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Abstract

We study Pareto efficient mechanisms in matching markets when the number of

agents is large and individual preferences are randomly drawn from a class of distri-

butions, allowing for both common and idiosyncratic shocks. We show that, as the

market grows large, all Pareto efficient mechanisms—including top trading cycles, se-

rial dictatorship, and their randomized variants—are uniformly asymptotically payoff

equivalent “up to the renaming of agents,” yielding the utilitarian upper bound in the

limit. This result implies that, when the conditions of our model are met, policy makers

need not discriminate among Pareto efficient mechanisms based on the aggregate payoff

distribution of participants.
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1 Introduction

Assigning indivisible resources without monetary transfers is an important problem in modern

market design; applications range from allocation of public housing, public school seats,
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employment contracts, and branch postings to the assignment of human organs to transplant

patients. A basic desideratum in designing such a market is Pareto efficiency. If a mechanism

is not Pareto efficient, a surplus can be generated and distributed in a way that benefits (at

least weakly) all participants, suggesting clear room for improvement.

In a centralized matching market, achieving Pareto efficiency is often not difficult. A

number of mechanisms are known to produce efficiency, often satisfying additional desirable

properties in terms of incentives and (ex ante) fairness.1 Rather the challenge is often which

mechanism to choose among many Pareto efficient ones.

This issue is important because alternative Pareto efficient mechanisms often treat indi-

vidual participants differently (often dramatically so). For instance, in serial dictatorship,

individuals are allowed to choose objects, one at a time, from a set according to some serial or-

der; the first dictator (the first individual in the serial order) could very well select the object

that is regarded by all as the best, while the last dictator (the final individual in the order)

may have to settle for the object regarded by all as the worst. Without monetary transfers to

compensate for the loss borne by the latter, the apparent conflict of interests leaves little hope

for consensus in terms of selecting from alternative Pareto efficient mechanisms. Ideally, the

selection must be based on some measure of aggregate welfare of participants. For instance, if

one Pareto efficient mechanism yields a significantly higher utilitarian welfare level or a much

more equal payoff distribution than others, that would constitute an important rationale for

favoring such a mechanism.

A similar concern arises when the designer has additional policy considerations, such as

“affirmative treatment” of some target group (say, identified based on their socio-economic

background). Specifically, the designer may select an efficient mechanism based on such addi-

tional goals (for instance, by elevating the target agents’ serial orders in serial dictatorship).

Any such adjustment will obviously impact the welfare of the participants at the individual

level, but do these adjustment impact the total welfare of the agents or their aggregate payoff

distribution? If so, how? If accommodating additional social objectives were to entail a sig-

nificant loss of utilitarian welfare or to produce a significant distributive impact, this would

call into question the merit of the policy intervention. This type of policy consideration

requires one to evaluate the payoff consequences of alternative Pareto efficient mechanisms.

1Mechanisms such as (deterministic or random) serial dictatorship produce efficiency without regard to

existing property rights; top trading cycles mechanisms achieve efficiency by allowing agents to trade pre-

existing property rights or priorities (Shapley and Scarf (1974), Abdulkadiroglu and Sonmez (2003)). These

mechanisms satisfy strategyproofness and can satisfy ex ante “equal treatment of equals” when the serial

order and initial ownership are drawn at random. Efficiency may also be achieved by allowing agents to

purchase the objects using “fake money” in an artificial market, as envisioned by Hylland and Zeckhauser

(1979).
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Unfortunately, little is known about how alternative mechanisms perform in this regard.

The purpose of the current paper is to fill this gap while providing useful insights on

practical market design in the process. To make progress, we add some structure to the

model. First, we consider markets that are “large” in terms of the number of participants as

well as in the number of object types. Large markets are clearly relevant in many settings.

For instance, in the US National Resident Matching Program, approximately 20,000 medical

applicants participate in filling the positions of 3,000 to 4,000 programs each year. In New

York City, approximately 90,000 students apply to over 700 high school programs each year.

Second, we assume that the agents’ preferences are randomly generated according to some

reasonable distribution. Specifically, we consider a model in which each agent’s utility from

an object depends on a common component (i.e., a portion that does not vary across agents)

and on an idiosyncratic component that is drawn at random independently (and thus varies

across agents). Studying the limit properties of a large market with preferences randomly

generated in this way provides a framework for answering our questions.

Our main finding is that all Pareto efficient mechanisms yield aggregate payoffs, or util-

itarian welfare, that converge uniformly to the same limit—more precisely, the utilitarian

optimum—as the economy grows large (in the sense described above). This result implies

that in large economies, alternative efficient mechanisms become virtually indistinguishable

in terms of the aggregate payoff distribution of the participants. In other words, agents’ pay-

offs are asymptotically equivalent across different efficient mechanisms, up to the “renaming”

of agents. This result implies that there is no reason to favor one efficient mechanism over

another. From a policy perspective, this means that a Pareto efficient allocation favoring or

prioritizing a certain group of individuals would not significantly harm utilitarian welfare or

significantly alter the distribution of payoffs in a large market.

Importantly, our equivalence holds in terms of the distribution of ordinal ranks enjoyed by

the participants, making the result robust to the particular specification of cardinal utilities

assumed. The result is also robust to the institutional details that the efficient mechanisms

must accommodate (e.g., in terms of the property rights and priorities enjoyed by some

agents), which makes the result readily applicable to many practical market design problems.

To test the applicability of our results to realistic market settings, we compare alternative

efficient mechanisms using simulated data as well as field data from the New York City school

choice program. As will be seen, the comparison supports our equivalence result.

The present paper contributes to several strands of literature. First, our equivalence

result is closely related to and complements the equivalence result among a class of efficient

mechanisms established by Abdulkadiroglu and Sönmez (1998) and its extensions (Pathak

and Sethuraman (2011), Carroll (2014), Lee and Sethuraman (2011) and Bade (2014)). As
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we shall discuss in detail, this equivalence result holds only in the absence of prior ownership

or priority rights, i.e., when participants are treated ex ante symmetrically via fair lotteries.

By contrast, our result holds for arbitrary priority or ownership structures, as long as the

market is sufficiently large. This generality makes our equivalence result applicable to many

real-world settings where there are often priority considerations for participants (as was the

case with New York City school choice program).

Second, our result contributes to the literature on large matching markets, particularly

those with a large number of object types and random preferences; see Immorlica and Mah-

dian (2005), Kojima and Pathak (2008), Lee (2014), Knuth (1997), Pittel (1989), Lee and

Yariv (2014), Ashlagi, Kanoria, and Leshno (2013) and Che and Tercieux (2015).2 The first

three papers are largely concerned with the incentive issues arising from the deferred accep-

tance (henceforth, DA) mechanisms of Gale and Shapley (1962). The last five papers are

concerned with the ranks of the partners achieved by agents on two sides of a market under

DA. We focus on the payoffs enjoyed by agents under efficient mechanisms. In a preference

environment closer to ours, Lee and Yariv (2014) show that stable mechanisms also yield

the utilitarian upper bound in a large market limit. As we show below via simulation and

data analysis, efficient mechanisms tend to converge much faster than do stable mechanisms,

and the magnitude of the difference can be considerable for realistic market sizes. Further,

our convergence result is robust, holding even for unbalanced markets, whereas their result

does not, as implied by Ashlagi, Kanoria, and Leshno (2013). Most importantly, the uniform

equivalence of efficient mechanisms (possibly employing different priority structures) estab-

lished in the current paper is quite striking and has no analogues in the existing literature.

