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Gale-Shapley’s deferred acceptance (henceforth DA) mechanism
has emerged as a prominent candidate for placing students to pub-
lic schools. While DA has desirable fairness and incentive prop-
erties, it limits the applicants’ abilities to communicate their pref-
erence intensities, which entails ex-ante inefficiency when ties at
school preferences are broken randomly. We propose a variant
of deferred acceptance mechanism that allows students to influ-
ence how they are treated in ties. It inherits much of the desirable
properties of DA but performs better in ex ante efficiency.
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The promise of school choice programs is to expand students’ access to public
schools beyond their residential boundaries.! In reality, this promise is tampered
by the fact that public schools face capacity constraints. When too many students
demand limited seats at a school, a decision must be made on who are admitted
and who are turned away. Such a decision is to a degree moderated by school’s
priorities over applicants, but schools’ priorities are typically very coarse. For
instance, Boston Public Schools (BPS) prioritize applicants based only on sibling
attendance and “walk zone,” leaving many in the same priority class. So the
fundamental issue remains: how to assign scarce seats at schools.
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Allocating scarce resources is after all the fundamental role of markets. Compet-
itive markets allocate goods efficiently based on individuals’ preference intensities
since prices of goods adjust to select those individuals willing to pay the most
for them, namely those with the highest preference intensities. However, selling
seats at public schools is not a viable option, nor is it desirable given the principle
of free public education. But the “cardinal”efficiency of school assignment—that
seats at a popular school must go to those who would lose relatively more by
being assigned the next best school—is an important issue.” Can the market ef-
ficiency be achieved without monetary exchange? We suggest that this is indeed
possible, and can be done by applying the lesson from competitive markets. We
show that school choice can be designed to harness the pricing function of the
market and generate a more efficient outcome in the cardinal sense, and this can
be done within the framework of the most popular choice mechanism, namely
Gale-Shapley’s (David Gale and Lloyd Shapley, 1962) student-proposing deferred
acceptance (henceforth, DA) algorithm, without sacrificing much of its beneficial
properties.

Since proposed by Abdulkadiroglu and Tayfun Sonmez (2003), DA has emerged
as one of the most prominent candidates for school admissions design. In 2003,
New York City Department of Education adopted the DA.? In 2005, the BPS
also adopted DA in place of the existing priority rule known as the “Boston”
mechanism. Beyond school choice, DA has a celebrated history, having been
successfully applied to the matching of doctors to hospital for their internships
and residencies (see Roth, 2008). The algorithm works as follows. Once students
submit their ordinal rankings of schools and school priorities are determined, it
iterates the following procedure in successive rounds: Each student applies to her
most preferred school that has not rejected her yet; each school tentatively admits
up to its capacity according to its priority order from new applicants and those
it has tentatively admitted in the previous round, rejecting those not admitted.
The tentative assignment becomes final when no student is rejected. The Boston
mechanism operates similarly, however, in contrast to DA, admissions at each
round of the Boston mechanism are permanent.

When school priorities are strict, DA has several desirable properties. It ensures
fairness by eliminating justified envy; that is, no student ever loses a seat at a
desired school to somebody with a lower priority at that school (Gale and Shapley,
1962; Michel Balinski and Sénmez, 1999; Abdulkadiroglu and Sénmez, 2003).* If
schools’ priorities are strict, then the assignment also Pareto dominates all other
fair assignments (Gale and Shapley, 1962). Furthermore, DA is strategy-proof,

2We use the term “cardinal” in order to distinguish the efficiency we focus on from the ordinal
efficiency. This distinction is made clearer by the example introduced shortly and by subsequent sections.

3The developments in NYC were initiated independently when, being aware of his pioneering work
on market design in the entry level labor markets (Alvin E. Roth, 1984; Roth and Elliot Peranson, 1999),
the New York City Department of Education contacted Alvin Roth to inquire about the appropriateness
of a system like the National Residency Matching Program for the NYC high school match.

4 Justified envy is mathematically equivalent to the standard notion of blocking in two-sided matching.
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meaning that the students have a dominant strategy of revealing their preference
rankings of schools truthfully (Lester E. Dubins and David A. Freedman, 1981;
Roth, 1982).°

These qualities notwithstanding, DA does not respond to applicants’ cardinal
preferences. When two applicants tie in priority, DA randomly determines who
will be admitted and who will be rejected. That is, when priorities do not deter-
mine the allocation, DA completely ignores the underlying preference intensities
of students. Luck of “draw” instead determines an applicant’s fate. This is in
contrast with competitive markets where agents can express their preference in-
tensities via their willingness to pay, and also with the Boston mechanism where
students’ rankings have priority over random lottery numbers. This apparent
“irony” was not lost in the run up to the BPS’ adoption of DA when parents
observed:

. if I understand the impact of Gale Shapley, and I’ve tried to study
it and I’ve met with BPS staff... I understood that in fact the random
number ... [has] preference over your choices... (Recording from the
BPS Public Hearing, 6-8-05).

I’'m troubled that you’re considering a system that takes away the little
power that parents have to prioritize... what you call this strategizing
as if strategizing is a dirty word... (Recording from the BPS Public
Hearing, 5-11-04).

This lack of responsiveness to cardinal preferences, or the inability by the par-
ents to influence how they are treated at a tie, entails real welfare loss. The
following example illustrates this drawback of DA.

Example 1. Suppose there are three students, {1,2,3}, and three schools, {a,b, c},
each with one seat. Schools have no intrinsic priorities over students, and stu-
dents’ preferences are represented by the following von-Neumann Morgenstern
(henceforth, vNM) utility values, where U;- is student i’s vNM wutility value for
school j:

v Lvp [ o]
j=al| 4| 4| 3
j=b| 1 |1]2
j= 0|01|O0

Since schools have no priorities, ties must be broken before applying DA. Con-
sider a DA algorithm that generates the student rankings at schools by a uniform
lottery; that is, ties among students are broken randomly. By strategy-proofness,
all three students submit truthful rankings of the schools. Consequently, the

5Aside from the ease with which parents make their choice, strategy-proofness “levels the playing
field,” by putting those strategically unsophisticated at no disadvantage relative to those who are more
sophisticated (Abdulkadiroglu et al. 2006; Parag A. Pathak and S6nmez, 2008).
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students are assigned each school with probability 1/3. In other words, the DA
mechanism reduces to a pure lottery assignment. The students obtain expected
utility of EUPA = EUPA = EUPA = % This assignment makes no distinction
between students 1, 2 and student 3, despite the fact that the first two would
suffer more by being assigned the next best alternative b than student 3.

Not surprisingly, reallocating the assignment probabilities can make all agents
strictly better off. Suppose instead student 3 is assigned school b for sure, and
students 1 and 2 are assigned a and ¢ with equal probability 1/2. Each student
obtains the expected utility of EU = EUP = EUSB = 2 strictly higher than g
they enjoyed in DA.® Moreover, this new assignment can be implemented in an
incentive compatible way. Suppose for instance that the students are offered the
two different lotteries; sure assignment at school b versus a uniform lottery be-
tween a and c. Intuitively, this mechanism offers a 1/2 chance of getting assigned
the best school a, for the “price” of 1/2 chance of getting assigned the worst
school ¢. The first two students (who will suffer a lot by being placed to the
second best school instead of the best) will pay that price, but the third student
(who will not suffer as much) will not. Hence, this mechanism implements the
desirable assignment.

We propose a way to modify the DA algorithm to harness the “pricing” feature
of this mechanism. The idea is to allow the students to signal their cardinal pref-
erences by sending an additional message, and this message is used to break ties
at schools. In what we call “Choice-Augmented Deferred Acceptance” (CADA)
algorithm, each student submits an ordinal list of schools just as before, but she
also submits the name of a “target” school. A school then elevates the standing
of those who targeted that school and favor them in breaking ties among those
with the same priority at the school. The iterative procedure of DA is then im-
plemented with the rankings generated in this way. CADA inherits the desirable
properties of the standard DA: It is fair in the sense of eliminating justified envy,
and strategy-proof with respect to the ordinal preference lists. Clearly, target-
ing involves strategic behavior, but its importance is limited by the priorities. If
schools’ priorities are strict, then there are no ties, so CADA coincides with the
standard DA.

If priorities are coarse, then targeting allows individuals to signal their prefer-
ence intensities, and in the process serves to “price” the schools based on their
demands. Intuitively, if a school is targeted by more students, one finds it more
difficult to raise the odds of assignment at that school via targeting that school;
effectively the price of that school has risen. As will be seen, this feature of CADA
allows competitive markets to operate for a set of popular schools, attaining ex
ante efficiency within these schools. For this reason, for a large economy (both

SIn fact, the Boston mechanism can implement this better assignment since in equilibrium student 3
ranks B at the top while the other two rank truthfully. As we mention in Conclusion, our companion
paper (Abdulkadiroglu, Che and Yasuda, 2011) generalizes this observation to show that the Boston
mechanism weakly Pareto dominates DA in every symmetric equilibrium when ordinal preferences over
schools are aligned, schools have no priorities and break ties symmetrically.
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in the size of student body and school capacities), CADA performs better in ex
ante welfare than DA with standard random tie-breaking rules. For instance, in
the above example, the unique Nash equilibrium of CADA has students 1 and 2
targeting a, and student 3 targeting b, so the desirable outcome is implemented.”

The issue of cardinal welfare, or ex ante efficiency that captures cardinal welfare,
has not received much attention in the debate of school choice design. The existing
debate has largely focused on ex post efficiency or ordinal efficiency as a welfare
concept. Cardinal welfare would not matter much if either students’ preferences
are diverse or if the schools’ priorities are strict. In the former case, the preferences
do not conflict, so they can be easily accommodated. In the latter case, even if
the preferences conflict, school priorities pin down the assignment, so there is no
scope for assignment to respond to cardinal welfare.

If neither is true, however, the cardinal welfare issue becomes important. Sup-
pose for an extreme case that the students have the same ordinal preferences and
schools have no priorities. In that case, as seen in Example 1, it matters how the
students are assigned based on their relative preference intensities of the schools.
By contrast, ex post efficiency loses its bite; as can be seen in the example, all
assignments are ex post efficient, thus indistinguishable on this ground. In partic-
ular, DA reduces to a pure lottery assignment and CADA may do strictly better in
such a case. Although this extreme scenario is special, it captures salient features
of reality. In reality, priorities are coarse and parents tend to value the similar
qualities about schools (e.g., safety, academic excellence, etc.), leading them to
have similar (ordinal) preferences. Indeed, the BPS data exhibits strong correla-
tion across students’ ordinal preferences over schools. In 2007-2008, only 8 out of
26 schools (at grade level 9) were overdemanded whereas an average of 22.21 (std
0.62) schools should have been overdemanded if students’ preferences had been
uncorrelated.® As we point out in this paper, in such an environment, CADA per-
forms particularly well relative to DA with standard random tie-breaking rules.’

7All students will submit their rankings truthfully, so a — b — ¢ in this order. Given the targeting
behavior, school a will then rank students 1 and 2 ahead of 3 (but randomly between the first two), and
school b will rank student 3 ahead of 1 and 2 (again randomly between these two). In the first round
of CADA, all students apply to a and it will choose between 1 and 2, and the two rejected students,
including student 3, will then apply to school b in the second round, and school b will admit student 3.
Hence, student 3 is assigned b for sure, and 1 and 2 are assigned between a and ¢ with equal probability,
thus implementing the superior assignment. It is routine to check that there is no unilateral profitable
deviation from the assumed targeting behavior.

8This comparison is based on submitted preferences under the DA introduced in 2005. Since DA is
strategy-proof and BPS paid significant attention in communicating that feature of DA to the public, we
assume that those submitted preferences are a good approximation of the underlying true preferences.
For the counter-factual, we generated 100 different preference profiles by drawing a school as first choice
for each student uniformly randomly from the set of schools and computed the number of overdemanded
schools given school capacities.

