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Abstract

We study decentralized college admissions in the face of uncertain student prefer-

ences. Enrollment uncertainty causes colleges to strategically target their admissions

to those students likely to be overlooked by their competitors. Consequently, highly

ranked students may receive fewer admissions or suffer from a higher chance of coming

up empty—“falling through the cracks”—than those ranked below. When students’

attributes are multidimensional, colleges avoid head-on competition by placing exces-

sive weights on school-specific measures such as essays and extracurricular activities.

Restricting the number of applications or wait-listing alleviates enrollment uncertainty,

but the outcomes are inefficient and unfair. A centralized matching via Gale and Shap-

ley’s deferred acceptance algorithm attains efficiency and fairness, but some college may

be worse off relative to decentralized matching.

Keywords: Decentralized college admissions, Strategic targeting, Overweighting

of non-common measure of merit, Restriction on applications, Wait-listing, Gale and

Shapley’s deferred acceptance algorithm

1 Introduction

Centralized matching has gained prominence in economic theory and practice, spurred by

successful applications such as medical residency matching and public school choice. Yet,
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many matching markets remain decentralized; college and graduate school admissions are

notable examples. It is often suggested that these markets do not operate well and will

therefore benefit from improved coordination or complete centralization, but it is not well

understood why they remain decentralized and what welfare benefits would be gained by

improved coordination. At least part of the problem is the lack of an analytical grasp of

decentralized matching markets. A seminal work by Roth and Xing (1997) attributes the

problems of such markets to “congestion”—participants are not allowed to make enough of-

fers and acceptances to clear the markets. But, its analytical content, namely the equilibrium

and welfare implications of congestion, remains poorly understood. Indeed, we have yet to

develop a workhorse model of decentralized matching that can serve as a useful benchmark

for comparison with a centralized system.

The current paper develops an analytical framework for understanding decentralized

matching markets in the context of college admissions. College admissions in countries such

as Japan, Korea and the US are organized similarly to decentralized labor markets: colleges

make exploding and binding admission offers to applicants, and the admitted students ac-

cept or reject the offers, often within a short window of time. This process provides little

opportunity for colleges to learn students’ preferences and adjust their admissions decisions

accordingly. Consequently, they often end up enrolling too many or too few students relative

to their capacities. For instance, 1,415 freshmen accepted Yale’s invitation to join its incom-

ing class in 1995-96, although the university had aimed for a class of 1,335. At the same

year, Princeton also reported 1,100 entering students, the largest in its history. The college

had to set up mobile homes in fields and build new dorms to accommodate the students

(Avery, Fairbanks and Zeckhauser, 2003). These mistakes are costly for the colleges.1

Controlling yield is particularly challenging for colleges in Korea, since students apply

for a department, instead of a college, and each department faces a relatively rigid and low

quota.2 The challenge is not much easier for US counterparts. Applications to US colleges

have grown dramatically in recent years, largely due to the introduction of the Common

Application—the online platform that allows students to apply to many colleges at negligible

costs.3 As a consequence, the average yield rate of four-year colleges in the US has declined

significantly over the past decade, from 49% in 2001 to 38% in 2011 (National Association

for College Admission Counseling, 2012, NACAC hereafter).4 The declining rates resulted

1The cost may also take the form of an explicit penalty imposed on the admitting unit (e.g., department)
by the government (as in Korea) or by the college (as in Australia).

2The departments that exceed pre-specified capacity are subject to a rather harsh penalty by the govern-
ment in the form of a sharply reduced capacities in the subsequent year.

3The average number of applications per institution increased 60% between 2002 and 2011, and 79% of
Fall 2011 freshmen applied to three or more colleges, with 29% of them submitting seven or more applications
(NACAC, 2012).

4NACAC reports the State of College Admission for each year since 2002, based on data sets including
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in increased uncertainty for colleges—a main theme in the NACAC (2012) report on the

current state of US college admissions.5

Importantly, the enrollment uncertainty a college faces is endogenous, depending on the

admissions decisions made by other colleges. A student admitted by a college poses a greater

uncertainty for its enrollment when the student is also admitted by other colleges, since her

enrollment depends on the student’s (unknown) preference. This interdependent nature

of uncertainty introduces a novel strategic interaction among colleges in their admissions

decisions. In this paper, we develop a model that captures this feature.

In our model, there are two colleges, each with limited capacity, and a unit mass of

students. Colleges consider several measures of a student’s merit: a student’s “score” which

is common across colleges (e.g., high school grade point average (GPA) or Scholastic Apti-

tude Test (SAT) scores) and his/her college-specific measures, which are independent across

colleges (e.g., college-specific essays/exams or extracurricular activities). Students apply to

colleges at no cost. Each college ranks students according to their score and its specific

measure, but it does not know students’ preferences toward them. This uncertainty takes

an aggregate form: the mass of students preferring one college over the other varies with

unknown states of nature (in particular, unknown to colleges). Each college incurs a constant

(marginal) cost for enrollment exceeding its capacity. Our model involves a simple time-line:

Initially, students simultaneously apply to colleges. Each college observes only the scores of

those students who apply to it. Then, the two colleges simultaneously offer admissions to

sets of students. Finally, students decide on which offer (if any) to accept.

Given that application is costless, students have a (weakly) dominant strategy of applying

to both colleges. Hence, the focus of the analysis is the colleges’ admissions decisions. Our

main finding is that colleges respond to congestion strategically by employing measures

that would avoid head-on competition. Specifically, when the colleges do not value non-

common measures significantly, they may strategically target their admissions based on the

common measure of merit, to those likely to be overlooked by the competitor. Strategic

targeting results in an equilibrium that does not have a simple cutoff structure suggested

in the existing research, and the effects on the students are non-monotonic with respect to

the annual counseling trends survey for 2002-2011 and annual admission trends survey for 2002-2011. In the
2011 surveys, 1,928 out of 10,000 secondary schools contacted participated in the former survey, whereas 369
four-year postsecondary institutions out of 1,346 contacted participated in the latter. See NACAC (2012)
for details.

5 Its preface reads: “A theme that is reflected throughout this report is uncertainty—uncertainty for
colleges, high schools, students and families. Amid an historically large number of students flowing through
the college application process, we have witnessed unparalleled uncertainty for both students and colleges.”
(page 3 of NACAC (2012)). Jennifer Delahunty, dean of admissions and financial aid at Kenyon College
in Ohio, described the college’s challenge as follows: “Trying to hit those numbers is like trying to hit hot
tub when you are skydiving 30,000 feet. I’m going to go to church every day in April” (“In Shifting Era of
Admissions, Colleges Sweat,” by Kate Zernike, New York Times, March 8, 2009).
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their scores. Students with higher scores may receive admissions from fewer colleges or they

may suffer from a higher chance of not being admitted by any (i.e., “falling through the

cracks”), compared to students with lower scores. When the colleges value both common

and non-common measures of student qualities, they avoid head-on competition by biasing

their admissions in favor of those who score highly in non-common/college-specific measures

against those who score highly in the common measure. The outcome of the equilibrium in

both cases is inefficient since at least some colleges leave their seats unfilled despite there

being some unmatched students that the college would have been happy to admit. Strategic

targeting and biased admissions make the outcome also unfair, in the sense of creating

“justified envy”: a mass of students are unable to enroll at their favorite college even though

the college enrolls students it ranks below them.6

In practice, colleges employ additional measures to cope with congestion. One is to re-

strict the number of applications a student can submit, as practiced by some US colleges

in Early Admissions and through other formats elsewhere. Another is for colleges to admit

students in sequence, or “wait-listing.” While these additional measures reduce the uncer-

tainty colleges face in enrollment, we show that they do not eliminate strategic responses

from participants and undesirable welfare and fairness problems. The most comprehensive

response would be to centralize the matching via a clearinghouse. We show that, at least

when colleges value only a common measure, centralized matching using Gale and Shapley’s

Deferred Acceptance algorithm (DA in short) eliminates colleges’ yield control and justified

envy problems, and it attains efficiency. However, it is possible for some colleges to be worse

off relative to the decentralized matching. This may explain a possible lack of consensus

toward centralization and the prevalence of decentralized matching in many countries.

Several papers in the matching literature have studied decentralized matching markets.

Roth and Xing (1997) focus on the entry-level market for clinical psychologists in which firms

make offers to workers sequentially and workers can either accept, reject, or hold the offers,

and the process repeats over the course of a day. They find, mainly based on simulations,

that such a decentralized (but coordinated) market exhibits congestion, and the resulting

outcome is unstable.7 The current work provides an analytical content to congestion by

studying participants’ strategic responses and their implications for welfare and fairness.

The college admissions problem has recently received attention in the economics liter-

ature. Chade and Smith (2006) study students’ application decision as a portfolio choice

problem. In Chade, Lewis and Smith (forthcoming), students with heterogeneous abilities

6Our result works for finite agents without aggregate uncertainty. See the example in Section 1.2 in our
working paper version (Che and Koh, 2014). We use aggregate uncertainty to capture congestion in a large
market model.

7See also Neiderle and Yariv (2009), which provides a condition for a decentralized one-to-one matching
with sequential offers to generate stable outcomes in equilibrium, and Coles, Kushnir and Neiderle (2013),
which shows how introducing a signaling device in a decentralized matching market alleviates congestion.
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make application decisions subject to application costs, and colleges set admission standards

based on noisy signals of students’ abilities. Avery and Levin (2010) and Lee (2009) study

early admissions.8 Unlike our model, colleges face no enrollment uncertainty in these mod-

els. Independently of the current paper, Hafalir et al. (2014) study decentralized college

admissions with restricted applications, both theoretically and experimentally. Their focus

is on student efforts, not on the colleges’ response to congestion. Avery, Lee and Roth (2014)

and Chen and Kao (2014a,b) study features of Korean and Taiwanese colleges admissions,

respectively, that limit students’ applications. Their focus is on the strategic decisions by

colleges to gain competitive strength, whereas ours is on the implications of the strategic

burden these practices will place on students.

Our model is also related to political lobbying behavior studied by Lizzeri and Persico

(2001, 2005). Just as colleges target students in our model, politicians in these models

target voters in distributing their favors.9 Our model also shares some similarities with

directed search models, such as Montgomery (1991) and Burdett, Shi and Wright (2001).

In these models, workers engage in directed searches, but their inability to coordinate their

job applications causes “search friction.” Like the workers in these models, colleges in our

model engage in “directed searches” over students. The main differences are that colleges

offer admissions to many (in fact, a continuum of) students with heterogeneous qualities

subject to aggregate uncertainty. This leads to strategic targeting, a novel feature in our

model.

The paper is organized as follows. Section 2 introduces the model. Section 3 char-

acterizes the equilibria and explores their welfare and fairness implications. Restriction of

applications, wait-lisitng and centralization via DA are then discussed in Section 4. Section 5

collects empirical evidence on the relevance of enrollment uncertainty and the main theoret-

ical predictions. Section 6 offers further implications of our findings. Proofs are provided in

Appendix A unless stated otherwise.

2 Model

There are two colleges A and B, each with capacity κ < 1
2
, and there is a unit mass of

students with type (v, eA, eB) ∈ V × EA × EB ≡ [0, 1]3, where v is a student’s academic

performance measure commonly considered by both colleges, and eA and eB are college-

8Early admissions serve as a tool to identify enthusiastic applicants in Avery and Levin (2010) and to
avoid “winner’s curse” in Lee (2009). See also Chade (2006), which studies “acceptance curse” in matching
when signals of partners’ (common-value) qualities are noisy.

9Voters are homogeneous in their model, whereas students in our model have heterogeneous abilities and
preferences. This heterogeneity leads colleges to choose differing admission rates for different student types.
More importantly, aggregate uncertainty plays a unique role in our model, whereas the rule of splitting the
spoils of office (winner-take-all versus proportional rule) matters in their model.
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specific measures considered respectively by colleges A and B. One interpretation is that v

is a student’s test score on a nationwide exam, and eA and eB are the student’s performances

on college-specific essays or tests. Alternatively, v can be an academic performance measure

observed by both colleges, while ei corresponds to an extracurricular activity observed by

college i = A,B. We assume that v is distributed according to a continuous distribution

G(·) with a smooth density function g(·), and that eA and eB are independently drawn from

a uniform distribution on [0, 1].10

Students’ preferences for colleges involve aggregate uncertainty: a state s is drawn (with-

out loss) uniformly from [0, 1], such that each student prefers A with probability µA(s) and

B with probability µB(s) := 1 − µA(s).11 The probability µA(s) is strictly increasing and

continuous in state s, so a higher state corresponds to college A being more popular.