Methodologically, the current paper utilizes a framework developed in random graph the-

ory; see Dawande, Keskinocak, Swaminathan, and Tayur (2001), for instance. In particular,

the proof method is similar to the way Lee (2014) exploits the implications of the stability of

agents on two sides in a suitably defined random graph; as will be clear, our method exploits

2Another strand of literature studying large matching markets considers a large number of agents matched

with a finite number of object types (or firms/schools) on the other side; see Abdulkadiroglu, Che, and Yasuda

(2015), Che and Kojima (2010), Kojima and Manea (2010), Azevedo and Leshno (2011), Azevedo and Hatfield

(2012) and Che, Kim, and Kojima (2013), among others. The assumption of a finite number of object types

enables one to use a continuum economy as a limit benchmark in these models. At the same time, this feature

makes the analysis and the resulting insights quite different. The two strands of large matching market models

capture issues that are relevant in different real-world settings and are thus complementary. The latter model

is more appropriate for situations in which there are a relatively small number of institutions, each with a

large number of positions to fill. School choice in some districts, such as Boston Public Schools, could be a

suitable application because only a handful of schools enroll hundreds of students each. The former model

is descriptive of settings in which there are numerous participants on both sides of the market. Medical

matching and school choice in some districts, such as the New York Public Schools, would fit this description.
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the implications of Pareto efficiency for an appropriately constructed random graph.

2 Set-up

We consider a model in which a finite set of agents are assigned a finite set of objects, at most

one object for each agent. Because our analysis will examine the limit of a sequence of finite

economies, it is convenient to index the economy by its size n. An n-economy En = (In, On)

consists of agents In and object types On, where |In| = n. For much of the analysis, we

shall suppress the superscript n for notational simplicity.

The object types can be interpreted as schools or housing units. Each object type o has

qo ≥ 1 copies or quotas. Because our model allows for qo = 1 for all o ∈ On, one-to-one

matching is a special case of our model. We assume that total quantity is Qn =
∑

o∈On qo = n.

In addition, we assume that the number of copies of each object is uniformly bounded, i.e.,

there is q̄ ≥ 1 such that qo ≤ q̄ for all o ∈ On and all n. The assumption that Qn = n is made

only for convenience—as long as it grows at order n, our results will hold. In particular,

as will be clear, our argument will hold even in cases in which the market is unbalanced.

Similarly, the assumption that the number of copies of each object is uniformly bounded is

not necessary as long as it grows at a sufficiently low rate.3

Throughout, we shall consider a general class of random preferences that allow for a

positive correlation among agents on the objects. Specifically, each agent i ∈ In receives the

following utility from obtaining object type o ∈ On:

Ui(o) = U(uo, ξi,o),

where uo is a common value, and the idiosyncratic shock ξi,o is a random variable drawn

independently and identically from [0, 1] according to a uniform distribution.4

We further assume that the function U(·, ·) takes values in R+, is strictly increasing in the

common values and strictly increasing and continuous in the idiosyncratic shock. The utility

of remaining unmatched is assumed to be 0 so that all agents find all objects acceptable.5 The

symmetry of U(·, ·) can be seen as a normalization in the scaling of individual utilities, which

also implies a normalization invoked by many authors that the highest possible utility and

3As will be clear from footnote 23, we can allow q̄ = O(n/ log(n)).
4This assumption entails no loss of generality as long as the distribution of idiosyncratic shocks is atomless

and bounded, as one can always focus on the quantile corresponding to the agent’s idiosyncratic shock as a

normalization and then redefine the payoff function as a function of this normalized shock.
5This feature does not play a crucial role in our result, which hold as long as a linear fraction of objects

are acceptable to all agents.
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the lowest possible utility are identical across all agents. The symmetry assumption serves

to normalize individuals’ cardinal utilities and thus discipline interpersonal comparison of

utilities. Further, as we will discuss in Section 5, our core findings are robust to the rescaling

of individual utilities. We assume that the agents’ common value for object type o ∈ O, uo
takes an arbitrary value in [0, 1] in an n-economy, and its population distribution is given by

a cumulative distribution function (CDF):

Xn(u) =

∑
o∈On:uo≤u qo

n
,

interpreted as the fraction of the objects whose common value is less than or equal to u, and

by

Y n(u) =
|{o ∈ On|uo ≤ u}|

n
,

interpreted as the fraction of the object types whose common value is no greater than u.

Because qo ≥ 1 for each o ∈ O, it follows that Xn(·) ≥ Yn(·).
We assume that these CDFs converge to well-defined limits, X and Y , in the Lévy metric.

To be precise, for any two distributions F and G, consider their distance measured in the

Lévy metric:

L(F,G) := inf {δ > 0|F (z − δ)− δ ≤ G(z) ≤ F (z + δ) + δ, ∀z ∈ R+} .

According to this measure, any two distributions will be regarded as being close to each

other as long as they are uniformly close at all points of continuity.6 It follows that the limit

distributions X and Y are nondecreasing and satisfy X(0) = 0, X(1) = 1 and X(·)−Y (·) ≥ 0.

We assume that X has (at most) finite jumps. We allow X and Y to be fairly general, allowing

for atoms.

Several special cases of this model are of interest. The first is a finite-tier model. In this

model, the object types are partitioned into finite tiers, {On
1 , ...., O

n
K}, where ∪k∈KOn

k = On

and On
k ∩ On

j = ∅. (With a slight abuse of notation, the largest cardinality K also denotes

the set of indexes.) In this model, the CDFs Xn and Y n are step functions with finite

steps. This model offers a good approximation of situations in which the objects have clear

tiers, such as schools classified into different categories or regions or houses existing in clearly

distinguishable tiers. A further special case is when K = 1 in which the support of the

common value is degenerate and agents’ ordinal preferences are drawn iid uniformly. Knuth

(1997), Pittel (1989), and Ashlagi, Kanoria, and Leshno (2013) employ such a model.

Another special case is the full-support model in which the limit distribution Y is

strictly increasing in its support. This model is very similar to Lee (2014) and Lee and Yariv

6Here, convergence of CDFs in the Lévy metric is equivalent to weak convergence.
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(2014), who also consider random preferences that consist of common and idiosyncratic terms.

One difference is that their framework assumes that the common component of the payoff

is also drawn randomly from a positive interval. Our model assumes common values to be

arbitrary, but with a full-support assumption, the values can be interpreted as realizations of

random draws (drawn according to the CDF Y ). Viewed in this way, the full-support model

is comparable to Lee (2014)’s, except that the current model also allows for atoms in the

distribution of Y .

Unless otherwise specified, we are referring to a general model that nests these two as

special cases. Fix an n-economy. We shall consider a class of matching mechanisms that

are Pareto efficient. A matching µ in an n-economy is a mapping µ : I → O ∪ {∅} such

that |µ−1(o)| ≤ qo for all o ∈ O, with the interpretation that agent i with µ(i) = ∅ is

unmatched. Let M denote the set of all matchings. All these objects depend on n, although

their dependence is suppressed for notational simplicity.

