Decentralized College Admissions

Yeon-Koo Che and Youngwoo Koh*

June 24, 2015

Abstract

We study decentralized college admissions with uncertain student preferences. Colleges strategically admit students likely to be overlooked by competitors. Highly ranked students may receive fewer admissions or have a higher chance of receiving no admissions than those ranked below. When students’ attributes are multidimensional, colleges avoid head-on competition by placing excessive weight on school-specific attributes such as essays. Restricting the number of applications or wait-listing alleviates enrollment uncertainty, but the outcomes are inefficient and unfair. A centralized matching via Gale and Shapley’s deferred acceptance algorithm attains efficiency and fairness but may make some colleges worse off than under decentralized matching.

1 Introduction

Centralized matching has gained prominence in economic theory and practice, spurred by successful applications such as medical residency matching and public school choice. Yet, many matching markets remain decentralized; college and graduate school admissions are notable examples. It is often suggested that these markets do not operate well and will

*Che: Columbia University, yeonkooche@gmail.com; Koh: Hanyang University, youngwoo.koh@gmail.com. We have benefitted from comments made by Ethan Che, Prajit Dutta, Glenn Ellison, Drew Fudenberg, Takakazu Honryo, Navin Kartik, Jinwoo Kim, Fuhito Kojima, Jian Lee, Jonathan Levin, Greg Lewis, Qingmin Liu, Janet Lu, Yusuke Narita, Parag Pathak, Mike Peters, Brian Rogers, Al Roth, Xingye Wu, and seminar participants at Chung-Ang University, Harvard-MIT Theory Workshop, Korea University, NYU-IO Days Conference, Seoul National University, Sogang University, Stanford University, Washington University, Yonsei University, Asian Meeting of the Econometric Society, Korea Economic Association Conference, North America Summer Meeting of the Econometric Society, Meeting of the Society for Choice, and SAET Conference. Che acknowledges the financial support from National Science Foundation (NSF1260937) and from the National Research Foundation in Korea through its Global Research Network Grant (NRF-2013S1A2A2035408). Koh gratefully acknowledges funding from Hanyang University (HY-2013-N).
therefore benefit from improved coordination or complete centralization, but it is not well understood why they remain decentralized and what welfare benefits would be gained by improved coordination. At least part of the problem is the lack of an analytical grasp of decentralized matching markets. A seminal work by Roth and Xing (1997) attributes the problems of such markets to “congestion”—participants are not allowed to make enough offers and acceptances to clear the market. But, the equilibrium and welfare implications of congestion remain poorly understood. Indeed, economists have yet to develop a workhorse model of decentralized matching that can serve as a useful benchmark for comparison with a centralized system.

The current paper develops an analytical framework for understanding decentralized matching markets in the context of college admissions. College admissions in countries such as Japan, Korea and the US are organized similarly to decentralized labor markets: colleges make exploding and binding admission offers to applicants, and the admitted students accept or reject the offers, often within a short window of time. This process provides little opportunity for colleges to learn students’ preferences and adjust their admissions decisions accordingly. Consequently, they often end up enrolling too many or too few students relative to their capacities. For instance, 1,415 freshmen accepted Yale’s invitation to join its incoming class in 1995-96, although the university had aimed for a class of 1,335. In the same year, Princeton also reported 1,100 entering students, the largest number in its history. Princeton had to set up mobile homes in fields and build new dorms to accommodate the students (Avery, Fairbanks, and Zeckhauser, 2003).

Controlling yield is particularly challenging for colleges in Korea, since students apply to a department, instead of a college, and each department faces a relatively rigid and low quota. A department that exceeds a pre-specified capacity is subject to a rather harsh penalty by the government in the form of a sharply reduced capacities in the subsequent year. The challenge is not much easier for US counterparts. Due to an explosion of the number of applications, the average yield rate of four-year colleges in the US has declined significantly over the past decade, from 49% in 2001 to 38% in 2011 (National Association for College Admission Counseling, 2012, NACAC hereafter). The declining rates resulted in increased uncertainty for colleges—a main theme in the NACAC (2012) report on the

1Coles et al. (2010) provide survey evidence that in the market for new Ph.D. economists, introduction of a signaling service and a formalized secondary market facilitates matches by improving coordination among participants. Abdulkadiroğlu, Agarwal, and Pathak (2015) find the switch in 2002 from a decentralized matching mechanism to a centralized one based on DA resulted in a significant gain in utilitarian welfare for applicants in the New York City Public High School assignment. See also Che (2013) for a further discussion on improving coordination in college admissions.