College i’s payoff from matriculating a student of type (v, ei) is denoted by U i(v, ei). The

payoff function is strictly increasing in v and nondecreasing in ei. We further assume that

U i is differentiable in (v, ei). Each college faces a marginal cost λ ≥ maxi=A,B U
i(1, 1) for

enrollment exceeding its quota.

One special case of interest is that colleges value only the common measure; i.e., U i(v, ·) ≡
v, in which case the role of ei is to break ties for students. Clearly, this serves as a useful

benchmark for understanding congestion in the simplest form. In practice, ei can matter in

varying degrees. Colleges may admit students based on the score of a single nationwide test,

as in Australia and Turkey, or they may consider multiple dimensions of students’ attributes

and performances, academic and non-academic, as in the US.12

The timing of the game is as follows. First, nature draws state s (i.e., aggregate uncer-

tainty is realized). Next, all students simultaneously apply to colleges. College i = A,B

only observes (v, ei) of those students who apply to it, and colleges simultaneously decide

which applicants to admit. Lastly, students accept or reject their offers. We assume that

students face no application costs, which makes it weakly dominant for them to apply to

both colleges.13 Throughout, we focus on a perfect Bayesian equilibrium in which students

play the weakly dominant strategy.

Colleges make admission offers based on the observed student types. College i’s strategy

10The uniform distribution assumption is without loss, since ei can be seen as a relabeling of the intrinsic
performance measure, say e′i, by its “quantile:” ei = Xi(e

′
i), where Xi is a cdf of e′i. In fact, we can allow

for positive correlation of e′i and v, via first-order stochastic dominance relation. We have chosen a simpler
formulation to avoid clutter.

11Again, the uniform distribution is without loss, because s can be seen as a relabeling of the true “state,”
say s′, by its quantile s := F (s′).

12For instance, students’ community service or leadership activities may weigh heavily for some colleges,
whereas extracurricular activities such as musical or athletic talents may be important for others.

13The strategy of applying to both colleges can be made strictly dominant if students have some uncertainty
about their types, which is realistic in the case that the types are not publicly observable or the case that
the weighting of each dimension of types is unknown to the students.
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is a mapping σi : V × Ei → [0, 1], which specifies a fraction σi(v, ei) of admitted students

with type (v, ei). For given (σA, σB), the mass of students enrolling in college i in state s is

mi(s) :=

∫ 1

0

σi(v)(1− σj(v) + µi(s)σj(v))g(v) dv,

where σi(v) := Eei [σi(v, ei)] represents the fraction of type v students college i admits. In

words, a fraction σi(v)(1 − σj(v)) of students is admitted only by college i, and a fraction

σi(v)σj(v) is admitted by both colleges, for i, j = A,B, i 6= j. All students in the former

group accept i’s admissions, but only a fraction µi(s) of the latter group accepts i’s offer in

state s. single-crossing College i’s ex ante payoff consists of the aggregate utility of enrolling

students and the capacity cost associated with excess enrollment:

πi := Es
[ ∫ 1

0

∫ 1

0

U i(v, ei)σi(v, ei)(1− σj(v) + µi(s)σj(v)) dei g(v)dv − λmax{mi(s)− κ, 0}
]
.

Note that the under-enrollment is also costly. Leaving a seat unfilled incurs the opportunity

cost of not enrolling some students with (v, ei). An immediate observation is that each

college’s payoff is concave in its own admission strategy; that is, πi(ησi + (1 − η)σ′i) ≥
η πi(σi) + (1− η)πi(σ

′
i) for any feasible strategies σi and σ′i and for any η ∈ [0, 1]. Therefore,

randomizing across distinct σi’s is unprofitable for college i. Hence, we can focus on a pair

(σA, σB) for an equilibrium.

To understand colleges’ admission decisions, fix any equilibrium (σA, σB). Let Ui :=

{(v, eA, eB) ∈ [0, 1]3 |σi(v, ei) > 0} be the types of students admitted by college i, and

UAB := UA ∩ UB be the types of students admitted by both colleges in that equilibrium.

In what follows, we shall focus on equilibria in which UAB has positive measure. In an

equilibrium with zero measure of UAB, colleges coordinate perfectly to avoid competition,

which seems unrealistic in practice; such an equilibrium can also be easily ruled out if colleges

value students with high v or high ei sufficiently highly.

Lemma 1. In any equilibrium in which UAB has a positive measure, mA(0) < κ < mA(1)

and mB(1) < κ < mB(0). Moreover, there exists a unique ŝi ∈ (0, 1) such that mi(ŝi) = κ

for all i = A,B, and the measure of UA ∪ UB is strictly smaller than 1.

Proof. The proof is in the Supplementary Notes. �

According to the lemma, in equilibrium, colleges cannot have strict over-enrollment for

all states or strict under-enrollment for all states. Over-enrolling in all states is clearly

unprofitable for a college since it could save λ by rejecting some students; likewise, under-

enrolling in all states is also not optimal, since accepting additional students would raise
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its payoff without violating its quota. In particular, each college will suffer from under-

enrollment in some states and over-enrollment in other states. This is intuitive since given

(aggregately) uncertain preferences of students, the presence of students receiving admissions

from both colleges creates non-trivial enrollment uncertainty. Each college then manages the

uncertainty by optimally trading off the cost of over-enrollment in high demand states with

that of under-enrollment in low demand states. The last part of the lemma means that in

equilibrium, there is a positive measure of students who do not receive admission from either

college.

3 Characterization of Equilibria

We now analyze colleges’ admission decisions in equilibrium with a positive measure of UAB.

As noted in Lemma 1, there exist cutoff states (ŝA, ŝB) such that colleges A and B over-enroll

in states SA := {s|s ≥ ŝA} and SB := {s|s ≤ ŝB}, respectively. Rewrite college i’s payoff as

follows:

πi =

∫ 1

0

∫ 1

0

σi(v, ei)H
i(v, ei, σj(v)) dei g(v)dv + λκProb(s ∈ Si),

where

H i(v, ei, σj(v)) := U i(v, ei)
(
1− σj(v) + E[µi(s)]σj(v)

)
− λProb(s ∈ Si)

(
1− σj(v) + E[µi(s)|s ∈ Si]σj(v)

)
is college i’s marginal payoff from admitting a student with type (v, ei) for given ŝi and

σj(·) in equilibrium.14 This marginal payoff equals the student’s value U i(v, ei) to college i

multiplied by the probability of the student accepting i’s admission minus the expected

capacity cost the student adds to i.

A few remarks on H i are worth making. First, H i(v, ei, x) is strictly increasing in v and

nondecreasing in ei, reflecting a college’s intrinsic preferences for students. Second, due to

the independence of eA and eB, the capacity cost depends only on the common measure v,

(and not on the non-common measure ei). Lastly, H i captures college i’s local incentive—

namely, its benefit from admitting type (v, ei) students, holding fixed its opponent’s decision

and its own decisions for all other students at σi(·, ·).

Lemma 2. A strategy profile (σA, σB) is an equilibrium if and only if (i) H i(v, ei, σj(v)) > 0

implies σi(v, ei) = 1 and (ii) H i(v, ei, σj(v)) < 0 implies σi(v, ei) = 0, where i, j = A,B and

i 6= j. Moreover, H i(v, ei, x) satisfies the single-crossing property: if H i(v, ei, x) ≤ 0, then

H i(v, ei, x
′) < 0 for any x′ > x.

14We suppress the dependence of σ on ŝi unless its role is important.
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Proof. See Appendix A.1. �

The first part of Lemma 2 shows that the signs of (HA, HB) are sufficient statistics for

characterizing equilibria. Since this condition only ensures “local” incentive compatibility,

there is a concern that a college may profitably deviate “globally” by changing its admis-

sion decisions on a mass of students. The lemma assures that no such global deviation is

profitable. Hence, a strategy profile satisfying local incentives is indeed an equilibrium.

The single-crossing property reveals the nature of strategic interaction. In particular, it

suggests that a student more likely to be admitted by its competitor is less desirable for

a given college, all else equal. This point warrants a careful examination. To this end,

recall first that H i(v, ei, σj(v)) is nondecreasing in ei. This, together with (the first part of)

Lemma 2, allows us to restrict attention to a cutoff êi(v): college i admits student type (v, ei)

if and only if ei ≥ êi(v). Given this, σj(v) = 1− êj(v), so we can equivalently focus on

Hi(v, ei, êj(v)) :=H i(v, ei, 1− êj(v))

= êj(v)(U i(v, ei)− ui) + (1− êj(v))E[µi(s)](U
i(v, ei)− ui),

where ui := λProb(s ∈ Si) is the capacity cost college i incurs when a student without an

offer from college j accepts its admission, and ui := λProb(s ∈ Si)E[µi(s)|s∈Si]
E[µi(s)]

is its cost when

a student with an offer from j accepts its admission. Recall that a college incurs capacity

cost only when it over-enrolls. If the student does not receive an offer from college j, then she

accepts i’s admission for sure. Hence, over-enrollment occurs with probability Prob(s ∈ Si),
explaining the marginal cost of ui. However, if the student receives an offer from college j,

she accepts i’s offer only when she prefers i to j. Hence, conditional on acceptance, college

i over-enrolls with probability Prob(s ∈ Si)E[µi(s)|s∈Si]
E[µi(s)]

, which explains the marginal cost ui.

A key observation is that ui > ui. This is because while students without an offer from

its competitor accept a college’s offer independently of the state, students with an offer from

its competitor are more likely to accept a college’s offer when it is more popular. Since a

college is more likely to over-enroll when it is popular, admitting the latter students is more

costly. It is important to note that a student’s uncertain preference per se is not the source

of this cost; a college can fully hedge idiosyncratic preferences uncertainty in a large market.

The reason why it disfavors such a student is because of the “incidence” of the student’s

acceptance: given the aggregate uncertainty, the acceptance by students with competing

admissions is more concentrated on the over-enrollment state. For this reason, colleges in

our model seek high-yield students.15

The single-crossing property implies that a college’s marginal payoff from admitting a

15While the logic is obvious when there are only two colleges, a similar logic applies to the case with more
than two colleges, suggesting that colleges would prefer students with fewer competing offers.
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(a) Ui depends only on v

U i(v, ei) = ui
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(b) Ui depends both on v and ei

Figure 3.1: College i’s Admission Decision

student of a given score v increases, so its cutoff falls, when its opponent raises its cutoff.

Consequently, the game facing the colleges is that of strategic substitutability. To gain further

understanding, for college i = A,B and for each v ∈ V , define i’s upper and lower cutoffs:16

ei(v) := inf{e|Hi(v, e; 0) ≥ 0} and ei(v) := inf{e|Hi(v, e; 1) ≥ 0},

which are depicted in Figure 3.1. The left and right panels respectively describe the case

that the colleges only value the common measure (i.e., U i(v, ei) ≡ v) and the case that they

also value their non-common measures. The students with (v, ei) above the upper cutoff are

worth admitting even when the opponent college employs êj(v) = 0 (i.e., j admits all type-v

students); surely, it is optimal for college i to admit such students. Likewise, the students

below the lower cutoff give negative marginal payoff even when they receive no offers from

j; surely, it is optimal for college i to reject them. Inspection of Hi reveals that these two

cutoffs correspond to indifference curves, U i(v, ei) = ui and U i(v, ei) = ui, respectively.17

The real cutoff êi(·) must lie between the two cutoffs, in the “gray zone” in Figure 3.1. The

equilibrium cutoffs are characterized more precisely in the next theorem.