In practice, the matching chosen by the designer will depend on the realized preferences

of the agents as well as on other features of the economy. For instance, if the objects O

are institutions or individuals, their preferences over their matching partners will typically

impact which matching will arise. Alternatively, one may wish the matching to respect the

existing rights that individuals may have over the objects; for instance, if the objects are

housing, some units may be occupied by existing tenants who have priority over these units.

Likewise, a school choice matching may favor students whose siblings already attend the

school or those living nearby. Some of these factors may depend on the features not captured

by their idiosyncratic component. Our model is completely general in this regard.

Specifically, we collect all assignment-relevant variables, call its generic realization a

“state,” and denote it by ω = ({ξi,o}i∈I,o∈O, θ), where {ξi,o}i∈I,o∈O is the realized profile

of the idiosyncratic component of payoffs, and θ is the realization of all other variables that

influence the matching, and let Ω denote the set of all possible states. We make no assump-

tion on how θ is drawn and how its realized value affects the outcome. The generality on the

θ contrasts the current model with the others, many of which tend to impose a particular

random structure on the agents’ priorities (or objects’ preferences). For instance, Ashlagi,

Kanoria, and Leshno (2013) assumes that the preferences are iid, and Lee (2014) and Lee and

Yariv (2014) assume that the preferences consist of random common shocks with full support

and iid idiosyncratic shocks. Our results do not require any such assumptions on the object

side.

A matching mechanism is a function that maps from a state in Ω to a matching in

M . With a slight abuse of notation, we shall use µ = {µω(i)}ω∈Ω,i∈I to denote a matching

mechanism, which selects a matching µω(·) in state ω. Let M denote the set of all match-
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ing mechanisms. For convenience, we shall often suppress the dependence of the matching

mechanism on ω.

A matching µ ∈ M is Pareto efficient if there is no other matching µ′ ∈ M such that

Ui(µ
′(i)) ≥ Ui(µ(i)) for all i ∈ I and Ui(µ

′(i)) > Ui(µ(i)) for some i ∈ I. A matching

mechanism µ ∈ M is Pareto efficient if, for each state ω ∈ Ω, the matching it induces, i.e.,

µω(·), is Pareto efficient. Let M∗
n denote the set of all Pareto efficient mechanisms in the

n-economy.

3 Payoff Equivalence of Pareto Efficient Mechanisms

We first define an upper bound for the utilitarian welfare—the highest possible level of total

surplus that can be realized under any matching mechanism. To this end, suppose that every

agent is assigned an object and realizes the highest possible idiosyncratic payoff. Because

the common values of the objects are distributed according to Xn, the resulting (normal-

ized) utilitarian welfare is
∫ 1

0
U(u, 1)dXn(u). This obviously yields the upper bound for the

utilitarian welfare in the n-economy. We consider its limit, the limit utilitarian upper

bound:

U∗ :=

∫ 1

0

U(u, 1)dX(u).

The payoff distribution of an economy, whether a finite n-economy or its limit, can be

represented by a distribution function, i.e., a nondecreasing right-continuous function F map-

ping from [0, U(1, 1)] to [0, 1]. F (z) is interpreted as the fraction of agents who realize payoffs

no greater than z. We let F µ denote the payoff distribution induced by mechanism µ.

We are now in a position to state our main theorem.

Theorem 1. Let F ∗ be the distribution of payoffs attaining the limit utilitarian upper bound

U∗, and recall M∗
n is the set of Pareto efficient mechanisms in the n-economy. Then,

sup
µn∈M∗n

L(F µn , F ∗)
p−→ 0.7

In words, the theorem states that the distance (in the Lévy metric) between a payoff

distribution resulting from every Pareto efficient mechanism and that of the utilitarian upper

7We say Zn
p−→ z, or Zn converges in probability to z, where both Zn and z are real-value random

variables, if for any ε > 0, δ > 0, there exists N ∈ N such that for all n > N , we have

Pr{|Zn − z| > ε} < δ.
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bound vanishes uniformly in probability as n→∞. More precisely, assuming the distribution

F ∗ is continuous, the statement is as follows. Fix any ε, δ > 0. Then, with a probability of

at least 1 − δ, the proportion of agents enjoying any payoff u or higher under any Pareto

efficient mechanism is within ε of the proportion of agents enjoying a payoff of u or higher

under the utilitarian upper bound for sufficiently large n. It is remarkable that the rate of

convergence is “uniform” with respect to the entire class of Pareto efficient mechanisms.

The following corollary is immediate:

Corollary 1.

inf
µn∈M∗

∑
i∈I Ui(µ

n(i))

|I|
p−→ U∗.

The theorem also implies that alternative Pareto efficient mechanisms become payoff

equivalent uniformly as the market grows in size—that is, “up to the renaming of the agents”:

Corollary 2.

sup
µn,µ̃n∈M∗n

L(F µn , F µ̃n)
p−→ 0.

These results suggest that, as long as agents are ex ante symmetric in their preferences,

there is little ground to favor one Pareto efficient mechanism over another in terms of the

total welfare of participants or aggregate payoff distribution, at least in a large economy. This

has important implications for market design. As we already noted, designers often face extra

constraints arising from the existing rights or priorities of some participants over some objects,

or there may be a need to treat some target group of participants affirmatively. In addition,

there is a concern that accommodating such constraints or needs may sacrifice utilitarian

welfare or adversely impact the aggregate distribution of payoffs. Our result implies that

accommodating such constraints does not entail any significant loss in these terms in a large

economy, as long as Pareto efficiency is maintained.

4 Sketch of the Proof

Here, we sketch the proof of Theorem 1, which is contained in Appendix A. For our current

purposes, assume X(·) is degenerate with a single common value u0 and that X(·) = Y (·).
In other words, the agents have only idiosyncratic payoffs, and the matching is one-to-one.

As will be seen in Appendix A, the same proof argument works for the general case (with

some care).
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To begin, fix an arbitrary Pareto efficient mechanism µ̃. We first invoke the fact that any

Pareto efficient matching can be implemented by a serial dictatorship8 with a suitably-chosen

serial order (see Abdulkadiroglu and Sönmez (1998)). Let f̃ be the serial order, namely, a

function that maps each agent in I to his serial order in {1, ..., n} that implements µ̃ under a

serial dictatorship. Because µ̃ induces a Pareto efficient matching that depends on the state,

the required serial order f̃ is random.

Next, for arbitrarily small ε, δ > 0, define the random set:

Ī :=
{
i ∈ I

∣∣∣Ui(µ̃(i)) ≤ U(u0, 1− ε) and f̃(i) ≤ (1− δ)n
}
.

The set Ī consists of agents who are within 1 − δ top percentile in terms of their serial

order f̃ but fail to achieve payoff ε-close to the highest possible payoff.9 Because ε, δ > 0 are

arbitrary, for the proof, it will suffice to show that

|Ī|
n

p−→ 0. (1)

To prove this, we exploit a result in random graph theory. It is thus worth introducing

the relevant random graph model. A bipartite graph G consists of vertices V1 ∪ V2 and

edges E ⊂ V1× V2 across V1 and V2 (with no possible edges within vertices in each side). An

independent set is V̄1 × V̄2, where V̄1 ⊆ V1 and V̄2 ⊆ V2 for which no element in V̄1 × V̄2 is

an edge of G. A random bipartite graph B = (V1∪V2, p), p ∈ (0, 1), is a bipartite graph with

vertices V1 ∪ V2 in which each pair (v1, v2) ∈ V1 × V2 is linked by an edge with probability p

(independently of edges created for all other pairs). The following result provides the crucial

step for our result.10

Lemma 1 (Dawande, Keskinocak, Swaminathan, and Tayur (2001)). Consider a random

bipartite graph B = (V1 ∪ V2, p) where 0 < p < 1 is a constant and for each i ∈ {1, 2} and

|V1| = n and |V2| = m = O(n). There is κ > 0,

Pr
[
∃ an independent set V̄1 × V̄2 with min{|V̄1|, |V̄2|} ≥ κ ln(n)

]
→ 0 as n→∞.

