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1 Introduction

Many real life allocation problems involve assigning indivisible objects to individuals with-

out using monetary transfer. Examples include university housing allocation, office assign-

ment, and student placement in public schools. A typical goal in such a problem is to assign

the objects efficiently while eliciting true preferences of the participants. The literature on

matching and market design has made considerable advances on this problem under the

assumption that agents have private values, namely that participants know the values of

the objects being assigned. Given the private-value assumption, studies in this literature

have identified a number of mechanisms that implement a Pareto efficient allocation in a

strategy-proof fashion, making it a dominant strategy for each participant to reveal his

preferences truthfully.1 These and related studies have helped the redesign of school choice

programs in cities such as Boston and New York City.2

In many resource allocation problems, however, the information about the objects being

allocated is dispersed among participants, and each agent is often unable to assess their

values based solely on his or her limited information. School choice is a case in point.

Students and parents participating in a school choice program typically have some infor-

mation but find it insufficient to form clear preferences on different schools. They consult

school websites, information booths, fairs and campus tours. But they also seek advice

from others through word-of-mouth, online social networks, and guidebooks, and often get

swayed by the anecdotes and personal experiences they are told.3

1Examples of mechanisms with these features include serial dictatorships (Svensson, 1999; Abdulka-

diroğlu and Sönmez, 1998), top trading cycles mechanisms (Abdulkadiroğlu and Sönmez, 2003b), hierar-

chical exchanges (Papai, 2000), and trading cycles mechanisms (Pycia and Ünver, 2009).
2See Abdulkadiroğlu, Pathak and Roth (2005), and Abdulkadiroğlu et al. (2005) who helped design

student placement mechanisms in New York City and Boston.
3For instance, high school applicants “constantly talk about which colleges each high school sends its

graduates to, where there might be more interesting students, how long the subway ride would be.” (see

“Even an Expert’s Resolve Is Tested by the City’s High School Admissions Process,” New York Times,

December 8, 2008). The importance of the information (or lack thereof) about schools also appears

to be behind the immense popularity of websites such as GreatSchools.org, RateMyProfessors.com, and

Insideschools.org. The first two websites enjoy more than 800,000 and 13,000,000 ratings and reviews on

schools and college professors by students and their parents, respectively. There several influential guide

books, such as New York City’s Best Public Schools series, written by Clara Hemphill, which is “regarded
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The scenario described here departs starkly from the private-value setting portrayed

by most existing studies in matching and market design.4 Instead, dispersed information

and the relevance of local information and others’ personal experiences make parents’ pref-

erences interdependent.5 That is, a parent’s information affects the preferences of other

parents. Interdependence of preferences is also present in other allocation problems, such

as student housing assignments, course allocation, after-school program assignment, and

others. How should one design allocation mechanisms in such an environment? How does

preference interdependence affect the performance of allocation mechanisms?

One important consideration in designing allocation mechanisms is the robustness of

incentives. It has long been recognized in the mechanism design literature (Wilson, 1987;

Bergemann and Morris, 2005) and reinforced by recent market design experiences (Abdulka-

diroğlu, Pathak and Roth, 2005; Abdulkadiroğlu et al., 2005) that robust incentives, such

as strategy-proofness in the private-value setting, ensure that participants not be harmed

by reporting their preferences truthfully, irrespective of their beliefs about other players.

Unfortunately, preference interdependence makes strategy-proofness virtually impossible

to attain. A natural notion in this setting is ex post incentive compatibility, which

requires that truth-telling form mutual best responses for every signal profile. Ex-post

incentive compatibility makes it safe for participants to report signals truthfully as long as

others do so as well, by making truth-telling a best response irrespective of the information

of other agents or beliefs about it.6

as the bible for navigating school choices,” according to the aforementioned article.
4In private-values models, parents have clear preferences about their choices but are concerned about

how to “play” the application game. For many parents, a more difficult problem is to determine what school

is good for their child. To see how differently a parent in this latter scenario would behave relative to the

one in the former scenario, suppose in a Boston mechanism, a parent receives a word-of-mouth information

suggesting that many other parents view a given school as desirable. According to the viewpoint from the

existing theory (first scenario), the parent will more likely respond to that information by avoiding ranking

that school at the top of her list. But the parent in the latter scenario may more likely rank it at the top,

realizing that the school is actually good.
5The term“interdependence” refers to informational externalities, namely, that one’s value of an object

depends on the private information held by others. Importantly, it does not include allocative externalities

— namely, that one’s preference depends on the other agents’ assignments, as would be the case with peer

effects.
6Given its appeal, the concept of ex post incentive compatibility is used extensively in mechanism design.

See Bergemann and Välimäki (2002), Cremer and McLean (1985), Esö and Maskin (2002), Krishna (2003),
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Our main finding is that such robustness comes with a high price. We show that there

exists no mechanism that is Pareto efficient and ex post incentive compatible whenever non-

trivial preference interdependence exists (and the preference domain is sufficiently rich).

Further, if we require the mechanism to be ex post “group” incentive compatible—namely

that there be no group of agents who can benefit from joint manipulations—, we find that

only a trivial mechanism that prescribes a constant outcome across states satisfies this

property. These negative results hold even when the value interdependence is arbitrarily

small so the preferences are nearly private, which stands in stark contrast to efficiency

obtained in “pure” private value models.

Finally, we show that weakening the ex post requirements can lead to more desirable

allocations. More specifically, in a setting with two agents and two objects, a Pareto

efficient and Bayesian incentive compatible mechanism exists if the standard single crossing

property holds and agents’ preferences are sufficiently congruent. Our analysis suggests

that it may be important to pay attention to mechanisms that violate ex post incentive

compatibility but satisfy Bayesian incentive compatibility in order to achieve societal goals

if interdependence of valuations exists. This is in a sharp contrast to private-values setting,

in which various studies in recent matching and market design literature have emphasized

the importance of strategy-proofness (see Abdulkadiroğlu, Pathak and Roth (2009) for

instance).

2 Related Literature

Our findings intersect with several strands of existing research. First, the central theme

of our paper agrees with Jehiel and Moldovanu (2001) and Jehiel et al. (2006) who inves-

tigate the difficulties associated with interdependent values under the transferable utility

setup. Specifically, the former paper establishes generic impossibility of implementing the

efficient allocation in Bayesian equilibrium; and the latter proves the generic impossibility

of implementing an allocation that varies nontrivially with states in ex post equilibrium.

In the public decision setting, Li, Rosen and Suen (2001) also establish impossibility of

Bayesian implementing an efficient outcome without transfers. While our results reinforce

and Perry and Reny (2002) for instance.
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and complement these papers, there are several important distinctions.

First, the inefficiency result of Jehiel and Moldovanu (2001) (established in Bayesian

implementation) may at first glance appear to imply ours (established in ex post imple-

mentation, which is a stronger requirement), but the efficiency requirements are different

between the two models. Specifically, they employ utilitarian efficiency as the welfare cri-

terion, whereas we focus on Pareto efficiency.7 The latter is much weaker, and there are

often many Pareto efficient allocations for a given signal profile. Therefore, there are many

Pareto efficient mechanisms. Hence, to show the impossibility of efficiency, one must show

that all such mechanisms violate ex post incentive compatibility. Second, unlike the public

decision problem Jehiel et al. (2006) consider, our triviality result is derived in the private-

object setting. In the private-object setting, each agent is indifferent across a number of

allocations as long as her own assignment is identical. As shown by Bikhchandani (2006),

this fact can be exploited to provide non-trivial mechanisms in the private-object setting

(with monetary transfers available).8 Finally, the results of both Jehiel and Moldovanu

(2001) and Jehiel et al. (2006) require that agents have multi-dimensional signals while

ours do not. Due to these distinctions, our impossibility results are not implied by these

papers, but rather extend their insights to a non-transferable utility environment.

As will be seen, the Bayesian impossibility result by Li, Rosen and Suen (2001) arises

from the type of public decision problems they consider as well as their restriction on de-

terministic mechanisms. In this environment, they show that any Bayesian-implementable

mechanism must be partitional with respect to agents’ signals, and that the partitional

structure is incompatible with Pareto efficiency. In our private-good environment with no

restriction on the mechanism, the partitional structure does not preclude Pareto efficiency.

In Section 5, we provide a (random) mechanism that has the partitional structure but

nonetheless Bayesian-implements the Pareto-efficient allocation. As we shall discuss in Re-

mark 6, this possibility result applies to a type of public decision problem labeled “negative

7The reason for the difference is the environments that these two papers focus on. Jehiel and Moldovanu

(2001) consider a transferable utility environment in which Pareto efficiency boils down to utilitarian

efficiency. Utilitarian efficiency is not implied by Pareto efficiency, however, in our non-transferable utility

environment.
8By contrast, the impossibility of efficiency under Bayesian incentive compatibility continues to hold in

the private object setting (see Example 14 of Jehiel and Moldovanu (2006)). We thank Benny Moldovanu

for informing us of this result.
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externality” by Bergemann and Morris (2008). This difference further highlights the role

played by ex post implementation in our impossibility result.

Our model is also related to Chakraborty, Citanna and Ostrovsky (2010) and Chakraborty

and Citanna (2011), who study preference interdependence in a matching context. Their

setup deals with two-sided matching in which agents on one side are matched with agents

on the other side, whereas agents are assigned objects in our setup. This difference entails

crucial distinctions both in terms of the problems studied and the main thrust of the anal-

ysis. For instance, the primary concern in their paper is stability of matching between the

two sides, whereas our primary focus is on the efficiency of allocations.9 Unlike two-sided

matching, in the object allocation setting, stability is not relevant whereas efficiency is a

central issue.

Finally, the current study is part of a growing research field of matching and market de-

sign. Gale and Shapley (1962) formalized the two-sided matching problem, and Roth (1984)

stimulated early applications of matching theory to economic problems. In particular, mar-

ket design for student placement due to Balinski and Sönmez (1999) and Abdulkadiroğlu

and Sönmez (2003b) has been extensively studied in recent years. As mentioned above, the

main difference of the current paper from this line of studies is our attention to interde-

pendent values. The field is too large to summarize here. Instead, we refer to surveys of

the literature by Roth and Sotomayor (1990), Roth (2002), Sönmez and Ünver (2009), and

Pathak (2011).

3 Illustrative Example

We illustrate the main insight for our impossibility results in a simple setup in which two

agents, 1 and 2, are assigned two objects, a and b, one for each agent. There is no money

in this economy. Let vio(s
1, s2) > 0 denote agent i = 1, 2’s value of receiving object o = a, b,

when agent j = 1, 2 has signal sj ∈ [0, 1]. Without loss, consider agent i’s net utility gain

ui(s) := via(s) − vib(s) from receiving a instead of b, when the signal profile is s = (s1, s2).