9The reasons that make students’ ordinal preferences similar are likely to make their cardinal pref-
erences similar. In an extreme case in which the students have the same cardinal preferences, any
non-wasteful school choice mechanism is efficient both ex post as well as ex ante. It is unlikely, though,
that the students’ cardinal preferences are exactly the same. As long as the students’ cardinal prefer-
ences differ across schools, CADA will perform better than DA, although the benefit may be small if the
preference differences are small. Also, CADA does not compromise ordinal efficiency in the large market.
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The kind of efficiency we discuss here is of great practical concern. It is evi-
dent that school districts seek further information on parental preferences beyond
ordinal preference rankings. For example, after the overhaul of high school admis-
sions in New York City in 2003, schools were no longer allowed to see students’
rank order lists, preventing them from giving priority to students based on where
students rank them in their choice lists. Although this policy change removed
the need for and burden of strategizing for parents while ranking schools, it was
not welcomed by everybody. For example, Eva S. Moskowitz, the chairwoman of
the City Council Education Committee then argued that ”[t]he principal doesn’t
know that one kid wants to go there more than another kid [...] As an educator, I
would want to take that into account|...] You want to run a school where people
want to be there.”!’ Indeed CADA achieves this goal indirectly without reverting
to strategizing over ordinal rankings of schools.

Furthermore, the main feature of CADA is found in use in New York City
High school admissions. Since Mayor Bloomberg’s office took control of the pub-
lic schools in 2002, The New York City Department of Education has replaced
its large failing schools with more than 200 small schools that are open to all
student. Admissions type of the majority of such schools is classified as “limited
unscreened” by the Department of Education. Accordingly, a limited unscreened
school gives priority to students who attend at its information session during
school fairs or one of its open house events, otherwise seats at the school are
allocated based on a fair lottery. Time constraints ration information sessions
and open house events parents can attend. This resembles the limited targeting
opportunities with CADA. However, unlike CADA, it provides parents with asym-
metric opportunities depending on their availability for attendance at information
sessions and open house events.

Besides CADA, we also offer two methodological contributions. Analysis of
CADA requires an understanding of students’ strategic behavior with regard to
their targeting. Such an analysis is not tractable in the general finite economy
model. Instead we study a matching model with a continuum of students and
finitely many schools with mass capacities as an approximation to large finite
matching models.'! This model produces a clear insight and captures salient fea-
tures of large strategic environments without sacrificing tractability, and is well
founded as the approximation of large finite economy models, as discussed in Sec-
tion V.F. Second, we offer a novel and convenient way of measuring efficiency.
Realistic mechanisms often trade off efficiency for practicality, and thus may not
attain full Pareto efficiency. To compare such mechanisms in efficiency, we in-
troduce the notion “scope of efficiency” which refers to the set of schools that
are allocated efficiently from an ex ante point of view. The size of this set can
measure efficiency, enabling us to rank different mechanisms.

10 New York Times, November 19, 2004; http://www.nytimes.com/2004/11/19/education/19admit.html

HFollowing the initial draft of the current paper, Che and Fuhito Kojima (2010), Eduardo Azevedo
and Jacob Leshno (2013) and Azevedo (2012) have also adopted continuum models of matching, and the
first two study the asymptotic properties of a model that converges to the same model in the limit.
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The rest of the paper is organized as follows. Section 2 defines CADA more
precisely and shows that it inherits the desired properties of standard DA. Section
3 introduces the formal model and welfare criterion. Section 4 provides welfare
comparison across the three alternative procedures. Section 5 presents simulation
to quantify the welfare benefits of CADA. Section 6 then considers the implication
of enriching the message used in CADA and the robustness of our results to some
students not behaving in a strategically sophisticated way. Section 7 concludes.
Appendix contains most of the proofs. Those not contained in the Appendix are
available in the Supplementary Appendix (“not for publication”).

I. Choice-Augmented DA Algorithm: Definition and Finite Economy
Properties

This section defines CADA formally in a finite economy setting. To begin,
consider an economy with a finite set I of students and a finite set .S of schools
such that a school s € S has a finite number g5 of seats. Let () denote a null set,
meaning the outcome of not being assigned any school. An assignment z is a
mapping x : I — S U such that |z71(s)| < ¢s for each s € S; that is, = is a
many-to-one matching with the property that the number of students assigned a
school does not exceed its capacity. We assume that each student in I has strict
ordinal preferences over schools .S, and each school in S has priority ordering of
students, which may contain thick indifference classes.

A mechanism specifies a message space for each student and an assignment as a
function of messages and other parameters of the model, such as school priorities
and capacities. We will consider mechanisms that have ordinal preferences and
potentially some other auxiliary messages as their massage space. Within this
class, a mechanism is ordinally strategy-proof if for every student, for every
auxiliary message behavior for her, and for all strategies of other students, it is
optimal for her to report her ordinal preferences truthfully. This notion coincides
with the standard strategy-proofness notion when a mechanism consists of only
ordinal preferences as message space.

Furthermore, a mechanism is individually rational if its assignment is weakly
preferred to null assignment for each student and every assigned student is ranked
by the school she is assigned. A mechanism eliminates justified envy if, for
every preference and priority profile, there exists no pair of a student and a school
such that the student prefers the school over her assignment and the school either
has a vacant seat or admits a student with a lower priority.

Since standard DA requires the rankings to be strict on both sides, using DA
requires a procedure to break ties if schools’ priorities are non-strict. There
are two common procedures for breaking ties. Single tie-breaking (STB)
assigns every student a single lottery number uniform-randomly to break ties at
every school, whereas multiple tie-breaking (MTB) assigns a distinct lottery
number to each student at every school. Clearly, a DA algorithm is well defined
with respect to the strict priority list generated by either method. We refer to
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the DA algorithms using single and multiple tie-breaking by DA-STB and DA-
MTB, respectively.

CADA involves an alternative way to break a tie, one that allows students to
influence its outcome based on their messages. It proceeds in the following three
steps:

e Step 1: All students submit ordinal preferences, plus an “auxiliary message,”
naming a “target” school. If a student names a school for a target, she is said to
have “targeted” the school.

e Step 2: The schools’ strict priorities over students are generated based on
their intrinsic priorities and the students’ auxiliary messages as follows. First,
each student is uniform-randomly assigned two lottery numbers. Call one target
lottery number and the other reqular lottery number. Each school’s strict priority
list is then generated as follows: (i) First consider the students in the school’s
highest priority group. Within that group, rank at the top those who name the
school as their target. List them in the order of their target lottery numbers, and
list below them the rest (who didn’t target that school) according to their regular
lottery numbers. (ii) Move to the next highest priority group, list them below in
the same fashion, and repeat this process until all students are ranked in a strict
order.

e Step 3: The students are then assigned schools via the DA algorithm, using
each student’s ordinal preferences from Step 1 and each school’s strict priority
list compiled in Step 2.

To illustrate Step 2, suppose there are five students I = {1,2,3,4,5} and two
schools S = {a, b}, neither of which has intrinsic priority ordering over the stu-
dents. Suppose students 1,3 and 4 targeted a and 2 and 5 targeted b, and that
students are ordered according to their target and regular lottery orders the stu-
dents as follows:

T(I):3-5-2—-1-4; R(I):3—-4—-1-2—5.
Then the priority list for school a first reorders students {1, 3,4}, who targeted

that school, based on T(I), to 3 — 1 — 4, and reorders the rest, {2,5}, based on
R(I), to 2 — 5, which produces a complete list for a:

P,(I)=3-1-4-2-5.
Similarly, the priority list for b is:
P,(I)=5-2-3-4-1.
The process of compiling the priority lists resembles the STB in that the same

lottery is used by different schools, but only within each group. Unlike STB,
though, different lotteries are used across different groups. This ensures that
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students are treated identically at their non-target schools regardless of the schools
they target, which plays a role in our welfare characterization (as will be explained
in footnote 24). Besides, this feature has an added fairness benefit of giving a
student with a bad draw at her target school a “new lease on life” with another
independent draw at other schools.

The desirable properties of DA are all preserved.

Theorem 1. (i) CADA eliminates justified envy; it is ordinally strategy-proof.
(i) Given an arbitrary targeting behavior and truthful reporting of ordinal pref-
erences by students and any realization of the corresponding CADA assignment,
there is no individually rational assignment that every student strictly prefers over
the CADA assignment.

Part (i) follows from the fact that CADA is a form of DA and that the ordinal
rankings submitted by the students under CADA are used in the same way as
DA. Part (ii) follows from Theorem 6 of Roth (1982).

II. A Large Economy Model

The main focus of this paper is to understand the cardinal welfare properties
of CADA and the standard DA mechanisms. This requires analysis of students’
strategic behavior with regard to the targeting of schools under CADA and the
resulting ex ante welfare consequences (as well as ex ante welfare properties of
the standard DA mechanisms). Such an analysis is difficult for a general finite
economy model. To obtain a clear insight, we instead study a model in which
there are a continuum of students and finitely many schools with mass capacities.
For analytical tractability we also assume that schools have no priorities.

The large economy assumption, we believe, is fairly descriptive of the typical
school choice environment. For instance, NYC serves about a million students at
K-12 grade levels and about 100,000 pupils go through a centralized admissions
process to be assigned to one of about 700 high school programs. About 60,000
pupils are served at K-12 grade level in Boston. However, as will be shown
in Section IV, the welfare comparison from the large market model holds even
when the size of the market is considerably smaller. The assumption that schools
have no priorities captures the coarseness of the priority structure in general.
But it applies exactly to several school choice environments. For instance, the
school choice programs in Korea and the second round of NYC programs involve
no priorities on the school side. In addition, a majority of high schools in NYC,
including Educational Option schools for half of the seats and unscreened schools,
do not prioritize students.

A.  Primitives

There are n > 2 schools, S = {1,2,...,n}, each with a unit mass of seats to fill.
There are mass n of students who are indexed by vNM values v = (vy,...,v,) €
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V := [0, 1]" they attach to the n schools, where the outside option for students is
zero.'? The set of student types, V), is equipped with a measure . A tuple (S, p)
constitutes a (school choice) problem.

We assume that p involves no atom and admits strictly positive density in the
interior of V. This implies that almost every student has strict preferences, that is,
p({v : v; = v; for some i # j}) = 0. The assumptions that the aggregate measure
of students (interested in public schooling) equal aggregate capacities of schools
and that all students find every school acceptable are made for convenience and
will not affect our main results (see Subsection V.E).

The students’” vNM values induce their ordinal preferences. For any v € V,
let 7 (v) € S denote the k-th preferred school for the type-v student. Formally,
7= (m1,...,m) : ¥V — S" be such that m;(v) # 7;(v) if i # j and that vy, ) >
Ur,(v) implies ¢ < j. That is, m(v) lists the schools in the descending order of the
preferences for a type-v student. Let II denote the set of all ordered lists of S.
Then, for each 7 € II,

me = p({vlr(v) = 7})
represents the measure of students whose ordinal preferences are 7. By the full
support assumption, m, > 0 for each 7 € II. Finally, let m := {m;};cr be a
profile of measures of all ordinal types. Let M := {{m}rcn| >, cgm+ = n} be
the set of all possible measure profiles. We say a property holds generically if it
holds for a subset of m’s that has the same Lebesgue measure as 9.

Each school has no priorities on students and is willing to admit any student
if it has a vacant seat. This latter assumption is consistent with the policy that
every student is entitled to a public school seat. Given this assumption, we focus
throughout on assignment in which all students are assigned to public schools.
Formally, an assignment, denoted by x, is a probability distribution over S,
and this is an element of a simplex, A := {(z1,...,2,) € R}| > cgza = 1}.
We are primarily interested in how a procedure determines the assignment for
each student ex ante, prior to conducting the lottery. To this end, we define
an allocation to be a measurable function ¢ := (¢1,...,¢,) : V — A such that
[ ¢a(v)du(v) = 1 for each a € S, with the interpretation that student v is
assigned by mapping ¢ = (¢1, ..., ¢,) to school a with probability ¢,(v). Let X
denote the set of all allocations.'?

B. Welfare Standards

To begin, we say allocation ¢ € X weakly Pareto dominates allocation
¢ € X if it provides almost every student with a higher expected utility. That is,

12 As in Introduction, examples below consider vINM values outside [0, 1]™, for convenience.

13The definition of allocation may raise the following question: Can an allocation in a continuum
economy be implemented via a lottery over deterministic assignments? This issue does not arise for the
three alternative mechanisms we consider since they are variants of DA with explicit rules for tie-breaking.
See Harald Uhlig (1996) and Eric Budish et al. (2013) for a broader discussion.
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for almost every v,

(1) Zvaéa(v) > Zva¢a(v)a

a€esS a€esS

¢ Pareto dominates ¢ if the former weakly dominates the latter and if the
inequality of (1) is strict for a positive measure of v’s. We also say ¢ € X
ordinally dominates ¢ € X if the former has higher chance of assigning each
student to her more preferred school than the latter in the sense of first-order
stochastic dominance: for a.e. v,

k k
(2) Z&m(v)(v) > Z¢Wi(v)(v)7 Vk=1,..,n—1,
i=1 =1

with the inequality being strict for some k, for a positive measure of v’s. The left
and right hand sides of the inequality are the probability that type-v student is
assigned one of her top k choices by ¢ and ¢, respectively.

