all schools she lists ahead

of a in her (truthful) ordinal list. We say that a student subscribes to school a ∈ S if she

targets school a and applies to that school during the DA process. (The latter event depends

on where she lists school a in her ordinal list and the other students’ strategies, as well as

the outcome of tie breaking). Let σ̄∗a(v) be the probability that a student v subscribes to

school a in equilibrium. We say a school a ∈ S is oversubscribed if
∫
σ̄∗a(v)dµ(v) ≥ 1 and

undersubscribed if
∫
σ̄∗a(v)dµ(v) < 1. In equilibrium, there will be at least (generically, exactly)

one undersubscribed school which anybody can get admitted to (that is, even when she fails to

get into any other schools she listed ahead of that school). Formally, a school w ∈ S is said to

be “worst” if its cutoff on [0, 2] equals precisely 2. Then, we have the following lemma.

Lemma 5. (i) Any student who prefers the worst school the most is assigned to that school

with probability 1 in equilibrium. (ii) If her most preferred school is undersubscribed and it is

not the worst school, then she targets that school in equilibrium. (iii) For almost every student

with v such that π1(v) 6= w, σ∗(v) = σ̄∗(v) in equilibrium.

In light of Lemma 5-(iii), we shall refer to “targets school a” simply as “subscribes to school

a.”
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4 Welfare Properties of Alternative Procedures in Large

Economy

It is useful to begin with an example. Let us consider the following simplified situation.

Example 2. Suppose there are three schools, S = {a, b, c}, and three types of students V =

{v1,v2,v3}, each with µ(vi) = 1, and their vNM values are described as follows.

v1
j v2

j v3
j

j = a 5 4 1

j = b 1 2 5

j = c 0 0 0

Consider first DA-MTB. Each student draws three lottery numbers, (ωa, ωb, ωc), one for

each school. Given truthful reporting of preferences, the cutoffs of the schools a, b and c

are determined at c̃a ≈ 0.39, c̃b ≈ 0.45, and c̃c = 1, respectively. The resulting allocation is

φM(v1) = φM(v2) ≈ (0.39, 0.27, 0.33) and φM(v3) ≈ (0.22, 0.45, 0.33). This allocation is PE

within {a, c} and within {b, c}, but not OE (or PE) within {a, b}. The ordinal inefficiency

within {a, b} can be seen by the fact that type-{v1,v2} students have positive shares of school

b, and type-v3 students have positive share of school a, which they can swap with each other

to do better. This feature stems from the independent drawings of priority lists for the schools.

For instance, as in Figure 1, type-{v1,v2} students may draw (ωa, ωb) and type-v3 students

may draw (ω′a, ω
′
b). Hence, we have aBφ

M
bBφ

M
a. (Note that the cutoff for school c is 1, which

explains why the allocation is PE within {a, c} and within {b, c}.)

0 1

ωaω′a
School a

School b

c̃a

0 1c̃b

ω′bωb

Figure 1: Ordinal inefficiency within {a, b} under DA-MTB.

DA-STB avoids this problem, since each student draws only one lottery number for all

schools. In this example, the cutoffs of schools a, b and c are ca = 1/2, cb = 2/3, and cc = 1,

respectively. The resulting allocation is φS(v1) = φS(v2) = (1
2
, 1

6
, 1

3
) and φS(v3) = (0, 2

3
, 1

3
).

This allocation is OE, and thus pairwise PE (by Lemma 2).
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0

ω

ca cb 1

Figure 2: Ordinal efficiency of DA-STB

To see this, consider any students who strictly prefer school b to school a. In our example,

type-v3 students have such preference. These students can never be assigned to school a since,

whenever they have draws acceptable for school a (for instance ω < ca in Figure 2), they will

choose school b and admitted by it. Hence, we cannot have b Bφ
S
a. A similar logic implies

that we cannot have cBφ
S
b.15 Hence, φS admits no trading cycle. Despite the superiority over

DA-MTB, the DA-STB allocation is not fully PE; type-v1 students can profitably trade with

type-v2 students, selling probability shares of schools a and c in exchange for probability share

of school b.

Consider lastly CADA. As with the two DA mechanisms, all students rank the schools

truthfully; and type-{v1,v2} students target school a and type-v3 target school b. The resulting

equilibrium allocation is φ∗(v1) = φ∗(v2) = (1
2
, 0, 1

2
) and φ∗(v3) = (0, 1, 0). Notice that no type-

{v1,v2} students are ever assigned to school b, which means in this case the allocation is fully

PE.

These observations are generalized as follows:

Theorem 4. (DA-MTB) (i) The allocation φM from DA-MTB is PE within {a, w} for each

a ∈ S \ {w}. (ii) Generically, there exists no K ⊂ S with either |K| > 2 or |K| = 2 but

c̃b < 1,∀b ∈ K such that φM is OE within K.

Theorem 5. (DA-STB) (i) The allocation φS from DA-STB is OE and is thus pairwise PE.

(ii) For a generic m, there exists no K ⊂ S with |K| > 2 such that φS is PE within K.

Theorem 6. (CADA) (i) An equilibrium allocation φ∗ of CADA is OE and is thus pairwise

PE. (ii) An equilibrium allocation of CADA is PE within the set of oversubscribed schools. (iii)

If all but one school is oversubscribed, then the equilibrium allocation of CADA is PE.

In sum, DA-STB can yield an ordinally efficient allocation in the large economy, but this

is the most that can be expected from DA-STB, in the sense that the scope of efficiency is

generically limited to (sets of) two schools.

Theorem 6-(ii) and (iii) offers the main characterization of CADA, which showcases the

ex ante efficiency benefit associated with CADA. The benefit parallels that of a competitive

market. Essentially, CADA activates “competitive markets” for oversubscribed schools.

15In this example, no student prefers school c to b, but the logic applies even if there were students with such

a preference.
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This insight is borne out by our proof (in Appendix), where we show that in any equilib-

rium φ∗ of CADA, each individual student can be seen effectively to choose shares (xa)a∈K of

oversubscribed schools K ⊂ S to

maximize
∑
a∈K

vaxa

subject to ∑
a∈K

paxa ≤
∑
a∈K

paφ
∗
a(v),

where “price” pa is given by the mass of students targeting school a. More precisely, a student

can attain any shares satisfying the “budget” constraint, by a suitably-chosen randomization

over target schools, which in turn implies that she will attain the maximized value in equilib-

rium. Effectively, each student is given a “budget” of unit probability she can allocate across

alternative schools for targeting. A given unit probability can “buy” different numbers of shares

for different schools, depending on how many others target those schools. If a mass pa ≥ 1 of

students targets school a, allocating a unit budget (i.e., probability of targeting a) can only

buy a share 1/pa.
16 In other words, the relative congestion at alternative schools, or their rel-

ative popularity, serves as relative “prices” for these schools.17 In a large economy, individual

students take these prices as given, so the prices play the usual role of allocating resources

efficiently. Hence, the welfare benefit obtains much in the same fashion as the First Welfare

Theorem.

Why are competitive markets limited only to oversubscribed schools? Why not undersub-

scribed schools? Recall that one can be assigned an undersubscribed school in two different

ways: she can target it, in which case she gets assigned it for sure if she applies to it. Alterna-

tively, she can target an oversubscribed school but the school may reject her, in which case she

may still get assigned that undersubscribed school via the usual DA channel. Clearly, assign-

ment via this latter channel does not respond to, or reflect, the “prices” set by the targeting

behavior. Consequently, competitive markets do not extend to the undersubscribed schools.