9While Chakraborty and Citanna (2011) also consider efficiency, two-sidedness of matching makes their

notion quite distinct from ours. They assume the agents on one side have common preferences of the agents

on the other side, so every non-wasteful (full) matching is Pareto efficient.
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The function ui for each agent i = 1, 2 is increasing in both signals and satisfies the single

crossing property:
∂ui(s)

∂si
>
∂u−i(s)

∂si
,∀s ∈ [0, 1]2, (1)

that is, one’s signal affects his own value more than the other’s.

Let So1o2 denote the set of signal profiles such that agent 1 prefers object o1 ∈ {a, b}
and agent 2 prefers object o2 ∈ {a, b}, strictly for at least one agent.10 A Pareto efficient

allocation must assign a to 1 and b to 2 when the signal profile is in Sab (because 1 likes

a more than b, and 2 likes b more than a in Sab), and likewise must assign a to 2 and

b to 1 when the signal profile is in Sba. Assume that both of these sets are nonempty.

These sets are depicted as shaded areas, respectively, in Figure 1. (In this figure, agent

i’s indifference curve depicts the locus of signal profiles that make her indifferent between

the two objects; i.e., the set {s ∈ [0, 1]2|ui(s) = 0}.) Note that Pareto efficiency does not

uniquely determine the assignment when both agents prefer a to b (i.e., when the signal

profile is in Saa) or when both agents prefer b to a (i.e., when the signal profile is in Sbb),

or when both of them are indifferent.11

We first show that there exists no mechanism that is Pareto efficient and ex post incen-

tive compatible.12 To see this, suppose otherwise. Then, by the revelation principle, there

is a direct mechanism that is ex post incentive compatible and Pareto efficient. Then, at

state A = (s1
A, s

2
A) ∈ Sab, agent 1 must receive a and agent 2 must receive b, and reporting

the signal truthfully is a mutual best response. Now consider state B = (s1
B, s

2
A). Note

that B differs from A only in agent 1’s signal, and further that agent 1’s (ordinal) pref-

erence remains unchanged. These two facts mean that, for the mechanism to be ex post

incentive compatible, agent 1 must receive a at B; or else, agent 1 has incentives to report

s1
A instead at state B and receive a for sure. Hence, the assignment remains unchanged

between states A and B. Now consider state C = (s1
B, s

2
C). State C differs from state B

only in agent 2’s signal, and that agent’s preference is the same between B and C. This

10For instance, Sab := {s ∈ [0, 1]2 |u1(s) > 0, u2(s) ≤ 0 or u1(s) ≥ 0, u2(s) < 0}.
11Hence, there are infinitely many Pareto efficient allocations. By contrast, the utilitarian efficient

allocation is uniquely pinned down (e.g., it is utilitarian efficient to assign agents 1 and 2 objects a and b,

respectively, below the dashed curve, and the other way around above the curve).
12As will be seen, the notion of ex post incentive compatibility must be defined more precisely for the

ordinal preference/non-transferable utility environment. A few alternative concepts will be considered in

the paper, but the distinction in the notions does not matter here since there are only two objects.
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Figure 1: Impossibility of Ex-Post Incentive Compatibility

means that the allocation must be the same at these two states. To see this, suppose for

contradiction that agent 2 receives a with positive probability at C (and b with the remain-

ing probability, as required by Pareto efficiency). Then agent 2 has incentives to misreport

her signal at state B, reporting s2
C instead. The same logic implies that the allocation at

state D = (s1
D, s

2
C) must be exactly the same as the allocation at C. And similarly, the

allocations at E = (s1
D, s

2
E) must be the same as the allocation at D. Recalling the series

of equivalences, we conclude that the allocation at E must be the same as the one at state

A — that is, agent 1 receives a and agent 2 receives b.13 But this allocation is not Pareto

efficient since E ∈ Sba, showing that there exists no mechanism that is Pareto efficient and

ex post incentive compatible.

In fact, the above argument implies much more than merely the impossibility of ex

13Our argument may be reminiscent of studies of local incentive compatibilities by Carroll (2012) and

Sato (2010). They consider sufficient conditions under which local incentive constraints are equivalent

to incentive constraints. Our analysis similarly considers a series of (small) signal changes to obtain a

conclusion about global behavior of a mechanism. However, these models have private values while ours

has interdependent values. Moreover, the questions they are analyzing are distinct from ours.
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post incentive compatibility and Pareto efficiency. We can show that any ex post incentive

compatible mechanism (that assigns both objects) is trivial in the sense that it prescribes

a constant allocation across all states! To see this, take two states arbitrarily, say s and

ŝ 6= s. As above, one can construct a connected path of states, s0 → s1 → ....→ sm, such

that s0 = s, sm = ŝ, any adjacent states sj and sj+1 have the same signal for one agent

and different signals for the other, and the latter agent’s ordinal preferences are the same

and strict for both states. Then ex post incentive compatibility implies that the allocation

is unchanged between any adjacent states. Therefore, we conclude that the allocation is

identical between any pair of states s and ŝ.

Several remarks are worth making. First, the latter “triviality” result—that the ex

post incentive compatibility means that only a constant allocation can be implemented—is

reminiscent of Jehiel et al. (2006), who arrive at the same conclusion under the transferable

utility setup. Despite the resemblance, however, the current result is not implied by theirs.

One reason is that their result requires that agents have multi-dimensional signals while

ours does not. In fact, the absence of monetary transfers is needed for our result. If

monetary transfers were available in our example, a Pareto efficient and ex post incentive

compatible mechanism exists, despite the fact that Pareto efficiency would entail a stronger

allocative requirement in the presence of monetary transfer.

This can be seen as follows. Note first that, given transferable utilities, Pareto effi-

ciency implies utilitarian efficiency, which requires that agents 1 and 2 receive a and b,

respectively, if u1(s) > u2(s) (which corresponds to the region below the dashed curve in

Figure 1) and b and a, respectively, if u1(s) < u2(s) (the region above the dashed curve in

Figure 1). To see how this outcome can be implemented in an ex post incentive compatible

mechanism, let

σi(sj) := sup{si ∈ [0, 1]|uj(si, sj) ≥ ui(si, sj)}

for i, j = 1, 2, i 6= j, if the set is nonempty, or else let σi(sj) := 0. Suppose that the

mechanism designer collects reports (s1, s2) ∈ [0, 1]2 from the agents and assigns the objects

in a utilitarian-efficient manner, while charging agent i a tariff pi(sj) := ui(σi(sj), sj)

whenever she receives a. It then follows that, given the associated tariffs, agent i prefers to

receive a to b at any signal profile in which she receives a and that she prefers to receive b

to a at any signal profile in which she receives b, so truthful reporting is ex post incentive

9



compatible.14

Second, the particular assumptions made above — convexity of So1o2 , the single cross-

ing property, and the assumption that there are only two agents and two objects — are

not needed for the impossibility of implementing the efficient allocation above. Section 4

will establish inefficiency in a general setting in which these assumptions are relaxed. By

contrast, the second impossibility result above (i.e. the impossibility of nontrivial mecha-

nisms) does not generalize straightforwardly beyond the two-agents two-objects case. To

see this, suppose that there are three agents, 1, 2, and 3, and three objects, a, b, and c. A

mechanism that always assigns object c to agent 3, but assigns a and b between agents 1

and 2 in a way that varies only with agent 3’s signal, is clearly ex post incentive compatible.

This example points to another difference of the current model from Jehiel et al. (2006).

Unlike their public decision problem, agents are indifferent across some allocations in our

setting; for instance, agent 3 is indifferent on how a and b are allocated between 1 and

2. This indifference can be exploited to implement a non-constant allocations in ex post

incentive compatible mechanisms. In Subsection 4.3, we provide a generalization of the

second impossibility result by strengthening the incentive requirement to ex post group

incentive compatibility.

Third, the impossibility results without monetary transfers rest crucially on ex post

incentive compatibility. Interdependence of preferences does not preclude efficiency if one

relaxes the equilibrium notion to Bayesian Nash equilibrium. Perhaps surprisingly, it is

possible to implement a Pareto efficient allocation, even without transfers, via a Bayesian

incentive compatible mechanism, when the agents’ preferences are sufficiently congruent.

14The detailed argument for incentive compatibility is similar to that in Maskin (1992) and as follows.

By the single crossing property and the definitions of σ1 and σ2, if ui(s)− uj(s) ≥ 0, then si ≥ σi(sj) and

sj ≤ σj(si), and if ui(s) − uj(s) = 0, then si = σi(sj) and sj = σj(si). Suppose first u1(s) − u2(s) ≥ 0.

Then, s1 ≥ σ1(s2), so

u1(s1, s2)− p1(s2) = u1(s1, s2)− u1(σ1(s2), s2) ≥ 0.

Hence, she (weakly) prefers a to b, so she will have incentives to report her signal truthfully. Suppose

u1(s)− u2(s) ≤ 0. Then s1 ≤ σ1(s2), so

u1(s1, s2)− p1(s2) = u1(s1, s2)− u1(σ1(s2), s2) ≤ 0.

Hence, the agent again has incentives to report her signal truthfully. The argument is symmetric for agent

2.
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We will present this Bayesian possibility result in Section 5.

4 Ex Post Incentive Compatible Mechanisms

4.1 Setup

Suppose there are n agents and n objects. Let N and O denote the set of agents and

objects, respectively. A (pure) assignment is a one-to-one mapping µ from N to O, where

µi = a means that agent i is assigned object a under assignment µ. LetM be the set of all

assignments. A random assignment is a probability distribution over pure assignments.

A random assignment P ∈ ∆(M)15 assigns agent i ∈ N to object a ∈ O with probability

P i
a =

∑
µ∈M

P (µ)1{µi=a},

where 1{µi=a} is the indicator function (whose value is one if µi = a and zero otherwise).

Each agent i receives a private signal si ∈ Si. We denote a profile of signals by s =

(s1, ..., sn) ∈ S ≡
∏

i∈N S
i. We assume that Si is a convex subset of Rmi

for some positive

integer mi for each i ∈ N . Agent i has value via(s) for object a at signal profile s, which is

differentiable (thus continuous in particular) in s. Let π : O → {1, ..., n} be a function that

represents ordinal preferences of an individual: An agent with preference π prefers a to b

if πa < πb and is indifferent between them if πa = πb. For each agent i and signal profile

s, agent i’s value function vi induces an associated preference relation πi(s) where πia(s)

denotes the ranking of object a in preference relation πi(s) induced by the value function

vi(s): Formally, πia(s) < πib(s) if and only if via(s) > vib(s). A preference relation πi is said

to be strict if πia 6= πib for any pair of objects a 6= b. A preference profile π = (πi)i∈N is

said to be strict if πi is strict for every i ∈ N .