8A serial dictatorship mechanism specifies an order over individuals and then lets the first individual—

according to the specified ordering—receive his favorite object; the next individual receives his favorite item

of the remaining objects, etc.
9Strictly speaking, we should focus on individuals receiving payoffs lower than U(u0, 1) − ε. However,

given that the utility functions are continuous, there is little loss in focusing our attention on agents receiving

less than U(u0, 1− ε). This point will be made clear in the proof.
10 The original statement by Dawande, Keskinocak, Swaminathan, and Tayur (2001) assumes that |V1| =

|V2| = n. It is easily verified that their arguments also apply under our more general assumptions.
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ξio > 1− ε

δn

I O

Ī

Ō
i

o

Figure 1: Illustration of a random graph and sets Ī and Ō

This result implies that with probability converging to 1, for every independent set, at

least one side of that set vanishes in relative size as n→∞.

To prove our result, it therefore suffices to show that Ī forms a vanishing side of an

independent set in an appropriately-defined random graph. Consider a random bipartite

graph consisting of I on one side and O on the other side where an edge is created between

i ∈ I and o ∈ O if and only if ξi,o > 1− ε. Let

Ō :=
{
o ∈ O

∣∣∣f̃(µ̃(o)) ≥ (1− δ)n
}

be the (random) set of objects that are assigned to the agents who are at the bottom δ

percentile in terms of the serial order f̃ . See Figure 1 for a graphical representation of the

construction, where the set I is ordered according to (a realization of) the serial order.

The key observation is that the (random) subgraph Ī × Ō is an independent set.

To see this, suppose the contrary—there is an edge between an agent i ∈ Ī and an object

o ∈ Ō in some state ω (as illustrated in Figure 1). By construction of Ī, agent i ∈ Ī must

realize less than 1 − ε of idiosyncratic payoff from µ̃ω(i). However, the fact that there is an

edge between i and o means that i would gain more than 1− ε in idiosyncratic payoff from o.

Thus, agent i must prefer o to his match µ̃ω(i). However, the fact that o ∈ Ō means that o

is not yet claimed and is thus available when agent i (who is within top 1− δ of serial order

f̃ω) picks µ̃ω(i). This is a contradiction, proving that Ī × Ō is an independent set.
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Next we observe that |Ō| ≥ δn, meaning that Ō never vanishes in probability. Lemma 1

then implies that set Ī must vanish in probability. Importantly, this result applies uniformly

to all mechanisms in M∗: If we define the sets Ī(µ̃) and Ō(µ̃) for each µ̃ ∈ M∗ as above,

for each µ̃ ∈ M∗, Ī(µ̃) × Ō(µ̃) forms an independent set of the same random graph! This

explains the uniform convergence.

Remark 1. If the mechanism µ̃ were a serial dictatorship with a “deterministic” serial order

f , a simple direct argument proves the result. First, let us note that we can think of each

agent as drawing his preferences “along the algorithm,” i.e., he draws his preferences for the

stage when it is his turn to make a choice. Obviously, the distribution of i’s preferences is not

affected by the choices of agents ahead of that agent in the serial order. Fix any arbitrary

ε, δ > 0 and let Ei be the event that at agent i’s turn to make a choice there remains at

least one object o such that Ui(o) ≥ U(u0, 1 − ε). Then, all agents except those in the

bottom δ-percentile serial orders enjoy idiosyncratic payoffs ε-close to the upper bound with

probability:

Pr{Ui(µ̃(i)) ≥ U(u0, 1− ε) for all i with f(i) < (1− δ)n}
≥Pr{∩i∈I:f(i)<(1−δ)nEi}
=1− Pr{∪i∈I:f(i)<(1−δ)nE

c
i }

≥1− (1− δ)n(1− ε)δn → 1 as n→∞.

However, this argument does not work for an arbitrary Pareto efficient mechanism. For

a general Pareto efficient mechanism, the serial order implementing the mechanism is, in

general, not independent of the agents’ preferences (which is required in the last inequality

of the above string). Our general proof using random graph theory avoids this difficulty.

5 Implications and Robustness

We explore several implications of our findings. First, the utilitarian efficiency of Pareto

efficient allocations stated in Corollary 1 is remarkable and surprising given the fact that

monetary transfers are not allowed. One interpretation is that a large market makes utilities

virtually transferable by creating “rich” opportunities for agents to trade on idiosyncratic pay-

offs. In other words, objects that are uniformly valued by the participants can be transferred

from one set of agents to another set without entailing much loss in terms of the idiosyncratic

payoffs. In this sense, a large market can act as a “substitute” for monetary transfers. Such a

result, while plausible, is neither obvious nor universally true. This strong payoff equivalence

does not extend when the welfare of both sides are relevant. DA is Pareto efficient across
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both sides of the market—i.e., taking the objects as welfare-relevant entities—but, as shown

in Che and Tercieux (2015), it does not attain the highest total payoffs across the market,

and a different matching (which is Pareto inefficient) yields a higher utilitarian welfare.

Second, the current equivalence result is reminiscent of a similar equivalence result ob-

tained by Abdulkadiroglu and Sönmez (1998) between two well-known mechanisms, random

serial dictatorship and TTC with random ownership, and of the large market equivalence

result obtained by Che and Kojima (2010) between random serial dictatorship and a proba-

bilistic serial mechanism as well as their extensions (Pathak and Sethuraman (2011), Carroll

(2014), Lee and Sethuraman (2011) and Bade (2014)). While these results consider arbitrary

preferences on the agents, they assume ex ante symmetric random priorities with respect to

the objects. By contrast, our equivalence result does not impose any structure on the priori-

ties on the object side, allowing them to be arbitrary, but it does impose a certain structure

on the agents’ preferences (to consist of common values and iid idiosyncratic shocks). Our

result also holds only in the limit as the number of agents and objects becomes large (with the

number of object types bounded or growing at a slower rate), whereas the equivalence result

by Abdulkadiroglu and Sönmez (1998) and others holds for any finite economy. Ultimately,

the current result complements the existing focus on (ex post) Pareto efficient mechanisms

that treat agents symmetrically in terms of tie-breaking or ex ante assignment of property

rights. One implication of our result is that the fairness achieved by the symmetric treatment

of agents does not entail any significant welfare loss, neither in terms of utilitarian welfare

nor of the payoff distribution among agents.