16To obtain a share xa of an oversubscribed school a ∈ K, a student can target school a with probability

paxa, in which case she will be selected by school a with probability paxa

pa
= xa since once she targets a she

competes with mass pa of students for a unit mass of seats at a.
17 Given the DA format, a student may be assigned an undersubscribed school after targeting (and failing

to get into) an oversubscribed school. This may cause a potential spill-over from consumption of an over-

subscribed school toward undersubscribed schools. This spill-over does not undermine the efficient allocation,

however. Under our CADA procedure, targeting alternative oversubscribed schools have no impact on the con-

ditional probability of assignment with undersubscribed schools, since the tie breaking at non-target schools are

determined by a separate random priority lists.
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Finally, Part (i) asserts ordinal efficiency for CADA. At first glance, this feature may be a

little surprising in light of the fact that different schools use different priority lists. As is clear

from DA-MTB, this feature is susceptible to ordinal inefficiency. The CADA equilibrium is OE,

however. To see this, observe first that any student who is assigned an oversubscribed school

with positive probability must strictly prefer it to any undersubscribed school (or else she should

have secured assignment to the latter school by targeting it). Thus, we cannot have bBφ
∗
a if

school b is undersubscribed and school a is oversubscribed. This means that if the allocation

admits any trading cycle, it must be within oversubscribed schools or within undersubscribed

schools. The former is ruled out by Part (ii) and the latter by the same argument as Theorem

5-(i).

The characterization of Theorem 6-(ii) is tight in the sense that there is generally no bigger

set that includes all oversubscribed schools and some undersubscribed school that supports

Pareto efficiency.18

Theorem 6 refers to an endogenous property of an equilibrium, namely the set of over/under-

subscribed schools. We provide a sufficient condition for this property. For each school a ∈ S,

let m∗a := µ({v ∈ V|π1(v) = a}) be the measure of students who prefer a the most. We then

say a school a is popular if m∗a ≥ 1, namely, the size of the students whose most preferred

school is a is as large as its capacity.

It is easy to see that every popular school must be oversubscribed in equilibrium. Suppose

to the contrary that a popular school a is undersubscribed. Then, by Lemma 5-(ii), every

student with v with π1(v) = a must subscribe to a, a contradiction. Since every popular school

is oversubscribed, the next result follows from Theorem 6.

18To see this, suppose there are four schools, S = {1, 2, 3, 4}, and four types of students V = {v1,v2,v3,v4},
with µ(v1) = 3−ε

2 , µ(v2) = 1+ε
2 , µ(v3) = 3−ε

2 , and µ(v4) = 1+ε
2 where ε is a small number.

v1j v2j v3j v4j

j = 1 10 10 20 20

j = 2 3 5 9 8

j = 3 1 4 8 1

j = 4 0 0 0 0

In this case, type 1 and 3 students subscribe to school 1, and type 2 and 4 students subscribe to school 2.

More specifically, the allocation φ∗ has φ∗(v1) = φ∗(v3) = ( 1
3−ε , 0,

2−ε
2(3−ε) ,

2−ε
2(3−ε) ) and φ∗(v2) = φ∗(v4) =

(0, 1
1+ε ,

ε
2(1+ε) ,

ε
2(1+ε) ). Although schools 1 and 2 are oversubscribed, this allocation is not PE within {1, 2, 3}

since type 1 students can trade probability shares of school 1 and 3 in exchange for probability share at 2, with

type 2 students. The allocation is not PE within {1, 2, 4} either, since type 3 students can trade probability

shares of school 1 and 4 in exchange for probability share at 2, with type 4 students. Therefore {1, 2} is the

largest set of schools that support Pareto efficiency.
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Corollary 1. Any equilibrium allocation of CADA is PE within the set of popular schools.

It is worth emphasizing that the popularity of a school is sufficient, but not necessary,

for that school to be oversubscribed. In realistic settings, many non-popular schools will be

oversubscribed. In this sense, Corollary 1 understates the benefit of CADA. This point is

confirmed by our simulation in Section 5. Even though full PE is not ensured by any of the

three mechanisms, our results imply the following comparison between standard DA and CADA.

Corollary 2. (i) If n ≥ 3, generically the allocations from DA-STB and DA-MTB are not PE.

(ii) The equilibrium allocation of CADA is PE if all but one school is popular.

Remark 1. With finite students, the allocation from DA-STB is ex post Pareto efficient but

is not OE. But as the number of students and school seats get large, the DA-STB allocation

becomes OE in the limit (Che and Kojima, 2010). When the schools have intrinsic priorities,

the DA-STB is not even ex post Pareto efficient (Abdulkadiroğlu, Pathak and Roth (2009)).

Similarly, the CADA is not OE in the finite economy, but the inefficiency vanishes in the large

economy.19

The results so far give a sense of a three-way ranking of DA-MTB, DA-STB, and CADA.

Specifically, if the allocation from DA-MTB is PE within K ⊂ S, then so is the allocation from

DA-STB, although the converse does not hold; and if the allocation from DA-STB is PE within

K ′ ⊂ S, then so is the allocation from CADA, although the converse does not hold. Between

the two DA algorithms, the DA-STB allocation is OE, whereas the DA-MTB allocation is not

pairwise PE.

In particular, the CADA allocation is PE within a strictly bigger set of schools than the

allocations from DA algorithms, if there are more than two popular schools. Unfortunately,

this is not the case when all students have the same ordinal preference. This case, though

19In fact, the CADA allocation may not be even ex post PE in the finite economy, since agents may misco-

ordinate on their targeting strategies. To see this suppose that there are four schools a, b, c, d each with one

seat. There are four students; two of them are type-a with vNM values va = 10, vb = 7 and vc = vd = 0, and

last two students are type b with va = 7, vb = 10, vc = vd = 0. There is an inefficient equilibrium in which

type-a students target b and type-b students target a, so the former students have assignment (0, 1/2, 1/4, 1/4)

and the latter have (1/2, 0, 1/4, 1/4). No agent can profitably deviate by targeting his favorite school since the

odds of success would fall to 1/3 whereas her odds of success at the second preferred school at the candidate

equilibrium is 1/2 (and 1/2 of 7 is higher than 1/3 of 10). Of course, there is also an efficient equilibrium in

which type-i students target school i = a, b. It is easy to see that the inefficient equilibrium disappears as the

economy gets large. For instance, if the economy doubles (i.e., each school has two seats, and there are four

students of each type), the inefficient equilibrium disappears since a deviation by targeting one’s favorite school

leads to probability 2/5 of assignment at that school, and 2/5 of 10 is higher than 1/2 of 7.
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special, is important since parents often tend to rank schools similarly. In this case, there is

only one popular school in a CADA equilibrium, so Theorem 6 and Corollary 1-(i) do little

to distinguish CADA from DA-STB. Nevertheless, we can find the CADA to be superior in a

more direct way. To this end, let VU := {v ∈ V|v1 > ... > vn}.

Theorem 7. Suppose all students have the same ordinal preferences in the sense µ(VU) = µ(V).

The equilibrium allocation of CADA (weakly) Pareto dominates the allocation arising from DA-

STB and DA-MTB.

This result generalizes Example 1 discussed in the introduction. If all students have the

same ordinal preferences, the DA algorithm with any random tie-breaking treat all students

in the same way, meaning that each student is assigned to each school with equal probability.

Under CADA, the students can at least replicate this random assignment via targeting.20

5 Simulations

The theoretical results in the previous sections do not speak to the magnitude of efficiency gains

or losses achieved by each mechanism. Here, we provide a numerical analysis of the magnitude

via simulations. The numerical analysis also enables us to examine the effects of (coarse) school

priorities on the CADA and the standard DA mechanisms.

In our numerical model, we have 5 schools, each with 20 seats and 100 students. The com-

putational burden of computing Nash equilibrium of CADA limits our ability to run simulations

with larger numbers. However, simulations with 5 schools, each with 20 seats and 100 students

prove to be sufficient to produce comparative statics that is in line with theory.

In our model, student i’s vNM value for school a, ṽia, is given by

ṽia = αua + (1− α)uia

where α ∈ [0, 1], ua is common across students and uia is specific to student i and school a.