An assignment µ is Pareto efficient at preference profile π if there exists no assignment

µ̂ such that πiµ̂i ≤ πiµi for all i ∈ N , with strict inequality for at least one i ∈ N . A

mechanism is a mapping ϕ : S → ∆(M) from a vector s ∈ S of signals to a random

assignment. A mechanism ϕ is Pareto efficient if, for all s ∈ S, every (pure) assignment

in the support of ϕ(s) is Pareto efficient at π(s) = (πi(s))i∈N .

15Given set X, we denote by ∆(X) the set of probability distributions over X.

11



We now introduce incentive compatibility concepts we shall use. To begin, we say that a

random assignment P first-order stochastically dominates another random assignment

P̂ for i at preference πi if ∑
b∈O:πi

b≤πi
a

P i
b ≥

∑
b∈O:πi

b≤πi
a

P̂ i
b ,

for all a ∈ O. If all these inequalities hold and at least one of them holds strictly, then we

say that P strictly first order stochastically dominates P̂ at πi. We then say that a

mechanism ϕ is weakly ex post incentive compatible if there exist no agent i, signal

profile s = (si, s−i) ∈ S, and signal s̄i for i such that ϕ(s̄i, s−i) strictly first-order stochasti-

cally dominates ϕ(si, s−i) at πi(s). A mechanism is ex post incentive compatible if, for

every agent i and signal profile s = (si, s−i), ϕ(si, s−i) first-order stochastically dominates

ϕ(s̄i, s−i) for all s̄i at πi(s). Unlike weak ex post incentive compatibility, ex post incentive

compatibility even eliminates the possibility that an agent’s random assignments under

true and misreported preferences are incomparable with respect to first-order stochastic

dominance. Clearly, ex post incentive compatibility is a stronger requirement than weak

ex post incentive compatibility.

Remark 1. As is clear, our notions of incentive compatibility are ordinal.16 The ordinal

concept has the additional benefit of being robust to the specific assumptions about agents’

attitudes toward risk or uncertainty. One could alternatively define ex post incentive com-

patibility based on expected utilities. This alternative concept is weaker than our notion

of ex post incentive compatibility but stronger than weak ex post incentive compatibility.

Note that all these concepts coincide if one restricts attention to deterministic mechanisms

as is often done in mechanism design, for instance Jehiel et al. (2006).

4.2 Inefficiency in Weak Ex Post Implementation

We now present our first impossibility result. To do so, we introduce a few assumptions on

the signal space. The first assumption is central to our study: it formalizes the requirement

that there be at least some interdependence in agents’ valuations.

16Bogomolnaia and Moulin (2001) define ordinal incentive compatibility concepts in private-values envi-

ronments. Our concepts reduce to theirs under private values.
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Assumption 1 (Interdependence). For any i, j ∈ N , a, b ∈ O such that a 6= b, and

s ∈ S such that via(s) = vib(s), there exists zj ∈ Rmj
with ‖zj‖ = 1 such that ∇zjv

i
a(s) 6=

∇zjv
i
b(s).

17

This assumption requires that agent j’s signal influences agent i’s relative preferences

between any pair of objects, at least when agent i is indifferent between these two objects.

This condition captures the notion of interdependence. It is worth noting that the condition

does not require the value interdependence to be large. As will be seen from Example 1,

the condition may hold even with very little interdependence (i.e., almost private values).18

The next assumption means that the signal space is sufficiently rich. To state the

condition, fix any pair of agents i and j, two objects a and b, and signal profile s−ij ∈ S−ij.
Then, for k, k′ ∈ {a, b}, we define Sijkk′(s

−ij) ⊂ Si × Sj to be the (open) set of i and j’s

signal profiles for which (i) agent i ranks k strictly above o ∈ {a, b}\{k}, and o strictly

above any k′′ /∈ {a, b}, (ii) agent j ranks k′ strictly above o ∈ {a, b}\{k′}, and o strictly

above any k′′ /∈ {a, b}, (iii) all other agents rank both a and b strictly below any k′′ /∈ {a, b}
(we suppress the dependence of Sijkk′(s

−ij) on the set of objects {a, b} to simplify notation).

Assumption 2 (Rich Domain). There exist i, j ∈ N , a, b ∈ O, and s−ij ∈ S−ij such that

Sijkk′(s
−ij) is non-empty for all k, k′ ∈ {a, b}.

As suggested by the name, the Rich Domain assumption postulates that the signal

structure is rich enough to generate various preference profiles. Specifically, it means that

one should be able to find two agents, a signal profile for all other agents, and two objects

a and b such that the two prefer a and b to the other objects, the other agents find them

the two least preferred, and the two agents find either a or b to be the most preferred

depending on their signals.

In order to state the next assumption, fix the two agents i and j, two objects a and b,

and signal profile s−ij ∈ S−ij as before. For k ∈ {a, b}, let Sijk·(s−ij) ⊂ int(Si × Sj) denote

17Here, ∇zjvio(s), o = a, b, denotes the directional derivative of the function vio along a given vector

zj ∈ Rmj

with Euclidean norm ‖zj‖ = 1 at a given signal profile s ∈ S. To be concrete, ∇zjf(s) :=

lim
h→0

f(sj + hzj , s−j)− f(sj , s−j)

h
for any zj ∈ Rmj

with ‖zj‖ = 1 such that sj + hzj ∈ Sj for sufficiently

small h > 0.
18In Figure 1, the interdependence is satisfied as long as agent 1’s indifference curve has no vertical

segment and agent 2’s indifference curve has no horizontal segment.
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the set of i and j’s interior signal profiles19 for which (i) and (iii) in the above definition of

Sijkk′(s
−ij) hold but the property (ii) is relaxed to: (ii’) agent j ranks a and b strictly above

any k′′ /∈ {a, b}. That is, Sijk·(s−ij) only differs from Sijkk′(s
−ij) in that agent j’s ranking

between a and b is unspecified in the former set. Similarly, Sij·k′(s−ij) denotes the set of i

and j’s interior signal profiles for which (ii) and (iii) in the above definition of Sijkk′(s
−ij)

hold but (i) is replaced by a weaker property: (i’) agent i ranks a and b strictly above any

k′′ /∈ {a, b}.

Assumption 3 (Connectedness). For some i, j ∈ N , a, b ∈ O, and s−ij ∈ S−ij satisfying

the Rich Domain assumption (Assumption 2), and for some k ∈ {a, b}, both Sijk·(s−ij) and

Sij·k(s−ij) are connected.20

In our context of Euclidean spaces, connectedness of the open set Sijk·(s−ij) means that

any two points in that set can be linked by a path contained in that set. Roughly, it means

that the ordinal preferences vary stably with the changes in signals of agent i and j when

others’ signals remain fixed. This condition is relatively mild and in particular weaker than

the assumption that the set Sijk·(s−ij) is convex.

We are now ready to present our first impossibility theorem (all proofs are in the

Appendix A).

Theorem 1. Under the assumptions of Interdependence, Rich Domain, and Connected-

ness, there exists no mechanism ϕ that is both Pareto efficient and weakly ex post incentive

compatible.

The key assumption used for the theorem is Rich Domain. Clearly, this assumption is

easier to satisfy when each agent’s signal is multidimensional, but multidimensionality of

individual signals is not needed for the assumption. In fact, the Rich Domain assumption

is satisfied even in fairly natural models with single dimensional signals. This point is

illustrated in the following example, which one can see as a natural extension of the two-

agent example described in the earlier Section 3.21

19By taking the interior of Si ×Sj , we are ruling out points on the boundary of Si ×Sj , which will give

us some room to perturb signal profiles when needed.
20Note that a set is connected if it cannot be partitioned into two sets that are open in the relative

topology.
21While the utility functions are linear in the example, the linearity assumption is made only for con-
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Example 1 (Canonical one-dimensional signal model). Assume that each agent i

has signal si ∈ [0, 1]. The set of objects is given by O = {o1, ..., on}. Given signal profile

s ∈ [0, 1]n, agent i’s utility from object ok is given by viok(s) = αkw
i(s)+βk, where αk, βk > 0

and wi(s) := γsi+(1−γ)
∑

j 6=i s
j

n−1
with γ ∈ (1

2
, 1). Assume that βk−1−βk = δ for some δ > 0

and ∆k := αk − αk−1 is positive and strictly decreasing in k for k = 2, ..., n. We assume in

addition that ∆nγ > δ > ∆2(1 − γ).22 The first (resp. second) inequality, combined with

the previous assumptions, implies that if si is sufficiently close to 1 (resp. 0), then agent i

prefers on the most (resp. least) and on−1 the second most (resp. second least) irrespective

of the others’ signals.23 This is illustrated in Figure 2 below for the case of 3 agents and

3 objects. As can be seen in the figure, for s1, s2 ' 1 and s3 ' 0, agents 1 and 2 prefer

o3 − o2 − o1 in that order, whereas agent 3 prefers o1 − o2 − o3 in that order.

α3w + β3
α2w + β2

w

α1w + β1

δ
∆2

δ
∆3

w3(s) w1(s), w2(s)

s1, s2 ' 1 and s3 ' 0

Figure 2: Illustration of Rich Domain Assumption with n = 3

Let a = on and b = on−1, and fix each sk, k 6= i, j, to be sufficiently close to zero so

that a and b are the two least preferred objects for agent k 6= i, j, irrespective of i and j’s

venience. Our assumptions of Interdependence, Rich Domain, and Connectedness can be seen to hold

with nonlinear utility functions which possess the same qualitative features as the linear utility functions

described here.
22Since ∆2 > ∆n, this assumption requires γ to be sufficiently large. One could think of this as a

strengthening of the single crossing property. As long as this assumption is satisfied, we can allow for

asymmetric value functions with αk, βk, and γ differing across agents.