Our welfare notion concerns the scope of efficiency, measured by the subset of
schools that are efficiently allocated. To this end, fix any allocation ¢. A within-K
reallocation of ¢ € X is an element of a set

Xf = {¢ € X|¢a(V) = ¢a(v),Ya € S\ K and for a.e. v € V}.

We then look for a within-K reallocation of allocation ¢ in which students have
exhausted the (mutually beneficial) opportunities for trading shares of schools
within K.

Definition 1. (i) For any K C S, an allocation ¢ € X is Pareto efficient
(PE) within K if there is no within-K reallocation of ¢ that Pareto dominates
¢. (11) For any K C S, an allocation ¢ € X is ordinally efficient (OE) within
K if there is no within-K reallocation of ¢ that ordinally dominates ¢. (iii) An
allocation is PE (resp. OE) if an allocation is PE (resp. OF) within S. (iv) An
allocation is pairwise PE (resp. pairwise OFE) if it is PE (resp. OE) within
every K C S with |[K| = 2.

These welfare criteria are quite intuitive. Suppose the students are initially
endowed with ex ante shares ¢ of schools, and they can trade these shares among
them. Can they trade mutually beneficially if the trading is restricted to the
shares of K7 The answer is no if allocation ¢ is PE within K. In other words,
the size of the latter set represents the restriction on the trading technologies
and thus determines the scope of markets within which efficiency is realized. The
bigger this set is, the less restricted the agents are in realizing the gains from
trade, so the more efficient the allocation is. Clearly, if an allocation is Pareto
efficient within the set of all schools, then it is fully Pareto efficient. In this sense,
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we can view the size of such a set as a scope of efficiency.

A similar intuition holds with respect to ordinal efficiency. In particular, ordinal
efficiency can be characterized by the inability to form a cycle of traders who can
beneficially swap their probability shares of schools. Formally, let ¢ be the
binary relation on S defined by

a?b <=3V CV, (V) >0, s.t. vy > vy and ¢p(v) > 0,Vv € V;

that is, if a positive measure students prefer a to b but are assigned b with
positive probabilities. We say that ¢ admits a trading cycle within K if there
exist a1, as,...a; € K such that a1 >? ag,...,a;_1 >% a;, and a; >? a;. The next
lemma is adapted from Anna Bogomolnaia and Herve Moulin (2001).

Lemma 1. An allocation ¢ is OF within K C S if and only if ¢ does not admit
a trading cycle within K.

Before proceeding further, we observe how different notions relate to one an-
other.

Lemma 2. (i) If an allocation is PE (resp. OF) within K, then it is PE (resp.
OE) within K' C K; (i) if an allocation is PE within K C S, then it is OE
within K ; (i) for any K with |K| = 2, if an allocation is OF within K, then it
is PE within K ; (iv) if an allocation is OF, then it is pairwise PE.

Part (i) follows since a Pareto improving within-K’ reallocation constitutes a
Pareto improving within-K reallocation for any K > K’. Likewise, a trading
cycle within any set forms a trading cycle within its superset. Part (ii) follows
since if an allocation is not ordinally efficient within K, then it must admit a
trading cycle within K, which produces a Pareto improving reallocation. Part
(iii) follows since, whenever there exists an allocation that is not Pareto efficient
within a pair of schools, one can construct a trading cycle involving a (positive-
measure) set of agents who would benefit from swapping their probability shares
of these schools. Part (iv) then follows from Part (iii).'*

C. Alternative School Choice Procedures

We consider three alternative procedures for assigning students to the schools:
(1) Deferred Acceptance with Single Tie-breaking (DA-STB), (2) Deferred Ac-
ceptance with Multiple Tie-Breaking (DA-MTB), and (3) Choice-Augmented De-
ferred Acceptance (CADA).

14These characterizations are tight. The converse of Part (iii) does not hold for any K with |K| > 2.
In Example 1 from the introduction, the DA allocation is OE but not PE. Likewise, an allocation that
is PE within K need not be OE within any K’ 2 K, since an allocation could be Pareto improved upon
only via a trading cycle that includes a school in K’\K. In that case, the allocation may be PE within
K, yet it will not be OE within K’.
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The alternative procedures differ only in the way the schools break ties. The
tie-breaking rule is well-defined for DA-STB and DA-MTB, and it follows from
Step 2 of Section 2 in the case of CADA. These rules can be extended to the
continuum of students in a natural way. The formal descriptions are provided in
the Supplementary Appendix; here we offer the following heuristic descriptions:

e DA-STB: Each student draws a number w € [0, 1] at random according to
the uniform distribution. A student with a lower number has a higher priority at
every school than does a student with a higher number.

e DA-MTB: Each student draws n independent random numbers (w1, ..., wy)
from [0, 1]™ according to the uniform distribution. The a-th component, wg, of
student’s random draw then determines her priority at school a, with a lower
number having a higher priority than does a higher number.

e CADA: Each student draws two random numbers (wr,wgr) € [0,1]? ac-
cording to the uniform distribution. Each school then ranks those students who
targeted that school, based on their values of wy, and then ranks the others based
on the values of 1 + wg (with a lower number having a higher priority in both

cases). In other words, those who didn’t target the school receive a penalty score
of 1.

For each procedure, the DA algorithm is readily defined using the appropriate
tie-breaker and the students’ ordinal preferences as inputs. The Supplementary
Notes provide a precise algorithm, which is sketched here. At the first step, each
student applies to her most preferred school. Every school tentatively admits up
to unit mass from its applicants according to its priority order, and rejects the rest
if there are any. In general, each student who was rejected in the previous step
applies to her next preferred school. Each school considers the set of students
it has tentatively admitted and the new applicants. It tentatively admits up
to unit mass from these students in the order of its priority, and rejects the
rest. The process converges when the set of students that are rejected has zero
measure. Although this process might not complete in finite time, it converges
in the limit and the allocation in the limit is well defined.'® We focus on that
limiting allocation.

Strategy-proofness of DA-STB and DA-MTB with respect to students’ ordinal
preferences is well-known in the finite case (Dubins and Freedman 1981, Roth
1982) and it extends to CADA in the finite case (Theorem 1). More importantly,
all three procedures continue to be ordinally strategy-proof in the large economy:

Theorem 2. (ORDINAL STRATEGY-PROOFNESS) FEach of the three mechanisms
18 ordinally strategy-proof.

Proof: The proof is in the Supplementary Appendix.

15See Azevedo and Leshno (2013) for an example of failure of convergence in finite steps. See Supple-
mentary Appendix for the limit results.
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D. Characterization of Equilibria

O DA-STB and DA-MTB

In either form of DA algorithm, the resulting allocation is conveniently char-
acterized by a “cutoff” for each school — namely the highest lottery number a
student can have to get into that school. Specifically, the DA-STB process in-
duces a cutoff ¢, € [0,1] for each school a such that a student who ever applies
to school a gets admitted by that school if and only if her (single) draw w is less
than or equal to ¢,. Intuitively, the existence of such a cutoff follows from the
deferred acceptance feature; namely, regardless of how a student ranks a school,
she is treated by each school only according to the lottery draw she has. Formally,
our proof in the Appendix explicitly constructs the cut-offs for both DA-STB and
DA-MTB and establishes uniqueness of these cutoffs.©

Lemma 3. DA-STB admits a unique set of cutoffs {cq}tacs for the schools in
every problem. FEach cutoff is strictly positive and one of them equals 1. For a
generic m, the cutoffs are all distinct.

Importantly, these cutoffs pin down the allocation of all students. To see this,
consider any student with v and a school a with cutoff ¢,. If a is her most
preferred school, then she will be assigned a if and only if w < ¢,. If not, let b
be the school that has the largest cutoff among those schools that are preferred
to a by that student. If the cutoff of school b has ¢, > c¢,, then the student will
never get assigned school a since whenever she has a draw w < ¢, (good enough
for a), she will get into school b or better. If ¢, < ¢, however, then she will get
into school a if and only if she receives a draw w € [¢p, ¢q]. The probability of
this event is precisely the distance between the two cutoffs, ¢, — ¢;. Formally,
let S(a,v) := {b € S|luy > v,} denote the set of schools more preferred to a by
type-v students. Then, the allocation ¢°7? arising from DA-STB is given by

¢§TB(V) :=max{c, — max ¢,0},Vv,Va € S,
beS(a,v)

where ¢y := 0.

DA-MTB is similar to DA-STB, except that each student has independent
draws (wq,...,wp), one for each school. The DA process again induces a cutoff
¢q € [0,1] for each school a such that a student who ever applies to school a gets

assigned to it if and only if her draw for school a, wy, is less than ¢,. These cutoffs
are well defined.!”

16That DA-STB admits a unique set of cutoffs can be also deduced from the fact that DA algorithm
is well-defined (Theorem 0 in the Supplementary Appendix), along with the law of large numbers. We
thank Eduardo Azevedo for pointing this out.

17"Extending our analysis of cut-offs, Azevedo and Leshno (2013) characterize stable matchings in a
large economy school choice model.
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Lemma 4. DA-MTB admits a unique set of cutoffs {Cq}tacs in every problem.
FEach cutoff is strictly positive and one of them equals 1. For a generic m, the
cutoffs are all distinct.

Given the cutoffs {¢, }4es, a type v-student receives school a whenever she has
a rejectable draw wp > ¢, for each b € S(a,Vv) she prefers to school a and when
she has an acceptable draw w, < &, for school a. Formally, the allocation ¢™T5
from DA-MTB is determined by:

MTB(wv)i=éa [ (1-&),vv,VaeS,
beS(a,v)

with the convention ¢y := 0.
0O CADA

As with the two other procedures, given the students’ strategies on their mes-
sages, the DA process induces cutoffs for the schools, one for each school in [0, 2].
Of particular interest is the equilibrium in the students’ choices of messages.
Given Theorem 2, the only nontrivial part of the students’ strategy concerns her
“auxiliary message.” Let ¢ = (o01,...,0p) : V — A denote the students’ mixed
strategy, whereby a student with v targets a with probability o,(v). Existence
of an equilibrium follows easily (Andreu Mas-Colell, 1984). Non-atomic distribu-
tion of types means that the measure of students indifferent in targeting is zero,
ensuring that every equilibrium is virtually pure.

Theorem 3. (EXISTENCE) There exists an equilibrium o*. In every equilibrium,
almost all types of students play pure strategies.

We say that a student applies to school a if she is rejected by all schools she
lists ahead of @ in her (truthful) ordinal list. We say that a student subscribes
to school a € S if she targets school a and applies to that school during the DA
process. Targeting school a does not necessarily imply applying to a. The latter
event depends on where the student lists school a in her ordinal list and the other
students’ strategies, as well as the outcome of tie breaking. Let ) (v) be the
probability that a student v subscribes, i.e. targets and applies, to school a in
equilibrium, and *(v) = (7}(v))ascs. We say a school a € S is oversubscribed
if [ok(v)du(v) > 1 and undersubscribed if [o%(v)du(v) < 1. In equilibrium,
there will be at least (generically, exactly) one undersubscribed school which
anybody can get admitted to (that is, even when she fails to get into any other
schools she listed ahead of that school). Formally, a school w € S is said to be
“worst” if its cutoff on [0,2] equals precisely 2. A worst school always exists,
otherwise a positive measure of students would remain unassigned, constituting
a contradiction. Then, we have the following lemma.

Lemma 5. (i) Any student who prefers the worst school the most is assigned
that school with probability 1 in equilibrium. (ii) If her most preferred school is
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undersubscribed and it is not the worst school, then she targets that school in
equilibrium. (iii) In every equilibrium, almost every student whose top choice is
not the worst school subscribes to a school with the probability that she targets
that school, that is, o*(v) = a*(v).