For each α, we draw {ua} and {uia} uniformly and independently from the interval [0, 1] to

construct student preferences. Since we shall focus on Utilitarian welfare, it is important to

normalize vNM utilities so that the findings are robust to their affine transformation. To this

20This Pareto dominance result also holds in a finite economy with incomplete information in the following

sense. When all students have the same ordinal preferences in any symmetric Bayesian equilibrium of CADA,

each type of student is weakly better off than she is under DA with any symmetric tie-breaking. The argument

is the same as that of Theorem 1 of Abdulkadiroğlu, Che and Yasuda (2011), which shows that the Boston

mechanism weakly Pareto dominates DA in such Bayesian settings. We shall remark on the Boston mechanism

in Section 7.

21



end, we normalize each student’s vNM utilities by via = ζa(ṽi) :=
ṽia−mina′ ṽia′

maxa′ ṽia′−mina′ ṽia′
. Under this

normalization, the values of schools range from zero to one, with the value of the least preferred

school set to zero and that of the most preferred to one. This normalization is invariant to

affine transformation in the sense that ζa(ṽia1 , ..., ṽia5) = ζa(θṽia1 + β, ..., θṽia5 + β), for any

θ ∈ R++, β ∈ R.

The students’ preferences become similar to one another both ordinally and cardinally as

α gets large. In the extreme case with α = 1, students have the same cardinal (as well as

ordinal) preferences. In the opposite extreme with α = 0, students’ preferences are completely

uncorrelated. Given a profile of normalized vNM utility values, we simulate DA-STB and DA-

MTB, compute a complete-information Nash equilibrium of CADA and the resulting CADA

allocation. We repeat this computation 100 times each with a new set of (randomly drawn)

vNM utility values for all values of α. In addition, we solve for a first-best solution, which

is the utilitarian maximum for each set of vNM utility values. We then compute the average

welfare under each mechanism, i.e., the total expected utilities realized under a given mechanism

averaged over 100 draws (see the supplementary notes for details).

In Figure 3, we compare the three mechanisms against the first best solution. We plot the

welfare of each mechanism as the percentage of the welfare of the first best solution. Two

observations emerge from this figure. First, the welfare generated by each mechanism follows a

U-shaped pattern. Second, CADA outperforms DA-STB, which in turn outperforms DA-MTB

at every value of α, and the gap in performance between CADA and the other mechanisms

grows with α. All three mechanisms perform almost equally well and produce about 96% of

the first-best welfare when α = 0. In this case, students have virtually no conflicts of interests,

and each mechanism more or less assigns students to their first choice schools. The welfare

gain of CADA increases as α increases. This is due to the fact that competition for one’s first

choice increases as α increases (and students’ ordinal preferences get similar to one another). In

those instances, who gets her first choice matters. While DA-STB and DA-MTB determine this

purely randomly, CADA does so based on students’ messages. Intuitively, if a student’s vNM

value for a school increases, the likelihood of the student targeting that school in an equilibrium

of CADA — therefore the likelihood of her getting into that school — increases. This feature

of CADA contributes to its welfare gain. DA-STB and DA-MTB start catching up with CADA

at α = 0.9. In this case, students have almost the same cardinal preferences, so any matching

is close to being ex ante efficient. At α = 0.9, CADA achieves 95.5% of the first best welfare,

whereas DA-STB achieves 92.2%.21

21At the extreme case of α = 1, preferences are the same so every matching is efficient and the welfare

generated by each mechanism is equal to the first best welfare.
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Figure 4 gives further insight into the workings of the mechanisms. It shows the percentage

of students getting their first choices under each mechanism. First, DA-MTB assigns noticeably

smaller numbers to first choices. This is due to the artificial stability constraints created by

the use of multiple tie breaking, which also explains the bigger welfare loss associated with

DA-MTB. The patterns for CADA and DA-STB are more revealing. In particular, both assign

almost the same number of students to their first choices for each value of α. That is, whereas

the poor welfare performance of DA-MTB is explained by the low number of students getting

their first choices, the difference between the other two is explainable not by how many students,

but rather by which students, are assigned to their first choices.

This is illustrated more clearly by Figure 5, which shows the ratio of the mean utility of

those who get their k-th choice under CADA to the mean utility of those who get their k-th

choice under DA-STB at the realized matchings, for k = 1, 2, 3. Specifically, those who get their

k-th choice achieve a higher utility under CADA than under DA-STB for each k = 1, 2, 3. The

utility gain is particularly more pronounced for those assigned their second or third choices. This

simply reflects the feature of CADA that assigns students based on their preference intensities:

under CADA, those who have less to lose from the second- or third-best choices are more likely

to target those schools, and are thus more likely to comprise such assignments.

Figure 6 shows that the number of oversubscribed schools is larger on average than the

number of popular schools. Note that the average number of oversubscribed schools is larger

than 2 at all values of α. Recall from Theorems 5 and 6 that DA-STB is generically never PE

within a set of more than 2 schools, but that CADA is PE within the set of oversubscribed

schools. Figure 6 thus shows the scope of efficiency achieved by CADA can be much higher than

is predicted by Corollary 1. It is also worth noting that the average number of oversubscribed

schools exceeds 3 for α ≤ 0.4. This implies that there are often 4 oversubscribed schools. At

those instances, CADA achieves full Pareto efficiency (recall Theorem 6-(ii)).

In practice, some schools have (non-strict) intrinsic priorities. We thus study their impact

on assignments numerically. To this end, we modify our model as follows: Each school has two

priority classes, high priority and low priority. For each preference profile above, we assume

that 50 students have high priority in their first choice and low priority in their other choices,

30 students have high priority in their second choice and low priority in their other choices, and

20 students have high priority in their third choice and low priority in their other choices.22

It is well known that standard mechanisms such as DA do not produce student optimal stable

matching when schools have non-strict priorities. Erdil and Ergin (2008) have proposed a way

to attain constrained ex post efficiency subject to respecting school priorities, via performing

22This assumption is in line with the stylized fact about the Boston school system.
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so-called stable improvement cycles after an initial DA assignment. We thus simulate this

algorithm, referred to as DASTB+SIC, to see how it compares with the CADA.

In Figure 7, we compare CADA, DA-STB and DA-STB+SIC again measured as percent-

age of first-best welfare. Again, CADA outperforms DA-STB for all values of α. Since DA-

STB+SIC is designed to achieve constrained ex post efficiency (while CADA and DA-STB are

not), it is not surprising that the former does better when α is relatively small. In that case,

students’ ordinal preferences are sufficiently dissimilar that ordinal efficiency matters. As α

gets large, however, ordinal efficiency becomes less relevant and cardinal efficiency becomes

more important. For α ≥ 0.5, CADA catches up with DA-STB+SIC and outperforms it as α

gets large. In particular, when α is close to 1, virtually all matchings are ex post efficient, so

DA-STB+SIC has little bite. The cardinal efficiency still matters, and in this regard, CADA

does better than the other mechanisms. This finding is noteworthy since parents are likely to

have similar ordinal preferences in real-life choice settings. In those instances, CADA allocates

schools more efficiently than other mechanisms in ex ante welfare.

6 Discussion

6.1 Enriching the Auxiliary Message

One can modify CADA to allow for richer auxiliary messages, perhaps at the expense of some

practicality. For instance, the auxiliary message can include a rank order of schools up to k ≤ n,

with a tie broken in the lexicographic fashion according to this rank order: students targeting

a school at a higher lexicographic component is favored by that school in a tie relative to those

who do not target or target it at a lower lexicographic component. We call the associated

CADA a CADA of degree k.

A richer message space could allow students to signal their relative preference intensities

better, and this may lead to a better outcome (see Abdulkadiroğlu, Che and Yasuda (2008)

for an example). A richer message space need not deliver a better outcome, however. With

more messages, students have more opportunities to express their relative preference intensities

over different sets of schools. The increased opportunities may act as substitutes and militate

each other. For instance, an increased incentive to self select at low-tier schools may lessen a

student’s incentive to self select at high-tier schools. This kind of “crowding out” arises in the

next example.