2The average number of applications per institution increased 60% between 2002 and 2011, and 79% of Fall 2011 freshmen applied to three or more colleges, with 29% of them submitting seven or more applications (NACAC, 2012).
current state of US college admissions. 3

Importantly, the enrollment uncertainty a college faces depends on the admissions decisions made by other colleges. A student admitted by a college poses a greater uncertainty for its enrollment when the student is also admitted by other colleges, since her enrollment depends on the student’s (unknown) preference. This interdependent nature of uncertainty introduces a strategic interaction among colleges in their admissions decisions. In this paper, we develop a model that captures this feature.

In our model, there are two colleges, each with limited capacity, and a unit mass of students. Colleges may value two attributes of a student: a “score” (e.g., high school grade point average (GPA) or Scholastic Aptitude Test (SAT) scores) that is common to all colleges and a “fit” (e.g., college-specific essays/exams or extracurricular activities) that is college-specific and statistically independent across colleges. Students apply to colleges at no cost. Colleges rank students according to their “score” and “fit” but they do not observe students’ preferences. This uncertainty takes an aggregate form: the mass of students preferring one college over the other varies with unknown states of nature. Each college incurs a constant per-student cost for enrollment exceeding its capacity. Our model involves a simple time-line: Initially, students simultaneously apply to colleges. Each college observes only the scores and fit of those students who apply to it. Then, the two colleges simultaneously offer admissions to sets of students. Finally, students decide on which offer (if any) to accept.

Given that application is costless, students have a (weakly) dominant strategy of applying to both colleges. Hence, the focus of the analysis is the colleges’ admissions decisions. Our main finding is that colleges respond to congestion strategically by employing measures that would avoid head-on competition. Specifically, when the colleges do not value fit significantly, they may strategically favor students with relatively low scores, for such students are likely to be overlooked by competitors. Consequently, students with higher scores may receive admissions from fewer colleges or they may suffer from a higher chance of not being admitted by any (i.e., “falling through the cracks”), compared to students with lower scores. When colleges value both score and fit, they avoid head-on competition by biasing their admissions in favor of those who rank highly in fit against those who rank highly in scores. The outcome of the equilibrium in both cases is inefficient since at least some colleges leave their seats unfilled despite there being some unmatched students that the college would have been happy to admit. Strategic targeting and biased admissions make the outcome also unfair, in the

3 Its preface reads: “A theme that is reflected throughout this report is uncertainty—uncertainty for colleges, high schools, students and families. Amid an historically large number of students flowing through the college application process, we have witnessed unparalleled uncertainty for both students and colleges.” (page 3 of NACAC (2012)). Jennifer Delahunty, dean of admissions and financial aid at Kenyon College in Ohio, described the college’s challenge as follows: “Trying to hit those numbers is like trying to hit hot tub when you are skydiving 30,000 feet. I’m going to go to church every day in April” (“In Shifting Era of Admissions, Colleges Sweat,” by Kate Zernike, New York Times, March 8, 2009).
sense of creating “justified envy”: a mass of students are unable to enroll at their favorite college even though the college enrolls students it ranks below them.

In practice, colleges employ additional measures to cope with congestion. One is to restrict the number of applications a student can submit, as practiced by some US colleges in Early Admissions. Another is for colleges to admit students in sequence, or “wait-listing.” While these additional measures reduce the uncertainty colleges face in enrollment, we show that they do not eliminate undesirable outcomes. The most comprehensive response would be to centralize the matching via a clearinghouse. We show that, at least when colleges value only scores, centralized matching using Gale and Shapley’s Deferred Acceptance algorithm (DA in short) attains efficiency. However, it is possible for some colleges to be worse off relative to the decentralized matching. This may explain a possible lack of consensus toward centralization and the prevalence of decentralized matching in many countries.

Several papers in the matching literature have studied decentralized matching markets. Roth and Xing (1997) focus on the entry-level market for clinical psychologists in which firms make offers to workers sequentially and workers can either accept, reject, or hold the offers, and the process repeats over the course of a day. They find, mainly based on simulations, that such a decentralized (but coordinated) market exhibits congestion, and the resulting outcome is unstable. The current work gives analytical content to congestion by studying participants’ strategic responses and their implications for welfare and fairness.