In light of Lemma 5-(iii), we shall refer to “targets school a” simply as “sub-
scribes to school a.”

III. 'Welfare Properties of Alternative Procedures in Large Economy

It is useful to begin with an example. Let us consider the following simplified
situation.

Example 2. Suppose there are three schools, S ={a,b,c}, and three types of stu-
dents V = {v!,v?,v3}, each with u(v') = 1, and their vNM values are described
as follows.

o [ [ v
j=a| 5| 4|1
j=b| 1] 2|5
j= 0]101]0

Consider first DA-MTB. Each student draws three lottery numbers, (wq, wp, w.),
one for each school. Given truthful reporting of preferences, the cutoffs of the
schools a, b and ¢ are determined at ¢, =~ 0.39,¢, ~ 0.45, and ¢, = 1, respec-
tively.'® The resulting allocation is ¢M7B(v1) = ¢MTB(v?) ~ (0.39,0.27,0.33)
and pMTB(v3) ~ (0.22,0.45,0.33). This allocation is PE within {a, ¢} and within
{b,c}, but not OE (or PE) within {a,b}. The ordinal inefficiency within {a, b}
can be seen by the fact that type-{v', v?} students have positive shares of school
b, and type-v® students have positive share of school a, which they can swap
with each other to do better. This feature stems from the independent drawings
of priority lists for the schools. For instance, as in Figure 1, type-{v', v?} stu-
dents may draw (wq, wp) and type-v® students may draw (w),,w;). Hence, we have
a?" p M g, (Note that the cutoff for school ¢ is 1, which explains why
the allocation is PE within {a, c} and within {b, c}.)

18 The cutoffs for the schools are determined by the requirements that the measure of students assigned
to each school equals one, its quota. The mass of students assigned a are those of type 1 and 2 students
with lottery draw less than &, plus type 3 students who have bad draws at b but good draws at a (i.e.,
less than ¢q). Hence, the requirement reduces to

1=2x%Xé +1x(1-2)éa.

9

In this way, one obtains three equations, each corresponding to a “demand = supply” condition for each

school, thus determining the cutoffs. See the proof of Lemma 4 in the Appendix.
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School a | : | : |
0 Ca 1

School b | : | : |
0 Cp 1

Figure 1: Ordinal inefficiency within {a,b} under DA-MTB.

DA-STB avoids this problem, since each student draws only one lottery number
for all schools. In this example, the cutoffs of schools a,b and ¢ are ¢, = 1/2,
e, = 2/3, and c. = 1, respectively.'? The resulting allocation is ¢°TB(v!) =
¢5TB(v?) = (1,1,1) and ¢5TB(v3) = (0,2, 4). This allocation is OE, and thus
pairwise PE (by Lemma 2).

w

| | | | |
[ I I |

0 Ca Cp 1
Figure 2: Ordinal efficiency of DA-STB

To see this, consider any students who strictly prefer school b to school a. In
our example, type-v® students have such preference. These students can never
be assigned school a since, whenever they have draws acceptable for school a (for
instance w < ¢, in Figure 2), they will choose school b and admitted by it. Hence,
we cannot have b>¢"" " . A similar logic implies that we cannot have > .20
Hence, $578 admits no trading cycle. Despite the superiority over DA-MTB, the
DA-STB allocation is not fully PE; type-v! students can profitably trade with
type-v? students, selling probability shares of schools a and ¢ in exchange for
probability share of school b.

Consider lastly CADA. As with the two DA mechanisms, all students rank the
schools truthfully; and type-{v!, v?} students target school a and type-v® target
school b. The resulting equilibrium allocation is ¢*(v!) = ¢*(v?) = (3,0, 3) and
¢*(v3) = (0,1,0). Notice that no type-{v!, v?} students are ever assigned school
b, which means in this case the allocation is fully PE.?!

These observations are generalized as follows:

19 The cutoffs are again determined by the requirement that the measure of those students assigned
to each school equals its supply. Since a is more popular than b, we have ¢, < ¢,. Given this, those
assigned a are the type v! and v? students with w < c4. Next, those assigned b are type v students
with w < ¢ and type v! and v? students with w € [cq, cp]. Therefore, ¢, and c¢; must solve

1=2Xcq & cqa=1/2.

and
1=1Xc,+2x (cp —ca).
See the proof of Lemma 3 for more detail.
20Tn this example, no student prefers school ¢ to b, but the logic applies even if there were students
with such a preference.
21While the equilibrium allocation of CADA is PE and that of DA is not, it does not imply that the
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Theorem 4. (DA-MTB) (i) The allocation ¢™*B from DA-MTB is PE within
{a,w} for each a € S\{w}. (ii) Generically, for any K C S with |K| > 2, pMTB
1s not PE within K if K contains more than 2 schools or K does not contain the
worst school w.

Theorem 5. (DA-STB) (i) The allocation ¢°TF from DA-STB is OF and is
thus pairwise PE. (ii) For a generic m, there exists no K C S with |K| > 2 such
that ¢°TB is PE within K.

Theorem 6. (CADA) (i) Every equilibrium allocation ¢* of CADA is OE and
is thus pairwise PE. (ii) Every equilibrium allocation of CADA is PE within the
set of oversubscribed schools. (iii) If all but one school is oversubscribed in an
equilibrium, then the equilibrium allocation of CADA is PE.

In sum, DA-STB yields an ordinally efficient allocation in the large economy,
but this is the most that can be expected from DA-STB, in the sense that the scope
of efficiency is generically limited to (sets of ) two schools. CADA is also ordinally
efficient. However, the set of oversubscribed schools, which is determined en-
dogenously in equilibrium, may contain more than two schools. Therefore CADA
achieves a broader scope of efficiency.

Theorem 6-(ii) and (iii) offers the main characterization of CADA, which show-
cases the ex ante efficiency benefit associated with CADA. The benefit parallels
that of a competitive market. Essentially, CADA activates “competitive markets”
for oversubscribed schools.

This insight is borne out by our proof (in Appendix). Intuitively, suppose that
students can trade their equilibrium probability shares of oversubscribed schools
in an exchange market. PE within oversubscribed schools implies that no trade
occurs in this exchange market. More formally, consider any equilibrium ¢* of
CADA, which yields an assignment of ¢*(v) for student of type v, which con-
stitutes the student’s endowment in the exchange market. Then each individual
student can be seen effectively to choose shares (x,)qck of oversubscribed schools
K CSto

maximize Z Ve,

aeK
subject to
Z Pala < Z paﬂsZ(V),
acK acK

where “price” p, is given by the mass of students targeting school a. More
precisely, a student can attain any shares satisfying the “budget” constraint. Since
¢*(v) solves her maximization problem, she will attain the maximized value in

former (ex ante) Pareto dominates the latter. Actually, v3 students become better off while v! and v?2
students become worse off in CADA compared to DA-STB. This example illustrates that allocations of
CADA cannot be Pareto ranked with those of DA in general. However, under certain condition, we also
show that CADA indeed Pareto dominates DA (Theorem 7).
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equilibrium.??

Intuitively, each student is given a “budget” of unit probability she can allo-
cate across alternative schools for targeting. A given unit probability can “buy”
different numbers of shares for different schools, depending on how many others
target those schools. If a mass p, > 1 of students targets school a, allocating a
unit budget (i.e., probability of targeting a) can only buy a share 1/p,.%* In other
words, the relative congestion at alternative schools, or their relative popularity,
serves as relative “prices” for these schools.’* In a large economy, individual stu-
dents take these prices as given, so the prices play the usual role of allocating
resources efficiently. Hence, the welfare benefit obtains much in the same fashion
as the First Welfare Theorem.

Why are competitive markets limited only to oversubscribed schools? Why not
undersubscribed schools? Recall that one can be assigned an undersubscribed
school in two different ways: she can target it, in which case she gets assigned
it for sure if she applies to it. Alternatively, she can target an oversubscribed
school but the school may reject her, in which case she may still get assigned that
undersubscribed school via the usual DA channel. Clearly, assignment via this
latter channel does not respond to, or reflect, the “prices” set by the targeting be-
havior. Consequently, competitive markets do not extend to the undersubscribed
schools.

Finally, Part (i) asserts ordinal efficiency for CADA. At first glance, this feature
may be a little surprising in light of the fact that different schools use different
priority lists. As is clear from DA-MTB, this feature is susceptible to ordinal
inefficiency. The CADA equilibrium is OE, however. To see this, observe first that
any student who is assigned an oversubscribed school with positive probability
must strictly prefer it to any undersubscribed school (or else she should have
secured assignment to the latter school by targeting it). Thus, we cannot have
b>?" a if school b is undersubscribed and school a is oversubscribed. This means
that if the allocation admits any trading cycle, it must be within oversubscribed
schools or within undersubscribed schools. The former is ruled out by Part (ii)
and the latter by the same argument as Theorem 5-(i).

The characterization of Theorem 6-(ii) is tight in the sense that there is gen-
erally no bigger set that includes all oversubscribed schools and some undersub-
scribed school that supports Pareto efficiency.?”

22Note that the right hand side of the budget constraint becomes 1 if a student subscribes to an
oversubscribed school and 0 if he or she subscribes to an undersubscribed school.
23T0 obtain a share x,, of an oversubscribed school a € K, a student can target school a with probability

PaZa, in which case she will be selected by school a with probability p;za = x4 since once she targets a

she competes with mass p, of students for a unit mass of seats at a.

24 Given the DA format, a student may be assigned an undersubscribed school after targeting (and
failing to get into) an oversubscribed school. This may cause a potential spill-over from consumption
of an oversubscribed school toward undersubscribed schools. This spill-over does not undermine the
efficient allocation, however. Under our CADA procedure, targeting alternative oversubscribed schools
have no impact on the conditional probability of assignment with undersubscribed schools, since the tie
breaking at non-target schools are determined by a separate random priority lists.

25To see this, suppose there are four schools, S = {1,2,3,4}, and four types of students V =
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Theorem 6 refers to an endogenous property of an equilibrium, namely the
set of over/under-subscribed schools. We provide a sufficient condition for this
property. For each school a € S, let m} := u({v € V|r1(v) = a}) be the measure
of students who prefer a the most. We then say a school a is popular if m} > 1,
namely, the size of the students whose most preferred school is a is as large as its
capacity.

It is easy to see that every popular school must be oversubscribed in equilib-
rium. Suppose to the contrary that a popular school a is undersubscribed. Then,
by Lemma 5-(ii), every student with v with 71 (v) = a must subscribe to a, a con-
tradiction. Since every popular school is oversubscribed, the next result follows
from Theorem 6.

Corollary 1. Any equilibrium allocation of CADA is PE within the set of popular
schools.

It is worth emphasizing that the popularity of a school is sufficient, but not
necessary, for that school to be oversubscribed. In realistic settings, many non-
popular schools will be oversubscribed. In this sense, Corollary 1 understates the
benefit of CADA. This point is confirmed by our simulation in Section IV. Even
though full PE is not ensured by any of the three mechanisms, our results imply
the following comparison between standard DA and CADA.

Corollary 2. (i) If n > 3, generically the allocations from DA-STB and DA-
MTB are not PE. (ii) The equilibrium allocation of CADA is PE if all but one
school is popular.

Remark 1. With finite students, the allocation from DA-STB is ex post Pareto
efficient but is not OE. But as the number of students and school seats get large,
the DA-STB allocation becomes OF in the limit (Che and Kojima, 2010). When
the schools have intrinsic priorities, DA-STB is not even ex post Pareto efficient
(Abdulkadiroglu, Pathak and Roth, 2009). Similarly, CADA is not OF in the

finite economy, but the inefficiency vanishes in the large economsy.

{Vl,HVQ,VSk,)V4}, with p(vl) = 356, u(v?) = 1;5, u(v3) = 355, and p(v?) = 1% where ¢ is a
small number. T
j i j i
j=1 10 10 | 20 | 20
T=213 5198
=311 481
=42l 0000

In this case, type 1 and 3 students subscribe to school 1, and type 2 and 4 students subscribe to school

2. More specifically, the allocation ¢* has ¢*(v!) = ¢*(v3) = (3—;,0, ﬁ,%) and ¢*(v2) =

o*(v*) = (0, ﬁ, 2<1€+E) , ﬁ) Although schools 1 and 2 are oversubscribed, this allocation is not
PE within {1, 2,3} since type 1 students can trade probability shares of school 1 and 3 in exchange for
probability share at 2, with type 2 students. The allocation is not PE within {1, 2,4} either, since type 3
students can trade probability shares of school 1 and 4 in exchange for probability share at 2, with type
4 students. Therefore {1,2} is the largest set of schools that support Pareto efficiency.