Example 3. There are 4 schools, S = {a, b, c, d}, and two types of students V = {v1,v2}, with
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µ(v1) = 3 and µ(v2) = 1.

v1
j v2

j

j = a 12 8

j = b 2 4

j = c 1 3

j = d 0 0

Consider first CADA of degree 1. Here, type-v1 students target a, and type-v2 students

target school b. In other words, the latter type of students self select into the second popular

school. The resulting allocation is φ∗(v1) = (1
3
, 0, 1

3
, 1

3
) and φ∗(v2) = (0, 1, 0, 0). The expected

utilities are EU1 = 4.33 and EU2 = 4. In fact, this allocation is PE.

Suppose now CADA of degree 2 is used. In equilibrium, type-v1 students choose schools a

and b as their first and second targets, respectively. Meanwhile, type-v2 students choose school

a (instead of school b!) for their first target and school c for their second target. Here, the oppor-

tunity for type 2 students to self select at a lower-tier school (school c) blunts their incentive to

self select at a higher-tier school (school b). The resulting allocation is thus φ∗∗(v1) = (1
4
, 1

3
, 1

12
, 1

3
)

and φ∗∗(v2) = (1
4
, 0, 3

4
, 0), which yield expected utilities of EU

1
= 3.75 and EU

2
= 4.25. This

allocation is not PE since type-v2 students can trade probability shares of schools a and c in

exchange for probability share of b, with type-v1 students.

Even though φ∗ does not Pareto dominate φ∗∗, the former is PE whereas the latter is

not. Further, the former is superior to the latter in the Utilitarian sense (recall that students’

payoffs are normalized so that they aggregate to the same value for both types): the former

gives aggregate utilities of 17, the highest possible level, whereas the latter gives 15.5.

This example suggests that the benefit from enriching the message space is not unambiguous.

This is a potentially important point. In practice, expanding a message space adds a burden

on the parents to be more strategically sophisticated, and avoiding the demand for strategic

sophistication may be important for a procedure to succeed. Hence, the example reinforces the

appeal of the simple CADA (i.e., of degree 1).

6.2 Strategic Naivety

Since CADA involves some “gaming” aspect, albeit limited to tie-breaking, a natural concern

is that not all families may be strategically competent. It is thus important to investigate how

CADA will perform when some families are not strategically sophisticated. To this end, we

consider students who are “naive” in the sense that they always target their most preferred

schools in the auxiliary message and submit preference rankings truthfully. Targeting the most

preferred school appears to be a simple and reasonable choice when a student is unsure about
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the popularity of alternative schools or is unclear about the role the auxiliary message plays in

the assignment. Such a strategy will indeed be a best response for many situations, particularly

if the first choice is distinctively better than the rest of the choices, so it could be a reasonable

approximation of “naive” behavior. We assume that there is a positive measure of students who

are naive in this way, and the others know the presence of these students and their behavior,

and respond optimally against them. Surprisingly, the presence of naive students do not affect

the main welfare results in a qualitative way.

Theorem 8. In the presence of naive students, the equilibrium allocation of CADA satisfies the

following properties: (i) The allocation is OE, and is thus pairwise PE. (ii) The allocation is

PE within the set K of oversubscribed schools. (iii) If every student is naive, then the allocation

is PE within K ∪ {l} for any undersubscribed school l ∈ J := S\K.

Theorem 8-(i) and (ii) are qualitatively the same as the corresponding parts of Theorem 6.

Further, Lemma 5-(ii) remains valid in the current context, implying that any popular schools

must be oversubscribed here as well. Hence, the same conclusion as Corollary 1 holds.

Corollary 3. In the presence of naive students, the equilibrium allocation of CADA is PE

within the set of popular schools.

Strategy-proofness of DA ensures no change in its welfare performance. Therefore, the

welfare comparison between CADA and DA in the presence of naive students does not change

in a qualitative way.

6.3 CADA with “Exit Option”

The preceding subsection has seen that the main welfare property of CADA extends to the

situation where some students behave naively. This does not mean, however, that naive students

are not disadvantaged by the others who behave more strategically.23 The CADA mechanism

can be modified to provide an extra safeguard for those who are averse to strategic aspect of

the game. This can be done by augmenting the message space to include an “exit option.”

Specifically, the CADA with exit option (CADA-EO) involves the following three steps:

• Step 1: All students submit ordinal preferences, plus an “auxiliary message,” naming a

“target” school or specifying “exit.”

23Pathak and Sönmez (2008) formalize the sense in which the sophisticated students benefit from the Boston

mechanism in comparison with the DA mechanism at the expense of the naive players. Meanwhile, Abdulka-

diroğlu, Che and Yasuda (2011) suggest that some unsophisticated students may actually benefit from the

presence of the sophisticated students.
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• Step 2: A standard DA-STB is run (i.e., ignoring the auxiliary message). The students

who specified “exit” in their auxiliary message are assigned the seats according to this procedure.

Remove these students along with the seats they are assigned. The capacity of schools are reset

to reflect the seats removed.

• Step 3: CADA is run with respect to the remaining seats and students based on the

target messages. That is, target and regular priority lists are randomly generated, and the

priorities of the remaining students at schools are determined based on the schools’ intrinsic

priorities, the two random lists and students’ target messages, according to the rule described

in Section 2. The DA is run based on the students’ ordinal preferences and the schools’ priories

of students determined in this way.

Clearly, CADA-EO maintains the same feature of DA as described in Theorem 1. Most

important, CADA-EO offers each student an option to “replicate” the same lottery of schools

as she will obtain from DA-STB, by simply specifying “exit” in her auxiliary message. The

following is immediate:

Theorem 9. Fix an arbitrary school choice environment in the finite or large economy where

schools have arbitrary (intrinsic) priorities over students. The allocation implemented in any

equilibrium (either complete-information or Bayesian) of CADA-EO weakly Pareto dominates

the allocation of DA-STB.

Theorem 9 shows that one can easily modify CADA to ex ante Pareto-dominate the DA-

STB—one of the current favorite mechanisms known so far. While it is important to know

that there is a mechanism that does no worse and possibly do better for some students than

the best current procedure, we do not necessarily favor CADA-EO over CADA. The reason

is that, although CADA-EO is definitely a safer alternative when it comes to switching from

the DA-STB, its benefit in terms of realizing cardinal efficiency is also limited in comparison

with CADA. In particular, the desirable properties of CADA described in Theorem 6 may not

obtain.

This point can be illustrated again using Example 2 in Section 4. Observe that the type-

{v1,v2} students are worse off from CADA in comparison with DA-STB. Specifically, their

assignment is φS(v1) = φS(v2) = (1
2
, 1

6
, 1

3
) under DA-STB, but φ∗(v1) = φ∗(v2) = (1

2
, 0, 1

2
)

under CADA, and they prefer the former since they have the same probability share of a

but higher share of b under the former, in comparison with the latter. Hence, even though

the CADA allocation is PE and the DA-STB allocation is not, the former does not Pareto

dominate the latter. Suppose now CADA-EO is employed instead. It is an equilibrium for all

type v3 students to target b, and for all type-v1 or v2 students to “exit.” This equilibrium thus
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produces the same allocation as DA-STB.24

6.4 Dynamic Implementation

As noted, the welfare benefit of CADA originates from the competitive markets it induces.

Unlike the usual markets where there are explicit prices, however, in the CADA-generated

markets, students’ beliefs about the relative popularity of schools act as the prices. Hence, for

the CADA to have the desirable welfare benefit, their beliefs must be reasonably accurate. In

practice, students/parents’ beliefs about schools are formed based on their reputations; thus,

as long as the school reputations are stable, they can serve as reasonably good proxies for the

prices. Nevertheless, students may not share the same beliefs, and their beliefs may not be

accurate, in which case CADA procedure will not implement the CADA equilibrium precisely.

The CADA mechanism can be modified to implement the desired equilibrium more precisely.