Third, a similar result is known to hold under a stable matching in some large market

settings. Knuth (1997) and Pittel (1989), among others, have shown that if the agents’ ordinal

preferences are drawn iid uniformly and the market is balanced, the aggregate welfare of the

agents under a stable matching approaches the utilitarian upper bound.11 Lee and Yariv

(2014) show a similar result in a large balanced market in which the agents on both sides have

random preferences that consist of common and idiosyncratic shocks, and the common shock

has full support. It turns out that these conditions are important. Che and Tercieux (2015)

show that this result does not hold if the common value component of objects’ preferences

(or agents’ priorities with the objects) do not have full support. Even with preference drawn

iid uniformly on both sides, Ashlagi, Kanoria, and Leshno (2013) find that if the market is

unbalanced, the agents on the long side compete excessively for agents (or objects) on the

short side in a stable matching, which entails a significant welfare loss for the former agents.

11Specifically, they show that the (preference) rank of the objects agents enjoy converges to log(n) on

average, which means that the idiosyncratic payoffs will be in the order of 1− log(n)/n on average. Because

the common values are degenerate in their environment, the result follows.
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The general takeaway from these papers is that the outcome of DA is likely to be bounded

away from the utilitarian upper bound when there is competition among agents for desirable

objects. This suggests that even with full-support distributions and balanced markets, this

should be observed to some extent as long as agents’ preferences are sufficiently positively

correlated. This is indeed what we observe in our simulated data. In addition, we observe a

similar phenomenon in our analysis of field data from New York City, which suggests that in

real markets, DA entails a significant efficiency loss compared to Pareto efficient mechanisms.

See Section 6.

By contrast, our result is robust to market imbalance and to a general distribution of

agent priorities of objects. Specifically, our model makes no assumption on the latter, and

agents’ preferences allow for market imbalances. Suppose that the objects in our model exist

in two tiers with the common value u1 of tier-1 objects exceeding the common value u2 of

tier-2 objects by a significant margin. This will create an unbalanced market as far as tier-1

objects are concerned, and a similar competition by agents to obtain tier-1 objects will arise

under DA. Indeed, Che and Tercieux (2015) show that a stable matching mechanism is not

even approximately efficient in this situation. By contrast, the imbalance and associated

competition do not entail any significant welfare loss for the agents in a Pareto efficient

mechanism; specifically, competition for scarce resources does not entail significant losses for

those who are fortunate enough to be assigned them if the assignment is Pareto efficient.

Let us now come back to the structure we impose on agent preferences. We assume that

utilities are symmetric, i.e., the function U is not player dependent. While this serves as a

useful normalization, one may wonder whether our results depend on the particular scaling

of individual utilities. Scaling of individual utilities would matter at a superficial level, for

instance, if we scale up the utilities of some group of agents and keep the others the same,

efficient mechanisms that treat them differently would result in different aggregate utilities.12

However, there are important senses in which our insights are robust to the rescaling of

individual utilities.

First, regardless of how individual utilities are (re)scaled, in all efficient mechanisms, the

fraction of agents who receive an arbitrarily high idiosyncratic payoff converges to 1 as the

market grows large. Indeed, a large market still creates “rich” opportunities for agents to

trade on idiosyncratic payoffs, and thus, as the market gets large, the set of payoffs associated

with Pareto-efficient mechanisms still has a specific structure.

Second, on more normative grounds, given that we are using the utilitarian criterion

12Imagine two serial dictatorship mechanisms that yield systematically different serial orders based on

group membership.
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(which assigns equal weight to individual welfare), the symmetry assumption essentially re-

flects the idea that we are not willing to differentiate among agents.

Finally and most importantly, many institutions assess the performance of a mechanism

based on the distributions of “relative ranks” that agents achieve, namely, the ordinal rank

of the object obtained in each agent’s ranking divided by the number of objects allocated.13

Such a measure is clearly invariant to the scaling of the individual utilities. Our large mar-

ket equivalence result implies equivalence in this measure: as the market grows large, the

distribution of relative ranks becomes identical across all Pareto efficient mechanisms.14

6 Applicability of the Findings

What do our results imply for realistic markets? We study this question with two sets of

data: (1) simulated data and (2) choice data supplied by the New York City Department of

Education. Specifically, we shall compare across alternative efficient mechanisms using DA

as the benchmark. These exercises enable us to examine our theory in an environment that

involves: (1) a range of different market sizes, including relatively small market sizes, (2) a

broad range of preference and priority distributions, and (3) realistic quotas for object types

(e.g., schools).

6.1 Simulation

We first simulate our full-support model. Specifically, we assume that each agent’s preference

is given by U(uo, ξio) = uo + ξio, where uo and ξio are both generated according to a uniform

distribution from [0, 1]. Some of the mechanisms we consider also depend on the agents’

priorities or object preferences for agents, which we assume are given by V (vi, ηio) = vi + ηio,

where vi is the objects’ common preference for agent i and ηio is object o’s idiosyncratic

preference for agent i. We also assume that both vi and ηio are drawn according to a uniform

distribution from [0, 1]. Note that this preference/priority structure is a special case of our

model because priorities are arbitrary in our model.

We consider four different mechanisms: priority-based top trading cycles (PBTTC), two

versions of serial dictatorship (SD min and SD max), and Gale-Shapley’s DA algorithm.

13Featherstone (2015) is the first paper studying “rank efficient mechanisms,” i.e., mechanisms with rank

distributions that are not stochastically dominated.
14To be more precise, let us consider a cumulative distribution of normalized ranks where for each uo, a frac-

tion of individuals X(uo) have a relative rank smaller than 1− (X(uo) +
∫ 1

uo
Pr{U(u, ξio) < U(uo, 1)}dX(u)).

The cumulative distribution of normalized ranks of any Pareto efficient mechanism converges to this.
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PBTTC, proposed by Abdulkadiroglu and Sonmez (2003), executes Pareto-improving trades

among applicants in multiple rounds.15 For the two versions of SD, we randomly draw a serial

order of agents 100 times and select the best- and worst-performing assignment in terms of

utilitarian welfare. The purpose is to see the range of variations in utilitarian welfare associ-

ated with different Pareto efficient mechanisms. Finally, DA, proposed by Gale and Shapley

(1962), attains stable matching in a two-sided (i.e., agent-agent) matching environment.16

In the case of agent-object matching, the mechanism does not attain Pareto efficiency, but

we focus on the mechanism as a benchmark. DA is interesting in light of the recent result

by Lee and Yariv (2014) that it becomes approximately efficient in a large market given the

full support environment (on both sides) assumed here. Given this result, a natural question

arises as to how the convergence rates differ between DA and efficient mechanisms for realistic

market sizes.

Figure 2 shows the utilitarian welfare performance of the alternative mechanisms averaged

over 50 iterations of the preference and priority draws {(uo, ξio, vi, ηio)}i,o, measured in terms

of the aggregate values of ξio’s accruing to the agents.17 (Recall that the common shock uo
affects all agents identically and thus can be subtracted without loss.)

All mechanisms, including DA, perform well and improve as the market grows large.