Theorem 1. An equilibrium is characterized by a profile of cutoff functions {(êA(v), êB(v))}v,
each of which lies between the upper and lower cutoffs for the respective college, where

êi(v) = inf{e|Hi(v, e; êj(v)) ≥ 0} for i, j = A,B and i 6= j,

(and is equal to one when the set is empty). For each i = A,B, if êi(v) ∈ (0, 1) and êj(v) is

16Let the cutoffs be zero if the respective sets are empty.
17In the case U(v, ei) ≡ v, the cutoffs become vertical and induce cutoffs in V, as shown in the left panel

of Figure 3.1.

10



1

1

0 eA

eB êB

êA

(a) Ui depends only on v

1

1

0 eA

eB êA

êB
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Figure 3.2: Best Responses

strictly decreasing in v, then

|ê′i(v)| < U i
v(v, ei)

U i
ei

(v, ei)

∣∣∣∣
ei=êi(v)

. (3.1)

Proof. See Appendix A.2. �

The first part of Theorem 1 suggests that the equilibrium is characterized via an inter-

section of colleges’ “best responses” in their choice of cutoffs: for each v, êA(v) is chosen as a

best response against êB(v) and vice versa. Figure 3.2 depicts the best responses for a fixed

v that corresponds to the “gray zone” for both colleges.

Strategic substitutability means that the best response curves are (weakly) negatively

sloped. Depending on the importance of the non-common measures, however, the strategic

interaction can vary dramatically. The left panel depicts the case in which the colleges only

value the common measure (i.e., U i(v, ei) ≡ v). One response could be perfect targeting;

one college admits the students and the other rejects them (either corner). They may

also coordinate by “mixing”—or selecting an interior fraction of students,—by using the

non-common measure as a randomization device. Colleges playing this latter strategy will

appear to value the non-common measures even though they are of no intrinsic value to them.

The right panel depicts the case in which colleges value their non-common measures highly.

Since a high value of non-common measure does not indicate high enrollment uncertainty,

the strategic link between the colleges weakens, so the best-response curves are relatively

flat, and a unique (and interior) intersection (ê∗i , ê
∗
j) obtains.

Ultimately, one is interested in how the cutoffs (êA(v), êB(v)) vary with v. An interesting

question is whether êi(v) is decreasing in v in equilibrium, which would imply that the
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equilibrium admissions policy is monotonic: if college i admits a type-(v, ei) student, then

it must also admit a type-(v′, e′i) student, provided (v′, e′i) ≥ (v, ei). Our equilibrium does not

guarantee such a monotonicity; the reason is that, while Hi(v, ei, êj) is increasing in v for a

fixed (ei, êj), Hi(v, ei, ê
∗
j(v)) need not; namely, the strategic response by the opponent can

give rise to a non-monotonic reaction. Indeed, non-monotonicities may arise in equilibrium

when the colleges primarily value the common measure, as will be seen below. Even when

the admission policies are monotonic, the colleges do not admit students according to their

intrinsic preferences. Indeed, the second part of Theorem 1 reveals that colleges would

systematically distort the admissions criteria to favor those students who score highly in

non-common measure at the expense of those who score highly in the common measure.

The “overweighting” of the non-common measure is seen formally by the fact that the slope

of the cutoff curve êi(·) is less than that of the indifference curve, i.e., the college’s true

marginal rate of substitution of v for ei.

More precise understanding of the equilibrium can be gained by focusing on two special

cases, to which we now turn.

� Colleges only value the common measure.

As mentioned, in this case, colleges may strategically target or mix over the students

in the gray zone. We focus on the equilibrium in which colleges mix over the students

using their non-common measures as randomization devices. More precisely, in a mix-

ing equilibrium, they choose (êA(v), êB(v)) so that Hi(v, êi(v), êj(v)) = 0 for any v ∈
(max{uA, uB},min{uA, uB}).18 Such an equilibrium always exists, as will be shown below.19

The example depicted in Figure 3.3 shows equilibrium admissions strategies when college

A is slightly more popular than college B. In line with Figure 3.1(a), both upper and lower

cutoffs are step functions, indexed by their vertical segments. Interestingly, the vertical

segments are not aligned between the two colleges. The figure shows, rather intuitively,

that college A is more “selective” than college B with respect to both upper and lower

cutoffs (.75 and .54 respectively for college A, versus .71 and .42 respectively for college

B). This misalignment of the cutoffs gives rise to a “trough” in A’s admissions policy (for

v ∈ [0.71, 0.75]) and a “ridge” in B’s admissions policy (for v ∈ [.42, .54]). The “trough”

corresponds to the students that B is committed to admit, irrespective of A’s decision

(i.e., above B’s upper cutoff), so the optimal response by A is to “shun” them altogether,

18Since the upper and lower cutoffs are endogenous, it is a priori unclear if this gray zone would be non-
empty in equilibrium. Hence, the condition is the equilibrium selection property. Theorem 2 provides a
sufficient condition for the gray zone to appear in equilibrium.

19There may exist another equilibrium in which colleges target students perfectly based on v, as depicted
by a corner intersection in Figure 3.2(a). Such an equilibrium requires a great deal of coordination between
colleges that may be implausible, whereas the “mixing” equilibrium is more “anonymous” in the way the
colleges treat different v types. The welfare and fairness implications we report in Theorem 4 also apply to
this perfect coordinating equilibrium, however.
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(a) College A

(b) College B

Note: v ∼ U [0, 1], λ = 20, κ = 0.36 and µ(s) = 1
2
s+ 2

5
.

Figure 3.3: Colleges’ Admission Strategies

although A admits some students with lower v. The “ridge” corresponds to the group of

students A is certain to reject, which makes them attractive enough for B to admit fully;

this is in contrast to B’s “harsh” treatment of the students with slightly higher v. These

features bring about “non-monotonicity” in the colleges’ admissions decisions. In particular,

the “harsh” treatment by B of students with v just above 0.54 corresponds to the classical

“fall-through-the-cracks” phenomenon whereby good students are neglected by a weaker

college for fear that a stronger college may admit them. Indeed, the students just above the

ridge (≈ .54) have discontinuously lower chance of getting any offer than the students just

below, precisely because former students are appealing enough to attract admission from the

stronger college with some chance!

Conforming to the second part of Theorem 1, the cutoffs in the gray zone are flatter

than the indifference curve (which should be vertical), meaning that colleges “appear” to

value non-common measures despite their being of no intrinsic value to them. The presence

of this gray zone distinguishes our equilibrium from the characterization in the existing

literature, where colleges employ cutoff strategies (Avery and Levin, 2010; Chade, Lewis and
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Smith, forthcoming). The main source of the difference, as noted earlier, is the presence of

enrollment uncertainty in our model. We show below that the presence of the gray zone—or

the lack of cutoff equilibrium structure—is a general feature when colleges are sufficiently

symmetric.

Theorem 2. There exists a mixing equilibrium in which colleges choose interior cutoffs

(êA(v), êB(v)) ∈ (0, 1)2 that are strictly decreasing in v for any v ∈ (maxi=A,B ui,mini=A,B ui).

This latter “mixing” interval is nonempty, provided that colleges are ex ante sufficiently

symmetric; formally, if µA(s) ∈ (1 − µA(1 − s) − ε, 1 − µA(1 − s) + ε) for all s and for

some ε > 0.

Proof. See Appendix A.3. �

Although the result is not limited to symmetric equilibria, the intuition can be seen more

clearly when we focus on symmetric equilibria (in the case that colleges are symmetric).

Suppose to the contrary that both colleges adopt cutoff strategies using the same cutoff v.

Namely, they compete for students of types [v, 1]. Suppose that a college deviates by shifting

its admissions from students of types [v, v + ε) to types [v − ε′, v). Note that the former

students receive a competing offer, thus entailing uncertainty in enrollment, while the latter

do not. For small enough ε and ε′, chosen to keep the expected yield unchanged, the

resulting drop in the quality of the admission pool is negligible but the benefit in reducing

the uncertainty is of first order importance. Hence, the (symmetric) cutoff equilibrium cannot

be sustained.

� Colleges value the non-common measures significantly.

In this case, colleges’ preferences are sufficiently independent, so their incentive to strate-

gically target students based on the common measure v is not very strong. Hence, the

equilibrium admissions strategies are now likely to exhibit monotonicity. However, as stated

in Theorem 1, the yield management consideration will still cause them to bias their admis-

sions policies in favor of students with high non-common measures.

To state the result formally, we assume that there exists δ > 0 such that U i
v(v,ei)
U i(v,ei)

≤ δ
Uj
v (v,ej)

Uj(v,ej)

for all (v, ei, ej) ∈ (0, 1)3, where i, j = A,B and i 6= j.20 We further assume that

U i(v, 0) = 0 and
U i
ei

(v, ei)

U i(v, ei)
> max

{
1− µi
µi

,
µi

1− µi
δ

}
for all (v, ei), (3.2)

where µi := E[µi(s)] for i = A,B. This condition implies that colleges value non-common

measures sufficiently highly, relative to the common measure.

20This assumption is made only because we assume U iv(v, 0) = 0 and U i(v, 0) = 0 in (3.2). A sufficient

condition is for lim(v′,e′)→(v,e)
Ui

v(v
′,e′)

Ui(v′,e′) to be bounded from below and from above by some positive numbers.
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Figure 3.4: Colleges’ Admission Strategies

Theorem 3. Given (3.2), an equilibrium exists, and in any equilibrium, college i’s cutoff

êi(v) is nonincreasing in v everywhere and strictly decreasing in v whenever êi(v) ∈ (0, 1).

In particular, there exists v̂ < 1 such that for all v > v̂, (êA(v), êB(v)) are strictly decreasing

in v. The colleges overweight non-common measures in the sense of (3.1) for v > v̂.

Proof. See Appendix A.4. �

Figure 3.4 depicts symmetric equilibrium admissions behavior when U i(v, ei) = 0.62v +

0.38ei, i = A,B, v ∼ U [0, 1], λ = 1, κ = 0.4 and µ(s) = s. The dashed lines depict the

colleges’ indifference curves; in particular, the top and bottom ones correspond to the upper

and lower cutoffs, ui and ui, respectively. The admission cutoff locus, êi(·) for i = A,B, lies

in between the two cutoffs. The cutoff curve exhibits clear bias in favor of the non-common

measure. The true preferences exhibit MRSi = 1.63, but the admission cutoffs underweight

v relative to ei, with a ratio of less than 1.23.

� Welfare and Fairness

We have seen that colleges respond to enrollment uncertainty by strategically targeting

students or by distorting their admissions criteria in favor of non-common measures (even

when they do not intrinsically value them). We now explore the implications of this behavior

for welfare and fairness.

For each state s, an assignment is a mapping from a student type V × EA × EB into

a college {A,B, ø}, where ø denotes the “null” college. An outcome is a mapping from

a state to an assignment, i.e., the realized allocation in state s. Welfare and fairness can

be defined based on the colleges’ and the students’ (ordinal) preferences. We say that a

student has justified envy at state s if at that state she prefers a college to the one that

enrolls her, even though the former college enrolls a student it ranks below her according

to its true preference. An outcome is said to be fair if for almost all states, the assignment

15



it selects causes no justified envy for almost all students. An outcome is Pareto efficient

if the associated assignment is Pareto undominated for almost every state—namely, there

is no other assignment in which both colleges and all students are weakly better off and at

least one college or a positive measure of students is strictly better off.

Theorem 4. In any equilibrium of a decentralized matching (in which UAB has positive

measure), the allocation is Pareto inefficient. The outcome is also unfair if for at least one

college i = A,B, its admission cutoff êi(v) is interior and its opponent’s cutoff êj(v), j 6= i,

is strictly decreasing in v for v ∈ (v′, v′′).

Proof. The first statement follows directly from Lemma 1, according to which there exists

(ŝA, ŝB) ∈ (0, 1)2 such that college A over-enrolls for s > ŝA and college B under-enrolls

for s > ŝB. Hence, for s > max{ŝA, ŝB}, a positive measure of unmatched students can fill

vacancies that exist at college B, without altering the matching of the other students. This

reassignment Pareto dominates the equilibrium outcome.