The college admissions problem has recently received attention in the economics literature. Chade and Smith (2006) study students’ application decision as a portfolio choice problem. In Chade, Lewis, and Smith (2014), students with heterogeneous abilities make application decisions subject to application costs, and colleges set admission standards based on noisy signals of students’ abilities. Avery and Levin (2010) and Lee (2009) study early admissions. Unlike our model, in these models colleges face no enrollment uncertainty and employ monotonic admission strategies in equilibrium. Independently of the current paper, Hafalir et al. (2014) study decentralized college admissions with restricted applications, both theoretically and experimentally. Their focus is on student efforts, not on the colleges’ response to congestion. Avery, Lee, and Roth (2014) and Chen and Kao (2014a,b) study features of Korean and Taiwanese colleges admissions, respectively, that limit students’ applications.

4See also Neiderle and Yariv (2009), which provides a condition for a decentralized one-to-one matching with sequential offers to generate stable outcomes in equilibrium, and Coles, Kushnir, and Neiderle (2013), which shows how introducing a signaling device in a decentralized matching market alleviates congestion.

5Early admissions serve as a tool to identify enthusiastic applicants in Avery and Levin (2010) and to avoid “winner’s curse” in Lee (2009). See also Chade (2006), which studies an “acceptance curse” in matching when signals of partners’ (common-value) qualities are noisy.

6Our model is also related to political lobbying behavior studied by Lizzeri and Persico (2001, 2005), in which politicians target voters in distributing their favors, just as colleges target students in our model. Our
The paper is organized as follows. Section 2 introduces the model. Section 3 characterizes the equilibria and explores their welfare and fairness implications. Restriction of applications, wait-listing and centralization via DA are then discussed in Section 4. Section 5 collects empirical evidence on the relevance of enrollment uncertainty and the main theoretical predictions. Section 6 offers further implications of our findings. Proofs are provided in Appendix A unless stated otherwise.

2 Model

There are two colleges, A and B, each with capacity $\kappa < \frac{1}{2}$, and there is a unit mass of students with type $(v,e_A,e_B) \in \mathcal{V} \times E_A \times E_B \equiv [0,1]^3$, where v is a student’s “score” commonly considered by both colleges, and e_i is college-specific “fit” considered only by college $i = A, B$. One interpretation is that v is a student’s test score on a nationwide exam, and e_A and e_B are the student’s performances on college-specific essays or tests. Alternatively, v can be an academic performance measure observed by both colleges, while e_i corresponds to an extracurricular activity observed by college $i = A, B$. We assume that v is distributed according to a continuous distribution $G(\cdot)$ with a smooth density function $g(\cdot)$, and that e_A and e_B are independently drawn from a uniform distribution on $[0,1]$.

The uniform distribution assumption is without loss, since e_i can be seen as a relabeling of the intrinsic performance, say e'_i, by its “quantile:” $e_i = X_i(e'_i)$, where X_i is a cumulative distribution function of e'_i.

Students’ preferences for colleges involve aggregate uncertainty: a state s is drawn (again without loss) uniformly from $[0,1]$, such that each student prefers A with probability $\mu_A(s)$ and B with probability $\mu_B(s) := 1 - \mu_A(s)$. The probability $\mu_A(s)$ is strictly increasing and continuous in state s, so a higher state corresponds to college A being more popular.

College i’s payoff from matriculating a student of type (v,e_i) is denoted by $U^i(v,e_i)$. The payoff function is strictly increasing in v and nondecreasing in e_i. We further assume that U^i is differentiable in (v,e_i). Each college faces a marginal cost $\lambda \geq \max_{i=A,B} U^i(1,1)$ for enrollment exceeding its quota.

One special case of interest is that colleges value only scores; i.e., $U^i(v,\cdot) \equiv v$, in which case the role of e_i is to break ties for students. Clearly, this serves as a useful benchmark for understanding congestion in the simplest form. In practice, e_i can matter in varying

7 The independence assumption simplifies our analysis and allows us to interpret e_i as a pure randomization device in the case that U^i does not depend on e_i, as will be shown below. Our working paper version (Che and Koh, 2014) allows e_A and e_B to be correlated—more precisely conditionally independent, conditional on v—but at the expense of considerable complexity in equilibrium characterization.
degrees. Colleges may admit students based on the score of a single nationwide test, as in Australia and Turkey, or they may consider multiple dimensions of students’ attributes and performances, academic and non-academic, as in the US.