These results are in line with our main findings (in particular, Corollary 1) and with Lee and

Yariv (2014). What is not implied by these results and can be learned from the simulations is

the speed of convergence and the uniformity across mechanisms. For market size n = 2, 000,

all efficient mechanisms—even the SD min—realize more than 98% of the highest possible

surplus. The uniformity of convergences across efficient mechanisms is indeed remarkable,

for they become essentially indistinguishable for any n ≥ 1000. This shows that our uniform

15In each round, each applicant points to his most preferred object among those available, each object

points to the applicant with the highest priority for the object among those available, and the applicants

associated with a cycle (which must exist due to the finite number of participants) are assigned the objects

they point to and exit the market, along with the seats they are assigned. The same process is repeated with

the remaining participants, until all participants are exhausted.
16DA runs in multiple rounds. In each round, each agent proposes to the most preferred object that has

not yet rejected that agent, and the object chooses the most preferred agent among those that have proposed

up to that point. The algorithm iterates to the next round as long as some agents are rejected and have

acceptable objects remaining. When the process stops, the tentative assignment at the last round becomes

final.
17For the two versions of SD, for each preference draw, {(uo, ξio)}i,o, we run 100 serial dictatorship mecha-

nisms based on100 randomly drawn serial orders of the agents, and we select from among them the best- and

worst-performing assignments in terms of utilitarian welfare. (Hence, the priority draws {(vi, ηio)}i,o play

no role for SDs.) We then average the utilitarian welfare performances of the selected SDs over 50 random

preference drawings.
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Figure 2: Welfare Comparison across Mechanisms

asymptotic equivalence result “kicks in” for even moderately sized markets. Note that the

current equivalence result holds across different priorities and therefore is distinct from—not

implied by—the equivalence result by Abdulkadiroglu and Sönmez (1998) and its extensions.

Indeed, for very small n, the different between SD min and SD max is appreciable, suggesting

that the classical equivalence result is not applicable here. But even for a modestly large n,

the difference between the two mechanisms vanishes. Finally, although DA performs well

in utilitarian efficiency, there is a clear difference relative to the efficient mechanisms. For

n = 2, 000, there is a 3% point difference relative to SD min, and the tangible difference of at

least 2% point remains even for n = 10, 000. This suggests that the convergence rates differ

nontrivially between efficient mechanisms and DA.

We next study the robustness of our comparison. Figure 3 draws the preferences and

priorities in the same way as the baseline case but assumes that there are twice as many

agents as the objects. The performance of all efficient mechanisms in terms of utilitarian

welfare and their equivalence remain largely unchanged. The performance of the DA has

gotten significantly worse. This result is in line with Ashlagi, Kanoria, and Leshno (2013)
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Figure 3: Welfare Comparison across Mechanisms

and Che and Tercieux (2015), which suggests that a significant welfare loss would result from

DA, as agents compete excessively for scarce resources.18

Such competition arises even in a balanced market if agents’ preferences are highly corre-

lated or equivalently if agents’ common preferences shocks become much more important than

idiosyncratic shocks. Figure 4 depicts such a scenario: the model is the same as above except

that agents’ common preference shock uo is now uniform on [0, 3]. Again, the performances

of the efficient mechanisms are quite robust to this change in the model, but the DA perfor-

mance is substantially worse than it is under the baseline model. In fact, the welfare loss is

comparable to that under the market imbalance. In other words, competition by agents to

realize high common value objects requires a significant sacrifice of their idiosyncratic payoffs

under a stable mechanism but not under efficient mechanisms.

18Although these papers show that the agents’ payoffs under DA no longer converge to the utilitarian

upper bound given market imbalance, this result is obtained in a simpler environment and does not directly

apply to the simulated setting.
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Figure 4: Welfare Comparison across Mechanisms

6.2 Calibration Based on NYC School Choice Data

In New York City, approximately 90,000 students (mostly in the 8th grade) are assigned to

over 700 public high school programs through an annual centralized matching process. We

focus on the main round (round 2) of assignment. In that round, each student submits a rank

ordered list (ROL) of up to 12 programs, and each program ranks applicants who listed it on

their ROLs, according to its priority criteria, which depend on the types of the program.19

The priorities are coarse for many programs, and a single (uniform) lottery is used to break

ties for all programs. Given the ROLs and priorities, a student-proposing DA algorithm is

used to generate an assignment.

We use the 2009-2010 choice data to calibrate the assignments that would arise under

alternative Pareto efficient mechanisms: priority-based top trading cycles (PBTTC), random

serial dictatorship (RSD), and priority-based serial dictatorship (PBSD). RSD is a serial

19The programs are categorized into several types in terms of admissions method: screened, limited un-

screened, unscreened, ed-op, zoned and audition. See Che and Tercieux (2015) for a detailed description of

the data and the institutional details.
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dictatorship in which the applicants’ serial orders are determined at random. PBSD is a serial

dictatorship in which the applicants’ serial orders are based on the average priority rank of

the agents.20 We study the distribution of the ranks enjoyed by the participants under these

mechanisms. These mechanisms differ in the way that they treat the participants, so there

is no a priori expectation for the relation of the distributions.

Before proceeding, a couple of remarks are in order. First, following the existing litera-

ture, we assume that the observed ROLs of the applicants represent their truthful preference

ranking of top programs. This assumption is not entirely innocuous because the strate-

gyproofness of DA does not apply when the applicants’ ROLs are truncated (see Haeringer

and Klijn (2009)). Nevertheless, approximately 80% of the participants did not fill their

ROLs, suggesting that truncation was not a binding constraint (see Abdulkadiroglu, Pathak,

and Roth (2009) and Abdulkadiroglu, Agarwal, and Pathak (2015) for the same assumption).

Second, under the current DA algorithm, programs do not specify priorities for students un-

less they rank them in their ROLs. To calibrate PBTTC, we assume that programs assign

lower priorities to students who do not rank them than to those who do rank them. This

does not pose a serious problem for our purposes because Pareto efficiency of PBTTC does

not depend on this assumption.21

Table 1 and Figure 5 present the distribution of preference ranks achieved by the applicants

under alternative efficient mechanisms, using DA as a control mechanism. They exhibit

striking resemblance in the rank distribution across alternative Pareto efficient mechanisms.

While the source of the resemblance is not immediately clear, the noticeable difference these

mechanisms exhibit relative to the DA outcome suggests that the resemblance is not driven

by the special nature of the underlying preferences.22 The difference also suggests that even

though DA may perform well in terms of efficiency in a large market, as suggested by Lee and

Yariv (2014), the convergence rate may be slow enough to entail an appreciable difference

20Specifically, we compute a student’s normalized priority rank (after a lottery draw) at each program to

which he/she applied. We then take the average across all programs that a student applied to. This yields

the average priority rank for each student. We then form a serial order of the students based on this order

(in the ascending order).
21If PBTTC were introduced, the priority information would be collected for all programs, regardless of

whether a student lists them on their ROLs. So, the outcome would not be the same. At the same time,

our finding below (as does our theoretical result) suggests that the difference in the distribution of preference

ranks achieved by the applicants will not be significant.
22For example, if all applicants submit the same ROL of programs, the rank distribution would be identical

across all assignments, and there would be no difference between DA assignment and efficient assignments.