To prove the latter claim, suppose êi(v) ∈ (0, 1) and êj(v) is strictly decreasing in v for

an interval (v′, v′′). By the second part of Theorem 1, we have |ê′i(v)| < U i
v(v,ei)

U i
ei

(v,ei)

∣∣
ei=êi(v)

. This

means that one can find two sets of students X, X̃ ⊂ (v′, v′′) × Ei and u such that, for all

(v, e) ∈ X, e > êi(v) and U i(e, v) < u, and for all (ṽ, ẽ) ∈ X̃, ẽ < êi(ṽ) and U i(ṽ, ẽ) > u.

(In Figure 3.4, X can be found in region I, at the top between solid and dotted lines, and

X̃ can be found in region II, at the bottom between dotted and solid lines). Clearly, the

students in X̃ have justified envy toward students in X. Since the justified envy exists for a

positive measure of students for all states, the outcome is unfair. �

Theorem 2 and Theorem 3 give sufficient conditions for the outcome to be unfair.

Corollary 1. The outcome is unfair in any equilibrium given (3.2) or in the mixing equilib-

rium of the one dimensional model if the colleges are sufficiently symmetric.

4 Different Responses to Enrollment Uncertainty

In this section, we study additional measures that colleges may employ to manage their

enrollment. Addressing these measures in full generality goes beyond the scope of the current

paper. Instead, we develop relevant insights based on the simple environment in which

colleges only value the common measure v.

4.1 Restricted Applications

One common method colleges employ is to limit the number of applications that students

can submit. The restriction may be coordinated by colleges, or even institutionalized, as in
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the UK, Korea and Japan.21 It may also be a result of colleges’ unilateral actions, as with

the “single-choice” requirement some US colleges place in their early admissions plans,22 or

with the synchronized scheduling of on-site entrance exams by colleges in Korea and Japan.23

Restricting applications eases colleges’ burden of managing uncertainty in enrollment;

yield rates rise because applicants have fewer choices and students are forced to become

more credible with their choices. Consequently, colleges face fewer incentives to act strategi-

cally. With two colleges in our model, for instance, limiting students to apply to one would

eliminate the uncertainty since students will never reject an admission. Thus, colleges will

meet their targets exactly by simply admitting students above an appropriately-chosen cut-

off. At the same time, the students will be forced to act strategically with their applications.

In a nutshell, this method shifts the strategic burden from colleges to students.

To illustrate its implications, consider our baseline model with only common measure v.

To understand the strategic problem of students, we introduce cardinal preferences: each

student draws a payoff y ∈ [0, 1] from attending college A and 1 − y from attending B.

Suppose that there are two equally-likely states a and b, and that y is drawn according to

the CDFs K(y|a) = y2 and K(y|b) = y, in the two states. This assumption ensures that

college A is more popular overall and relatively more popular in state a than in state b. For

simplicity, suppose each student knows her preference y but not her score v at the time of

application.24 Assuming that each college faces a capacity of κ = 0.4 and any marginal cost

λ > 1, where U i(1, 1) = 1 for all i = A,B.25 The shaded areas of Figure 4.1 depict the set

of students who applied to the two colleges and are admitted by them.

In the equilibrium, the colleges act nonstrategically, admitting students above a cutoff

that fills their capacities in each state. By contrast, students apply “strategically”: they now

apply to A if y > ŷ := 0.55 and to B if y < ŷ. Importantly, those with y ∈ [0.5, 0.55] apply

21Students cannot apply to both Cambridge and Oxford in the UK, and applicants in Japan can apply to
at most two public universities. Korean colleges (more precisely, college-department pairs) are partitioned
into three groups, and students are allowed to apply to only one in each group.

22Early admissions consist of Early Decision, which requires students to enroll if admitted, and Early
Action, which does not involve such commitment. While pursuing admission under an Early Decision plan,
students may apply to other institutions, but may have only one Early Decision application pending at any
time (NACAC, 2012). Some Early Action plans place restrictions on student applications to other early
plans. Selective universities such as Harvard, Stanford, Yale and Princeton restricted applicants to a single
private university in their 2014 Early Action plans.

23The Korean government has offered several dates, and many Korean universities have voluntarily chosen
to schedule their exam on the same date. See Avery, Lee and Roth (2014) about the colleges’ strategic
scheduling problem in such an environment. Public universities in Japan coordinate on three dates for
on-site entrance exams.

24This does not alter our analysis for the baseline model. Nonobservability of scores by students makes it
a strictly dominant strategy for students to apply to both colleges. Hence, the previous analyses still remain
valid with this assumption. In reality, even though students submit their records to colleges, they do not
know precisely how they are ranked by colleges. See Avery and Levin (2010) for the same treatment.

25The features of the equilibrium hold more generally. A full analysis of the equilibrium is provided in
Che and Koh (2014) and is also included in the Supplementary Notes.
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Figure 4.1: Equilibrium Assignment when κ = 0.4

to B despite the fact that they prefer A to B. This is because of the overall popularity of

A, which causes these students to sacrifice their moderate preference for A so as to increase

the odds of getting admitted by any college.

One can see that the shifting of strategic burden from colleges to students does not

eliminate the fairness and welfare problems of congestion. First, the equilibrium is unfair.

Justified envy arises in state a for students with (v, y) ∈ [0, v̂A(a)]×[0.5, 1] who are unassigned

despite having scores exceeding B’s cutoff of v̂B(a) = 0, and it arises in state b for students

with (v, y) ∈ [v̂A(b), 1]× [0.5, 0.55] who get into B even though they prefer A and have scores

above its cutoff v̂A(b). Second, the equilibrium is inefficient. In state a, only mass 0.3 of

students apply to B, leaving its capacity κ = 0.4 unfilled. This outcome is inefficient because

some students are unmatched even though they are acceptable to B in that state.

4.2 Sequential Admissions: Wait-listing

Colleges also manage enrollment uncertainty by offering admissions sequentially. According

to this method, a college admits some applicants and wait-list others in the first round.

Later it admits students from the wait list when some offers are rejected. This process may

repeat for several rounds. Most colleges in France and Korea use wait lists. In the US,

nearly 45% of four-year colleges adopted wait lists in 2011, up from 32% in 2002 (NACAC,

2012). Typically, admissions in each round are not deferred and/or the number of iterations

is limited. Hence, even though wait-listing allows for more admission offers and acceptances

than the baseline model, it does not fully eliminate congestion. For this reason, strategic

targeting remains an issue.26

26While allowing for many iterations will ease the problem, the design of the market still matters. In
principle, the market for clinical psychologists admits numerous rounds of iterations, but suffers from con-
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This point can be seen by a simple extension of our baseline model. There are three

colleges, A, B and C, each with a mass κ < 1
3

capacity. Colleges again evaluate students

based only on their common score v, as before. All students prefer A and B to C, but C is

significantly better than not attending any school. A college’s utility is given by students’

scores, but for each student, there is a probability ε ∈ (0, 1) that each of colleges A and B

finds the student unacceptable. College C admits students simply based on their scores.

There are two equally-likely states, a and b. In state j ∈ {a, b}, a fraction sj of students

gets utility u from A and u′ < u from B, and the remaining 1−sj students have the opposite

preference, where sa = 1 − sb > 1
2
. (In other words, college i is more popular in state si,

i = A,B, and the two colleges are ex ante symmetric in popularity.) In either state, a

student gets utility u′′ from C, where (1−ε)u < u′′ < u, so having C with certainty is better

than having the more preferred of the two other colleges with probability 1−ε. In additions,

suppose that λ is so high that a college never admits more than κ in total. Consider the

following model of wait-listing: in each round, each college admits a set of students and wait-

lists the remaining applicants. A student who has received an offer must accept or reject it

immediately. After the first round, colleges A and B learn the state, so the game effectively

ends in two rounds.

We show that there is no symmetric equilibrium in which both colleges A and B use a

cutoff strategy (i.e., admit the top κ acceptable students) in the first round.

Theorem 5. There is no symmetric equilibrium in which both colleges A and B offer ad-

missions to the top κ acceptable students in the first round.

Proof. See Appendix A.5. �

The intuition behind this result is as follows. Suppose A and B admit the best candidates

up to their capacities while keeping the next best group in mind in case some offers are turned

down. The problem with this strategy is that when some of those admitted turn down their

offers, the next-best students the colleges have in mind may not be available, since these

students, uncertain about whether A or B would find them acceptable, may have accepted

an offer from C. This implies that the students who remain after the first round are likely to

be far worse than the next-best group. Hence, a college would deviate profitably by skipping

over some of the top κ students and preemptively admitting some of the second-best students.

Theorem 5 implies that strategic targeting—i.e., a non-cutoff equilibrium—must occur in any

gestion (Roth and Xing (1997)). Korean college admissions involve many rounds, but nontrivial congestion
appears to exist, as we show below (See Section 5). Another measure of congestion is the number of “repeat
applicants”—the applicants who are either unmatched or refuse to accept their assignments and wait one
full year to take another “crack” at the assignment process. That number reached 127,000 in Korea in 2014.
While much of the problem may be solved by “frictionless aftermarket,” what form the market should take
is far from clear.
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Figure 4.2: Deferred Acceptance Algorithm

symmetric equilibrium, and this also implies that the outcome will be, in general, unfair and

inefficient.

4.3 Centralized Matching via Deferred Acceptance

The most systemic response to enrollment uncertainty is to centralize the admissions via

a clearinghouse. College admissions are centralized in countries such as Australia, China,

Germany, Taiwan, Turkey and the UK. While a number of matching algorithms may be used

for this purpose, one popular method is Gale and Shapley’s Deferred Acceptance algorithm

(henceforth DA). Not only is DA employed in many centralized markets, such as public

school admissions and medical residency assignments, but it also has a number of desirable

properties compared to decentralized matching, as we shall highlight below.

In the DA algorithm (student-proposing version), students and colleges report their or-

dinal preferences to the clearinghouse, which then uses the information to simulate the

following multi-round procedure. In each round t = 1, ..., students apply to the most pre-

ferred colleges that have not yet rejected them. The colleges then tentatively accept the most

preferred applicants up to their capacities and reject the rest (permanently). This process

is repeated until no further applications are made, in which case each student is assigned

to a college that has tentatively accepted the student. While the sequential nature of the

mechanism resembles the “wait-listing” considered earlier, it differs in several respects: first,

students apply to one college per round; second, a college’s admission is tentative in each

round; and third, the number of rounds is not limited. These features eliminate congestion.

To see this, consider how DA would proceed in our baseline model with only common

measure v (assuming truthful reporting by agents on both sides). For concreteness, fix a

realized state s such that µA(s) > 1/2. DA takes two rounds, and Figure 4.2 describes the
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set of students who apply to the two colleges and are admitted by them in each of the two

rounds. In the first round, a mass µA(s) of students apply to college A, and the remaining

mass µB(s) = 1− µA(s) of students apply to college B. Each college tentatively admits the

top κ students among the applicant. Thus, colleges’ cutoffs in this round, denoted by v̂i(s),

satisfy µi(s)(1−G(v̂i(s))) = κ for i = A,B (see Figure 4.2(a)). The rejected students then

apply to the remaining college in the second round, and again, colleges reselect the top κ

students among those admitted tentatively in the first round and the new applicants. Thus,

colleges’ cutoffs are readjusted to satisfy µA(s)(1−G(v̂A(s))) = κ and 1−G(v̂B(s)) = 2κ (see

Figure 4.2(b)). Since there are no more colleges to which rejected students can apply, the

algorithm terminates, and the tentative assignment becomes final. The outcome is clearly

fair since a student never envies another with a lower score v, and it is also Pareto efficient.

More generally, the following results hold for our baseline model.27

Theorem 6. DA makes truthful reporting a weakly dominant strategy for students and it

makes truthful reporting of rankings (based on v) and capacities an ex post equilibrium for

colleges. In the resulting equilibrium, in each state s, there are cutoffs (v̂A(s), v̂B(s)) such

that each student v is assigned to the best college among those whose cutoff is below v, and

the colleges fill their capacities exactly. The outcome is fair and Pareto efficient.

Proof. The dominant strategy property (or “strategy-proofness”) is a well-known conse-

quence of the DA (Dubins and Freedman, 1981; Roth, 1982). The fairness and efficiency

properties are similarly well-known (Gale and Shapley, 1962; Balinski and Sönmez, 1999;

Abdulkadiroğlu and Sönmez, 2003). The incentive property of the colleges is due to their

common ordinal preferences and is proven in Appendix A.6. �

The colleges are collectively better off under DA than under decentralized matching;

colleges attain their enrollment targets exactly and jointly enroll the top 2κ students. This

does not mean, however, that a consensus would form in favor of centralization under DA.