The timing of the game is as follows. First, nature draws state s (i.e., aggregate uncertainty is realized). Next, all students simultaneously apply to colleges. College $i = A, B$ only observes (v, e_i) of those students who apply to it, and colleges simultaneously decide which applicants to admit. Lastly, students accept or reject their offers. We assume that students face no application costs, which makes it weakly dominant for them to apply to both colleges.\footnote{The strategy of applying to both colleges can be made strictly dominant if students have some uncertainty about their types, which is realistic in the case that the types are not publicly observable or the case that the weighting of each dimension of types is unknown to the students.} Throughout, we focus on a perfect Bayesian equilibrium in which students play the weakly dominant strategy.

Colleges make admission offers based on the observed student types. College i’s strategy is a mapping $\sigma_i : V \times E_i \to [0, 1]$, which specifies a fraction $\sigma_i(v, e_i)$ of admitted students with type (v, e_i). For given (σ_A, σ_B), the mass of students enrolling in college i in state s is

$$m_i(s) := \int_0^1 \sigma_i(v)(1 - \sigma_j(v) + \mu_i(s)\sigma_j(v))g(v)dv,$$

where $\overline{\sigma}_i(v) := \mathbb{E}_{e_i}[\sigma_i(v, e_i)]$ represents the fraction of type v students college i admits. In words, a fraction $\overline{\sigma}_i(v)(1 - \overline{\sigma}_j(v))$ of students is admitted only by college i, and a fraction $\overline{\sigma}_i(v)\overline{\sigma}_j(v)$ is admitted by both colleges, for $i, j = A, B$, $i \neq j$. All students in the former group accept i’s admissions, but only a fraction $\mu_i(s)$ of the latter group accepts i’s offer in state s. College i’s ex ante payoff consists of the aggregate utility of enrolling students and the capacity cost associated with excess enrollment:

$$\pi_i := \mathbb{E}_s \left[\int_0^1 \int_0^1 U^i(v, e_i)\sigma_i(v, e_i)(1 - \sigma_j(v) + \mu_i(s)\sigma_j(v))de_i g(v)dv - \lambda \max\{m_i(s) - \kappa, 0\} \right].$$

Note that the under-enrollment is also costly. Leaving a seat unfilled incurs the opportunity cost of not enrolling some students with (v, e_i). An immediate observation is that each college’s payoff is concave in its own admission strategy; that is, $\pi_i(\eta \sigma_i + (1 - \eta)\sigma_i') \geq \eta \pi_i(\sigma_i) + (1 - \eta)\pi_i(\sigma_i')$ for any feasible strategies σ_i and σ_i' and for any $\eta \in [0, 1]$. Therefore, randomizing across distinct σ_i’s is (weakly) unprofitable for college i. Hence, we focus on an equilibrium in which the colleges choose a pair (σ_A, σ_B).\footnote{The strategy of applying to both colleges can be made strictly dominant if students have some uncertainty about their types, which is realistic in the case that the types are not publicly observable or the case that the weighting of each dimension of types is unknown to the students.}
3 Characterization of Equilibria

We now analyze colleges’ admission decisions. To this end, fix any equilibrium \((\sigma_A, \sigma_B)\) and let
\[U_i := \{(v, e_A, e_B) \in [0, 1]^3 | \sigma_i(v, e_i) > 0\} \]
be the types of students admitted by college \(i\), and
\[U_{AB} := U_A \cap U_B \]
be the types of students admitted by both colleges in that equilibrium. In what follows, we shall focus on equilibria in which \(U_{AB}\) has positive measure. In an equilibrium with zero measure of \(U_{AB}\), colleges coordinate perfectly to avoid competition, which seems unrealistic in practice; such an equilibrium can also be easily ruled out if colleges value \(v\) or \(e_i\) sufficiently highly.

Lemma 1. In any equilibrium in which \(U_{AB}\) has a positive measure, \(m_A(0) < \kappa < m_A(1)\) and \(m_B(1) < \kappa < m_B(0)\). Moreover, there exists a unique \(\hat{s}_i \in (0, 1)\) such that \(m_i(\hat{s}_i) = \kappa\) for all \(i = A, B\), and the measure of \(U_A \cup U_B\) is strictly smaller than 1.

Proof. See Appendix A.1.