23To see this, we can obtain viok(s)−viok−1
(s) = ∆k(γsi+(1−γ)

∑
j 6=i s

j

n−1 )−δ and note that this expression

is positive (resp. negative) for all k and s−i if ∆nγ > δ and si ' 1 (resp. ∆2(1− γ) < δ and si ' 0).
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signals. Now, one can find a signal profile (ŝi, ŝj) ∈ (0, 1)2 for agents i and j such that

wi(ŝi, ŝj, s−ij) = wj(ŝi, ŝj, s−ij) =
δ

∆n

,

which means that given the signal profile ŝ = (ŝi, ŝj, s−ij), both agents i and j are indifferent

between a and b.24 It is easy to check that this condition also implies that both i and j prefer

a and b to all other objects. Then, the Rich Domain assumption is satisfied with small ε > 0

chosen so that (ŝi+ε, ŝj+ε) ∈ Sijaa(s−ij), (ŝi+ε, ŝj−ε) ∈ Sijab(s−ij), (ŝi−ε, ŝj+ε) ∈ Sijba(s−ij),
and (ŝi − ε, ŝj − ε) ∈ Sijbb(s−ij).

Further, the Connectedness assumption is satisfied since the linearity of viok means that

Sijk·(s−ij) and Sij·k(s−ij), each of which is a set defined by finitely many linear inequalities, are

convex. Finally, to see that the Interdependence (Assumption 1) condition holds, suppose

that agent i is indifferent between objects ok and o` where k > `. It then follows that

(αk − α`)wi(s) = β` − βk. It is easy to see that this tie is broken by a slight change in any

agent’s signal since ∂wi(s)
∂sj

> 0,∀i, j. In particular, the required interdependence (1−γ) > 0

can be arbitrarily small, in which case the agents’ preferences become almost private.

Remark 2. As stated in Remark 1, our (ordinal) notion of weak ex post incentive com-

patibility is weaker than the cardinal notion of ex post incentive compatibility based on

expected utilities. Hence, our inefficiency result continues to hold when one employs the

latter concept of incentive compatibility.

4.3 Limits of Ex Post Group Incentive Compatibility

In this section, we consider joint manipulations by multiple agents, and a mechanism that is

robust against such manipulations in the ex post sense. Formally, we say that a mechanism

ϕ is manipulable by group N ′ ⊂ N at s ∈ S if there exists a signal profile ŝN
′ ∈
∏

i∈N ′ S
i

such that, for all i ∈ N ′, ϕ(sN
′
, s−N

′
) does not strictly first-order stochastically dominate

ϕ(ŝN
′
, s−N

′
) at πi(s), and ϕi(sN

′
, s−N

′
) 6= ϕi(ŝN

′
, s−N

′
) for at least one i ∈ N ′. A mechanism

ϕ is said to be ex post group incentive compatible if it is not manipulable by any group

24To see that such ŝi and ŝj exist, first take si = sj , which implies wi(si, sj , s−ij) = wj(si, sj , s−ij) by

definition of wi(·) and wj(·). Then note that these are smaller than δ/∆n for si = sj = 0, while the reverse

inequality holds for si = sj = 1. Since utility functions are continuous, by the mean value theorem there

exists a value ŝi = ŝj ∈ (0, 1) of the signals such that the desired equality holds.
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N ′ ⊂ N at any s ∈ S. This concept is a strengthening of ex post incentive compatibility,

requiring that the mechanism eliminates profitable misreporting of signals not only by an

individual agent, but also by a group of agents. We will show that this strengthening of

incentive compatibility leads to an even stronger impossibility result, namely that only a

constant allocation can be implemented.

To begin, we say that a mechanism ϕ is trivial if ϕ(s) = ϕ(ŝ) for all s, ŝ ∈ S such that

π(s) and π(ŝ) are strict preference profiles. Our result is that any ex post group incentive

compatible mechanism must be trivial. To obtain this result, we shall invoke again the

Interdependence assumption (Assumption 1), and two variants of Assumptions 2 and 3:25

Assumption 4 (Rich Domain*). For any preference profile π, there exists a signal profile

s ∈ int(S) such that π(s) = π.

The Rich Domain* assumption requires that, given any preference profile, there is an

interior signal that induces it.

Assumption 5 (Connectedness*). For any strict preference profile π, the set Sπ := {s ∈
S|π(s) = π} is connected.

Theorem 2. Under the assumptions of Interdependence, Rich Domain*, and Connected-

ness*, if ϕ is ex post group incentive compatible, then ϕ is trivial.

To see why group incentive compatibility is needed for this result, recall the example

in Section 3 with three agents, 1, 2, and 3, and three objects, a, b, and c. Consider a

mechanism that always assigns object c to agent 3, but assigns a and b between agents 1

and 2 in a way that varies only with the signal of agent 3. Such a mechanism is ex post

incentive compatible, but it is not ex post group incentive compatible since either 1 or 2

will stand to gain from a joint manipulation with agent 3.26

25It is straightforward, if tedious, to verify that there is no logical relationship between the Rich Domain

and Rich Domain* assumptions or between the Connectedness and Connectedness* assumptions. See

Appendix B.
26To see why this is the case, first note that by the Rich Domain* condition, there always exists a signal

profile s = (s1, s2, s3) such that both agents 1 and 2 prefer a to b. By definition of the mechanism, there

exists signal ŝ3 such that ϕ(s1, s2, s3) 6= ϕ(s1, s2, ŝ3). Since agent 3 receives c with certainty at any signal

profile, ϕia(s1, s2, s3) < ϕia(s1, s2, ŝ3) for an agent i ∈ {1, 2}. Thus, agent 3 can report ŝ3 to benefit agent i

at s, so ϕ is manipulable by {i, 3} at s.
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While ex post group incentive compatibility is a strong requirement, the triviality re-

sult is not expected from the traditional private value model. Observe that when the

values are private, our notion of ex post group incentive compatibility reduces to group

strategy-proofness (see Papai (2000) and Pycia and Ünver (2009) for instance). This lat-

ter requirement is met by a large class of mechanisms that attain efficiency in the private

value setting (Pycia and Ünver, 2009). In this regard, the triviality result of Theorem 2 is

striking, particularly since it holds even when the preferences are “almost” private.

To obtain the intuition of the proof, let s and ŝ be signal profiles at which preferences

of all agents are strict. We construct a connected path of states, s0 → s1 → ....→ sm, such

that s0 = s, sm = ŝ, preferences of all agents are strict at each of these states, and

• any adjacent states sk and sk+1 differ in the signal of only one agent, say jk, and

• the ordinal preferences remain unchanged between sk and sk+1 for all agents except

for at most one agent, say ik, who is different from jk.

Between two adjacent states sk and sk+1, the assignment for agent jk (whose signal varies

across those states) cannot change due to ex post incentive compatibility (since her ordinal

preferences are strict and remain unchanged per our construction). Ex post group incentive

compatibility then implies that the assignments for every other agent whose preferences do

not change should remain unchanged as well, because otherwise the agent whose assignment

changes can profitably manipulate jointly with jk. It then follows that the assignment for

ik (whose strict preferences vary across the states as described above) must also remain

unchanged, since the assignments for all other agents remain unchanged (recall that there

exists at most only one agent, ik, whose preferences vary, by our construction). Thus the

entire assignments remain unchanged between sk and sk+1 for each k, and hence between

s and ŝ, which implies the result. The detailed proof is in the Appendix.

Assumptions 1, 4, and 5 enable us to construct a connected path of states with the

above desired properties. However, the result can also be obtained even in other cases

without these assumptions if such a path can be constructed, as our proof method can be

applied to such cases. To see this, recall the canonical one-dimensional signal model in

Example 1. The preference specification of this example does not admit a full set of ordinal
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preferences, so it does not satisfy Rich Domain*.27 Yet, it can be shown that there exists

a connected path required for the proof of the theorem.

Proposition 1. Any ex post group incentive compatible mechanism is trivial in the Canon-

ical one-dimensional signal model in Example 1.

Remark 3. The “non-wastefulness” feature of the house allocation model — that all objects

are assigned — plays a role in the constancy result of Theorem 2. Without this assumption,

it is ex post group incentive compatible, for instance, to assign agent 1 his most preferred

object (which varies across signals) and assign all other agents “no” objects; the agents

would then have no incentive to lie about signals individually or jointly. In this sense,

Theorem 2 can be rephrased as establishing “constancy” among non-wasteful mechanisms.

As can be inferred from the example, though, there is a sense in which the extent of imple-

mentable “variation” in allocation is limited even in a wasteful mechanism. If one restricts

attention to a deterministic mechanism (one that implements a deterministic allocation for

each profile of signals), then only one agent’s allocation can change between any two signal

profiles.28

Remark 4. Ex post group incentive compatibility is a strong requirement. However, a closer

look at the proof reveals that the full force of this condition is not needed for the result.

More specifically, the only requirement we need is that no individual or pair of agents can

benefit from misreporting their preferences. In other words, precluding manipulations by

groups of arbitrary sizes is not needed. To see this point, simply observe that the proof, as

outlined above, applies the condition for only individuals and pairs.

5 Bayesian Incentive Compatible Mechanisms

In this section, we relax the incentive requirement by considering mechanisms that support

truthful reporting as Bayesian Nash equilibrium. We show that the weakening of

27This can be seen easily for the case with n = 3. Letting a := o3, b := o2, c := o1, the specification

admits preference orderings: abc, bac, bca, cba, but it does not admit acb or cab.
28Roughly speaking, if allocations vary for two agents (call them “inside” agents), even only as a function

of the signals of the other agents (call them “outside” agents), there is a scope for the outside agents to

jointly manipulate with one of the inside agents to improve his assignment, when both inside agents prefer

the same object.
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the incentive requirement enables us to achieve Pareto efficiency via a relatively simple

mechanism, under some intuitive condition.

We focus here on the 2×2 case with single-dimensional signals. Suppose two objects

a and b are assigned between agents 1 and 2. Each agent i’s signal si is assumed to

be drawn independently of sj from the interval [0, 1] via cdf F i. As in Section 3, let

ui(s) = via(s)−vib(s) and assume ui(·) to be increasing in both signals and satisfy the single

crossing property (1). A mechanism ϕ is Bayesian incentive compatible if truth-telling

is a Bayesian Nash equilibrium of mechanism ϕ — namely, for each agent, reporting his

true signal maximizes the expected utility, given that the other also reports his true signal.

In Figure 3, we reproduce the same indifference curves as in Figure 1, in which the two

agents’ indifference curves have a unique intersection.29 Let (s̄1, s̄2) denote that intersec-

tion, i.e., u1(s̄1, s̄2) = u2(s̄1, s̄2) = 0. We first observe that some well-known assignment

mechanisms do not achieve Pareto efficiency. Consider for instance a serial dictatorship

mechanism where agent 1 makes the first choice and agent 2 gets the remaining object.