Example 1. Assume v ∼ U [0, 1], λ = 5, κ = 0.45 and µ(s) = 2
5
s + 3

5
. Then, a decentralized

matching admits a mixed equilibrium similar to that in Figure 3.3. With the shift to the DA,

the colleges’ payoffs improve jointly, but college B’s payoff falls. The reason is that college

B now loses many good students that it was able to attract under decentralized matching.

This example may explain why centralized matching is not as common in college ad-

missions as in other contexts, such as public high-school admissions.28 Unlike public high

27The outcome of college-proposing DA is the same as that of student-proposing DA in our model, since
colleges have a uniform rank on students. See also Abdulkadiroğlu, Che and Yasuda (forthcoming) and
Azevedo and Leshno (2012) for a model of DA in which a continuum of students is matched to a finite
number of schools.

28Abdulkadiroğlu, Agarwal and Pathak (2014) find the switch in 2002 from a decentralized matching
mechanism to a centralized one based on DA resulted in a significant gain in utilitarian welfare for applicants
in the New York City Public High School assignment.
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schools which are largely under the control of a central authority, colleges are independent

strategic players with their own interests to pursue.29

5 Empirical Evidence

Our main thesis is that the “congestion” of decentralized matching causes colleges to avoid

head-on competition, by strategically targeting students based on the common measure of

merit and by overweighting the non-common measures of student merit. While conclusive

evidence on the uncertainty colleges face and their strategic responses is difficult to obtain,

there are some suggestive facts.

First, there is some evidence on the uncertainty facing colleges with respect to their

enrollment. Indeed, the uncertainty facing colleges is a main theme characterizing recent US

colleges admissions, according to NACAC (2012) as noted in footnote 5. As a simple test for

the presence of aggregate uncertainty, we investigated if the yield rates for 34 US colleges

varied significantly across 2011-2013 (for the classes of 2015-2017 applicants), using the data

reported in NYT “The Choice” blog.30 One could take the yield rate—the rate at which

admitted students accept a college—as a proxy for the realized preference for a college for

a given year (µi(s) in our model), and its variability as a measure of uncertainty facing the

college.31 Both Fisher’s exact test and a Chi-square test reject the null hypothesis that the

rates are the same over three years (i.e., no aggregate uncertainty) for (the same) 15 colleges

out of 34 in the sample, at the p = 0.05 significance level (see Table B.1 in Appendix B).32

Second, the admissions decisions made by Hanyang University in Korea show a pattern

consistent both with the strategic targeting and the overweighting of non-common measure

29There are other difficulties associated with centralizing college admissions particularly in the US. First,
US colleges provide complicated systems of financial aids to students based on a variety of factors (see
Epple, Romano and Sieg, 2006). Second, US colleges often seek to assemble a cohesive student body, thus
exhibiting so-called “complementary preferences” (see Che, Kim and Kojima, 2015). Designing a centralized
matching mechanism that accommodates these features may be difficult. Third, as we discuss in Section 6,
decentralized matching may have an advantage in economizing on the costs students incur in evaluating their
choices than some centralized matching algorithms.

30We thank a referee for suggesting this test and the editor for bringing the data to our attention. See
http://thechoice.blogs.nytimes.com/category/admissions-data.

31Given our model, the number of enrollment at college i follows B(ni, pi), where ni is the number of
students admitted by college i and pi is the probability that an admitted student accepts i’s admission. The
presence of aggregate uncertainty means that pi is a random variable that varies with the state of the world.
Admittedly, the measure is imperfect since the choice set for admitted students differs across years. More
importantly, ni is not exogenous but rather chosen by the college to combat precisely the sort of uncertainty
that would result in different yield rates across years. We thus believe that the observed variability in yield
rates understates the uncertainty facing a college.

32There are 37 colleges in the data. We excluded three colleges (Harvard, Yale and Emory) from the
sample since the first two schools contain missing variables and the last one had an extreme fall in yield
rates, which we suspect is due to a some regime change in the way accounting is done.
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Table 1: CSAT scores: Department of Economics and Finance

Year Round Admittees
Average CSAT Scores

Total ≥90th Percentile ≤10th Percentile

2011

1 35 266.559 267.638 266.027
2 7 266.082 266.228 265.920
3 3 265.829 265.984 265.708
4 2 265.894 266.064 265.724
≥5 4 265.840 266.020 265.600

2012

1 34 274.074 274.587 273.692
2 2 273.690 273.844 273.536
3 7 273.373 273.620 273.044
4 3 273.145 273.292 273.040
≥5 8 272.765 273.296 272.388

2013

1 31 272.458 274.538 271.587
2 3 271.608 271.680 271.536
3 3 271.363 271.516 271.084
4 3 272.248 271.440 271.056
≥5 5 271.073 271.720 270.732

Note: The total score of CSAT is normalized by 280, while the actual score may
depend on the subjects taken by students.

of merit identified in the paper.33 Each department at Hanyang admits students in multiple

rounds via wait-listing for its regular admissions. In the case of the Department of Economics

and Finance (henceforth DEF), one of the largest departments at Hanyang, the admissions

process took 8 rounds in each of 2011 and 2013, and 11 rounds in year 2012. These numbers

of rounds are typical for other departments at Hanyang and reflect the magnitude of uncer-

tainty facing the department. The composition of applicants admitted at different rounds

reveals an interesting pattern. Table 1 summarizes the scores of the nationwide College

Scholastic Ability Test (CSAT) earned by the students who were admitted by DEF at differ-

ent sequential rounds in years 2011-2013.34 For each year, the number “i = 1, ..., 4” denotes

the admissions round, and “≥ 5” denotes all rounds after 5th round. The third and the

fourth columns respectively present the number of admittees and their average CSAT scores

in different rounds. The numbers in the fourth and the fifth columns are the average CSAT

scores of the top and the bottom 10% admittees in each round, respectively.

A monotone admissions strategy (i.e., cutoff strategy) would result in students admitted

on earlier rounds having uniformly higher CSAT scores than those admitted in later rounds.

33We gratefully acknowledge Hanyang University for providing their admissions data.
34As noted in Section 4.1, for the regular admissions stage, college-department pairs in Korea are divided

into three groups, called groups Ga, Na and Da, and students can apply to at most one in each group. Thus,
a unit in each group competes with other units in the same group but does not face competition with units
in other groups. DEF divides its quota into two groups, Ga and Na, and admits students separately for the
two groups. We focus on the admissions decision on the group Ga applications, which is the primary target
group of DEF. The quota assigned for group Ga is twice as many as the quota for group Na.
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Notes: The horizontal axis is an admittee’s CSAT score, and the vertical axis is the number of students of

given score admitted in each round of admission.

Figure 5.1: Admissions on Wait Lists by DEF in 2013

Consistent with Theorem 5, however, the table shows significant non-monotonicity across

rounds. Observe that in each year, the average CSAT score of the top 10% students ad-

mitted in the i + 1-th round is higher than that of the bottom 10% students admitted in

the i-th round. (The only exceptions are the second and the third rounds in 2013.) The

exact distribution of CSAT scores earned by admittees at different rounds is presented in

Figure 5.1 for year 2013. The nonmonotonicity displayed by DEF is also seen at other de-

partments in Hanyang. In Appendix B, we provide summaries of students’ CSAT scores for

the Department of Business and the Department of Mechanical Engineering, which exhibit

similar non-monotonicity.

The reason for the observed non-monotonicity is that DEF offers a significant number

of its admissions based on a measure that “garbles” a student’s CSAT score by another

measure, called “student record.” Because of a legal restriction on the way the latter is

complied, the CSAT score is widely regarded as a more reliable indicator of a student’s

academic performance compared to his/her student record.35Indeed, Hanyang’s objective for

35The student record is a measure that a college compiles based on several aspects of the student profile,
including high school grades. In case high school grades are used, however, the college is explicitly prohibited
by law from adjusting them for the quality of high schools the students obtained their grades from, although
the quality of high schools differs significantly across regions and between “special-purpose” schools and
regular schools, in reality.
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the regular admissions is to “attract high CSAT scorers.”36 In keeping with this objective,

DEF awards a small number of the so-called “priority” admissions in its first round admission

based solely on applicants’ CSAT scores, but for the remaining admissions in the first and

the subsequent rounds, it makes selections based on the weighted sum of the student record

and CSAT scores. Accordingly, the students receiving priority admissions have higher CSAT

scores than all other admitted students. (Both Table 1 and Figure 5.1 include the students

receiving priority admissions as part of the first-round admittees.) However, because of the

garbled selections for the remaining admissions, the students admitted in the earlier rounds

need not have higher CSAT scores than those admitted in later rounds.

6 Conclusion

The current paper has presented a new model of decentralized college admissions. In this

model, colleges face enrollment uncertainty that arises from students’ aggregately uncertain

preferences. We have shown that colleges respond to enrollment uncertainty by strategically

targeting their admissions based on students’ common measure of merit and by overweighting

non-common measures of their merit in admissions, and that this equilibrium behavior leads

to justified envy and Pareto inefficiency.

We have also studied other responses by colleges whereby they limit the number of a

student’s applications, admit students in multiple rounds via wait-listing, or centralize ad-

missions via DA. Both restricted application and wait-listing alleviate colleges’ yield control

burden, but strategic targeting and enrollment uncertainty remain, leaving justified envy and

inefficiency unaddressed. Centralized matching via DA achieves efficiency and eliminates

enrollment uncertainty and justified envy, at least when colleges evaluate students only by

a common measure. However, not all colleges necessarily benefit from such a centralized

matching. This last observation may explain why college admissions remain decentralized

in many countries. Our analyses have several other implications.

Early admissions. Early admissions are widely adopted by colleges in the US and Ko-

rea. Early admissions programs allow students to apply to sponsoring colleges early, and

the colleges in turn process their applications prior to the regular admissions round (with

binding or non-binding requirements for students to accept them early). The remaining

students and seats are then allocated through regular admissions. This process resembles

sequential admissions studied in Section 4.2. In addition, some early admissions programs

restrict applications just as in Section 4.1. Although the model involving both sequential ad-

36This objective is stated in an internal document provided by the Hanyang university’s admissions office,
which is available upon request from the authors.
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Table 2: Percentage of institutions that consider a “plus factor” in the admission process

Campus
visit

Interview
(on or off
campus)

Frequent
contact the
admission
office

Applying
Early Action
or Decision

Particular
academic or
professional
focus

Contact
with faculty
members on
campus

Yield 2004 2005 2004 2005 2004 2005 2004 2005 2004 2005 2004 2005

< 30% 61.9 59.0 58.3 56.6 42.7 41.3 35.8 26.9 39.8 39.6 43.3 38.5
30 ∼ 40% 51.3 47.2 54.1 42.5 37.0 34.0 24.4 26.5 38.0 36.4 34.8 34.4
46 ∼ 60% 30.9 32.3 36.3 32.3 25.9 26.2 10.3 11.1 32.5 36.9 8.9 31.8
> 60% 32.6 45.0 37.0 52.5 23.9 39.3 17.4 7.3 33.3 48.3 17.8 32.2

Source: NACAC (2012)

missions and restricted application is not tractable (especially with aggregate uncertainty),

our analyses imply that these features can help colleges to cope with enrollment uncertainty.

We believe this is an important function of early admissions not emphasized by other recent

papers (Avery and Levin, 2010; Lee, 2009). Despite this benefit to colleges, our analyses

suggest that the outcomes of these programs are unlikely to be efficient or fair.

Loyalty and legacy. It is well documented that colleges favor students who show eagerness

to attend them. Students who signal their interests through campus visits, essays, letters of

intention, or webcam interviews are known to be favored by colleges. According to the 2004

and 2005 NACAC Admission Trends Survey, 59% of the colleges surveyed assigned some level

of importance to a student’s “demonstrated interest” in their admissions decisions. Table 2

shows the extent to which certain applicant activities would be considered as a “plus factor”

in the admission process by institutions with varying yield rates.