260F implies ex post PE, therefore both DA-STB and CADA are ex post PE in large economies.
However, the CADA allocation may fail to be ex post PE in the finite economy, since agents may
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The results so far give a sense of a three-way ranking of DA-MTB, DA-STB,
and CADA. Specifically, if the allocation from DA-MTB is PE within K C S,
then so is the allocation from DA-STB, although the converse does not hold; and
if the allocation from DA-STB is PE within K’ C S, then so is the allocation from
CADA, although the converse does not hold. Between the two DA algorithms,
the DA-STB allocation is OE, whereas the DA-MTB allocation is not pairwise
PE.

In particular, the CADA allocation is PE within a strictly bigger set of schools
than the allocations from DA algorithms, if there are more than two popular
schools. Unfortunately, this is not the case when all students have the same
ordinal preference. This case, though special, is important since parents often
tend to rank schools similarly. In this case, there is only one popular school in
a CADA equilibrium, so Theorem 6 and Corollary 1-(i) do little to distinguish
CADA from DA-STB. Nevertheless, we can find CADA to be superior in a more
direct way. To this end, let VU := {v € V|v; > ... > v, }.

Theorem 7. Suppose all students have the same ordinal preferences in the sense
p(VY) = w(V). Every equilibrium allocation of CADA (weakly) Pareto dominates
the allocation arising from DA-STB and DA-MTB.

This result generalizes Example 1 discussed in the introduction. If all stu-
dents have the same ordinal preferences, the DA algorithm with any random
tie-breaking treat all students in the same way, meaning that each student is
assigned each school with equal probability. Under CADA, the students can at
least replicate this random assignment via targeting.?”

IV. Simulations

The theoretical results in the previous sections do not speak to the magnitude
of efficiency gains or losses achieved by each mechanism. Here, we provide a
numerical analysis of the magnitude via simulations. The numerical analysis also

miscoordinate on their targeting strategies. To see this suppose that there are four schools a, b, ¢, d each
with one seat. There are four students; two of them are type-a with vNM values v, = 10,v, = 7 and
ve = vg = 0, and last two students are type b with vga = 7,v, = 10,v. = vg = 0. There is an inefficient
equilibrium in which type-a students target b and type-b students target a, so the former students have
assignment (0,1/2,1/4,1/4) and the latter have (1/2,0,1/4,1/4). No agent can profitably deviate by
targeting his favorite school since the odds of success would fall to 1/3 whereas her odds of success at
the second preferred school at the candidate equilibrium is 1/2 (and 1/2 of 7 is higher than 1/3 of 10).
Of course, there is also an efficient equilibrium in which type-i students target school i = a,b. It is
easy to see that the inefficient equilibrium disappears as the economy gets large. For instance, if the
economy doubles (i.e., each school has two seats, and there are four students of each type), the inefficient
equilibrium disappears since a deviation by targeting one’s favorite school leads to probability 2/5 of
assignment at that school, and 2/5 of 10 is higher than 1/2 of 7.

27This Pareto dominance result also holds in a finite economy with incomplete information in the
following sense. When all students have the same ordinal preferences in any symmetric Bayesian equi-
librium of CADA, each type of student is weakly better off than she is under DA with any symmetric
tie-breaking. The argument is the same as that of Theorem 1 of Abdulkadiroglu, Che and Yasuda (2011),
which shows that the Boston mechanism weakly Pareto dominates DA in such Bayesian settings. We
shall remark on the Boston mechanism in Section 7.
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enables us to examine the effects of (coarse) school priorities on CADA and the
standard DA mechanisms.

In our numerical model, we have 5 schools, each with 20 seats and 100 students.
The computational burden of computing Nash equilibrium of CADA limits our
ability to run simulations with larger numbers. However, simulations with 5
schools, each with 20 seats and 100 students prove to be sufficient to produce
comparative statics that is in line with theory. They also suggest that our ana-
lytical results obtained from the continuum model seem to hold even when the
capacity of each school is fairly small.

In our model, student i’s vNM value for school a, 9;4, is given by
Via = aig + (1 — @)u4q

where « € [0,1], u, is common across students and w;, is specific to student i
and school a. For each «, we draw {u,} and {u;,} uniformly and independently
from the interval [0, 1] to construct student preferences. Since we shall focus on
Utilitarian welfare, it is important to normalize vINM utilities so that the findings
are robust to their affine transformation. To this end, we normalize each student’s
vNM utilities by viq = (o (V;) = ma}:fijn_ngl';i:/'ﬁm/ . Under this normalization, the
values of schools range from zero to one, with the value of the least preferred school
set to zero and that of the most preferred to one. This normalization is invariant to
affine transformation in the sense that (4 (0iq,, .-, Vias) = Ca(00ia, +05, ..., 00ias +5),
forany 6 e R 4,3 € R.

The students’ preferences become similar to one another both ordinally and car-
dinally as o gets large. In the extreme case with o = 1, students have the same
cardinal (as well as ordinal) preferences. In the opposite extreme with o = 0,
students’ preferences are completely uncorrelated. Given a profile of normalized
vNM utility values, we simulate DA-STB and DA-MTB, compute a complete-
information Nash equilibrium of CADA and the resulting CADA allocation. We
repeat this computation 100 times each with a new set of (randomly drawn)
vNM utility values for all values of a. In addition, we solve for a first-best
solution, which is the utilitarian maximum for each set of vNM utility values.
We then compute the average welfare under each mechanism, i.e., the total ex-
pected utilities realized under a given mechanism averaged over 100 draws (see
the Supplementary Appendix for details).

In Figure 3, we compare the three mechanisms against the first best solution.
We plot the welfare of each mechanism as the percentage of the welfare of the first
best solution. Two observations emerge from this figure. First, the welfare gener-
ated by each mechanism follows a U-shaped pattern. Second, CADA outperforms
DA-STB, which in turn outperforms DA-MTB at every value of «, and the gap in
performance between CADA and the other mechanisms grows with «. All three
mechanisms perform almost equally well and produce about 96% of the first-best
welfare when o = 0. In this case, students have virtually no conflicts of interests,
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and each mechanism more or less assigns students to their first choice schools.
The welfare gain of CADA increases as « increases. This is due to the fact that
competition for one’s first choice increases as « increases (and students’ ordinal
preferences get similar to one another). In those instances, who gets her first
choice matters. While DA-STB and DA-MTB determine this purely randomly,
CADA does so based on students’ messages. Intuitively, if a student’s vNM value
for a school increases, the likelihood of the student targeting that school in an
equilibrium of CADA — therefore the likelihood of her getting into that school
— increases. This feature of CADA contributes to its welfare gain. DA-STB and
DA-MTB start catching up with CADA at « = 0.9. In this case, students have
almost the same cardinal preferences, so any matching is close to being ex ante
efficient. At a = 0.9, CADA achieves 95.5% of the first best welfare, whereas
DA-STB achieves 92.2%.%

Figure 4 gives further insight into the workings of the mechanisms. It shows the
percentage of students getting their first choices under each mechanism. First,
DA-MTB assigns noticeably smaller numbers to first choices. This is due to
the artificial stability constraints created by the use of multiple tie breaking,
which also explains the bigger welfare loss associated with DA-MTB. The patterns
for CADA and DA-STB are more revealing. In particular, both assign almost
the same number of students to their first choices for each value of a. That
is, whereas the poor welfare performance of DA-MTB is explained by the low
number of students getting their first choices, the difference between the other
two is explainable not by how many students, but rather by which students, are
assigned their first choices.

This is illustrated more clearly by Figure 5, which shows the ratio of the mean
utility of those who get their k-th choice under CADA to the mean utility of those
who get their k-th choice under DA-STB at the realized matchings, for k = 1,2, 3.
Specifically, those who get their k-th choice achieve a higher utility under CADA
than under DA-STB for each &k = 1,2,3. The utility gain is particularly more
pronounced for those assigned their second or third choices. This simply reflects
the feature of CADA that assigns students based on their preference intensities:
under CADA, those who have less to lose from the second- or third-best choices
are more likely to target those schools, and are thus more likely to comprise such
assignments.

Figure 6 shows that the number of oversubscribed schools is larger on average
than the number of popular schools. Note that the average number of oversub-
scribed schools is larger than 2 at all values of a. Recall from Theorems 5 and
6 that DA-STB is generically never PE within a set of more than 2 schools, but
that CADA is PE within the set of oversubscribed schools. Figure 6 thus shows
the scope of efficiency achieved by CADA can be much higher than is predicted
by Corollary 1. It is also worth noting that the average number of oversubscribed

28 At the extreme case of o = 1, preferences are the same so every matching is efficient and the welfare
generated by each mechanism is equal to the first best welfare.
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schools exceeds 3 for o < 0.4. This implies that there are often 4 oversubscribed
schools. At those instances, CADA achieves full Pareto efficiency (recall Theorem
6-(ii)).

In practice, some schools have (non-strict) intrinsic priorities. We thus study
their impact on assignments numerically. To this end, we modify our model as
follows: Each school has two priority classes, high priority and low priority. For
each preference profile above, we assume that 50 students have high priority in
their first choice and low priority in their other choices, 30 students have high
priority in their second choice and low priority in their other choices, and 20
students have high priority in their third choice and low priority in their other
choices.?”

It is well known that standard mechanisms such as DA do not produce student
optimal stable matching when schools have non-strict priorities. Aytek Erdil and
Haluk Ergin (2008) have proposed a way to attain constrained ex post efficiency
subject to respecting school priorities, via performing so-called stable improve-
ment cycles after an initial DA assignment. We thus simulate this algorithm,
referred to as DASTB4SIC, to see how it compares with CADA.

In Figure 7, we compare CADA, DA-STB and DA-STB+SIC again measured
as percentage of first-best welfare. Again, CADA outperforms DA-STB for all
values of a. Since DA-STB++SIC is designed to achieve constrained ex post effi-
ciency (while CADA and DA-STB are not), it is not surprising that the former
does better when « is relatively small. In that case, students’ ordinal preferences
are sufficiently dissimilar that ordinal efficiency matters. As a gets large, how-
ever, ordinal efficiency becomes less relevant and cardinal efficiency becomes more
important. For o« > 0.5, CADA catches up with DA-STB+SIC and outperforms
it as a gets large. In particular, when « is close to 1, virtually all matchings
are ex post efficient, so DA-STB+SIC has little bite. The cardinal efficiency still
matters, and in this regard, CADA does better than the other mechanisms. This
finding is noteworthy since parents are likely to have similar ordinal preferences
in real-life choice settings. In those instances, CADA allocates schools more effi-
ciently than other mechanisms in ex ante welfare.

V. Discussion
A. Enriching the Auxiliary Message

One can modify CADA to allow for richer auxiliary messages, perhaps at the
expense of some practicality. For instance, the auxiliary message can include a
rank order of schools up to k < n, with a tie broken in the lexicographic fashion
according to this rank order: students targeting a school at a higher lexicographic
component is favored by that school in a tie relative to those who do not target

29This assumption is in line with the stylized fact about the Boston school system.
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or target it at a lower lexicographic component. We call the associated CADA a
CADA of degree k.

A richer message space could allow students to signal their relative preference
intensities better, and this may lead to a better outcome (see Abdulkadiroglu,
Che and Yasuda, 2008 for an example). A richer message space need not deliver
a better outcome, however. With more messages, students have more opportu-
nities to express their relative preference intensities over different sets of schools.
The increased opportunities may act as substitutes and militate each other. For
instance, an increased incentive to self select at low-tier schools may lessen a stu-
dent’s incentive to self select at high-tier schools. This kind of “crowding out”
arises in the next example.

Example 3. There are j schools, S = {a,b,c,d}, and two types of students
V= {vl,v2}, with p(v') = 3 and p(v?) = 1.

v [
j=a |12 ] 8
j= 2 14
j=c| 1| 3
j=d| 010

Consider first CADA of degree 1. Here, it is optimal for a type-v! student
to target a for any strategy profile of other students, so that type-v' students
target a. Then it is optimal for type-v? students to target school b. In other
words, the latter type of students self select into the second popular school in
the unique equilibrium. The resulting allocation is ¢*(v!) = (%,O,%,%) and
¢*(v?) = (0,1,0,0). The expected utilities are EU! = 4.33 and EU? = 4. In
fact, this allocation is PE.