Without knowing agent 2’s signal, he will choose a if s1 > ŝ1 and b if s1 < ŝ1, where ŝ1

satisfies
∫ 1

0
u1(ŝ1, s2)dF 2(s2) = 0, i.e. agent 1 is indifferent between a and b in expectation

at ŝ1. Hence, agent 1 will end up with object a to the right of the dashed vertical line in

the left panel of Figure 3, inefficiently obtaining a in the stroked area, unless ŝ1 happens

to coincide with s̄1. For the same reason, another well-known mechanism, random serial

dictatorship, in which one agent is chosen at random to pick the preferred object, is

inefficient unless the agents are symmetric. This will be seen shortly.

We propose an alternative mechanism, denoted ϕ∗, whose assignment probabilities are

described in the right panel of Figure 3. The first number in the parenthesis represents

the probability that agent 1 receives a, and the second number represents the probability

that agent 2 receives a. Clearly, this mechanism is Pareto efficient since agent 1 gets a

(resp. b) in the area Sab (resp. Sba). The remaining question is whether one can find a

pair p, p′ ∈ [0, 1] that makes ϕ∗ Bayesian incentive compatible. To analyze this question,

we begin by introducing a conept that plays a central role. We say that the two agents’

29Due to the single crossing condition, there can be at most one intersection. When there is no intersec-

tion, one can show that a Pareto efficient assignment is achieved through a trivial, constant, mechanism.
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Figure 3: Bayesian Implementation

threshold types’ preferences are congruent in expectation if either∫ 1

0

u1(s̄1, s2)dF 2(s2) ≥ 0 ≥
∫ 1

0

u2(s1, s̄2)dF 1(s1) (2)

or ∫ 1

0

u1(s̄1, s2)dF 2(s2) ≤ 0 ≤
∫ 1

0

u2(s1, s̄2)dF 1(s1). (3)

In words, the threshold types’ preferences are congruent in expectation if their preferred

objects, as evaluated by their expected payoffs, are distinct. In other words, the agents’

preferences, in expectation, are not in conflict. With this concept in hand, we are now

ready to present our first result about a Bayesian incentive compatible mechanism.

Theorem 3. There exists a pair p, p′ ∈ [0, 1] that makes ϕ∗ Bayesian incentive compatible,

if and only if the threshold types’ preferences are congruent in expectation.

In fact, the mechanism ϕ∗ can be implemented by modifying the serial dictatorship in

the following way. Each agent reports (simultaneously) whether she prefers a or b. If the

agents indicate they prefer different objects, they are assigned their preferred objects. If

both agents indicate they prefer a, then agent 1 is chosen with probability p and agent 2 is
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chosen with the remaining probability to claim a. If both indicate they prefer b, then agent

1 is chosen with probability 1− p′ and agent 2 is chosen with the remaining probability to

claim b.30 With the probabilities p and p′ given in Theorem 3, each agent i will indicate a

to be the preferred object if and only if si ≥ s̄i, provided that the other agent j does the

same. Clearly, this equilibrium strategy will result in the same assignment probabilities as

in the right panel of Figure 3. Note that this mechanism becomes equivalent to the random

serial dictatorship if and only if p = p′ = 1/2, which occurs only in nongeneric symmetric

cases.

This result, together with Theorems 1 and 2, suggests that the two incentive require-

ments entail dramatic differences in what can be implemented at least for two agent cases.

While efficient allocations can be implemented by a Bayesian incentive compatible mecha-

nism, only a constant allocation can be implemented if one insists upon ex post incentive

compatibility. The difference remains relevant even in an “almost private value” model. For

instance, consider a two-agent model in which ui(s) = γsi+(1−γ)s−i−0.5, for γ ∈ (1/2, 1)

and si is drawn uniformly from [0, 1]. Then, the congruence assumption in the statement

of Theorem 3 is satisfied regardless of γ ∈ (1/2, 1), so an efficient assignment is Bayesian

implementable. As γ goes to 1, the model approaches a pure private value model; yet the

impossibility results under ex post implementation remain valid for all such γ < 1. By

contrast, with private values (i.e. γ = 1), the efficient assignment is dominant strategy

(and hence ex post) implementable so the added incentive requirement does not entail any

efficiency loss.

Although the necessity of this condition for efficiency is unclear for general Bayesian

mechanisms, we can at least show that the condition is also necessary when we restrict

attention to ex-post monotonic mechanisms: that is, for each i = 1, 2 and for all sj,

ϕia(·, sj) is non-decreasing.

Theorem 4. There exists a Bayesian incentive compatible mechanism that is Pareto effi-

cient and ex-post monotonic if and only if the threshold types’ preferences are congruent in

expectation.

Remark 5. Theorem 3 can be generalized to the case in which signals are (weakly) positively

30Note that this mechanism is a proxy version in the sense that once each agent reports his message,

then the mechanism assigns the objects according to the description on behalf of the agents.
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correlated. To be concrete, the same result can be proven with the assumption that, for

each i and j 6= i, the conditional cdf F i(si|sj) is nonincreasing in sj, i.e. F i(·|sj) first-order

stochastically dominates F i(·|ŝj) for ŝj < sj. The sufficient conditions in the statement

are unchanged, except for replacing each cumulative distribution function F i(si) in the

inequalities to a conditional cdf at the threshold type, F i(si|s̄j).

Remark 6. While our model is framed in a private good setting, our possibility result

also applies to a public decision setting. To see this clearly, consider a binary public

decision model in which two agents 1 and 2 decide between two alternatives A and B. The

payoff of agent i = 1, 2 from A is (normalized to be) zero, and the payoff of i from B is

νi(s1, s2). Bergemann and Morris (2008) classify the public decision problem as positive

(informational) externality if both ν1 and ν2 are increasing in (s1, s2), and negative

(informational) externality if ν1 and −ν2 are increasing in (s1, s2). In words, positive

externality means that a favorable change in signals for one agent is also favorable for the

other, and negative externality means that a favorable change in signals for one agent is

unfavorable for the other agent. Li, Rosen and Suen (2001) focus on the positive externality

public decision problem and find impossibility of Bayesian-implementing a Pareto efficient

outcome via a deterministic and monotonic mechanism. While positive externality arises

in many contexts, the negative externality is relevant for some important contexts.31 One

can easily see that the negative externality public decision problem is isomorphic to our

private good model, by simply relabeling u1(s1, s2) = ν1(s1, s2) and u2(s1, s2) = −ν2(s1, s2)

and maintaining the same assumptions. Then, Theorems 3 and 4 imply a possibility result

for this type of public decision, as long as one does not insist on a deterministic mechanism.

31For instance, the decision could be an action against global warming, and the agents are different

regions, some negatively affected (southern regions subject to extreme climates) and others positively

affected (northern regions which will see productivity increase or opening of new shipping routes), and

the signals are the information indicating the severity of the global warning; or it could be a decision

for a free trade agreement whose success will affect some parties positively (e.g., consumers) and others

negatively (e.g., domestic industries), and the signals are the competitiveness of the exporting industry

of its trading partner country; or the decision could be a national health plan such as Obamacare whose

successful implementation may be favored by one party (e.g., democrats and the currently uninsured) and

disfavored by the other (e.g., republicans and the currently insured), and the signals could be health needs

by the currently uninsured.
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6 Conclusion

We have studied the implication of providing robust incentives in the matching of indivisible

objects to agents with interdependent preferences. In contrast to the private value setting

where efficiency can be achieved via a strategy-proof mechanism, we have found that a

similar robustness requirement in interdependent preferences — namely ex post incentive

compatibility — severely restricts implementable outcomes. Pareto efficiency is shown to

be impossible to achieve, and only a constant allocation can be attained if one also requires

ex post group incentive compatibility.

Our impossibility results differ from many other negative findings in the matching lit-

erature both in terms of its robustness and the methodology. First, the impossibility is

robust to the degree of preference interdependence; even a vanishing amount of interdepen-

dence is sufficient for our results. Second, our methodology differs from a typical argument

that “embeds” a negative small-market example in a given (possibly larger) market. In

particular, Theorem 2 establishes that assignments are constant across all generic signals,

which cannot be reduced to an analysis on a small subset of the market. Even Theorem 1,

which does employ an embedding technique, required a special care in our interdependence

setting because every agent’s signal affects preferences of everyone else.

Meanwhile, relaxing the robustness requirement raises some hope, as we have shown

that Pareto efficiency can be achieved via a Bayesian mechanism in the 2 × 2 case. The

basic idea is to exploit the fact that there are many Pareto efficient allocations, including

random allocations. Such richness of Pareto efficiency offers a sufficient degree of freedom

in randomization to generate the right incentives. In essence, the random allocation serves

a role akin to “divisible” currency that is utilized to fine-tune incentives in the standard

mechanism design problem (with money). This idea may apply to the general n × n

case. In other words, we may exploit the non-uniqueness of Pareto efficient allocations, by

searching for mechanisms that randomize over Pareto efficient allocations whenever they

are not unique. As n ≥ 3 gets large, however, the problem becomes complicated, since the

number of threshold types increases exponentially and the degree of freedom for selecting

randomizations becomes increasingly rich. We leave this extension for future research.

24



References
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Abdulkadiroğlu, Atila, Parag A. Pathak, Alvin E. Roth, and Tayfun Sönmez.

2005. “The Boston Public School Match.” American Economic Review Papers and Pro-

ceedings, 95: 368–372.
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Pycia, M., and M.U. Ünver. 2009. “A theory of house allocation and exchange mech-

anisms.” Boston College Working Papers in Economics.

Roth, Alvin E. 1984. “The Evolution of the Labor Market for Medical Interns and Resi-

dents: A Case Study in Game Theory.” Journal of Political Economy, 92: 991–1016.

Roth, Alvin E. 2002. “The economist as engineer: Game theory, experimentation, and

computation as tools for design economics.” Econometrica, 70: 1341–1378.

Roth, Alvin E., and Marilda A. O. Sotomayor. 1990. Two-sided matching: a study

in game-theoretic modeling and analysis. Cambridge:Cambridge University Press.

Sato, S. 2010. “A sufficient condition for the equivalence of strategy-proofness and non-

manipulability by preferences adjacent to the sincere one.”
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Appendix A: Proofs

In the proof of Theorem 1, we will invoke the following mathematical result.