The idea is to allow students to dynamically revise their target choices based on the population

distribution of choices (which is made public). By making their choices final only when the

number of students changing their choices fall under a certain threshold, we can induce a

best response dynamics, which will implement the desired equilibrium precisely whenever it

converges.

6.5 Excess Capacities and Outside Options

Thus far, we have made simplifying assumptions that the aggregate measure of students equal

the aggregate capacities of public schools and that all students find each public school accept-

able. These assumptions may not hold in reality. While public schools must guarantee seats to

students, all the seats need not be filled. And some students may find outside options, such as

home or private schooling, better than some public schools. One can relax these assumptions

by letting the aggregate capacities to be (weakly) greater than n and by endowing each student

with an outside option drawn from [0, 1].25 Extending the model in this way entails virtually no

24This is indeed the unique symmetric equilibrium in which some (positive measure of) agents invoke targeting.

An outcome in which all students exit is always an equilibrium of any CADA-EO game, because unilateral

deviation does not impact the random assignment of the deviating player. Second, some measure of students

must invoke “exits” in equilibrium, or else type v1 and v2 would be targeting a and v3 would be targeting b,

so v1 and v2 would benefit from exiting. Therefore, at least one type exits in equilibrium. If v3 does not exit,

then v3 targets b and it is optimal for both v1 and v2 to exit. If v3 exits, it is optimal for both v1 and v2 to

target a or to exit. In all cases, the equilibrium outcome coincides with the DA-STB outcome.
25This modeling approach implicitly assumes the outside options to have unlimited capacities, which may not

accurately reflect the scarcity of outside option such as private schooling.
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changes in the main tenet of our paper. All theoretical results continue to hold in this relaxed

environment. A subtle difference arises since, with excess capacities, there may be more than

one school with cutoff equal to one under DA-MTB, so its allocation may become PE within

more pairs of schools. Nevertheless, Theorems 1-9 remain valid. For instance, the DA-STB

allocation is ordinally efficient. The CADA allocation is ordinally efficient and Pareto efficient

within oversubscribed, and thus popular, schools.

6.6 A Limit Foundation of the Continuum Economy Model

As mentioned earlier, real-life school choice problem involve a large but finite number of partici-

pants. A comparison of CADA with DA in such markets requires analysis of students’ strategic

behavior with regard to their targeting of schools under CADA. However, such an analysis

is not tractable in the general finite economy model. Our modeling choice with non-atomic

continuum of students and finitely many schools with mass capacities helps overcome such dif-

ficulties. Further, our continuum economy model is well founded as an approximation of large

finite economy models with similar fundamental characteristics. Bodoh-Creed (2011) shows

that the equilibrium of the continuum model obtains as the limit of equilibrium strategies of

the analogous large finite model if each agent’s payoff is continuous function of his own type,

his action, the empirical distribution of other players and the state of the world. Since these

latter properties are satisfied in our model, the equilibrium of our continuum model obtains as

the limit of equilibrium strategies of the analogous large finite model. In this sense, our findings

provide an approximation for otherwise intractable large school choice problems.

Starting with the seminal work by Immorlica and Mahdian (2005), there is a growing lit-

erature on large matching markets (see Che and Kojima, 2010; Kojima and Pathak, 2009;

Kojima, Pathak and Roth 2010) studying consequential impact of market size on certain mar-

ket trade-offs. Recently, Azevedo and Leshno (2011) and Azevedo (2011) study the set of stable

matchings in a similar environment with continuum players. Our continuum economy model

of the DA mechanism provides a framework for studying large markets.

7 Conclusion

In this paper, we have proposed a new deferred acceptance procedure, Choice-augmented DA

(CADA), in which students are allowed, via signaling of their preferences, to influence how they

are treated in a tie for a school.

There are other matching procedures that also allow participants to express their cardinal

preferences. The Boston mechanism which was replaced with the DA by the BPS in 2005 is
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one such procedure. In the Boston mechanism, students also rank the schools, and each school

assigns its seats according to the order students rank that school during registration: each

school accepts first those who rank it first, using their own priorities or random lotteries to

break ties, and accepts those who rank it second only when seats are available, and so forth.

Under this mechanism, therefore, a student can increase her odds of assignment at a school

by ranking that school highly. For instance, in Example 1, student 3 can ensure her sure

assignment at school b by raking it at the top, if the other two rank b at the second. This

feature allows the students to express their cardinal preferences. In fact, just like the CADA,

the Boston mechanism implements the desirable assignment in that example as the unique

equilibrium; students 1 and 2 have a dominant strategy of ranking the schools truthfully, and

student 3 has a best response of (strategically) ranking school b as her first choice. In a

companion paper (Abdulkadiroğlu, Che, Yasuda, 2011), we show that this benefit generalizes

to any symmetric Bayesian equilibrium of Boston mechanism, which weakly Pareto dominates

the DA with standard tie-breaking if all students have the same ordinal preferences and schools

have no priorities.26

Despite this similarity, the Boston mechanism has a number of disadvantages compared

with the CADA. First, as is clear from the example, its beneficial effect—the ability to express

one’s cardinal intensities—is achieved only as a result of manipulating her rankings. That is,

not only does the Boston mechanism fail to be strategy-proof, its failure is needed for the agents

to express cardinal preferences. Second, the strategic nature of Boston mechanism makes it

susceptible to mistakes and miscoordination on the part of the participants. Even when the

students can play equilibrium with full information about other participants, they may still

coordinate on suboptimal stable matching (Ergin and Sönmez, 2006). Even more serious,

and arguably more plausible, form of miscoordination is that students may not coordinate on

any equilibrium play due to incomplete information and strategic uncertainty. In practice,

students are unlikely to assess other students’ preferences, their priorities, and their strategic

responses, accurately, which can easily lead to non-equilibrium play. The consequences are

both inefficiencies and lack of fairness (i.e., stability). Third, the demand for strategic play

puts strategically naive participants at disadvantage against more sophisticated participants

(Pathak and Sönmez, 2008). In the Boston mechanism, by not ranking a school as first choice,

a student loses her priority at that school to those who rank it as first choice. For instance, a

student with a neighborhood priority at a reasonably good school could lose her priority under

the Boston mechanism if she did not rank it as first choice.

26Further, Miralles (2008) applies the arguments developed in this paper to show that a variant of the Boston

mechanism that breaks ties at schools independently has a similar ex ante welfare property as the CADA.
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By contrast, CADA is strategy-proof with respect to ordinal preferences. While CADA in-

volves strategic plays, its scope is limited to targeting, and its influence is kept within a priority

class. In fact, targeting involves a relatively simple and straightforward strategic decision. We

thus believe that the scope for miscoordination is limited in CADA. Further, we provide a dy-

namic implementation of targeting game that facilitates strategic coordination of the students.

While targeting requires strategic play, the CADA limits the harm from strategic mistakes. For

instance, suppose a student targets her favorite school while she enjoys a neighborhood priority

at her second-best school. In case she fails to get in her favorite school, she does not lose high

priority at the second-best school unlike the Boston mechanism. Such a student may even

benefit from her naive behavior under CADA if her neighborhood school is not oversubscribed

by neighborhood students.

Another mechanism that incorporates cardinal welfare is the pseudo-market mechanism pro-

posed by Hylland and Zeckhauser (1979).27 This mechanism purports to install competitive

markets for trading probability shares of alternative objects using a fictitious currency. Specifi-

cally, the mechanism endows each agent with a fixed budget in a fictitious currency, 100 tokens

say, and allows the agents to spend their budget endowments to “buy” probability shares of al-

ternative goods, and the price per unit probability of owning each good is then adjusted to clear

the markets. For large markets, this mechanism admits a competitive equilibrium, which is ex

ante efficient by the first welfare theorem.28 Our result has a similar flavor. Indeed, the main

contribution of our paper is to recognize that adding a signaling device as simple as targeting a

school can have the same kind of “market-activating” effects as the pseudo-market mechanism.