According to the lemma, in equilibrium, colleges cannot have strict over-enrollment for all states or strict under-enrollment for all states. Over-enrolling in all states is clearly unprofitable for a college since it could save \(\lambda\) by rejecting some students; likewise, under-enrolling in all states is also not optimal, since accepting additional students would raise its payoff without violating its quota. In particular, each college will suffer from under-enrollment in some states and over-enrollment in other states. This is intuitive since the presence of students receiving admissions from both colleges creates non-trivial enrollment uncertainty. Each college manages the uncertainty by optimally trading off the cost of over-enrollment in high demand states with that of under-enrollment in low demand states. The last part of the lemma means that in equilibrium, there is a positive measure of students who do not receive admission from either college.

As noted in Lemma 1, there exist cutoff states \((\hat{s}_A, \hat{s}_B)\) such that colleges \(A\) and \(B\) over-enroll in states \(S_A := \{s|s \geq \hat{s}_A\}\) and \(S_B := \{s|s \leq \hat{s}_B\}\), respectively. Rewrite college \(i\)’s payoff as follows:

\[
\pi_i = \int_0^1 \int_0^1 U^i(v, e_i)\sigma_i(v, e_i)(1 - \sigma_j(v) + \mathbb{E}[\mu_i(s)]\sigma_j(v)) \, de_i \, g(v) \, dv \\
- \lambda \mathbb{E}[m_i(s) - \kappa|s \in S_i] \text{Prob}(s \in S_i) \\
= \int_0^1 \int_0^1 \sigma_i(v, e_i)H^i(v, e_i, \sigma_j(v)) \, de_i \, g(v) \, dv + \lambda \kappa \text{Prob}(s \in S_i),
\]

\(^9\)From now on, all expectations are taken with respect to the distribution of \(s\).
where the last equality follows from rearrangement using (1), and

\[
H^i(v, e_i, \bar{\sigma}_j(v)) := U^i(v, e_i)(1 - \sigma_j(v) + \mathbb{E}[\mu_i(s)|\bar{\sigma}_j(v)]) - \lambda \text{Prob}(s \in S_i)(1 - \sigma_j(v) + \mathbb{E}[\mu_i(s)|s \in S_i]\sigma_j(v))
\]

is college \(i\)'s marginal payoff from admitting a student with type \((v, e_i)\) for given \(\hat{s}_i\) and \(\bar{\sigma}_j(\cdot)\) in equilibrium.\(^{10}\) This marginal payoff equals the student’s value \(U^i(v, e_i)\) to college \(i\) multiplied by the probability of the student accepting \(i\)'s admission minus the expected capacity cost the student adds to \(i\).

A few remarks on \(H^i\) are worth making. First, \(H^i(v, e_i, x)\) is strictly increasing in \(v\) and nondecreasing in \(e_i\), reflecting a college’s intrinsic preferences for students. Second, due to the independence of \(e_A\) and \(e_B\), the capacity cost depends only on the score, \(v\), (and not on fit, \(e_i\)). Lastly, \(H^i\) captures college \(i\)'s local incentive—namely, its benefit from admitting type \((v, e_i)\) students, holding fixed its opponent’s decision and its own decisions for all other students at \(\sigma_i(\cdot, \cdot)\).

Lemma 2. A strategy profile \((\sigma_A, \sigma_B)\) is an equilibrium if and only if (i) \(H^i(v, e_i, \bar{\sigma}_j(v)) > 0\) implies \(\sigma_i(v, e_i) = 1\) and (ii) \(H^i(v, e_i, \bar{\sigma}_j(v)) < 0\) implies \(\sigma_i(v, e_i) = 0\), where \(i, j = A, B\) and \(i \neq j\). Moreover, \(H^i(v, e_i, x)\) satisfies the single-crossing property: if \(H^i(v, e_i, x) \leq 0\), then \(H^i(v, e_i, x') < 0\) for any \(x' > x\).

Proof. See Appendix A.2. \(\blacksquare\)

The first part of Lemma 2 shows that the signs of \((H^A, H^B)\) are sufficient to characterize equilibria. Since this condition only ensures “local” incentive compatibility, there is a concern that a college may profitably deviate “globally” by changing its admission decisions on a mass of students. The lemma assures that no such global deviation is profitable. Hence, a strategy profile satisfying local incentives is indeed an equilibrium.