Likewise, if there are no conflicts of interests, again, all agents will be assigned to their top choice under

both an efficient mechanism and DA. The difference between the DA and efficient mechanisms suggests that

neither scenario holds here.
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Table 1: Rankings achieved under 4 different algorithms

DA PBTTC RSD PBSD

#1 35200.87 (53.67) 38090.25 (36.58) 37657.08 (51.03) 37784.47 (53.24)

#2 14006.8 (53.01) 13256.99 (46.08) 13307.03 (61.02) 13265.9 (53.12)

#3 8168.72 (41.93) 7157.68 (41.24) 7103.74 (51.6) 7190.1 (52.82)

#4 4882.67 (35.32) 4025.68 (31.32) 3983.21 (41.23) 4100.22 (39.46)

#5 2976.64 (29.75) 2382.62 (25.83) 2374.91 (34.81) 2484.59 (35.67)

#6 1716.71 (20.81) 1347.35 (21.12) 1343.15 (25.16) 1433.89 (28.34)

#7 996.4 (19.27) 746.87 (17.07) 789.61 (20.66) 851.97 (22.41)

#8 592.47 (16.46) 443.39 (12.92) 471.48 (15.55) 511.6 (16.47)

#9 336.74 (11.8) 265.24 (11) 287.17 (14.51) 304.6 (14.02)

#10 190.38 (9) 150.22 (8.26) 174.88 (11.12) 186.05 (11.11)

#11 122.17 (6.34) 100.79 (6.02) 112.97 (9.16) 126.66 (9.23)

#12 66.22 (5.41) 54.22 (4.9) 69.58 (7.64) 74.36 (7.01)

#Unassigned 8458.21 (29.31) 9693.7 (31.31) 10040.19 (47.17) 9400.59 (37.87)

Note: We ran 100 iterations of each algorithm with independent draws of lotteries and focused on

the average performance of each algorithm, including DA. Standard errors are in parentheses.

compared with efficient mechanisms.

Recall also that the programs have intrinsic priorities in the data, and the alternative

Pareto efficient mechanisms differ in the way that the programs’ priority information is used

to generate the assignment. Hence, the resemblance across alternative Pareto efficient mecha-

nisms cannot be explained by the equivalence result of Abdulkadiroglu and Sönmez (1998) or

its extensions by recent authors. These authors focus on an environment in which programs

have no intrinsic priorities and find equivalence of efficient mechanisms that treat agents ran-

domly in an ex ante symmetric manner. Importantly, equivalence holds only in the ex ante

sense (in terms of the lotteries the agents receive), and it does not imply that a similar rank

distribution would result from different Pareto efficient mechanisms using different priority

systems.
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Figure 5: Rank Distribution under Alternative Mechanisms (averaged across 100 iterations).

A Appendix: Proof of Theorem 1

A.1 Preliminaries

For an n-economy and for each u ∈ [0, 1], let On
≥u := {o ∈ On|uo ≥ u} and On

≤u := {o ∈
On|uo ≤ u} denote the set of object types that yield the common value no less than u

and the set of object types that yield the common value no greater than u, respectively. The

numbers of objects with types in On
≥u and On

≤u are respectively denoted by Qn
≥u and Qn

≤u. For

notational simplicity, we shall suppress the dependence of these sets on n, with the exception

of Xn.

Now, consider any Pareto efficient mechanism µ ∈ M∗. By a well known result (e.g.,

Abdulkadiroglu and Sönmez (1998)), any Pareto efficient matching can be equivalently im-

plemented by a serial dictatorship mechanism with a suitably chosen serial order. Let SDfµ

be the serial dictatorship mechanism where for each state ω a serial order fµ(ω) : I → I, a

bijective mapping, is chosen so as to implement µω(·). That is, for each state ω ∈ Ω, the

serial order fµ is chosen so that SD
fµ(ω)
ω (i) = µω(i) for each i ∈ I. Since the matching µ
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arising from the mechanism depends on the random state ω, the serial order f implementing

µ is a random variable. In the sequel, we shall study a Pareto efficient matching mechanism

µ via the associated SDfµ . To avoid clutter, we shall now suppress the dependence of f on

µ.

Given an n-economy, for any Pareto efficient mechanism µ and the associated serial order

f , let

I≥u(µ) := {i ∈ I|f(i) ≤ Q≥u}.

be the set of agents who have a serial order within the total supply of objects whose common

values are at least u (in the equivalent serial dictatorship implementation). For any ε, the set

Īε≥u(µ) =
{
i ∈ I≥u(µ)|Ui(SDf (i)) ≤ U(u, 1− ε)},

consists of the agents who realize payoff no greater than U(u, 1 − ε) while having a serial

order within Q≥u. The following lemma will be crucial for the main result.

Lemma 2. For any ε, γ > 0,

Pr

[
∃µ ∈M∗ and u such that

|Īε≥u(µ)|
|I|

≥ γ

]
→ 0

as n→∞.

Proof. Fix any ε > 0 and γ > 0. We first build a random bipartite graph on I ∪ O
where an edge (i, o) is added if and only if ξi,o > 1− ε.

Now choose any δ ∈ (0, 1). For each µ ∈ M∗ and u, define random sets Iδ≥u(µ) := {i ∈
I |f(i) ≤ (1− δ)Q≥u}, Īε,δ≥u(µ) := {i ∈ Iδ≥u

∣∣Ui(SDf (i)) ≤ U(u, 1− ε)}, and

Ōδ
≥u(µ) := {o ∈ O≥u

∣∣∃i ∈ µ−1(o) s.t. f(i) > (1− δ)Q≥u},

which consists of object types in O≥u assigned to the agents with serial order worse than

(1− δ)Q≥u.
We argue that the set I

ε,δ

≥u(µ)×Ōδ
≥u(µ) must be an independent set of the random bipartite

graph on I ∪ O. To prove this, suppose otherwise. Then, there would exist an edge (i, o) ∈
I
ε,δ

≥u(µ)× Ōδ
≥u(µ). Then,

Ui(o) > U(u, 1− ε) ≥ Ui(SD
f (i))

where the strict inequality holds since ξi,o > 1− ε (i.e., (i, o) is an edge), o ∈ O≥u, and since

U(·, ·) is monotonic (in particular strictly increasing in idiosyncratic component). The weak

inequality holds because i ∈ Iε,δ≥u. In addition, we must have

f(i) ≤ (1− δ)Q≥u < f(i′), for some i′ ∈ µ−1(o)
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where the first inequality comes from the fact that i ∈ I
ε,δ

≥u(µ) ⊂ Iδ≥u(µ) while the second

from the fact that o ∈ Ōδ
≥u(µ). Thus, this means that when i becomes the dictator under

SDf , object o is still available. But Ui(o) > Ui(SD
f (i)) means that i chooses an object worse

than o, which yields a contradiction.

Since I
ε,δ

≥u(µ) × Ōδ
≥u(µ) is an independent set for each µ ∈ M∗ and u ∈ [0, 1] and since

|I| = n, applying Lemma 1, we have that, for any γ′ > 0:

Pr
[
∃µ ∈M∗ and u ∈ [0, 1] s.t. min

{
|Iε,δ≥u(µ)|, |Ōδ

≥u(µ)|
}
≥ γ′n

]
→ 0 (2)

as n goes to infinity.

Fix any γ′ > 0. Recall |Īε,δ≥u(µ)| ≤ |Iδ≥u(µ)| ≤ (1− δ)Q≥u and |Ōδ
≥u|(µ) ≥ δQ≥u/q̄. Hence,

if |Īε,δ≥u(µ)| ≥ γ′n, then we must have |Ōδ
≥u(µ)| ≥ δγ′

(1−δ)q̄n, where recall q̄ is the upper bound

for the number of copies for each object type.