Lemma 1 (Proposition 2.10, Stewart (1999)). Suppose X is an open and connected subset

of a (multi-dimensional) Euclidean space. Then X is “step-connected” in the following

sense: For any x, x′ ∈ X, there exists a sequence x0, x1, . . . , xm in X such that

1. For each k = 0, . . . ,m− 1, there exists i(k) ∈ {1, . . . , n} such that x
−i(k)
k = x

−i(k)
k+1

32;

2. xkxk+1 ⊂ X, ∀k = 0, . . . ,m − 1 with x0 = x and xm = x′, where xkxk+1 denotes the

line segment connecting xk and xk+1 (including the end points).

The set (or path)
⋃m−1
k=0 xkxk+1 in the above Lemma will be referred to as a step-wise

path between x and x′.

Proof of Theorem 1. Assume for contradiction that ϕ is Pareto efficient and weakly ex

post incentive compatible. Take any i, j ∈ N , a, b ∈ O, and s−ij ∈ S−ij that satisfy the Rich

Domain and Connectedness assumptions. Suppose without loss that the Connectedness

assumption is satisfied with k = a. Note that Sija·(s−ij) and Sij·a(s−ij) are step-connected

since they are connected and open. We first observe that there exists a signal profile

ŝij = (ŝi, ŝj) ∈ Sij·a(s−ij) such that given ŝ := (ŝij, s−ij), for any c 6= a, b,

via(ŝ) = vib(ŝ) > vic(ŝ), v
j
a(ŝ) > vjb(ŝ) > vjc(ŝ), and

vkc (ŝ) > max{vka(ŝ), vkb (ŝ)},∀k 6= i, j.
(4)

To see this, use the Rich Domain assumption to choose any rij = (ri, rj) ∈ Sijaa(s−ij) and

tij = (ti, tj) ∈ Sijba(s
−ij). Then, by the Connectedness assumption, there must be some

continuous path between rij and tij that is contained in Sij·a(s−ij). Given the continuity of

that path and value functions, we must have some signal profile ŝij ∈ Sij·a(s−ij) such that

via(ŝ
ij, s−ij) = vib(ŝ

ij, s−ij) by intermediate value theorem. Clearly, ŝ = (ŝij, s−ij) satisfies

the desired preference relationship.

By the Interdependence assumption and relation (4), there exists zj ∈ Rmj
such that

(ŝi, ŝj − zj) ∈ Sijba(s−ij) and (ŝi, ŝj + zj) ∈ Sijaa(s−ij). Since ϕ is Pareto efficient, ϕj(ŝi, ŝj −
32Note that x−i = (xj)j 6=i denotes the components of vector x except for its i’th components.
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zj, s−ij) = a.33 Since j strictly prefers a most at both πj(ŝi, ŝj − zj, s−ij) and πj(ŝi, ŝj +

zj, s−ij) and ϕ is weakly ex post incentive compatible, we must have ϕj(ŝi, ŝj+zj, s−ij) = a.

Again since ϕ is Pareto efficient, ϕi(ŝi, ŝj + zj, s−ij) = b. Therefore we conclude that there

exists a signal profile s̃ij = (s̃i, s̃j) ∈ Sijaa(s−ij) such that ϕi(s̃ij, s−ij) = b and ϕj(s̃ij, s−ij) =

a (simply define s̃i = ŝi, s̃j = ŝj + zj).

Consider now any profile šij ∈ Sijab(s−ij) ⊂ Sija·(s−ij). By Lemma 1, the connectedness

of Sija·(s−ij), and the fact that s̃ij ∈ Sijaa(s
−ij) ⊂ Sija·(s−ij), one can find a step-wise path⋃m−1

k=0 s
ij
k s

ij
k+1 ⊂ Sija·(s−ij) between šij = sij0 and s̃ij = sijm. Since this path as well as value

functions are continuous, one can find some signal profile s̄ij = (s̄i, s̄j) ∈ sij` s
ij
`+1 for some `

such that (1) vja(s̄
ij, s−ij) = vjb(s̄

ij, s−ij) and (2) sij ∈ Sijaa(s−ij) for all profiles sij 6= s̄ij on

the (sub)step-wise path between s̄ij and s̃ij. (That is, s̄ij is the last point on the step-wise

path going from šij to s̃ij at which agent j is indifferent between a and b.) One can also

choose ` so that s̄ij 6= sij`+1. We then prove the following claim:

Claim 1. ϕi(sijk , s
−ij) = b and ϕj(sijk , s

−ij) = a for all k = `+ 1, · · · ,m.

Proof. Note first that the following is true:

1. ϕi(sijm, s
−ij) = ϕi(s̃ij, s−ij) = b and ϕj(sijm, s

−ij) = ϕj(s̃ij, s−ij) = a,

2. For each k = `+ 1, . . . ,m− 1, either sik = sik+1 or sjk = sjk+1,34 and

3. (sik, s
j
k) ∈ Sijaa(s−ij) for k = `+ 1, . . . ,m.

For each k = ` + 1, . . . ,m − 1, by items 2 and 3 above and ex post weak incentive com-

patibility of ϕ, ϕi(sik, s
j
k, s
−ij) = ϕi(sik+1, s

j
k+1, s

−ij) if sik 6= sik+1 and ϕj(sik, s
j
k, s
−ij) =

ϕj(sik+1, s
j
k+1, s

−ij) if sjk 6= sjk+1. In either case, this and the Pareto efficiency of ϕ imply

ϕh(sik, s
j
k, s
−ij) = ϕh(sik+1, s

j
k+1, s

−ij) for h = i, j, which, combined with item 1 above, gives

us the desired result. �

Now, to establish the desired contradiction, we consider two cases: (i) s̄j = sj`+1; (ii)

s̄i = si`+1.

33We write P j = a for a degenerate random assignment such that P ja = 1.
34This is because, by Lemma 1, we can take the sequence in such a way that sk and sk+1 differ only in

one dimension, and hence in one agent’s signal.
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Case (i): Let ∆si := si`+1 − s̄i. Then, for all ε ∈ (0, 1], (s̄i + ε∆si, s̄j) = (s̄i + ε∆si, sj`+1) ∈
s̄ijsij`+1 ⊂ Sijaa(s

−ij). With small enough ε > 0, it also holds that (s̄i−ε∆si, sj`+1) ∈ Sijab(s−ij).
Note that ϕi(sij`+1, s

−ij) = b by the above Claim 1, and observe that since agent i likes a

most at both πi(s̄i+ε∆si, sj`+1, s
−ij) and πi(si`+1, s

j
`+1, s

−ij), the weak ex-post incentive com-

patibility and Pareto efficiency of ϕ imply ϕi(s̄i + ε∆si, sj`+1, s
−ij) = ϕi(si`+1, s

j
`+1, s

−ij) =

b. Similarly, the weak ex-post incentive compatibility for agent i also implies ϕi(s̄i −
ε∆si, sj`+1, s

−ij) = b, which means the inefficiency arises since (s̄i − ε∆si, sj`+1) ∈ Sijab(s−ij).

Case (ii): By the Interdependence assumption and the fact in (1) above that vja(s̄
ij, s−ij) =

vjb(s̄
ij, s−ij), one can find zi ∈ Rmi

such that (s̄i + εzi, s̄j) ∈ Sijaa(s−ij) and (s̄i − εzi, s̄j) ∈
Sijab(s

−ij) for all small enough ε > 0. The Pareto efficiency then implies that ϕi(s̄i −
εzi, s̄j, s−ij) = a, which, in turn, implies ϕi(s̄i + εzi, s̄j, s−ij) = a due to the weak ex-post

incentive compatibility for agent i with s̄i + εzi. Thus, by the Pareto efficiency,

ϕj(s̄i + εzi, s̄j, s−ij) = b. (5)

With small enough ε, we also have (s̄i+εzi, sj`+1) ∈ Sijaa(s−ij) since (s̄i, sj`+1) = (si`+1, s
j
`+1) ∈

Sijaa(s
−ij). Then, since agent i likes amost at both πi(s̄i+εzi, sj`+1, s

−ij) and πi(si`+1, s
j
`+1, s

−ij),

the weak ex-post incentive compatibility and Pareto efficiency of ϕ imply ϕi(s̄i+εzi, sj`+1, s
−ij) =

ϕi(si`+1, s
j
`+1, s

−ij) = b, which, in turn, implies ϕj(s̄i + εzi, sj`+1, s
−ij) = a by the Pareto effi-

ciency of ϕ. Given this and (5), agent j with s̄j would prefer (mis)reporting sj`+1 to obtain

a rather than b when others’ type profile is (s̄i + εzi, s−ij) . �

Proof of Theorem 2. Consider two signal profiles s, ŝ ∈ S such that π(s) and π(ŝ) are

strict. We will assume s, ŝ ∈ int(S) and show ϕ(s) = ϕ(ŝ). Later we will extend our

argument to signals on the boundary.

Consider a sequence of strict preference profiles π0, π1, . . . , πm and a sequence of non-

strict preference profiles π̃0, π̃1, . . . , π̃m−1
35 such that

1. π0 = π(s), πm = π(ŝ),

2. For each k = 0, . . . ,m− 1, there exists ik ∈ N such that π−ikk = π̃−ikk = π−ikk+1 and πikk ,

π̃ikk , and πikk+1 are “adjacent” with one another where πikk 6= πikk+1 are strict while π̃ikk is

non-strict. That is, there exist ak, bk ∈ O such that ak 6= bk whose rankings are (equal

35With abuse of notation, the subscript here does not specify objects (as in πa and πb) as before.
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or) next to each other at πikk , π̃ikk , and πikk+1 such that πikk , π̃ikk , and πikk+1 are different

only in the ranking between ak and bk and πikk,ak < πikk,bk , π̃
ik
k,ak

= π̃ikk,bk , π
ik
k+1,ak

>

πikk+1,bk
.36

By the Rich Domain* assumption, there exists a sequence of signal profiles s0, s1, . . . , sm−1 ∈
int(S) such that π(sk) = π̃k for each k. Take a sequence of agents j0, j1, . . . , jm−1 such that

jk 6= ik for each k (such agents exist because |N | ≥ 2). By the Interdependence assump-

tion and the fact that s0, s1, . . . , sm−1 ∈ int(S), there exist signals (s̃jkk−, s̃
jk
k+)m−1

k=0 such that

π(s̃jkk−, s
−jk
k ) = πk and π(s̃jkk+, s

−jk
k ) = πk+1.

37

Claim 2. For each k = 0, 1, . . . ,m− 1,

ϕ(s̃jkk−, s
−jk
k ) = ϕ(s̃jkk+, s

−jk
k ).