27A similar mechanism is also used in course allocation mechanisms (see Budish and Cantillon, 2011). Sönmez

and Ünver (2010) imbed the DA algorithm in “course bidding” employed by some business schools. These two

proposals differ in the application, however, as well as in the nature of the inquiry: we are interested in studying

the benefit of adding a “signaling” element to the DA algorithm. By contrast, their interest is in studying the

effect of adding ordinal preferences and the DA feature to course bidding.

In a broader sense, our paper is an exercise of mechanism design without monetary transfers, and in that

sense is similar to the recent ideas of “storable votes” (Casella, 2005) and “linking decisions” (Jackson and

Sonnenschein, 2007). Just like them, CADA “links” how a student is treated in a tie at one school to how she is

treated in a tie at another school, and this linking makes communication credible. Clearly, applying the idea in a

centralized matching context is novel and differentiates the current paper. There is a further difference. Jackson

and Sonnenschein (2007) demonstrated the efficiency of linking when (linkable) decisions tend to infinity, relying

largely on the logic of the law of large numbers. To our knowledge, the current paper is the first to characterize

the precise welfare benefit of linking fixed (finite) number decisions (albeit with continuum of agents). Coles,

Kushnir and Niederle (2011) introduce preference signaling in two-sided decentralized matching markets.
28In the finite economy, the agents do not have to act as price takers. More generally, for a finite economy,

there is no strategy-proof mechanism that treats the agents with the same preferences equally and implements

an ex ante efficient allocation (Zhou, 1990).
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Although CADA does not generally attain full ex ante efficiency, the strategic environment is

simple and the strategic deliberation required for the agents is not so demanding; by contrast,

formulating ones’ cardinal utilities (instead of simply “acting on them”) could be more onerous,

and the consequence of miscalculation on efficiency may be large. Most important, school pri-

orities are already imbedded in CADA, whereas the pseudo-market mechanism does not include

priorities. This is an important distinction since priorities are a salient feature of school choice.
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Appendix: Proofs of the main results

Proof of Theorem 1. (i) If student i has higher priority than student j at school s, then i

is ranked higher than j at s at step 2 of CADA regardless of their targeting behavior and the

tie breakers. Consequently, if i prefers s to her CADA assignment, j is not assigned s under

CADA, since CADA is a DA. Therefore CADA eliminates justified envy. To the contrary,

if there were a profile of student preferences, school preferences and targeting behavior at

which some student could benefit from preference manipulation, the student would benefit

from preference manipulation in the corresponding DA that is induced by the same profile,

a contradiction with the strategy-proofness of DA (Dubins and Freedman, 1981; Roth 1982).

Therefore CADA is strategy-proof with respect to students’ ordinal preferences. (ii) Consider

an arbitrary targeting behavior and a realization of the corresponding CADA assignment x.

Suppose to the contrary that there is an individually rational assignment y that every student

prefers over the CADA assignment. Note that x is the student optimal stable assignment and

y is an individually rational assignment in the induced problem with strict school priorities.

Then every student in the induced problem prefers y to x, which contradicts with Theorem 6

of Roth (1982).

Proof of Lemma 3. For any S ′ ⊂ S and a ∈ S ′, let ma(S
′) := µ({v|va ≥ vb, ∀b ∈ S ′}) be

the measure of students who prefer school a the most among S ′. The cutoffs of the schools are

then defined recursively as follows. Let Ŝ0 ≡ S ĉ0 ≡ 0, and x̂0
a ≡ 0 for every a ∈ S. Given

Ŝ0, ĉ0, {x̂0
a}a∈S, . . . , Ŝt−1, ĉt−1, {x̂t−1

a }a∈S, and for each a ∈ S define

ĉta = sup
{
c ∈ [0, 1]

∣∣∣x̂t−1
a +ma(Ŝ

t−1)
(
c− ĉt−1

)
< 1
}
, (3)

ĉt = min
si∈Ŝt−1

ĉta, (4)

Ŝt = Ŝt−1 \ {a ∈ Ŝt−1|ĉta = ct}, (5)

x̂ta = x̂t−1
a +ma(Ŝ

t−1)
(
ĉt − ĉt−1

)
. (6)

Each recursion step t determines the cutoff of school(s) given cutoffs {ĉ0, ..., ĉt−1}. Students

with draw ω > ĉt−1 can never be assigned to schools S \ St−1. For each school a ∈ St−1 with
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remaining capacity, a fraction x̂t−1
a is claimed by students with draws less than ĉt−1, so only

fraction 1 − x̂t−1
a of seats can be assigned to students with draws ω > ĉt−1. If school a has

the next highest cutoff, ĉt, then the remaining capacity 1 − x̂t−1
a must equal the measure of

those students who prefer a the most among St−1 and have drawn numbers in [ĉt−1, ĉt]. This,

together with the fact that school a has cutoff ĉt, implies (3) and (4). The recursion definition

implies (5) and (6).

The recursive equations uniquely determine the set of cutoffs {ĉ0, ..., ĉk}, where k ≤ n. The

cutoff for school a ∈ S is then given by ca := {ĉt|ĉta = ĉt}. It clearly follows from (3) and (4)

for t = 1 that ĉ1 > 0. It also easily follows that ĉk = 1. Obviously ĉk ≤ 1. We also cannot

have ĉk < 1, or else there will be positive measure of students unassigned, which cannot occur

since every student prefers each school to being unassigned, and the measure of all students

coincides with the total capacity of schools.

Although it is possible for more than one school to have the same cutoff, this is not generic.

If there are schools with the same cutoff, we must have a 6= b ∈ Ŝt−1 for some t and Ŝt−1 such

that ĉta = ĉtb, which entails a loss of dimension for m within M. Hence, the Lebesque measure

of the set of m’s involving such a restriction is zero. It thus follows that generically no two

schools have the same cutoff.

Proof of Lemma 4. For each a ∈ S and any S ′ ⊂ S \ {a}, let

mS′

a := µ({v ∈ V|vb ≥ va ≥ vc, ∀b ∈ S ′, ∀sc ∈ S \ (S ′ ∪ {a})})

be the measure of those students whose preference order of school a follows right after schools

in S ′. (Note that the order of schools within S ′ does not matter here.) We can then define

the conditions for cutoffs {c̃1, ..., c̃n} under DA-MTB as the following system of simultaneous

equations. Specifically, for any school a ∈ S, we must have

c̃a

m∅a +
∑

S′⊂S\{a}

mS′

a

[∏
b∈S′

(1− c̃b)

] = 1. (7)

The LHS has the measure of students admitted by school a. They consist of those students who

prefer a most and have admittable lottery draws for a (i.e., ωa ≤ c̃a), and of those who prefer

schools S ′ ⊂ S \ {a} more than a but have bad draws for those schools but have an admittable

draw for school a. In equilibrium, the cutoffs must be such that these aggregate measures equal

one (the capacity of school a).

To show that there exists a set {c̃1, ..., c̃n} of cutoffs satisfying the system of equations (7),

let Υ := (Υ1, ...,Υn) : [0, 1]n → [0, 1]n be a function whose a’s component is defined as:

Υa(c̃1, ..., c̃n) = min

{
1

m∅a +
∑

S′⊂S\{a}m
S′
a

[∏
b∈S′(1− c̃b)

] , 1} ,
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where we adopt the convention that min{1
0
, 1} = 1.

Observe that self mapping Υ(·) is a monotone increasing on a nonempty complete lattice.

Hence, by the Tarski’s fixed point theorem, there exists a largest fixed point c∗ = (c∗1, ..., c
∗
n)

such that Υ(c∗) = c∗, and c∗ ≥ c̃∗ for any fixed point c̃∗.

We now show that at any such fixed point c̃∗,

1

m∅a +
∑

S′⊂S\{a}m
S′
a

[∏
b∈S′(1− c̃∗b)

] ≤ 1, (8)

for each a ∈ S. Suppose this is not the case for some i. Then, by the construction of the

mapping, we must have c̃∗a = 1. This means that all students are assigned to some schools.