Early admissions, as Avery and Levin (2010) argue, also serve as a tool for colleges to

identify enthusiastic applicants and favor them in the admission. It is entirely plausible

that these preferences by colleges are intrinsic, as postulated by Avery and Levin (2010).

However, our theory suggests that such a preference could also arise endogenously from the

desire to manage enrollment uncertainty. Like the students without a competing offer in our

model, those with demonstrated interest add less to the capacity cost, since their preference

is unlikely to vary much with the popularity of the college among regular students.37 Ac-

cordingly, even a college with no intrinsic preference for loyal students has a reason to favor

37To see this, suppose there are two groups of students, loyal (L) and regular (R), for college A. A regular
student prefers college A with probability µ(s) in state s ∈ [0, 1] as before, but a loyal student prefers A with
probability µL(s) = µ(s) + a, for some constant a > 0. That is, a higher fraction of loyal students prefer A
than regular students at every state. Suppose there are two students, one loyal and one regular, and suppose
both receive an offer from B. The loyal student adds to capacity cost λ whenever college A over-enrolls.
This latter probability conditional on the loyal student accepting A’s offer is

(1− sA)
E[µL(s)|s > sA]

E[µL(s)]
= (1− sA)

E[µ(s)|s > sA] + a

E[µ(s)] + a
,
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them. Consistent with this view, Table 2 shows that colleges suffering lower yield rates tend

to favor students with “demonstrated interest” more than the colleges enjoying higher yield

rates. A similar explanation applies to the favoring of legacy students (who have a family

history with the school).38

Yield manipulation. Colleges in our model exhibit endogenous preference for a high

yield. While such a preference arises in our model from the desire to manage enrollment

uncertainty, colleges in practice may prefer a high yield rate for an intrinsic reason—favorable

perception and brand image. Importantly, “yield and acceptance rates for a college’s entering

class account for one-fourth of the ‘student selectivity’ score in the influential US News &

World Report annual rankings of colleges and universities, enough to raise or lower a school’s

position by several spots.”39 Our analysis implies that “yield-motivated” colleges will behave

similarly to colleges in our model; namely, they will strategically target students overlooked

by stronger colleges and reject students who are unlikely to accept their offers (or are “too

good for them”). This behavior is consistent with anecdotal evidence.40

Information acquisition and evaluation costs. Often students do not have clear pref-

erences about colleges and must incur costly efforts to rank them. There is a sense in which

decentralized matching economizes on such costs better than centralization via DA. Appli-

cants under decentralized matching (in our baseline model) need only rank colleges that

admit them. By contrast, under DA, students do not know which colleges will admit them

at the time of submitting their preferences, so they may end up evaluating colleges that will

never admit them or not evaluating colleges that will admit them. More formally, in the con-

text of our model, for a sufficiently low evaluation cost of ranking between A and B, a student

will incur the cost only when both colleges admit the student under decentralized matching,

but under DA, there exists a cutoff v̂ such that students above the cutoff find it worthwhile

to incur the cost and those below do not evaluate the colleges and rank them simply based

on their prior.41 It is unclear how important this benefit of decentralized matching is in

which is strictly lower than (1−sA)E[µ(s)|s>sA]
E[µ(s)] , the corresponding probability of A over-enrolling conditional

on the regular student accepting A’s offer.
38Espenshade, Chung and Walling (2004) show that legacy applicants have nearly three times the likelihood

of being accepted as non-legacies.
39“Glass Floor: Colleges Reject Top Applicants, Accepting Only the Students Likely to Enroll,” by Daniel

Golden, Wall Street Journal, May 29, 2001.
40The Wall Street Journal article cited in footnote 39 reports one such practice employed by Franklin

and Marshall College: “By wait-listing top applicants who didn’t visit the campus or interview with college
representatives, the college bumped up its yield for the next school year to 27% from 25%. It also improved
its acceptance rate – the ratio of acceptances to total applications – to a more selective 51% from 53%. Such
numbers could help Franklin and Marshall rise in the US News ranking of national liberal-arts colleges from
its current position of 33rd.”

41The Supplementary Notes present this result more formally.
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comparison with its disadvantages recognized earlier. Moreover, restriction on application

will have an “informational inefficiency” similar to that of DA, so if decentralized matching

involves that feature, as has been the case in many settings, the informational advantage of

decentralized matching is not clear. Most important, the informational inefficiency is not an

inherent feature of centralization. If College-Proposing DA (instead of Student-Proposing

DA) were run in “real time,” then students need only evaluate colleges that are willing to

admit them at each round, so informational efficiency can be achieved.42

Students’ responses to admissions. Students’ types are treated as exogenous in our

model. In practice, students may influence these measures through ex ante efforts. Our

theory implies that the students will have reduced incentives to raise the common measure

both because the admissions decisions may be non-monotonic and because the common

measure is underweighted relative to the non-common measure.43 By contrast, overweighting

of the latter measure would mean that students face excessive incentives for improving them.
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A Appendix: Proofs

A.1 Proof of Lemma 2

Claim A.1. (σA, σB) is an equilibrium if and only if (i) H i(v, ei, σj(v)) > 0 implies σi(v, ei) =

1 and (ii) H i(v, ei, σj(v)) < 0 implies σi(v, ei) = 0, where i, j = A,B and i 6= j.

Proof. “If” part. We show that the strategy profile satisfying the stated conditions forms

a best response. Let σi(v, ei; t) := tσ̃i(v, ei) + (1 − t)σi(v, ei) for t ∈ [0, 1], where σ̃i(v, ei) is

an arbitrary strategy, and ŝi(t) be the cutoff state in equilibrium for given σi(v, ei; t). Let

V (t) := πi(σi(v, ei; t)) =

∫ 1

0

∫ 1

0

U i(v, ei)σi(v, ei; t)
(
1− σj(v) + µiσj(v)

)
dei g(v)dv

− λ
∫ 1

0

max

{∫ 1

0

σi(v; t)
(
1− σj(v) + µi(s)σj(v)

)
g(v)dv − κ, 0

}
ds,

where µi = E[µi(s)] and σi(v; t) = Eei [σi(v, ei; t)]. Observe that V (t) is concave in t, since

σi(v, ei; t) is linear in t and πi(σi) is concave in σi. We have

V ′(0) =

∫ 1

0

∫ 1

0

(
σ̃i(v, ei)− σi(v, ei)

)
H i(v, ei, σj(v))dei g(v)dv ≤ 0, (A.1)

since if H i(v, ei, σj(v)) > 0, then σi(v, ei) = 1 ≥ σ̃i(v, ei) and if H i(v, ei, σj(v)) < 0, then

σi(v, ei) = 0 ≤ σ̃i(v, ei); and H i(v, ei, σj(v)) = 0 otherwise. Therefore, we have

πi(σ̃i) = V (1) ≤ V (0) + V ′(0) ≤ V (0) = πi(σi),

where the first inequality holds since V is concave and the last follows from (A.1). Since σ̃i

is arbitrary, this proves that σi is a best response to σj.

“Only if” part. We show that any equilibrium strategy profile must satisfy the stated

conditions. Let U+ := {(v, ei)|H i(v, ei, σj(v)) > 0} and U− := {(v, ei)|H i(v, ei, σj(v)) < 0}.
Suppose to the contrary that in equilibrium, either σi(v, ei) < 1 for (v, ei) ∈ U+ or σi(v, ei) >

0 for (v, ei) ∈ U− (or both). Consider a strategy σ̃i, where σ̃i(v, ei) = 1 for every (v, ei) ∈ U+,

σ̃i(v, ei) = 0 for every (v, ei) ∈ U−, and σ̃i(v, ei) = σi(v, ei) for all other (v, ei)’s. Now, define

σi(v, ei; t) := tσ̃i(v, ei) + (1− t)σi(v, ei) for t ∈ [0, 1] and V (t) similar as above. Observe that

V ′(0) =

∫∫
U+

(1−σi(v, ei))H i(v, ei, σj(v))deig(v)dv−
∫∫
U−
σi(v, ei)H

i(v, ei, σj(v))deig(v)dv > 0,

where the inequality holds since Hi(v, ei, σj(v)) > 0 for (v, ei) ∈ U+ and Hi(v, ei, σj(v)) < 0

for (v, ei) ∈ U−. Thus, for sufficiently small t > 0, a deviation strategy σi(·, ·; t) is profitable.
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We thus have a contradiction. �

Claim A.2. If H i(v, ei, x) ≤ 0, then H i(v, ei, x
′) < 0 for any x′ > x.

Proof. Suppose for any x ∈ [0, 1), H i(v, ei, x) ≤ 0. Consider any x′ > x. If U i(v, ei) < ui,

then clearly H i(v, ei, x
′) < 0, so suppose Ui(v, ei) ≥ ui. Then,

H i(v, x)−H i(v, x′) = (x′ − x)
(
U i(v, ei)− ui − µi(U i(v, ei)− ui)

)
> (x′ − x)

(
U i(v, ei)− ui

)(
1− µi

)
≥ 0,

where the first inequality holds since x′ > x and ui > ui, and the second inequality holds

since U i(v, ei) ≥ ui. Since H i(v, ei, x) ≤ 0, it follows that H i(v, ei, x
′) < 0. �

A.2 Proof of Theorem 1

Observe that for any interior value of êi(v), we must have Hi(v, êi(v), êj(v)) = 0. Together

with the fact that êj(v) has an interior value (since it is strictly decreasing in v), this implies

that U i(v, êi(v)) ∈ (ui, ui). Next,

Hi
v(v, ei, êj(v))

∣∣
ei=êi

= U i
v(v, êi(v))(êj(v) + (1− êj(v))µi)

+
(
U i(v, êi(v))− ui − µi(U i(v, êi(v))− ui)

)
ê′j(v)

< U i
v(v, êi(v))

(
êj(v) + (1− êj(v))µi

)
, (A.2)

where µi = E[µi(s)] and the inequality follows from the facts that ê′j(v) < 0 and U i(v, êi(v)) ∈
(ui, ui). Since Hi

ei
> 0, by the implicit function theorem,

|ê′i(v)| = Hi
v(v, ei, êj(v))

Hi
ei

(v, ei, êj(v))

∣∣∣∣
ei=êi(v)

<
U i
v(v, êi(v)) (êj(v) + (1− êj(v))µi)

U i
ei

(v, êi(v)) (êj(v) + (1− êj(v))µi)
=
U i
v(v, êi(v))

U i
ei

(v, êi(v))
,

where the inequality follows from (A.2).

A.3 Proof of Theorem 2

The proof consists of two steps.

Step 1. There exists a mixing equilibrium described in the theorem.

Proof. We shall identify a mixing equilibrium in terms of the threshold states ŝ := (ŝA, ŝB).

To begin, fix any candidate threshold states ŝ := (ŝA, ŝB). We construct the cutoffs (êA, êB)

32



associated with a mixing equilibrium given ŝ, as follows.

êi(v; ŝ) =



0 if Hi(v, ei, 0; ŝ) > 0

1 if Hi(v, ei, 0; ŝ) < 0, Hj(v, ej, 0; ŝ) > 0

êoi (v; ŝ) if Hi(v, ei, 0; ŝ) < 0 < Hi(v, ei, 1; ŝ), Hj(v, ej, 0; ŝ) < 0 < Hj(v, ej, 1; ŝ)

0 if Hi(v, ei, 1; ŝ) > 0, Hj(v, ej, 1; ŝ) < 0

1 if Hi(v, ei, 1; ŝ) < 0

for i, j = A,B and i 6= j, where êoi (v) := sup{ei|Hj(v, ej, ei; ŝ) ≤ 0}. (Note that the

construction is well defined since Hi(v, ei, ej; ŝ) does not depend on ei.) Define the resulting

enrollment for college i = A,B at state s ∈ [0, 1]:

mi(s; ŝ) =

∫ 1

0

(1− êi(v; ŝ))(êj(v; ŝ) + µi(s)(1− êj(v; ŝ)))g(v) dv. (A.3)

We then define Ψ = (ΨA,ΨB) : [0, 1]2 → [0, 1]2, where Ψi(ŝ) := arg mins |mi(s; ŝ)− κ| . This

map is well defined since mi(·; ŝ) is continuous and strictly monotone (strictly increasing for

i = A and decreasing for i = B).