Hence, as n→∞,

Pr
[
∃µ ∈M∗ and u s.t. |Iε,δ≥u(µ)| ≥ γ′n

]
= Pr

[
∃µ ∈M∗ and u s.t. |Iε,δ≥u(µ)| ≥ γ′n and

∣∣Ōδ
≥u(µ)

∣∣ ≥ δγ′

(1− δ)q̄
n

]
≤Pr

[
∃µ ∈M∗ and u s.t. min

{
|Iε,δ≥u(µ)|, |Ōδ

≥u(µ)|
}
≥ min{1, δ

(1− δ)q̄
}γ′n

]
→ 0,

where the convergence follows from (2).23

Finally, by construction, |Īε,δ≥u(µ)| ≥ |Īε≥u(µ)| − δQ≥u − 1. Since Q≥u ≤ n, we get that∣∣∣Īε,δ≥u(µ)
∣∣∣

|I|
≥
∣∣Īε≥u(µ)

∣∣
|I|

− δ − 1

|I|

for each µ ∈M∗. Hence, it follows that

Pr

[
∃µ ∈M∗ and u s.t.

∣∣Īε≥u(µ)
∣∣

|I|
≥ γ′ + δ

]

≤Pr

∃µ ∈M∗ and u s.t.

∣∣∣Īε,δ≥u(µ)
∣∣∣

|I|
≥ γ′ +

1

|I|

→ 0.

23 Here we use the assumption that q̄ does not increase in n. If q̄ increases in n at the rate of O(n/ log(n)),

then one can check that the lower bound in the above equation is ω(log(n)). Using Lemma 1, one can show

that Lemma 2—and thus Theorem 1—holds.
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Set δ and γ′ such that δ + γ′ = γ. Then,

Pr

[
∃µ ∈M∗ and u s.t.

∣∣Īε≥u(µ)
∣∣

|I|
≥ γ

]
→ 0.

�

We are now ready to prove Theorem 1.

A.2 Proof of Theorem 1

To prove the statement, we will show that the payoff distributions induced by Pareto efficient

mechanisms converge to F ∗ in the sense defined earlier.

Fix any ε > 0. We shall show that, as n→∞,

Pr

[
sup
µ∈M∗

sup
z

max {F µ(z − ε)− F ∗(z), F ∗(z)− F µ(z + ε)} ≥ ε

]
→ 0, (3)

where F ∗ and F µ are respectively the CDF of the payoff induced by the limit utilitarian

upper bound and the CDF of the payoffs induced by mechanism µ in M∗.

Let

Jµ(z) := {i ∈ I|Ui(µ(i)) ≤ z} .

denote the set of agents enjoying payoff of at most z under matching mechanism µ. Obviously,

F µ(z) = |Jµ(z)|/n. Let u(z) be such that U(u(z), 1) = z for each z ∈ Ẑ := [U(0, 1), U(1, 1)].

(This is well defined since U(·, 1) is continuous and strictly increasing.) Note that the function

u : Ẑ → [0, 1] so defined is continuous and increasing. Let us fix ε′ such that for any common

value u ≤ u(z) + ε′ we have U(u, 1) ≤ z + ε for each z ∈ Ẑ := [U(0, 1), U(1, 1)]. Note that

this is well-defined since U(u(z), 1) = z and U(·, 1) is continuous and strictly increasing.

Further observe that ε′ is strictly positive. Clearly, for any z ∈ Ẑ, any agent matched with

an object having common value no greater than u(z) + ε′ must be in Jµ(z + ε). This means

that |Jµ(z + ε)| ≥ Q≤u(z)+ε′ = Xn(u(z) + ε′)n for all µ ∈ M∗. By definition, for each z,

F ∗(z) = X(u(z)).
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Then,

Pr

[
sup
µ∈M∗

sup
z

(
−|J

µ(z + ε)|
|I|

+ F ∗(z)

)
≥ ε

]
= Pr

[
sup
µ∈M∗

sup
z∈Ẑ

(
−|J

µ(z + ε)|
|I|

+ F ∗(z)

)
≥ ε

]

≤Pr

[
sup
z∈Ẑ

(−Xn(u(z) + ε′) +X(u(z))) ≥ ε

]

= Pr

[
sup
u

(−Xn(u+ ε′) +X(u)) ≥ ε

]
≤Pr

[
sup
u

(−Xn(u+ min{ε, ε′}) +X(u)) ≥ min{ε, ε′}
]

→ 0, (4)

as n → ∞. The first equality comes from the fact that for any z < U(0, 1), F ∗(z) = 0;

the first inequality is by definition of ε′ and the convergence follows since L(Xn, X) → 0 as

n→∞.

For the next part, recall I≥u(µ) := {i ∈ I|f(i) ≤ Q≥u} and Īε≥u(µ) :=
{
i ∈ I≥u(µ)|Ui(SDf (i))

≤ U(u, 1− ε)}, where SDf is the SD rule implementing µ. Let I≤u(µ) := {i ∈ I|f(i) ≤ Q≤u}.
We also extend the function u such that u(z) = 0 for any z ∈ [U(0, 0), U(0, 1)].

Fix ε′′ such that for any common value u ≥ u(z)− ε′′ we have z − ε ≤ U(u, 1− ε′′) for all

z ∈ [U(0, 0), U(1, 1)]. Note that this is well-defined since U(u(z), 1) ≥ z and U is continuous

and strictly increasing in both components. In addition, ε′′ > 0. Observe that U(µ(i)) ≤ z−ε
implies i ∈ I≤u(z)−ε′′ ∪ Īε

′′

≥u(z)−ε′′(µ). Hence,

|Jµ(z − ε)|
|I|

≤
∣∣I≤u(z)−ε′′

∣∣
|I|

+

∣∣∣Īε′′≥u(z)−ε′′(µ)
∣∣∣

|I|
.
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We obtain

Pr

[
sup
µ∈M∗

sup
z

(
|Jµ(z − ε)|
|I|

− F ∗(z)

)
≥ ε

]

≤Pr

 sup
µ∈M∗

sup
z

∣∣I≤u(z)−ε′′
∣∣

|I|
+

∣∣∣Īε′′≥u(z)−ε′′(µ)
∣∣∣

|I|
− F ∗(z)

 ≥ ε


≤Pr

[
sup
µ∈M∗

sup
z

(Xn(u(z)− ε′′)−X(u(z))) ≥ ε

2

]
+ Pr

 sup
µ∈M∗

sup
z

∣∣∣Īε′′≥u(z)−ε′′(µ)
∣∣∣

|I|
≥ ε

2


= Pr

[
sup
u

(Xn(u− ε′′)−X(u) ≥ ε

2

]
+ Pr

 sup
µ∈M∗

sup
z

∣∣∣Īε′′≥u(z)−ε′′(µ)
∣∣∣

|I|
≥ ε

2


≤Pr

[
sup
u

(
Xn(u−min{ε′′, ε

2
})−X(u)

)
≥ min{ε′′, ε

2
}
]

+ Pr

[
sup
µ∈M∗

sup
u

∣∣Īε′′≥u(µ)
∣∣

|I|
≥ ε

2

]
→ 0, (5)

where the convergence holds by L(Xn, X)→ 0 and Lemma 2.

Combining (4) and (5) and the fact that F µ(z) = |Jµ(z)|/n, we conclude that

Pr

[
sup
µ∈M∗

sup
z

max{F µ(z − ε)− F ∗(z),−F µ(z + ε) + F ∗(z)} ≥ ε

]
→ 0,

as n→∞.
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