Therefore, by pure accounting,

∑
a∈S

c̃∗a

m∅a +
∑

S′⊂S\{a}

mS′

a

[∏
b∈S′

(1− c̃∗b)

] = n. (9)

Yet, since (8) fails for some school,

∑
a∈S

c̃∗a

m∅a +
∑

S′⊂S\{a}

mS′

a

[∏
b∈S′

(1− c̃∗b)

]
<
∑
a∈S

(
1

m∅a +
∑

S′⊂S\{a}m
S′
a

[∏
b∈S′(1− c̃∗b)

])
m∅a +

∑
S′⊂S\{a}

mS′

a

[∏
b∈S′

(1− c̃∗b)

] = n,

where the strict inequality follows since, for school c for which (8) holds, c̃∗c = 1

m∅c+
∑
S′⊂S\{sc}m

S′
c [

∏
b∈S′ (1−c̃∗b )]

and, for school a for which (8) does not hold, c̃∗a = 1 < 1

m∅a+
∑
S′⊂S\{a}m

S′
a [

∏
b∈S′ (1−c̃∗b )]

. This in-

equality contradicts (9). Since (8) holds for each a ∈ S, the fixed point (c̃∗1, ..., c̃
∗
n) solves the

system of equations (7). It is immediate from (7) that c̃a > 0,∀a. Further, there must exist a

school w ∈ S with c̃w = 1, or else a positive measure of students are unassigned, which would

violate (7). As before, it follows that the solutions to (7) are generically distinct.

To establish uniqueness, suppose to the contrary c∗ > c̃∗: c∗b ≥ c̃∗b for all b and c∗a > c̃∗a for

some a. Let w ∈ S be such that c̃∗w = 1. Since c∗ ≥ c̃∗, c∗w = 1. Since (7) must be satisfied for

w under both cutoffs, we havemw +
∑

S′⊂S\{w}

mS′

w

[∏
b∈S′

(1− cb)

] =

mw +
∑

S′⊂S\{a}

mS′

w

[∏
b∈S′

(1− c̃b)

] = 1,

which holds if and only if cb = c̃b for all b.

Proof of Theorem 3. The proof is an application of Theorem 2 of Mas-Colell (1984).
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Proof of Lemma 5. Part (i) follows trivially since such a student can target that school and

get assigned to it with probability one. To prove part (ii) consider any student of type v, whose

values are all distinct. There are µ-a.e. such v. Suppose her most-preferred school π1(v) =: a

is undersubscribed and not a worst school. It is then her best response to target a, since doing

so can guarantee assignment to school a for sure, whereas targeting some other school reduces

her chance of assignment to that school. Hence, the student must be targeting a in equilibrium.

To prove part (iii), consider any v (with distinct values), such that π1(v) 6= w. Suppose

first σ∗a(v) > 0 for some oversubscribed school a. It follows from the above observation that

she must strictly prefer school a to all undersubscribed schools. Hence, she lists a ahead of

all undersubscribed schools in her ordinal list. Whenever she targets school a, she can never

place in any oversubscribed school other than a, so she will apply to school a with probability

one. Suppose next σ∗b (v) > 0 for some undersubscribed school b. Then, the student must

prefer b to all other undersubscribed schools, so she will apply to school b with probability one

whenever she fails to place in any oversubscribed school she may list ahead of b in the ordinal

list. Whenever she targets school b, she is surely rejected by all oversubscribed schools she may

list ahead of b, so she will apply to b with probability one. We thus conclude that σ∗(v) = σ̄∗(v)

for µ-a.e. v.

Proof of Theorem 4: To prove part (i), let school b be such that c̃b = 1. Hence, any students

who prefer b to a can never be assigned to a. Hence, the allocation does not admit any trading

cycle within {a, b}, and is thus OE within {a, b} (Lemma 1). The allocation is then PE within

{a, b} by Lemma 2-(iii).

To prove part (ii), take any two schools {a, b}, with c̃a, c̃b < 1. There is a positive measure

of students whose first- and second-most preferred schools are a and b, respectively (call them

“type-a”). Likewise, there is a positive measure of so-called “type-b” students whose first- and

second-most preferred schools are b and a, respectively. A positive measure of type-a students

draw (ωa, ωb) such that ωa > c̃a and ωb < c̃b; and a positive measure of type-b students draw

(ω′a, ω
′
b) with ω′a < c̃a and ω′b > c̃b. Clearly, the former type students are assigned to b and the

latter to a, so both types of students will benefit from swapping their assignments. Part (ii)

then follows since generically there is only one school with cutoff equal to 1 (Lemma 4).

Proof of Theorem 5: To prove part (i), suppose a Bφ
S
b. Then, we must have ca < cb. Or

else, any students who prefer school a to b can never be assigned to shool b. This is because

any such student will rank a ahead of b (by strategyproofness), so if she is rejected by a, her

draw must be ω > ca ≥ cb, not good enough for b. Hence, if a1 Bφ
S
... Bφ

S
ak Bφ

S
a1, then

ca1 < ... < cak < ca1 , a contradiction. Hence, it is OE (and thus pairwise PE).

To prove part (ii), recall from Lemma 3 that the schools’ cutoffs are generically distinct.
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Take any set {a, b, c} with ca < cb < cc. Then, by the full support assumption, there exists a

positive measure of v’s satisfying va > vb > vc > vd for all d 6= a, b, c. These students will then

have a positive chance of being assigned to each school in {a, b, c}, for their draws will land in

the intervals, [0, ca], [ca, cb] and [cb, cc], with positive probabilities. Again, given the full support

assumption, such students will all differ in their marginal rate of substitution among the three

schools. Then, just as with the motivating example, one can construct a mutually beneficial

trading of shares of these schools among these students.

Proof of Theorem 6: Part (i) builds on part (ii), so it will appear last. Throughout, we let

K and J be the sets of over- and under-subscribed schools.

Part (ii): Let σ∗(·) be an equilibrium and φ∗(·) be the associated allocation. For any v ∈ V ,

consider an optimization problem:

[P (v)] max
x∈∆K

φ∗(v)

∑
a∈S

vaxa subject to
∑
a∈K

paxa ≤
∑
a∈K

paφ
∗
a(v),

where pa ≡ max{
∫
σ∗a(ṽ)dµ(ṽ), 1} and

∆K
φ∗(v) := {(x1, ..., xn) ∈ ∆ | xa = φ∗a(v), ∀a ∈ S \K}

is the set of all assignments that may differ from φ∗(v) only in the probability shares of schools

in K.

We first prove that φ∗(v) solves [P (v)]. This is trivially true for any type v-student whose

most preferred school is the worst school w. Then, by Lemma 5-(i), φ∗w(v) = 1 and xa =

φ∗a(v) = 0,∀a ∈ K. So, φ∗(v) solves [P (v)].

Hence, assume that π1(v) 6= w in what follows. Fix any such v, and fix any arbitrary

x ∈ ∆K
φ∗(v) satisfying the constraint of [P (v)]. We show below that the type v student can

achieve the assignment x by adopting a certain targeting strategy in the CADA game, assuming

that all other players play their equilibrium strategies σ∗.

To begin, consider a strategy called a in which she targets school a ∈ S and also top-ranks

it in her ordinal list but ranks all other schools truthfully. If type v plays strategy a, then she

will be assigned to school a with probability

1

max{
∫
σ∗a(ṽ)dµ(ṽ), 1}

=
1

pa
.

If a ∈ J , this probability is one. If a ∈ K, then she will be rejected by school a with positive

probability. If she is rejected, she will apply to other schools. Clearly, she will not succeed in

getting into any schools in K, since they are oversubscribed. The conditional probabilities of

getting assigned to schools J do not depend on which school in K she has targeted (and gotten
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turned down), due to our design whereby her non-target draw ωR is independent of her target

draw ωT (recall footnote 17). For each b, let that conditional assignment probability be φ̄∗b(v)

for type v. Obviously,
∑

b∈J φ̄
∗
b(v) = 1.