We now show that Ψ is continuous, which would imply the existence of a fixed point

by Brouwer’s fixed point theorem. Note that given a fixed point ŝ∗ = Ψ(ŝ∗), the profile

(êA(v; ŝ∗), êB(v; ŝ∗)) satisfies the conditions in Lemma 2, proving that (êA(v; ŝ∗), êB(v; ŝ∗))

forms an equilibrium, which is mixed by construction.

To prove continuity of Ψ, fix ŝ = (ŝA, ŝB) and ŝ′ = (ŝ′A, ŝ
′
B) 6= ŝ, and let Ψ(ŝ) = s̃ and

Ψ(ŝ′) = s̃′. Note∣∣∣mi(s; ŝ
′)−mi(s; ŝ)

∣∣∣
=

∣∣∣∣∫ 1

0

(
µi(s)(êi(v; ŝ)− êi(v; ŝ′)) + µj(s)(êj(v; ŝ′)(1− êi(v; ŝ′))− êj(v; ŝ)(1− êi(v; ŝ)))

)
g(v)dv

∣∣∣∣
≤
∫ 1

0

∣∣êi(v; ŝ)− êi(v; ŝ′)
∣∣g(v)dv +

∫ 1

0

∣∣êj(v; ŝ′)(1− êi(v; ŝ′))− êj(v; ŝ)(1− êi(v; ŝ))
∣∣g(v)dv

≤
∫ 1

0

∣∣êi(v; ŝ)− êi(v; ŝ′)
∣∣g(v)dv +

∫ 1

0

∣∣êi(v; ŝ)− êi(v; ŝ′)
∣∣g(v)dv +

∫ 1

0

∣∣êj(v; ŝ′)− êj(v; ŝ))
∣∣g(v)dv

≤ 3 max
i=A,B

(∫
V0
|êi(v; ŝ)− êi(v; ŝ′)| g(v)dv +

∫
[0,1]\V0

1g(v)dv

)
,

where

V0 := {v ∈ [0, 1]|êi(v; ŝ) = êi(v; ŝ′), or êi(v; ŝ) = êoi (v; ŝ) and êi(v; ŝ′) = êoi (v; ŝ′), ∀i = A,B}.

33



It is routine to show that as ŝ′ → ŝ, êoi (v; ŝ′) → êoi (v; ŝ), implying that the first term

vanishes. Furthermore, for i = A,B, u′i → ui and u′i → ui, as ŝ′ → ŝ, where ui and ui are

i’s upper and lower cutoffs given ŝ and u′i and u′i are the i’s respective cutoffs given ŝ′. This

means that the measure of [0, 1] \ V0 vanishes as ŝ′ → ŝ. Combining these observations, we

conclude that |mi(s; ŝ
′)−mi(s; ŝ)| vanishes as ŝ′ → ŝ. We have thus shown that mi(s; ŝ)

is continuous is ŝ. By the theorem of maxima and the fact that arg mins |mi(s; ŝ)− κ| is

unique, Ψ is continuous. �

To show the last part, we parametrize the degree of symmetry by ε > 0 as follows: For

each ε > 0, we assume µi(s; ε) ∈ (1− µi(1− s; ε)− ε, 1− µi(1− s; ε) + ε) for i = A,B. Let

Ψ(·, ε) be the map defined in Step 1 that is associated with ε. Let S(ε) be the set of fixed

points of Ψ(·; ε), and let

V (ε) := {(uA, uA, uB, uB)|ui = ui(ŝ), ui = ui(ŝ), i = A,B, for some ŝ ∈ S(ε)},

be the set of lower and upper cutoffs for the colleges in all equilibria. Let ε = 0 be the

limiting case in which the two colleges are exactly symmetric (i.e., µi(s; 0) = 1−µi(1−s; 0)),

and let S(0) and V (0) denote the corresponding sets for that case.

Step 2. For sufficiently small ε > 0, maxi=A,B ui < mini=A,B ui for any (uA, uA, uB, uB) ∈
V (ε).

Proof. We first note that at ε = 0, the result holds.

Claim A.3. For any (uA, uA, uB, uB) ∈ V (0), we have maxi=A,B ui < mini=A,B ui.

Proof. Suppose to the contrary mini=A,B ui < maxi=A,B ui. Let uB < uB ≤ uA < uA, without

loss of generality. Note that uA ∈ (0, 1) in equilibrium, since if uA = 1, then mA(s) = 0 for

all s; and if uA = 0, then ui = ui = 0 for all i = A,B, so UA ∪ UB has measure one. Both

contradict Lemma 1. We thus have

mA(ŝA) = µA(ŝA)(1−G(uA)) = κ, mB(ŝB) = µB(ŝB)(1−G(uA)) +G(uA)−G(uB) = κ.

Using those, we have

G(uA)−G(uB) = κ

(
µA(ŝA)− µB(ŝB)

µA(ŝA)

)
.

Since uB < uA, this implies that µA(ŝA) > µB(ŝB) = 1 − µA(ŝB) = µA(1 − ŝB), where

the first equality follows from the definition of µB and the last equality follows from the

symmetry of µA. Since µA(s) is strictly increasing in s, it holds that ŝB > 1 − ŝA, and so

uB = λŝB > λ(1− ŝA) = uA, which yields a contradiction. �
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Next, we show that the correspondence V (ε) is upper hemicontinuous in ε at ε = 0. To see

this, take any sequence {εn}n with εn → 0, such that the corresponding thresholds ŝn ∈ S(εn)

converge to some ŝ∗.44 Since (ui(ŝ), ui(ŝ)) is continuous in ŝ, for i = A,B, the associated

lower and upper cutoffs (unA, u
n
A, u

n
B, u

n
B) ∈ V (εn) also converge to some (u∗A, u

∗
A, u

∗
B, u

∗
B).

Then,

ŝ∗ := lim
n→∞

ŝn = lim
n→∞

Ψ(ŝn, εn) = Ψ(ŝ∗, 0),

where the second equality holds since ŝn is a fixed point of Ψ, and the last follows from

the continuity of Ψ. This proves that ŝ∗ ∈ S(0). Since (ui(ŝ), ui(ŝ)) is continuous in ŝ, for

i = A,B, and ŝ∗ ∈ S(0), we have (u∗A, u
∗
A, u

∗
B, u

∗
B) ∈ V (0). Since V (·) lies in a compact set,

this (closed-graph) property implies that V (ε) is upper hemicontinuous at ε = 0. (See Ok

(2007), p. 295, Proposition 3, for instance).

Next, fix any η > 0 and consider an open set U = ∪v∈V (0)Bη(v), where Bη(v) is an open

ball around point v with radius η. Clearly, V (0) ⊂ U . By the upper hemicontinuity of V (·),
there exists ε̂ > 0 such that, for all ε ∈ (0, ε̂), V (ε) ∈ U . In other words, each profile of

cutoffs in V (ε) is within η (in Euclidean distance) of some profile of cutoffs of V (0). By

Claim A.3, this means that for sufficiently small ε > 0, maxi=A,B ui < mini=A,B ui for any

(uA, uA, uB, uB) ∈ V (ε). The inequality proves the existence of the mixing region when the

colleges are sufficiently symmetric. �

A.4 Proof of Theorem 3

Assume (3.2). The proof consists of three steps.

Step 1. There exists an equilibrium, and in any equilibrium, there exists a unique cutoff

profile (ê∗A(v), ê∗B(v)) for each v.

Proof. To this end, we first establish the following result.

Claim A.4. The cutoffs (êA(v; ŝA, ŝB), êB(v; ŝA, ŝB)), satisfying the characterization of The-

orem 1, exists and is unique and continuous in (ŝA, ŝB) for all v.

Proof. Fix any candidate threshold states ŝ = (ŝA, ŝB). Theorem 1 characterizes the cutoffs

(êA(v; ŝ), êB(v; ŝ)) for each v. The characterization can be seen as identifying an intersection

of two “best response correspondences,” defined for i = A,B by

βi(êj; v, ŝi) := arg min
êi∈[0,1]

|Hi(v, êi, êj; ŝi)|.

44Such a sequence is well defined since the correspondence S(·) lies in a compact set.
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Note that the dependence of Hi on ŝi is explicitly recognized here, since our subsequent

argument uses it.45 It is convenient to think of the intersection points as Nash equilibria of

an auxiliary game in which player i = A,B picks êi to maximize −|Hi|.
We make several observations. First, since Hi is strictly increasing in êi, |Hi(v, êi, êj; ŝi)|

has a single minimum in êi. Hence, βi(êj; v, ŝi) is well-defined and unique, and we shall

regard βi as a best-response function (with a slight abuse of notation).

Second, |Hi(v, êi, êj; ŝi)| is continuous in êj. Hence, by Brouwer’s fixed point theorem, a

Nash equilibrium of the auxiliary game exists. In other words, the intersection points of the

two best-response functions are non-empty.

Third, given (3.2), the Nash equilibrium of the auxiliary game is unique. To prove this, it

suffices to show that, for each i = A,B, the absolute value of the slope of the best response

function βi is strictly less than one for any interior value βi(êj; v, ŝi) ∈ (0, 1). To see this,

observe first that for any interior value βi(êj), we must have Hi(v, βi(êj), êj) = 0. Since

Hi
ei
> 0, by the implicit function theorem, Hi(v, βi(êj), êj) ≡ 0 in a neighborhood of êj, and

its slope is well-defined and equal to:

|β′i(êj)| =
Hi
ej

Hi
ei

=
(1− µi)U i − ui + µi ui

(êj + (1− êj)µi)U i
ei

<

(
1− µi
µi

)
U i

U i
ei

≤ 1,

where µi = E[µi(s)], the first inequality holds since ui−µi ui = λProb(s ∈ Si)(1−E[µi(s)|s ∈
Si]) ≥ 0 and êj > 0, and the last inequality follows from (3.2).

Fourth, note that the payoff function of the auxiliary game, |Hi(v, êi, êj; ŝi)|, is continuous

in ŝi for all v. This means that the equilibrium correspondence is upper hemicontinuous in

parameter (ŝA, ŝB). Since the equilibrium is unique for all (v; ŝ), this means that the cutoffs

(êA(v; ŝ), êB(v; ŝ)) are continuous in ŝ for all v. �

We now construct a mapping Φ : [0, 1]2 → [0, 1]2 that takes ŝ = (ŝA, ŝB) as an input

and returns another pair of cutoffs ŝ′ = (ŝ′A, ŝ
′
B) in the state space as an output. Fix any ŝ.

Claim A.4 identifies a unique cutoff profile {(êA(v; ŝ), êB(v; ŝ))}v, which in turn defines the

enrollment for college i = A,B at state s as (A.3).

We then define Φi(ŝ) := arg mins |mi(s; ŝ) − κ|. This map is well defined since mi(·; ŝ)
is continuous and strictly monotone. Furthermore, Claim A.4 establishes that m(s; ŝ) is

continuous in ŝ. Hence, Φi(·, ·) is continuous, and so is Φ = (ΦA,ΦB). By Brouwer’s fixed

point theorem, we conclude that Φ has a fixed point. Let ŝ∗ = (ŝ∗A, ŝ
∗
B) be a fixed point of

Φ. Define

{(ê∗A(v), ê∗B(v))}v := {(êA(v; ŝ∗), êB(v; ŝ∗))}v.

One can easily see that the strategy by college i = A,B to admit student types (v, ei) if and

45The dependence exists since both ui and ui depend on ŝi.
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only if ei ≥ ê∗i (v) satisfies the sufficient condition of an equilibrium of our main game given

by Lemma 2. This proves the existence of an equilibrium. At any equilibrium, Claim A.4

applies, so the unique cutoff profile (ê∗A(v), ê∗B(v)) exists for each v. �

Step 2. In equilibrium ê∗
′
i (v) ≤ 0 for each v, with strict inequality whenever ê∗i (v) ∈ (0, 1).