Suppose now CADA of degree 2 is used. In the unique equilibrium, type-v!
students choose schools a and b as their first and second targets, respectively.
Meanwhile, type-v? students choose school a (instead of school b!) for their first
target and school ¢ for their second target. Here, the opportunity for type 2
students to self select at a lower-tier school (school ¢) blunts their incentive to
self select at a higher-tier school (school b). The resulting allocation is thus
o**(v!) = (3,3, 13- 3) and ¢**(v?) = (3,0, 3,0), which yield expected utilities of
EU' = 3.75 and EU- = 4.25. This allocation is not PE since type-v? students
can trade probability shares of schools a and ¢ in exchange for probability share
of b, with type-v! students.

Even though ¢* does not Pareto dominate ¢**, the former is PE whereas the
latter is not. Further, the former is superior to the latter in the Utilitarian
sense (recall that students’ payoffs are normalized so that they aggregate to the
same value for both types): the former gives aggregate utilities of 17, the highest
possible level, whereas the latter gives 15.5.
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This example suggests that the benefit from enriching the message space is not
unambiguous.

B. Strategic Naivety

Since CADA involves some “gaming” aspect, albeit limited to tie-breaking,
a natural concern is that not all families may be strategically competent. It
is thus important to investigate how CADA will perform when some families
are not strategically sophisticated. To this end, we consider students who are
“naive” in the sense that they always target their most preferred schools in the
auxiliary message and submit preference rankings truthfully. Targeting the most
preferred school appears to be a simple and reasonable choice when a student is
unsure about the popularity of alternative schools or is unclear about the role
the auxiliary message plays in the assignment. Such a strategy will indeed be a
best response for many situations, particularly if the first choice is distinctively
better than the rest of the choices, so it could be a reasonable approximation of
“naive” behavior. We assume that there is a positive measure of students who are
naive in this way, and the others know the presence of these students and their
behavior, and respond optimally against them. The presence of naive students
do not affect the main welfare results in a qualitative way.

Theorem 8. In the presence of naive students, the equilibrium allocation of
CADA satisfies the following properties: (i) The allocation is OE, and is thus
pairwise PE. (ii) The allocation is PE within the set K of oversubscribed schools.
(iii) If every student is naive, then the allocation is PE within K U {l} for any
undersubscribed school l € J := S\ K.

Theorem 8-(i) and (ii) are qualitatively the same as the corresponding parts of
Theorem 6. Further, Lemma 5-(ii) remains valid in the current context, implying
that any popular schools must be oversubscribed here as well. Hence, the same
conclusion as Corollary 1 holds.

Corollary 3. In the presence of naive students, the equilibrium allocation of
CADA is PE within the set of popular schools.

Strategy-proofness of DA ensures no change in its welfare performance. There-
fore, the welfare comparison between CADA and DA in the presence of naive
students does not change in a qualitative way.

C. CADA with “Exit Option”

The preceding subsection has shown that the main welfare property of CADA
extends to the situation where some students behave naively. This does not
mean, however, that naive students are not disadvantaged by the others who
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behave more strategically.®’ The CADA mechanism can be modified to provide
an extra safeguard for those who are averse to strategic aspect of the game. This
can be done by augmenting the message space to include an “exit option.”

Specifically, CADA with exit option (CADA-EO) involves the following three
steps:

e Step 1: All students submit ordinal preferences, plus an “auxiliary message,”
naming a “target” school or specifying “exit.”

e Step 2: A standard DA-STB is run (i.e., ignoring the auxiliary message).
The students who specified “exit” in their auxiliary message are assigned the seats
according to this procedure. Remove these students along with the seats they are
assigned. The capacity of schools are reset to reflect the seats removed.

e Step 3: CADA is run with respect to the remaining seats and students based
on the target messages. That is, target and regular priority lists are randomly
generated, and the priorities of the remaining students at schools are determined
based on the schools’ intrinsic priorities, the two random lists and students’ target
messages, according to the rule described in Section 2. DA is run based on the
students’ ordinal preferences and the schools’ priories of students determined in
this way.

Clearly, CADA-EO maintains the same feature of DA as described in Theorem
1. Most important, CADA-EO offers each student an option to “replicate” the
same lottery of schools as she will obtain from DA-STB, by simply specifying
“exit” in her auxiliary message. The following is immediate.

Theorem 9. Fix an arbitrary school choice problem in the finite or large econ-
omy where schools have arbitrary (intrinsic) priorities over students. The alloca-
tion implemented in any equilibrium (either complete-information or Bayesian)
of CADA-EO weakly Pareto dominates the allocation of DA-STB.

Theorem 9 shows that one can easily modify CADA to ex ante Pareto-dominate
DA-STB—one of the current favorite mechanisms known so far. While it is im-
portant to know that there is a mechanism that does no worse and possibly do
better for some students than the best current procedure, we do not necessarily
favor CADA-EO over CADA. The reason is that, although CADA-EO is definitely
a safer alternative when it comes to switching from the DA-STB, its benefit in
terms of realizing cardinal efficiency is also limited in comparison with CADA.
In particular, the desirable properties of CADA described in Theorem 6 may not
obtain.

This point can be illustrated again using Example 2 in Section 4. Observe that
the type-{v!, v?} students are worse off from CADA in comparison with DA-STB.
Specifically, their assignment is ¢°7 5 (v1) = ¢57B(v?) = (3, 1, 1) under DA-STB,
but ¢*(vl) = ¢*(v?) = (3,0,%) under CADA, and they prefer the former since

30Pathak and Sénmez (2008) formalize the sense in which the sophisticated students benefit from the
Boston mechanism in comparison with the DA mechanism at the expense of the naive players. Meanwhile,
Abdulkadiroglu, Che and Yasuda (2011) suggest that some unsophisticated students may actually benefit
from the presence of the sophisticated students.
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they have the same probability share of a but higher share of b under the former,
in comparison with the latter. Hence, even though the CADA allocation is PE
and the DA-STB allocation is not, the former does not Pareto dominate the latter.
Suppose now CADA-EO is employed instead. It is an equilibrium for all type v>
students to target b, and for all type-v' or v2 students to “exit.” This equilibrium
thus produces the same allocation as DA-STB.?!

D. Dynamic Implementation

As noted, the welfare benefit of CADA originates from the competitive markets
it induces. Unlike the usual markets where there are explicit prices, however, in
the CADA-generated markets, students’ beliefs about the relative popularity of
schools act as the prices. Hence, for CADA to have the desirable welfare benefit,
their beliefs must be reasonably accurate. In practice, students/parents’ beliefs
about schools are formed based on their reputations; thus, as long as the school
reputations are stable, they can serve as reasonably good proxies for the prices.
Nevertheless, students may not share the same beliefs, and their beliefs may
not be accurate, in which case CADA procedure will not implement the CADA
equilibrium precisely.

The CADA mechanism can be modified to implement the desired equilibrium
more precisely. The idea is to allow students to dynamically revise their target
choices based on the population distribution of choices, which is made public,
until the number of students changing their choices fall under a certain threshold.
Since one’s target choice matters only when there is little change in the population
distribution of target choices, each student is induced to best respond to the cur-
rent population distribution. In other words, the proposed dynamic mechanism
implements (approximately) a best response dynamics. As is well known, when
the best response dynamics converges, the ensuing outcome is a Nash equilibrium.

E.  Excess Capacities and Outside Options

Thus far, we have made simplifying assumptions that the aggregate measure of
students equal the aggregate capacities of public schools and that all students find
each public school acceptable. These assumptions may not hold in reality. While
public schools must guarantee seats to students, all the seats need not be filled.
And some students may find outside options, such as home or private schooling,
better than some public schools. One can relax these assumptions by letting

31This is indeed the unique symmetric equilibrium in which some (positive measure of) agents invoke
targeting. An outcome in which all students exit is always an equilibrium of any CADA-EO game,
because unilateral deviation does not impact the random assignment of the deviating player. Second,
some measure of students must invoke “exits” in equilibrium, or else type v! and v2 would be targeting
a and v3 would be targeting b, so v! and v2 would benefit from exiting. Therefore, at least one type
exits in equilibrium. If v3 does not exit, then v targets b and it is optimal for both v! and v? to exit.
If v3 exits, it is optimal for both v! and v2 to target a or to exit. In all cases, the equilibrium outcome
coincides with the DA-STB outcome.
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the aggregate capacities to be (weakly) greater than n and by endowing each
student with an outside option drawn from [0, 1].?? Extending the model in this
way entails virtually no changes in the main tenet of our paper. All theoretical
results continue to hold in this relaxed environment. A subtle difference arises
since, with excess capacities, there may be more than one school with cutoff equal
to one under DA-MTB, so its allocation may become PE within more pairs of
schools. Nevertheless, Theorems 1-9 remain valid. For instance, the DA-STB
allocation is ordinally efficient. The CADA allocation is ordinally efficient and
Pareto efficient within oversubscribed, and thus popular, schools.

F. A Limit Foundation of the Continuum Economy Model

As mentioned earlier, real-life school choice problems involve a large but finite
number of participants. A comparison of CADA with DA in such markets requires
analysis of students’ strategic behavior with regard to their targeting of schools
under CADA. However, such an analysis is not tractable in the general finite
economy model. Our modeling choice with non-atomic continuum of students
and finitely many schools with mass capacities helps overcome such difficulties.
Further, applying Aaron Bodoh-Creed (2013), our continuum economy model is
well founded as an approximation of large finite economy models with similar
fundamental characteristics.

In particular, our continuum economy admits a unique stable matching for any
given targeting behavior, which can be characterized by market clearing cutoffs
as in Azevedo and Leshno (2013). This has two immediate implications. First,
consider a sequence of continuum economies converging to our economy. The
market clearing cutoffs of these economies converge to the market clearing cutoffs
in our continuum economy (Lemma B.3, Azevedo and Leshno, 2013). This implies
that the expected utilities of agents in the sequence of continuum economies
converge to the expected utilities of the agents in the limit continuum economy.
Since the set of vINM values and the set of schools are compact, the continuity
requirement of Theorem 6 of Bodoh-Creed (2013) is satisfied.

Second, consider a sequence of finite economies that converge to our continuum
economy. Then the market clearing cutoffs of these economies converge to the
market clearing cutoffs in our continuum economy (Lemma B.4, Azevedo and
Leshno, 2013). This implies that the expected utilities of agents in the sequence
of finite economies converge to the expected utility of the agents in the limit
continuum economy. By compactness of the set of vINM values and the set of
schools, convergence is obtained uniformly, so the convergence requirement of
Theorem 6 of Bodoh-Creed (2013) is satisfied.

Then applying Theorem 6 in Bodoh-Creed (2013), any convergent sequence of
Bayesian Nash equilibria of finite economies converges to a Bayesian Nash equi-

32This modeling approach implicitly assumes the outside options to have unlimited capacities, which
may not accurately reflect the scarcity of outside option such as private schooling.
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librium in the continuum economy. Since our welfare results in the continuum
economy hold for all equilibria of the game, they can be generalized along such
convergent paths. Furthermore, applying Theorem 7 of Bodoh-Creed (2013), any
Bayesian Nash equilibrium in the continuum economy is an ex post approximate
Bayesian Nash equilibrium®® of an N-economy for all N that is bigger than a
sufficiently large N*, implying that the equilibria of the continuum model ap-
proximates behavior in large finite economies.

There is a growing literature on large matching markets (see Che and Kojima,
2010; Nicole Immorlica and Mohammad Mahdian 2005; Kojima and Pathak,
2009; Kojima, Pathak and Roth, 2013) studying consequential impact of market
size on certain market trade-offs. Recently, Azevedo and Leshno (2013) and
Azevedo (2012) study the set of stable matchings in a similar environment with
continuum players. Our continuum economy model of the DA mechanism provides
a framework for studying large markets.

VI. Conclusion

In this paper, we have proposed a new deferred acceptance procedure, Choice-
augmented DA (CADA), in which students are allowed, via signaling of their
preferences, to influence how they are treated in a tie for a school.