Suppose the type v student randomizes by choosing “strategy a” with probability ya := paxa,

for each a ∈ K, and with probability

yb := σ∗b (v) +

[∑
a∈K

(α∗(v)− paxa)
(

1− 1

pa

)]
φ̄∗b(v),

for each b ∈ J . Observe yb ≥ 0 for all b ∈ S. This is obvious for b ∈ K. For b ∈ J , this follows

since the terms in the square brackets are nonnegative:∑
a∈K

(α∗(v)− paxa)
(

1− 1

pa

)
=
∑
a∈K

(paφ
∗
a(v)− paxa)

(
1− 1

pa

)

=

[∑
a∈K

pa(φ
∗
a(v)− xa)

]
−

[∑
a∈K

(φ∗a(v)− xa)

]
=
∑
a∈K

pa(φ
∗
a(v)− xa) ≥ 0,

where the first equality is implied by Lemma 5-(iii), the third equality holds since x ∈ ∆K
φ∗(v)

(which implies
∑

a∈K xa =
∑

a∈K φ
∗(v)), and the last inequality follows from the fact that x

satisfies the constraint of [P (v)]. Further,

∑
a∈S

ya =
∑
a∈K

paxa +
∑
b∈J

[
σ∗b (v) +

[∑
a∈K

(α∗(v)− paxa)
(

1− 1

pa

)]
φ̄∗b(v)

]

=
∑
a∈K

paxa +
∑
b∈J

σ∗b (v) +
∑
a∈K

[
(σ∗a(v)− paxa)

(
1− 1

pa

)](∑
b∈J

φ̄∗b(v)

)

=
∑
a∈K

paxa +
∑
b∈J

σ∗b (v) +
∑
a∈K

[
(σ∗a(v)− paxa)

(
1− 1

pa

)]
=
∑
a∈K

σ∗a(v) +
∑
b∈J

σ∗b (v) +
∑
a∈K

(φ∗a(v)− xa) =
∑
a∈S

σ∗a(v) = 1.

The third equality holds since
∑

b∈J φ̄
∗
b(v) = 1, the fourth is implied by Lemma 5-(iii), and the

fifth follows since x ∈ ∆K
φ∗(v).

By playing the mixed strategy (y1, ..., yn), the student is assigned to school a ∈ K with

probability
ya
pa

= xa,
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and to each school b ∈ J with probability

yb +

[∑
a∈K

ya

(
1− 1

pa

)]
φ̄∗b(v)

= σ∗b (v) +

[∑
a∈K

(σ∗a(v)− paxa)
(

1− 1

pa

)]
φ̄∗b(v) +

[∑
a∈K

paxa

(
1− 1

pa

)]
φ̄∗b(v)

= σ∗b (v) +

[∑
a∈K

σ∗a(v)

(
1− 1

pa

)]
φ̄∗b(v) = σ∗b(v) +

[∑
a∈K

σ∗a(v)

(
1− 1

pa

)]
φ̄∗b(v)

= φ∗b(v) = xb.

In other words, the type v student can achieve any x ∈ ∆K
φ∗(v) that satisfies

∑
a∈K paxa ≤∑

a∈K paφ
∗
a(v) by playing a certain strategy available in the CADA game. Since every feasible

x can be mimicked by a strategy available in the equilibrium of CADA, φ∗(·) is a best response

for type v, and since it satisfies the constraints of [P (v)], φ∗(·) must solve [P (v)].

Moreover, since µ is atomless and [P (v)] has a linear objective function on a convex set,

φ∗(v) must be the unique solution to [P (v)] for a.e. v.

We prove the statement of the theorem by contradiction. Suppose to the contrary that there

exists an allocation φ(·) ∈ XK
φ∗ that Pareto dominates φ∗(·). Then, for a.e. v, φ(v) must either

solve [P (v)] or violate its constraints. For a.e. v, the solution to [P (v)] is unique and coincides

with φ∗(v). This implies that for a.e. v,∑
a∈K

paφa(v) ≥
∑
a∈K

paφ
∗
a(v). (10)

Further, for φ to Pareto-dominate φ∗, there must exist a set A ⊂ V with µ(A) > 0 such that

each student v ∈ S must strictly prefer φ(v) to φ∗(v), which must imply (since φ∗(v) solves

[P (v)]) ∑
a∈K

paφa(v) >
∑
a∈K

paφ
∗
a(v), ∀v ∈ S. (11)

Combining (10) and (11), we get∑
a∈K

pa

∫
φa(v)dµ(v) >

∑
a∈K

pa

∫
φ∗a(v)dµ(v). (12)

Now since φ(·) ∈ X , for each a ∈ S,∫
φa(v)dµ(v) = 1 =

∫
φ∗a(v)dµ(v).

Multiplying both sides by pa and summing over K, we get∑
a∈K

pa

∫
φa(v)dµ(v) =

∑
a∈K

pa

∫
φ∗a(v)dµ(v),
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which contradicts (12). We thus conclude that φ∗ is Pareto optimal within K.

Part (iii): Consider the following maximization problem for every v ∈ V :

[P (v)] max
x∈∆

∑
a∈S

vaxa subject to
∑
a∈K

paxa ≤ 1.

When we have only one undersubscribed school, say b, then its assignment is determined

by xb = 1−
∑

a∈K xa. Therefore, an assignment x ∈ ∆ is feasible in CADA game if (and only

if) the constraint of [P (v)] holds.

Now consider the following maximization problem:

[P
′
(v)] max

x∈∆

∑
a∈S

vaxa subject to
∑
a∈K

paxa ≤
∑
a∈K

paφ
∗
a(v).

Since φ∗(·) solves a less constrained problem [P (v)] and is still feasible in [P
′
(v)], it must

be an optimal solution for [P
′
(v)]. The rest of the proof is shown by the same argument as in

Part (ii).

Part (i): The argument in the text already established that the allocation cannot admit a

trading cycle that includes both oversubscribed and unsubscribed schools. It cannot admit a

trading cycle comprising only oversubscribed schools, since the allocation is PE within these

schools, by Part (ii), making it OE within the schools, by Lemma 2-(ii). It cannot admit a

trading cycle comprising only undersubscribed schools, since the logic of Theorem 5-(i) implies

that it is OE within undersubscribed schools. Since the allocation cannot admit any trading

cycle, it must be OE.

Proof of Theorem 7: Consider first a DA algorithm with any random tie-breaking. Since

all students submit the same ranking of the schools, they are assigned to each school with the

same probability 1/n. In other words, the allocation is φDA(v) = ( 1
n
, ..., 1

n
) for all v.

Consider now CADA algorithm and an associated equilibrium σ∗. Then, a fraction α∗a :=∫
σ∗a(v)dµ(v) of students target a ∈ S in equilibrium. The equilibrium induces a mapping

ϕ∗ : S 7→ ∆, such that a student is assigned to school b with probability ϕ∗b(a) if she targets a.

Since the capacity of each school is filled in equilibrium, we must have, for each b ∈ S,∑
a∈S

α∗aϕ
∗
b(a) = 1. (13)

That is, a measure α∗i of students target a, and a fraction ϕ∗b(a) of those is assigned to school b.

Summing the product over all a then gives the measure of students assigned to b, which must

equal its capacity, 1.

Consider a student with any arbitrary v ∈ V . We show that there is a strategy she can

employ to mimic the random assignment φDA. Suppose she randomizes by targeting school a
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with probability

ya :=
α∗a∑
b α
∗
b

=
α∗a
n
.

Then, the probability that she will be assigned to any school k is∑
b

ybϕ
∗
k(b) =

∑
b

α∗b
n
ϕ∗k(b) =

1

n
,

where the second equality follows from (13). That is, she can replicate the same ex ante

assignment with the randomization strategy as φDA(v). Hence, the student must be at least

weakly better off under CADA.
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