Proof. For the proof, it suffices to show that ê∗
′
i (v) < 0 whenever ê∗i (v) ∈ (0, 1). For any

ê∗i (v) ∈ (0, 1), we have Hi(v, ê∗i (v), ê∗j(v)) ≡ 0. Since by (3.2) the Jacobian is nonzero:

|J | :=

∣∣∣∣∣HA
eA
HA
eB

HB
eA
HB
eB

∣∣∣∣∣ = HA
eA
HB
eB
−HA

eB
HB
eA

= HA
eA
HB
eB

(
1−
HA
eB

HA
eA

HB
eA

HB
eB

)
> 0,

so we can invoke the implicit function theorem to compute the derivative: (We suppress

superscript ∗ as well as arguments of functions Hi and U i below to avoid clutter.)

ê′i(v) = − 1

|J |
(Hj

ej
Hi
v −Hi

ej
Hj
v)

sgn
= − U j

ej
U i
v(êj(v) + (1− êj(v))µi) + U j

v (U i(1− µi)− ui + µiui)

< − U j
ej
U i
vµi + U j

vU
i(1− µi)

sgn
= −

U j
ej

U j
+

(
1− µi
µi

)
U j
v

U i
v

U i

U j

≤ −
U j
ej

U j
+

(
µj

1− µj

)
δ

<0,

where the first inequality holds since êj(v) > 0 and ui ≥ µiui as observed in Step 1, the

second inequality follows from the assumption that U i
v/U

i ≤ δU j
v/U

j for some δ > 0 and

that µi = 1− µj, and the last follows from (3.2). �

Step 3. Both êA(v) and êB(v) are strictly decreasing in v whenever (êA(v), êB(v)) ∈ (0, 1)2.

There exists v̂ < 1 such that, for all v > v̂, (êA(v), êB(v)) ∈ (0, 1)2.

Proof. The first statement follows from Step 2. To prove the second statement, recall from

(3.2) that U i(·, 0) = 0, for i = A,B. Then, êi(v) ≥ ei(v) > 0 for all v ∈ [0, 1], since ui > 0

in equilibrium. Let v̂ := sup{v ∈ [0, 1] | max{êA(v), êB(v)} = 1}. We must have v̂ < 1, or

else at least one college must be admitting measure zero students in equilibrium, which is a

contradiction. It then follows that, for each v > v̂, (êA(v), êB(v)) ∈ (0, 1)2. �
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A.5 Proof of Theorem 5

Suppose to the contrary that there is a symmetric equilibrium in which colleges A and B

admit all acceptable students with v > ṽ, where ṽ satisfies sa(1 − ε)(1 − G(ṽ)) = κ and

(1− sb)(1− ε)(1−G(ṽ)) = κ, and wait-list the remaining students. College C will then offer

admissions to students whose scores are above ṽ, knowing that exactly measure ε2 of them

will accept its offer. Suppose it also offers κ − ε2 admissions to students with v ∈ [v̂, ṽ),

where v̂ is such that G(ṽ)−G(v̂) = κ− ε2. This is indeed its equilibrium behavior since all

these students will accept C’s offer.

To see this, consider any student in [v̂, ṽ). If such a student accepts C’s offer, then the

student will get u′′ for sure, but if the student turns down C’s offer, then he will at best

receive an offer with probability 1− ε from the less popular one between A and B and earn

a payoff of at most u. Since u′′ > (1− ε)u, the student will accept C.

We consider college A’s payoff in this equilibrium. Since there are seats left in the less

popular state, it fills those vacant seats with students in [v̌, v̂) and gets payoff

πA =
1

2
sa(1− ε)

∫ 1

ṽ

vg(v)dv +
1

2

(
sb(1− ε)

∫ 1

ṽ

vg(v)dv + (1− ε)
∫ v̂

v̌

vg(v)dv

)
=

1

2
(1− ε)

(∫ 1

ṽ

vg(v)dv +

∫ v̂

v̌

vg(v)dv

)
,

where v̌ is set to fill its seats in the less popular state, or

(1− ε)
(
G(v̂)−G(v̌)

)
= κ− sb(1− ε)

(
1−G(ṽ)

)
, (A.4)

and the second equality holds since sa = 1 − sb. Next, consider A’s deviation whereby it

admits acceptable students in [ṽ − δ′, ṽ) and rejects those in [ṽ, ṽ + δ] for some small δ and

δ′, satisfying

sa
(
G(ṽ + δ)−G(ṽ)

)
= G(ṽ)−G(ṽ − δ′). (A.5)

Clearly, students in [ṽ − δ′, ṽ) accept A’s offer, so A fills its capacity in the popular state:

sa(1− ε)
(
1−G(ṽ + δ)

)
+ (1− ε)

(
G(ṽ)−G(ṽ − δ′)

)
= sa(1− ε)

(
1−G(ṽ)

)
= κ.

Hence, A’s payoff under the deviation, denoted by πdA, is

πdA = (1− ε)
∫ ṽ

ṽ−δ′
v g(v)dv +

1

2
(1− ε)

(
sa

∫ 1

ṽ+δ

v g(v)dv + sb

∫ 1

ṽ+δ

v g(v)dv +

∫ v̂

v

v g(v)dv

)
= (1− ε)

∫ ṽ

ṽ−δ′
v g(v)dv +

1

2
(1− ε)

(∫ 1

ṽ+δ

v g(v)dv +

∫ v̂

v

v g(v)dv

)
,
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where v is set to fill the capacity in the less popular state, i.e.,

(1− ε)
(
G(v̂)−G(v)) = κ− (1− ε)

(
G(ṽ)−G(ṽ − δ′))− sb(1− ε)

(
1−G(ṽ + δ)

)
. (A.6)

Observe that v > v̌, since by subtracting (A.6) from (A.4),

(1− ε)
(
G(v)−G(v̌)

)
= −sb(1− ε)

(
G(ṽ + δ)−G(ṽ)

)
+ (1− ε)

(
G(ṽ)−G(ṽ − δ′)

)
= (sa − sb)(1− ε)

(
G(ṽ + δ)−G(ṽ)

)
> 0, (A.7)

where the second equality follows from (A.5) and the inequality holds since sa > sb. Thus,

2(πdA − πA)

1− ε
= 2

∫ ṽ

ṽ−δ′
vg(v)dv −

(∫ ṽ+δ

ṽ

vg(v)dv +

∫ v

v̌

vg(v)dv

)
= 2ṽ

(
G(ṽ)−G(ṽ − δ′)

)
+ 2

(
δ′G(ṽ − δ′)−

∫ ṽ

ṽ−δ′
G(v)dv

)
− ṽ
(
G(ṽ + δ)−G(ṽ)

)
−
(
δG(ṽ + δ)−

∫ ṽ+δ

ṽ

G(v)dv

)
−
(
v G(v)− v̌ G(v̌)−

∫ v

v̌

G(v)dv

)
> 2(ṽ − δ′)

(
G(ṽ)−G(ṽ − δ′)

)
− (ṽ − δ)

(
G(ṽ + δ)−G(ṽ)

)
− v
(
G(v)−G(v̌)

)
=
(
(sa − sb)(ṽ − v)− (2saδ

′ + δ)
)(
G(ṽ + δ)−G(ṽ)

)
where the second equality follows from integration by parts and after some rearrangement,

and the last equality follows from (A.5), (A.7) and the fact that sa + sb = 1. Thus, for

sufficiently small δ and δ′, we have πdA > πA.

A.6 Proof of Theorem 6

We show that it is an ex post equilibrium for colleges to report their rankings and capacities

truthfully. Recall that when both colleges report truthfully up to their capacity, they achieve

jointly optimal matching. Suppose A unilaterally deviates by either reporting its preferences

or capacity untruthfully and is strictly better off at some state. Then, B must be strictly

worse off. Hence, there must be a positive measure of students whom A obtains from the

deviation which it prefers to some students it had before. At the same time, it must be the

case that either B gets a positive measure of students who are worse than the former set

of students or it has some unfilled seats left. Note that the students who are assigned to A

after the deviation must prefer B, or else the original matching would not be stable. But

then since B prefers each of those students to some students it has in the new matching,

this means that the new matching is not stable (given the stated preferences).
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B Appendix: Empirical Evidence

B.1 Testing Aggregate Uncertainty

To begin, we provide summary statistics of 34 US colleges in our sample.

Year # of admitted # of enrolled Yield rate

2011 4548.88 [4695.54] 1643.88 [1599.02] .41 [.15]

2012 4595.97 [4770.93] 1643.65 [1626.04] .40 [.14]

2013 4709.76 [4763.40] 1616.41 [1582.49] .39 [.14]

Note: Standard deviations are in brackets.

Next, Table B.1 summarizes the p-values for each colleges of Fisher’s exact test and the

Chi-square test.

Table B.1: Results for (1) the exact test and (2) the Chi-square test

p-value p-value
College (1) (2) College (1) (2)

Babson C 0.9005 0.8994 Kenyon C 0.8041 0.8012
Barnard C 0.6169 0.6159 Lafayette C 0.8732 0.8719
Bates C 0.0797 0.0798 Middlebury C 0.0066 0.0065
Boston 0.0013 0.0013 Olion C of Engineering 0.5233 0.5317
Brown 0.0012 0.0012 Princeton 9.59E-12 8.31E-12
CalTech 0.0577 0.0584 Rensselaer Polytech 0.0291 0.0285
Carnegie Mellon 0.4988 0.4988 Scripps C 0.6519 0.6511
Claremont McKenna C 0.0003 0.0003 St. Lawrence 0.0589 0.0587
C of Holy Cross 2.20E-16 2.20E-16 Stanford 2.31E-06 2.50E-06
C of William&Mary 0.2232 0.2227 U Chicago 2.20E-16 2.20E-16
Copper Union 0.9532 0.9512 U Maryland 0.4440 0.4438
Dartmouth C 0.2218 0.2217 U Michigan 0.0277 0.0277
Dickinson C 0.4713 0.4727 U Penn 0.3662 0.3665
Elon 0.6875 0.6872 U Rochester 0.0001 0.0001
George Washington 0.0313 0.0309 USC 2.42E-11 2.31E-11
Georgia Tech 0.0022 0.0022 U Wisconsin 0.0008 0.0008
Johns Hopkins 0.1791 0.1799 Vanderbilt 0.7578 0.7576

B.2 Admissions from Hanyang University

We provide summaries of students’ CSAT scores for the Department of Business (DoB) and

the Department of Mechanical Engineering (DME) in Hanyang. Table B.2 shows that for

DoB, the average scores of the top 10% admittees in the i + 1-th round is higher than that

of the bottom 10% in the ith round for each year and for all rounds. Table B.3 for DME

exhibits a similar nonmonotonicity from the first to third rounds for each year.

40



Table B.2: CSAT scores: Department of Business

Year Round Admittees
Average CSAT Scores

Total ≥90th Percentile ≤10th Percentile

2011

1 60 267.023 268.138 266.367
2 5 266.391 266.552 266.264
3 7 266.349 266.604 266.152
4 2 266.362 266.556 266.168
≥5 5 266.246 266.592 266.060

2012

1 69 274.041 274.612 273.275
2 6 273.157 273.596 272.860
3 8 272.669 272.888 272.456
4 3 272.361 272.580 272.196
≥5 14 271.997 273.020 271.492

2013

1 37 272.673 273.301 272.268
2 5 272.225 272.412 272.092
3 7 272.215 272.500 271.968
4 3 272.009 272.072 271.976
≥5 4 271.914 272.008 271.856

Table B.3: CSAT scores: Department of Mechanical Engineering

Year Round Admittees
Average CSAT Scores

Total ≥90th Percentile ≤10th Percentile

2011

1 48 254.966 257.806 253.482
2 7 252.939 253.576 252.292
3 2 252.272 252.332 252.212
4 3 251.807 251.920 251.640
≥5 5 251.178 251.572 250.964

2012

1 50 267.159 268.237 266.286
2 4 266.318 266.492 266.180
3 1 266.260 266.260 266.260
4 2 266.032 266.088 265.976
≥ 5 8 265.845 265.948 265.684

2013

1 49 265.318 266.888 264.488
2 4 264.606 264.968 264.360
3 3 264.765 264.952 264.636
4 2 264.410 264.460 264.360
≥ 5 6 264.169 264.292 264.004
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