Proof. First note, by construction, that πjk(s̃jkk−, s
−jk
k ) = πjk(s̃jkk+, s

−jk
k ) = πjkk and this

preference is strict. These facts as well as (group) ex post incentive compatibility of ϕ

imply that ∑
b:π

jk
k,b≤π

jk
k,a

ϕjkb (s̃jkk−, s
−jk
k ) =

∑
b:π

jk
k,b≤π

jk
k,a

ϕjkb (s̃jkk+, s
−jk
k ),

for each a ∈ O (otherwise, group ex post incentive compatibility of ϕ is violated at either

(s̃jkk−, s
−jk
k ) or (s̃jkk+, s

−jk
k ) by a singleton “group” jk). These equalities imply

ϕjk(s̃jkk−, s
−jk
k ) = ϕjk(s̃jkk+, s

−jk
k ). (6)

To show ϕ(s̃jkk−, s
−jk
k ) = ϕ(s̃jkk+, s

−jk
k ) suppose, for contradiction, that

ϕj(s̃jkk−, s
−jk
k ) 6= ϕj(s̃jkk+, s

−jk
k ), (7)

for some j ∈ N . By equality (6), j 6= jk. If inequality (7) holds for ik, then, by equality (6)

and the assumption that each of the n objects are assigned to exactly one of the n agents,

there is another agent j 6= ik for whom inequality (7) holds. Thus we can assume j 6= ik, jk

without loss of generality. Since πj(s̃jkk−, s
−jk
k ) = πj(s̃jkk+, s

−jk
k ) = πjk and this preference is

36For any agent i, index k, and object a, πik,a denotes the ranking of object a at preference πik.
37The argument is similar to the one for constructing s̃i in the proof of Theorem 1.
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strict for any such j by assumption, inequality (7) implies that there exists an object a ∈ O
such that ∑

b:πj
k,b≤π

j
k,a

ϕjb(s̃
jk
k−, s

−jk
k ) >

∑
b:πj

k,b≤π
j
k,a

ϕjb(s̃
jk
k+, s

−jk
k ), or

∑
b:πj

k,b≤π
j
k,a

ϕjb(s̃
jk
k−, s

−jk
k ) <

∑
b:πj

k,b≤π
j
k,a

ϕjb(s̃
jk
k+, s

−jk
k ).

In the former case, ϕ is manipulable by N ′ = {jk, j} at (s̃jkk+, s
−jk
k ) since ϕ(s̃jkk+, s

−jk
k ) does

not strictly first-order stochastically dominate ϕ(s̃jkk−, s
−jk
k ) for jk, j and ϕj(s̃jkk+, s

−jk
k ) 6=

ϕj(s̃jkk−, s
−jk
k ). In the latter case, ϕ is manipulable by N ′ = {jk, j} at (s̃jkk−, s

−jk
k ) since

ϕ(s̃jkk−, s
−jk
k ) does not strictly first-order stochastically dominate ϕ(s̃jkk+, s

−jk
k ) for jk, j and

ϕj(s̃jkk−, s
−jk
k ) 6= ϕj(s̃jkk+, s

−jk
k ). Therefore, ϕ is not ex post group incentive compatible. �

Claim 3. For each k,

ϕ(s̃jkk+, s
−jk
k ) = ϕ(s̃

jk+1

(k+1)−, s
−jk+1

k+1 ).

Proof. First note that by construction of the signals,

π(s̃jkk+, s
−jk
k ) = π(s̃

jk+1

(k+1)−, s
−jk+1

k+1 ) = πk+1.

Also observe that Sπk+1
is open because πk+1 is a strict preference profile and utility func-

tions are continuous in signal profiles, and connected by the Connectedness* assumption.

Thus, by Lemma 1, there exists a sequence s(0), s(1), . . . , s(l̄) ∈ Sπk+1
and i(0), i(1), . . . , i(l̄−

1) ∈ N such that

1. s(0) = (s̃jkk+, s
−jk
k ), s(l̄) = (s̃

jk+1

(k+1)−, s
−jk+1

k+1 ),

2. s(l)−i(l) = s(l + 1)−i(l) for each l ∈ {0, 1, . . . , l̄ − 1}.

For each l, since π(s(l)) = πk+1 is a strict preference profile and ϕ satisfies (group) ex post

incentive compatibility, an argument analogous to what lead to relation (6) in the proof of

Claim 2 implies

ϕi(l)(s(l)) = ϕi(l)(s(l + 1)). (8)

Since ϕ satisfies group ex post incentive compatibility and πk+1 is a strict preference profile,

this implies ϕ(s(l)) = ϕ(s(l + 1)) for each l by an argument similar to the last part of the

proof of Claim 2. Thus ϕ(s(0)) = ϕ(s(l̄)), completing the proof. �
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To complete the proof of the Theorem, observe that Claims 2 and 3 imply that

ϕ(s̃j00−, s
−j0
0 ) = ϕ(s̃

jm−1

(m−1)+, s
−jm−1

m−1 ). (9)

By arguments identical to the proof of Claim 3,

ϕ(s) = ϕ(sj00−, s
−j0
0 ), (10)

ϕ(ŝ) = ϕ(s
jm−1

(m−1)+, s
−jm−1

m−1 ). (11)

Relations (9)-(11) imply ϕ(s) = ϕ(ŝ).

Consider now a signal profile s on the boundary, i.e. s ∈ S\int(S), that is associated

with strict preference π(s). Choose any i for whom si ∈ Si\int(Si).

Claim 4. There exists a signal profile s̃ such that s̃i ∈ int(Si), s̃−i = s−i, and π(s) = π(s̃).

Proof. Let ŝ be a signal such that ŝi ∈ int(Si) and ŝ−i = s−i. Because Si is a convex

set, the agents’ utility functions are continuous, and π(s) is a strict preference profile,

there exists λ ∈ (0, 1) such that s̃ := λŝ + (1 − λ)s is in S and π(s̃) = π(s). Note that

s̃−i = s−i by definition of s̃. To show that s̃i ∈ int(Si), first note that there exists ε > 0

such that, for any s̄i ∈ Rmi
, ‖s̄i − ŝi‖ < ε ⇒ s̄i ∈ Si because ŝi ∈ int(Si) by assumption.

This fact and convexity of Si imply that there exists ε′ > 0 such that, for any s̄i ∈ Rmi
,

‖s̄i − s̃i‖ < ε′ ⇒ s̄i ∈ Si.38 This means that s̃i ∈ int(Si), completing the proof. �

Let s̃ be a signal profile s̃ such that s̃i ∈ int(Si), s̃−i = s−i, and π(s) = π(s̃): such a

signal s̃ exists by Claim 4. Then, a proof similar to that in Claim 1 above can be used to

show ϕ(s) = ϕ(s̃). Repeating this argument for each i whose signal si is on the boundary,

we can establish that ϕ(s) = ϕ(s̃) = · · · = ϕ(ŝ) for some ŝ ∈ int(S), which completes the

proof. �

Proof of Theorem 3. We only need to check that condition (2) or (3) holds if and only

if there exist p, p′ ∈ [0, 1] such that each agent with type s̄i is indifferent between reporting

38The claim holds for ε′ = λε for instance. To see this, let s̄i be a point in Rmi

such that ‖s̄i − s̃i‖ < ε′.

Let ši ∈ Rmi

be defined as ši := s̄i−(1−λ)si

λ . Because ŝi = s̃i−(1−λ)si

λ by definition of s̃i, it follows that

‖ši − ŝi‖ = ‖s̄i − s̃i‖/λ < ε′

λ = ε, implying that ši ∈ Si. Because s̄i can be expressed as a convex

combination s̄i = λši + (1− λ)si, this and convexity of Si imply s̄i ∈ Si.
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some si > s̄i and some s̃i < s̄i. Given this and the fact that ui is increasing in si, each agent

i with si > (<)s̄i would prefer reporting truthfully to any s̃i < (>)s̄i so ϕ∗ is Bayesian

incentive compatible. Now the indifference condition for s̄i requires: for agent 1,

p′
∫ s̄2

0

u1(s̄1, s2)dF 2(s2) =

∫ s̄2

0

u1(s̄1, s2)dF 2(s2) + p

∫ 1

s̄2
u1(s̄1, s2)dF 2(s2)

or

(1− p′)
∫ s̄2

0

u1(s̄1, s2)dF 2(s2) + p

∫ 1

s̄2
u1(s̄1, s2)dF 2(s2) = 0 (12)

and for agent 2,

(1− p′)
∫ s̄1

0

u2(s1, s̄2)dF 1(s1) =

∫ s̄1

0

u2(s1, s̄2)dF 1(s1) + (1− p)
∫ 1

s̄1
u2(s1, s̄2)dF 1(s1)

or

p′
∫ s̄1

0

u2(s1, s̄2)dF 1(s1) + (1− p)
∫ 1

s̄1
u2(s1, s̄2)dF 1(s1) = 0. (13)

Define

Ei
− :=

∫ s̄−i

0

ui(s̄i, s−i)dF−i(s−i) and Ei
+ :=

∫ 1

s̄−i

ui(s̄i, s−i)dF−i(s−i)

and note that Ei
− < 0 and Ei

+ > 0. Then, (12) and (13) can be rewritten as

(1− p′)E1
− + pE1

+ = 0 (14)

p′E2
− + (1− p)E2

+ = 0. (15)

To check the existence of (p, p′) ∈ [0, 1] that solves these equations, in Figure 4 below, we

draw solid lines passing through (p, p′) = (0, 1) for (14) and dashed lines passing through

(p, p′) = (1, 0) for (15).
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So the linear system (14) and (15) will have a solution if and only if two lines intersect at

a point like either A or B. For A to be an intersection, the slope of (14) must be weakly

smaller than −1 while the slope of (15) must be weakly greater than −1, i.e.

E1
+

E1
−
≤ −1 and

E2
+

E2
−
≥ −1

or

E1
− + E1

+ ≥ 0 ≥ E2
− + E2

+,

which is equivalent to (2). Similarly, B being an intersection is equivalent to (3). �

Proof of Theorem 4. The sufficiency of the congruence condition is already established

since ϕ∗ is Pareto efficient mechanism that is ordinal and ex-post monotonic. For the

necessity, we show that any Pareto efficient and ex-post monotonic mechanism must take

the same form as ϕ∗ almost everywhere.