There are other matching procedures that also allow participants to express
their cardinal preferences. The Boston mechanism which was replaced with DA
by the BPS in 2005 is one such procedure. In the Boston mechanism, students
also rank the schools, and each school assigns its seats according to the order
students rank that school during registration: each school accepts first those who
rank it first, using their own priorities or random lotteries to break ties, and
accepts those who rank it second only when seats are available, and so forth.
Under this mechanism, therefore, a student can increase her odds of assignment
at a school by ranking that school highly. For instance, in Example 1, student
3 can ensure her sure assignment at school b by raking it at the top, if the
other two rank b at the second. This feature allows the students to express their
cardinal preferences. In fact, just like CADA, the Boston mechanism implements
the desirable assignment in that example as the unique equilibrium; students 1
and 2 have a dominant strategy of ranking the schools truthfully, and student 3
has a best response of (strategically) ranking school b as her first choice. In a
companion paper (Abdulkadiroglu, Che, Yasuda, 2011), we show that this benefit
generalizes to any symmetric Bayesian equilibrium of Boston mechanism, which
weakly Pareto dominates DA with standard tie-breaking if all students have the
same ordinal preferences and schools have no priorities.*

Despite this similarity, the Boston mechanism has a number of disadvantages

33See Bodoh-Creed (2013) for a formal definition of ex post e-Bayesian Nash equilibrium

34Further, Antonio Miralles (2008) applies the arguments developed in this paper to show that a
variant of the Boston mechanism that breaks ties at schools independently has a similar ex ante welfare
property as the CADA.
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compared with CADA. First, as is clear from the example, its beneficial effect—
the ability to express one’s cardinal intensities—is achieved only as a result of
manipulating her rankings. That is, not only does the Boston mechanism fail to
be strategy-proof, its failure is needed for the agents to express cardinal prefer-
ences. Second, the strategic nature of Boston mechanism makes it susceptible
to mistakes and miscoordination on the part of the participants. Even when the
students can play equilibrium with full information about other participants, they
may still coordinate on suboptimal stable matching (Ergin and Sénmez, 2006).
Even more serious, and arguably more plausible, form of miscoordination is that
students may not coordinate on any equilibrium play due to incomplete informa-
tion and strategic uncertainty. In practice, students are unlikely to assess other
students’ preferences, their priorities, and their strategic responses, accurately,
which can easily lead to non-equilibrium play. The consequences are both ineffi-
ciencies and lack of fairness (i.e., stability). Third, the demand for strategic play
puts strategically naive participants at disadvantage against more sophisticated
participants (Pathak and Sénmez, 2008). In the Boston mechanism, by not rank-
ing a school as first choice, a student loses her priority at that school to those
who rank it as first choice. For instance, a student with a neighborhood priority
at a reasonably good school could lose her priority under the Boston mechanism
if she did not rank it as first choice.

By contrast, CADA is ordinally strategy-proof. While CADA involves strategic
plays, its scope is limited to targeting, and its influence is kept within a priority
class. Although it is difficult to conceptualize, and measure in a principled way,
the simplicity of strategic decision making involved in a mechanism, one sensible
approach — a long-held one since Hurwicz (see Kenneth J. Arrow, 2009) — is
to use the dimensionality of the message space as a measure of informational
burden facing the participants of a mechanism. In this regard, targeting involves
a relatively simple and straightforward strategic decision. We thus believe that
the scope for miscoordination is limited in CADA. Further, we provide a dynamic
implementation of targeting game that facilitates strategic coordination of the
students. While targeting requires strategic play, CADA limits the harm from
strategic mistakes. For instance, suppose a student targets her favorite school
while she enjoys a neighborhood priority at her second-best school. In case she
fails to get in her favorite school, she does not lose high priority at the second-best
school unlike the Boston mechanism. Such a student may even benefit from her
naive behavior under CADA if her neighborhood school is not oversubscribed by
neighborhood students.

Another mechanism that incorporates cardinal welfare is the pseudo-market
mechanism proposed by Aanund Hylland and Richard J. Zeckhauser (1979).%°

35 A similar mechanism is also used in course allocation mechanisms (see Budish and Estelle Cantillon,
2012). Sénmez and M. Utku Unver (2010) imbed the DA algorithm in “course bidding” employed by
some business schools. These two proposals differ in the application, however, as well as in the nature
of the inquiry: we are interested in studying the benefit of adding a “signaling” element to the DA
algorithm. By contrast, their interest is in studying the effect of adding ordinal preferences and the DA



32 AMERICAN ECONOMIC JOURNAL MONTH YEAR

This mechanism purports to install competitive markets for trading probability
shares of alternative objects using a fictitious currency. Specifically, the mecha-
nism endows each agent with a fixed budget in a fictitious currency, 100 tokens
say, and allows the agents to spend their budget endowments to “buy” probability
shares of alternative goods, and the price per unit probability of owning each good
is then adjusted to clear the markets. For large markets, this mechanism admits a
competitive equilibrium, which is ex ante efficient by the first welfare theorem.>
Our result has a similar flavor. Indeed, the main contribution of our paper is to
recognize that adding a signaling device as simple as targeting a school can have
the same kind of “market-activating” effects as the pseudo-market mechanism.
Although CADA does not generally attain full ex ante efficiency, the strategic en-
vironment is simple, and the strategic deliberation required for the agents is not
so demanding; by contrast, formulating ones’ cardinal utilities (instead of simply
“acting on them”) could be more onerous,®” and the consequence of miscalcula-
tion on efficiency may be large. Also, competitive equilibria are computationally
difficult to find (see Andrew McLennan, 2011), which further limits its practical-
ity. Most important, school priorities are already imbedded in CADA, whereas
the pseudo-market mechanism does not include priorities. This is an important
distinction since priorities are a salient feature of school choice.
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feature to course bidding.
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APPENDIX: PROOFS OF THE MAIN RESULTS

Proof of Theorem 1. (i) If student i has higher priority than student j at school
s, then ¢ is ranked higher than j at s at step 2 of CADA regardless of their tar-
geting behavior and the tie breakers. Consequently, if ¢ prefers s to her CADA
assignment, j is not assigned s under CADA, since CADA is a DA. Therefore
CADA eliminates justified envy. To the contrary, if there were a profile of stu-
dent preferences, school preferences and targeting behavior at which some student
could benefit from preference manipulation, the student would benefit from pref-
erence manipulation in the corresponding DA that is induced by the same profile,
a contradiction with the strategy-proofness of DA (Dubins and Freedman, 1981;
Roth 1982). Therefore CADA is strategy-proof with respect to students’ ordinal
preferences. (ii) Consider an arbitrary targeting behavior and a realization of
the corresponding CADA assignment x. Suppose to the contrary that there is
an individually rational assignment y that every student prefers over the CADA
assignment. Note that x is the student optimal stable assignment and y is an
individually rational assignment in the induced problem with strict school priori-
ties. Then every student in the induced problem prefers y to x, which contradicts
with Theorem 6 of Roth (1982). |

Proof of Lemma 3. For any S” C S and a € ', let mq(S’) := p({v]ve > vy, Vb €
S’}) be the measure of students who prefer school a the most among S’. The
cutoffs of the schools are then defined recursively as follows. Let S0 =350 =0,
and 20 = 0 for every a € S. Given 89,9, {i0yeg, ..., St71 ét71 {211 g, and
for each a € S define

(A1) & = sup {c €0, 1] 257 + ma (S8 (c— 1) < 1} ,
(A2) ¢'= min &,

siESt71
(A3) St =571\ {a e S = ¢},

(A4) #l =@ 4 ma (ST (¢ - ).
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Each recursion step ¢ determines the cutoff of school(s) given cutoffs {&”, ..., &= 1}.
Students with draw w > ¢! can never be assigned schools S\ S*~!. For each
school a € S'~! with remaining capacity, a fraction 2.~! is claimed by students
with draws less than ¢! so only fraction 1 — #/~! of seats can be assigned to
students with draws w > ¢/~1. If school @ has the next highest cutoff, ¢, then the
remaining capacity 1 — 2.~ must equal the measure of those students who prefer
a the most among S?~! and have drawn numbers in [¢/=1 ¢&f]. This, together
with the fact that school a has cutoff ¢!, implies (A1) and (A2). The recursion
definition implies (A3) and (A4).

The recursive equations uniquely determine the set of cutoffs {é%, ..., ¥}, where
k < n. The cutoff for school a € S is then given by ¢, := {¢'|¢!, = ¢'}. Tt clearly
follows from (A1) and (A2) for t = 1 that ¢! > 0. It also easily follows that
¢® = 1. Obviously & < 1. We also cannot have ¢* < 1, or else there will be
positive measure of students unassigned, which cannot occur since every student
prefers each school to being unassigned, and the measure of all students coincides
with the total capacity of schools.

Although it is possible for more than one school to have the same cutoff, this is
not generic. If there are schools with the same cutoff, we must have a # b e §t~1
for some ¢ and S*~! such that ¢, = ¢, which entails a loss of dimension for
m within 991. Hence, the Lebesgue measure of the set of m’s involving such a
restriction is zero. It thus follows that generically no two schools have the same

cutoff. ||

Proof of Lemma 4. For each a € S and any S’ C S\ {a}, let
mS = p({v € V|vp > va > ve, Vb€ S Vs € S\ (" U {a})})

be the measure of those students whose preference order of school a follows right
after schools in S’. (Note that the order of schools within S’ does not matter
here.) We can then define the conditions for cutoffs {¢i, ..., ¢, } under DA-MTB
as the following system of simultaneous equations. Specifically, for any school
a € S, we must have

(A5) G |mh+ > mf [H(l—éb)] =1

S'cS\{a} bes’

The LHS has the measure of students admitted by school a. They consist of
those students who prefer a most and have admittable lottery draws for a (i.e.,
wa < &), and of those who prefer schools S’ C S\ {a} more than a but have bad
draws for those schools but have an admittable draw for school a. In equilibrium,
the cutoffs must be such that these aggregate measures equal one (the capacity
of school a).

To show that there exists a set {¢1,...,é,} of cutoffs satisfying the system of
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equations (A5), let T := (Yy,...,Ty) : [0,1]" — [0,1]™ be a function whose a’s
component is defined as:

1
Lo
m + ZS/Cs\{a} mg [HbeS’( —C )} }

Y.(é1, ..., €p) = min {

where we adopt the convention that min{},1} = 1.

Observe that self mapping T(-) is a monotone increasing on a nonempty com-
plete lattice. Hence, by the Tarski’s fixed point theorem, there exists a largest
fixed point ¢* = (cj, ..., ;) such that T(c*) = ¢*, and ¢* > ¢* for any fixed point

c*.

We now show that at any such fixed point ¢*,

1 -1

(49) mh + Y gcsnay e s (1)) ~

for each a € S. Suppose this is not the case for some ¢. Then, by the construction
of the mapping, we must have ¢; = 1. This means that all students are assigned
some schools. Therefore, by pure accounting,

(AT) > e | mh+ Xjnﬁlﬂﬂ—q4 = n.
= s'cS\{a} bes’
Yet, since (A6) fails for some school,

Samle Y om [H(l—éi)]

aes s'cS\{a} bes’

1 ’
<Z< ) e 3w [H(l—a;)] .
aes +ZS’QS\{a}m [hes (1= &) S'cS\{a} bes’

where the strlct inequality follows since, for school ¢ for which (A6) holds, & =
and, for school a for which (A6) does not hold

mC+ZS/CS\{SC}m "Mpes (1-8)]
a=1< ! =
ma+ZS’CS\{a}m "Moes (1-8)]
(A6) holds for each a € S, the fixed point (], ..., &) solves the system of equations
(A5). It is immediate from (A5) that é, > 0, Va. Further, there must exist a school
w € S with ¢, = 1, or else a positive measure of students are unassigned, which
would violate (A5). As before, it follows that the solutions to (A5) are generically

distinct.