Let SNE := [s̄1, 1]× [s̄2, 1] ⊂ [0, 1]2, i.e. the northeast square in the right panel of Figure

3. Let SNW , SSE, and SSW be defined similarly. Note that Sab ⊂ SSE and Sba ⊂ SNW .

Consider any Pareto efficient and ex-post monotonic assignment ϕ. By the Pareto efficiency,

we must have ϕ1
a(s) = 1 = 1− ϕ1

a(ŝ) for all s ∈ Sab, ŝ ∈ Sba.
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Now consider any signal profile s ∈ SNW ∩Saa. We can find another profile ŝ ∈ Sba with

ŝ1 = s1 and ŝ2 ≤ s2. The ex-post monotonicity and ϕ2
a(ŝ) = 1 imply ϕ2

a(s) = 1, and this

implies ϕ1
a(s) = 0. Consider alternatively any profile s ∈ SNW ∩ Sbb. We can find another

profile ŝ ∈ Sba with ŝ1 ≥ s1 and ŝ2 = s2. The ex-post monotonicity and ϕ1
a(ŝ) = 0 imply

ϕ1
a(s) = 0. To sum, we must have ϕ1

a(s) = 1 − ϕ2
a(s) = 0 for all s ∈ SNW . In a similar

fashion, it can be shown that ϕ1
a(s) = 1− ϕ2

a(s) = 1 for all s ∈ SSE.

Let us now turn to the region SNE. We need to show that ϕ1
a(s) is constant almost

everywhere in SNE. Consider any two signals s1, ŝ1 ∈ [s̄1, 1] for agent 1 with ŝ1 > s1. Note

that by the above argument

ϕ1
a(s

1, s2) = ϕ1
a(ŝ

1, s2) = 1, ∀(s1, s2), (ŝ1, s2) ∈ SSE. (16)

Also, by the ex-post monotonicity,

ϕ1
a(s

1, s2) ≤ ϕ1
a(ŝ

1, s2),∀(s1, s2), (ŝ1, s2) ∈ SNE. (17)

Now the difference in expected payoffs of s1 when reporting s1 and when reporting ŝ1 can

be written as∫ s̄2

0

(ϕ1
a(s

1, s2)− ϕ1
a(ŝ

1, s2))u1(s)dF 2(s2) +

∫ 1

s̄2
(ϕ1

a(s
1, s2)− ϕ1

a(ŝ
1, s2))u1(s)dF 2(s2)

=

∫ 1

s̄2
(ϕ1

a(s
1, s2)− ϕ1

a(ŝ
1, s2))u1(s)dF 2(s2),

where the equality holds since the first integral is equal to zero due to (16). Note that

u1(s) > 0 ∀s ∈ SNE. Thus, if (17) holds as a strict inequality for a positive measure of s2’s

in SNE, then the payoff difference above would be strictly negative so agent 1 with signal

s1 would be better off reporting ŝ1 rather than s1. So we must have

ϕ1
a(s

1, s2) = ϕ1
a(ŝ

1, s2), for almost all (s1, s2), (ŝ1, s2) ∈ SNE. (18)

A similar argument can be used to show

ϕ2
a(s

1, s2) = ϕ2
a(s

1, ŝ2), for almost all (s1, s2), (s1, ŝ2) ∈ SNE. (19)

Combining (18) and (19), we obtain for almost all signal profiles (s1, s2), (ŝ1, ŝ2) ∈ SNE,

ϕ1
a(s

1, s2) = ϕ1
a(ŝ

1, s2) = 1− ϕ2
a(ŝ

1, s2) = 1− ϕ2
a(ŝ

1, ŝ2) = ϕ1
a(ŝ

1, ŝ2).

A symmetric argument can be used to show ϕ1
a(s) is constant almost everywhere in

SSW . �
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Proof of Proposition 1. First we write viok(s) = αkw
i(s)+βk, where wi(s) := γsi+(1−

γ)
∑

j 6=i s
j

n−1
. Fix any s ∈ Sπ and ŝ ∈ Sπ̂. We show that there exists a step-wise path of the

desired form between the two points. We show these in two steps.

Claim 5. Fix any s ∈ Sπ and ŝ ∈ Sπ̂ for strict preference profiles π and π̂. There exists a

continuous path σ : [0, 1]→ S with σ(0) = s and σ(1) = ŝ such that σ(t) ∈ Sπ′ for a strict

preference profile π′ for all t ∈ [0, 1], except possibly for finite values, {t1, ...., tK}, and for

each value t ∈ {t1, ...., tK}, σ(t) ∈ Sπ′′ for π′′ that is strict for all agents except for one. (In

words, there exists a continuous path connecting s and ŝ that crosses an indifference curve

of at most one agent at a time and only finitely many times.)

Proof. For each agent i, there exists only a finite number of wi’s between wi(s) and wi(ŝ)

such that αkw
i+βk = αlw

i+βl for some k 6= l. This means that for any open neighborhood

W containing w(ŝ) := (w1(ŝ), ..., wn(ŝ)), the set

W ′ :=

{
w ∈ W

∣∣∣∣∃i, j ∈ N, i 6= j,∃k, l, k′, l′ ∈ O, k 6= l, k′ 6= l′, and ∃t ∈ [0, 1] such that

(αk − αl)(twi + (1− t)wi(s)) = βl − βk and (αk′ − αl′)(twj + (1− t)wj(s)) = βl′ − βk′
}

is a lower-dimensional subset of W .39 In particular, W \W ′ is nonempty.

Observe next that the gradient matrix ∇w(s) := [∇sjw
i] has γ > 1/2 on the di-

agonal entries and 1−γ
n−1

on the off diagonal entries, so has a full rank. Hence, for an

open neighborhood U ⊂ Sπ̂ containing ŝ, there exists an open neighborhood W con-

taining w(ŝ) := (w1(ŝ), ..., wn(ŝ)) such that for each w ∈ W there exists s̃ ∈ U with

w = w(s̃) = (w1(s̃), ..., wn(s̃)). In particular, one can choose s̃ with w(s̃) = w for some

w ∈ W \W ′. The path σ̃(t) = ts̃ + (1 − t)s then crosses at most one agent’s indifference

surface at a given t, and there can be only a finite number of such t’s in [0, 1]. By con-

struction, the path σ̂(t) = tŝ + (1 − t)s̃ stays inside Sπ̂ since the latter set is convex (and

hence crosses no agent’s indifference surface). Finally, a path σ(t) := σ̃(2t) for t ∈ [0, 1
2
]

and σ(t) := σ̂(2t− 1) for t ∈ (1
2
, 1] satisfies the requirement. �

39The fact that W ′ is a lower-dimensional subset of W can be seen because

W ′ =
⋃

i 6=j,k 6=l,k′ 6=l′

{
w ∈W

∣∣∣∣ (βl − βk)− (αk − αl)wi(s)
(αk − αl)(wi − wi(s))

=
(βl′ − βk′)− (αk′ − αl′)wj(s)

(αk′ − αl′)(wj − wj(s))
∈ [0, 1]

}
and the latter set is clearly lower-dimensional.
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Claim 6. There exists a step-wise path of the required form connecting s and ŝ.

Proof. By Claim 5, there exists a continuous path σ(t) with σ(0) = s and σ(1) = ŝ such

that σ crosses at most one agent’s indifference surface at a given t, only for finitely many

t’s: 0 < t1 < ... < tK−1 < 1 for some positive integer K. Let t0 ≡ 0 and tK ≡ 1. Let agent

ik ∈ N be indifferent over at least a pair of objects at tk, 0 < k < K, and let πk be such

that σ(t) ∈ Sπk for all t ∈ (tk−1, tk). Then, since the specified utility function satisfies the

Interdependence assumption, for such k there exists jk 6= ik such that sk− ≡ σ(tk)− εejk ∈
Sπk and sk+ ≡ σ(tk) + εejk ∈ Sπk+1

for a (positive or negative) real number ε with a

sufficiently small absolute value, where ej is a vector whose component corresponding to j

equals one and all other components equal zero. For ε with any sufficiently small absolute

value, any signal on the line segment between sk− and sk+ gives rise to the same strict

preference for all agents, except for agent ik whose preferences change from πikk to πikk+1 as

one moves from sk− to sk+ along that line segment. Since a set Sπk is an open connected

set, by Lemma 1, there exists a step-wise path σ̄k connecting s(k−1)+ and sk−, which varies

in one agent’s signal on each segment and lies within Sπk (where s0+ ≡ s and sK− ≡ ŝ).

Piecing together σ̄k with the line segment sk−sk+, for each k = 1, ..., K − 1 and finally

connecting with σ̄K , we construct a step-wise path of the required form. �

The above claims prove Proposition 1. �

Appendix B: Relationships across Different Conditions

The Rich Domain assumption does not imply the Rich Domain* assumption. As explained

in the main text of the paper, the canonical one-dimensional signal model of Example 1

for any n ≥ 3 is a counterexample.

The Rich Domain* assumption does not imply the Rich Domain assumption. To see

this point, consider a model with three agents 1, 2, 3 and three objects. For each i, her

ordinal preference depends only on signal si+1 (where we use the convention that i+ 1 = 1

for i = 3). Moreover, assume that for each i and her ordinal preference πi, there exists

si+1 ∈ int(Si+1) such that the ordinal preference is πi when the signal of agent (i + 1) is

si+1. Then the Rich Domain* assumption is satisfied by definition. On the other hand, for
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any i, j ∈ N , and s−ij, the ordinal preference of either i or j is constant across all si and

sj by construction, implying that the Rich Domain assumption is violated.

The Connectedness assumption does not imply the Connectedness* assumption. To see

this, consider a model with three agents 1, 2, 3 and three objects a, b, c, with the signal space

of each agent being [0, 1]. The utility function of agent i ∈ {1, 2} is given by via(s) = 0,

vib(s) = si− 1
2
, and vic(s) = −1 for all s. For agent j = 3, let vja(s) = −1, vjb(s) = (s3− 1

2
)2− 1

8
,

and vjc(s) = 0 for all s. Then clearly the Connectedness assumption holds with a, b,

i = 1, j = 2 and any s−ij = s3 in the definition of the condition, while Connectedness* is

violated since the subset of the signal space at which agent 3 prefers b to c (and c to a) is

not connected.

The Connectedness* assumption does not imply the Connectedness assumption. To see

this, consider a model with three agents 1, 2, 3 and three objects a, b, c, with the signal space

of each agent [0, 1]. For agent i ∈ {1, 2}, via(s) = 0, vib(s) = (si− 1
2
)2− 1

8
+s3, and vic(s) = −1

for all s. The preference of agent 3 is constant across signals. Then Connectedness* holds,

but Connectedness is violated because the Rich Domain assumption can only be satisfied

with objects a and b, agents 1 and 2, and s3 < 1/8, in which case, however, the set of

agents 1 and 2’s signals for which they prefer a to b and b to c is not connected.
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