. This inequality contradicts (A7). Since



38 AMERICAN ECONOMIC JOURNAL MONTH YEAR

To establish uniqueness, suppose to the contrary c* > ¢*: ¢
¢, > ¢, for some a. Let w € S be such that ¢, = 1. Since c* >
(A5) must be satisfied for w under both cutoffs, we have

> ¢ for all b and
c*, ¢, = 1. Since

Mo+ Y mi‘,’[Hu—cb)] =|mwt+ > mfu’[H(l—éb)] =1,

S'cS\{w} bes’ 5'cS\{a} bes’

which holds if and only if ¢, = &, for all b. |

Proof of Theorem 3. The existence of pure-strategy equilibrium is an application
of Theorem 2 of Mas-Colell (1984). To prove the second part, suppose a positive
measure of students randomizes in targeting between two schools a and b in some
equilibrium. Let z, and x; be the probabilities of acceptance at schools a and b
when a student targets a and when she targets b (and reports ordinal rankings
truthfully), respectively, in that equilibrium. Such probabilities are common to
all students in our continuum economy. Hence, those who are mixing between the
two schools must have (v, vp) such that vz, = vpzp. In other words, their types
must satisfy Z—Z = xp/x4. The measure of such types is zero, given the absolutely
continuity of our measure fi. This contradicts the hypothesis that a positive
measure of students randomizes between a and b. Hence, in every equilibrium,
almost all students play pure strategies. |

Proof of Lemma 5. Part (i) follows trivially since such a student can target that
school and get assigned to it with probability one. To prove part (ii) consider any
student of type v, whose values are all distinct. There are p-a.e. such v. Suppose
her most-preferred school 71 (v) =: a is undersubscribed and not a worst school.
It is then her best response to target a, since doing so can guarantee assignment
to school a for sure, whereas targeting some other school reduces her chance of
assignment to that school. Hence, the student must be targeting a in equilibrium.
To prove part (iii), consider any v (with distinct values), such that m(v) # w.
Suppose first o(v) > 0 for some oversubscribed school a. It follows from the
above observation that she must strictly prefer school a to all undersubscribed
schools. Hence, she lists a ahead of all undersubscribed schools in her ordinal list.
Whenever she targets school a, she can never place in any oversubscribed school
other than a, so she will apply to school a with probability one. Suppose next
o;(v) > 0 for some undersubscribed school b. Then, the student must prefer b to
all other undersubscribed schools, so she will apply to school b with probability
one whenever she fails to place in any oversubscribed school she may list ahead
of b in the ordinal list. Whenever she targets school b, she is surely rejected by
all oversubscribed schools she may list ahead of b, so she will apply to b with
probability one. We thus conclude that o*(v) = ¢*(v) for p-a.e. v. |

Proof of Theorem /. To prove part (i), let school b be such that ¢ = 1. Hence,
any students who prefer b to a can never be assigned a. Hence, the allocation does
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not admit any trading cycle within {a, b}, and is thus OE within {a,b} (Lemma
1). The allocation is then PE within {a, b} by Lemma 2-(iii).

To prove part (ii), take any two schools {a,b}, with ¢,,é < 1. There is a
positive measure of students whose first- and second-most preferred schools are a
and b, respectively (call them “type-a”). Likewise, there is a positive measure of
so-called “type-b” students whose first- and second-most preferred schools are b
and a, respectively. A positive measure of type-a students draw (wg,wp) such that
wq > €q and wy < Gp; and a positive measure of type-b students draw (wy,, wj) with
wy, < €q and wj > &. Clearly, the former type students are assigned b and the
latter to a, so both types of students will benefit from swapping their assignments.
Part (ii) then follows since generically there is only one school with cutoff equal
to 1 (Lemma 4). |

Proof of Theorem 5. To prove part (i), suppose a >¢" Then, we must have
cq < ¢p. Or else, any students who prefer school a to b can never be assigned
to school b. This is because any such student will rank a ahead of b (by strate-
gyproofness), so if she is rejected by a, her draw must be w > ¢, > ¢, not good
enough for b. Hence, if a1 A ag @ TF ay, then ¢, < ... < cq, < Cays
a contradiction. Hence, it is OE (and thus pairwise PE).

To prove part (ii), recall from Lemma 3 that the schools’ cutoffs are generically
distinct. Take any set {a,b,c} with ¢, < ¢, < ¢.. Then, by the full support
assumption, there exists a positive measure of v’s satisfying v, > vy > v. > vq for
all d # a,b,c. These students will then have a positive chance of being assigned
to each school in {a, b, c}, for their draws will land in the intervals, [0, ¢4], [cq, b]
and [cp, ¢ ], with positive probabilities. Again, given the full support assumption,
such students will all differ in their marginal rate of substitution among the three
schools. Then, just as with the motivating example, one can construct a mutually
beneficial trading of shares of these schools among these students. |

Proof of Theorem 6. Part (i) builds on part (ii), so it will appear last. Through-
out, we let K and J be the sets of over- and under-subscribed schools.

Part (ii): Let o*(-) be an equilibrium and ¢*(-) be the associated allocation.
For any v € V, consider an optimization problem:

[P(V)] max Zvaxa subject to Z DaZa < Z pa‘b:(v)a

K
XGA¢*(V) a€sS aeK aeK

where p, = max{ [ 7% (v)du(v),1} and
Aq{{*(v) = {($1, 7'7;71) €A ‘ Lo = ¢Z(V),Va € S\K}

is the set of all assignments that may differ from ¢*(v) only in the probability
shares of schools in K.
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We first prove that ¢*(v) solves [P(v)]. This is trivially true for any type v-
student whose most preferred school is the worst school w. Then, by Lemma

5-(1), @i (v) =1 and z, = ¢ (v) = 0,Va € K. So, ¢*(v) solves [P(v)].

Hence, assume that m1(v) # w in what follows. Fix any such v, and fix any
arbitrary x € Aéﬂ (v) Satisfying the constraint of [P(v)]. We show below that
the type v student can achieve the assignment x by adopting a certain targeting
strategy in the CADA game, assuming that all other players play their equilibrium
strategies o*.

To begin, consider a strategy called a in which she targets school a € S and
also top-ranks it in her ordinal list but ranks all other schools truthfully. If type
v plays strategy a, then she will be assigned to school a with probability

1 1

max{ [ oa(W)du(¥). 1}~ pa

If a € J, this probability is one. If a € K, then she will be rejected by school
a with positive probability. If she is rejected, she will apply to other schools.
Clearly, she will not succeed in getting into any schools in K, since they are
oversubscribed. The conditional probabilities of getting assigned to schools J do
not depend on which school in K she has targeted (and gotten turned down), due
to our design whereby her non-target draw wp is independent of her target draw
wr (recall footnote 24). For each b, let that conditional assignment probability
be ¢;(v) for type v. Obviously, >, ; ¢(v) = 1.

Suppose the type v student randomizes by choosing “strategy a” with proba-
bility yq := paxq, for each a € K, and with probability

™ (0" (v) — pata) (1 - pl)] ).

aeK

Yo =0y (V) +

for each b € J. Observe y, > 0 for all b € S. This is obvious for b € K. For b € J,
this follows since the terms in the square brackets are nonnegative:

D (a7(v) = paa) (1 - pl) = 2 (pail() = puva) (1 o )

acK @ acK a
= [Z Pa(da(v) — xa)] - [Z(@;(V) - xa)] = Zpa(qfi(") — Za) 20,
acK acK acK

where the first equality is implied by Lemma 5-
since x € Af*(v) (which implies Y cp Ta = D pei

(iii), the third equality holds
¢*(v)), and the last inequality
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follows from the fact that x satisfies the constraint of [P(v)]. Further,

S = S i)+ | T w0 ) (1 1) | i)
acK Pa

a€S aeK beJ

=3 pura+ Y. i) 2:[ p““( aﬂ(éj% )

op(v) +

acK beJ aeK beJ
1
= Sprat T+ 3 [ - pura) (1- )}
aeK beJ aeK Pa
=D aiW) Do)+ D (@) —xa) = D oi(v) =
acK beJ acK acsS

The third equality holds since ), ; ¢;(v) = 1, the fourth is implied by Lemma
5-(iii), and the fifth follows since x € Ag*(v).

By playing the mixed strategy (yi,...,¥n), the student is assigned to school
a € K with probability

— = Tq,
Pa

and to each school b € J with probability

Yot | D va <1—>] & (v)

=
i)+ | S (e3(6) ) (1_a)] )+ | Srars (1—1)] 5 )
=i+ | Do) (1- pl)] 0 =5+ | T i (1- pl)] 5
= p(v) = zp.

In other words, the type v student can achieve any x € Aé‘; ) that satisfies
Y oack PaTa < D .ck Pa®y(V) by playing a certain strategy available in the CADA
game. Since every feasible x can be mimicked by a strategy available in the
equilibrium of CADA, ¢*(-) is a best response for type v, and since it satisfies
the constraints of [P(v)], ¢*(-) must solve [P(v)].

Moreover, since pu is atomless and [P(v)] has a linear objective function on a
convex set, ¢*(v) must be the unique solution to [P(v)] for a.e. v.

We prove the statement of the theorem by contradiction. Suppose to the con-
trary that there exists an allocation ¢(-) € def that Pareto dominates ¢*(-).
Then, for a.e. v, ¢(v) must either solve [P(v)] or violate its constraints. For a.e.
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v, the solution to [P(v)] is unique and coincides with ¢*(v). This implies that
for a.e. v,

(A8) > patalv) =D padi(v)

aeK aeK

Further, for ¢ to Pareto-dominate ¢*, there must exist a set A C V with u(A4) >0
such that each student v € S must strictly prefer ¢(v) to ¢*(v), which must imply
(since ¢*(v) solves [P(v)])

(AQ) Z pa¢a(v) > Z paﬁb:’;(v), Vv es.

aeK aceK

Combining (A8) and (A9), we get

(A10) Zpa/¢a )dp(v Zpa/¢ Ydp(v

acK aeK

Now since ¢(-) € &, for each a € S,

[ uiduto) =1= [ gw)ducv)

Multiplying both sides by p, and summing over K, we get

Zpa/qba )dpu(v Zpa/qba Ydp(v

aeK aeK

which contradicts (A10). We thus conclude that ¢* is Pareto optimal within K.
Part (iii): Consider the following maximization problem for every v € V:

[P(v)] I;leai(Zvaxa subject to Z PaZa < 1.
acs acK

When we have only one undersubscribed school, say b, then its assignment is
determined by x, = 1 — }° i 4. Therefore, an assignment x € A is feasible in
CADA game if (and only if) the constraint of [P(v)] holds.

Now consider the following maximization problem:

P (v)] maXZvama subject to Z Pala < Z Pa®(V)

xXEA
a€sS aeK aeK

Since ¢*(-) solves a less constrained problem [P(v)] and is still feasible in [P (v)],
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it must be an optimal solution for [F/(v)]. The rest of the proof is shown by the
same argument as in Part (ii).

Part (i): The argument in the text already established that the allocation
cannot admit a trading cycle that includes both oversubscribed and unsubscribed
schools. It cannot admit a trading cycle comprising only oversubscribed schools,
since the allocation is PE within these schools, by Part (ii), making it OE within
the schools, by Lemma 2-(ii). It cannot admit a trading cycle comprising only
undersubscribed schools, since the logic of Theorem 5-(i) implies that it is OE
within undersubscribed schools. Since the allocation cannot admit any trading
cycle, it must be OE. ||

Proof of Theorem 7. Consider first a DA algorithm with any random tie-breaking.
Since all students submit the same ranking of the schools, they are assigned to
each school with the same probability 1/n. In other words, the allocation is
pPA(v) = (1,..,3) for all v.

Consider now CADA algorithm and an associated equilibrium ¢*. Then, a frac-
tion o := [ o (v)dpu(v) of students target a € S in equilibrium. The equilibrium
induces a mapping ¢* : S — A, such that a student is assigned to school b with
probability ¢;(a) if she targets a.

Since the capacity of each school is filled in equilibrium, we must have, for each
be s,

(A11) S aki(a) = 1.

a€esS

That is, a measure o of students target a, and a fraction ¢} (a) of those is assigned
to school b. Summing the product over all a then gives the measure of students
assigned to b, which must equal its capacity, 1.

Consider a student with any arbitrary v € V. We show that there is a strategy
she can employ to mimic the random assignment ¢”4. Suppose she randomizes
by targeting school a with probability

* *
aCL aa

Yo = oo T

Then, the probability that she will be assigned to any school k is

of 1
*(p) = 20 ox(p) = =
Do) = 30 = 1

b

where the second equality follows from (A11). That is, she can replicate the
same ex ante assignment with the randomization strategy as ¢4 (v). Hence, the
student must be at least weakly better off under CADA. |