The single-crossing property of \(H^i\) with respect to \(e_j\) in Lemma 2 reveals the nature of strategic interaction. In particular, it suggests that a student more likely to be admitted by its competitor is less desirable for a given college, all else equal. This point warrants a careful examination. To this end, recall first that \(H^i(v, e_i, \bar{\sigma}_j(v))\) is nondecreasing in \(e_i\). This, together with (the first part of) Lemma 2, allows us to focus on a strategy in which college \(i = A, B\) admits student type \((v, e_i)\) if and only if \(e_i \geq \hat{e}_i(v)\), for some cutoff \(\hat{e}_i(v)\).\(^{11}\)

\(^{10}\)We suppress the dependence of \(\sigma\) on \(\hat{s}_i\) unless its role is important.

\(^{11}\)This restriction is without loss if \(U^i\) is strictly increasing in \(e_i\). In case \(U^i\) is constant in \(e_i\), this restriction simply means that the college \(i\) is using \(e_i\) as a randomization device.
Given this, $\sigma_j(v) = 1 - \hat{e}_j(v)$, so we can equivalently focus on

$$H^i(v, e_i, \hat{e}_j(v)) := H^i(v, e_i, 1 - \hat{e}_j(v)) = \hat{e}_j(v)(U^j(v, e_i) - \underline{u}_i) + (1 - \hat{e}_j(v))E[\mu_i(s)](U^i(v, e_i) - \overline{u}_i),$$

where $\underline{u}_i := \lambda \operatorname{Prob}(s \in S_i)$ is the capacity cost college i incurs when a student without an offer from college j accepts its offer, and $\overline{u}_i := \lambda \operatorname{Prob}(s \in S_i)\frac{E[\mu_i(s)|s \in S_i]}{E[\mu_i(s)]}$ is its cost when a student with an offer from j accepts its offer. Recall that a college incurs a capacity cost only when it over-enrolls. If the student does not receive an offer from college j, then she accepts i’s offer for sure. Hence, over-enrollment occurs with probability $\operatorname{Prob}(s \in S_i)$, explaining the marginal cost of \underline{u}_i. However, if the student receives an offer from college j, she accepts i’s offer only when she prefers i to j. Hence, conditional on acceptance, college i over-enrolls with probability $\operatorname{Prob}(s \in S_i)\frac{E[\mu_i(s)|s \in S_i]}{E[\mu_i(s)]}$, which explains the marginal cost \overline{u}_i.

A key observation is that $\overline{u}_i > \underline{u}_i$. This is because while students without an offer from its competitor accept a college’s offer independently of the state, students with an offer from its competitor are more likely to accept a college’s offer when it is more popular. Since a college is more likely to over-enroll when it is popular, admitting the latter students is more costly. It is important to note that a student’s uncertain preference per se is not the source of this cost; a college can fully hedge idiosyncratic preference uncertainty in a large market.

The single-crossing property implies that a college’s marginal payoff from admitting a
student of a given score \(v \) increases, so its cutoff falls, when its opponent raises its cutoff. Consequently, the game facing the colleges is one of strategic substitutability. To gain further understanding, for college \(i = A, B \) and for each \(v \in V \), define \(i \)'s upper and lower cutoffs:\(^{12}\)

\[
\tilde{e}_i(v) := \inf \{ e \in \mathcal{H}_i(v, e; 0) \geq 0 \} \quad \text{and} \quad e_i(v) := \inf \{ e \in \mathcal{H}_i(v, e; 1) \geq 0 \},
\]

which are depicted in Figure 1. The left and right panels respectively describe the case that the colleges only value students’ scores (i.e., \(U_i(v, e_i) \equiv v \)) and the case that they also value students’ fit. The students with \((v, e_i) \) above the upper cutoff are worth admitting even when the opponent college employs \(\hat{e}_j(v) = 0 \) (i.e., \(j \) admits all type-\(v \) students); surely, it is optimal for college \(i \) to admit such students. Likewise, the students below the lower cutoff give negative marginal payoff even when they receive no offers from \(j \); surely, it is optimal for college \(i \) to reject them. Inspection of \(\mathcal{H}_i \) reveals that these two cutoffs correspond to indifference curves, \(U_i(v, e_i) = \overline{u}_i \) and \(U_i(v, e_i) = \underline{u}_i \), respectively. The real cutoff \(\hat{e}_i(\cdot) \) must lie between the two cutoffs, in the “gray zone” in Figure 1. The equilibrium cutoffs are characterized more precisely in the next theorem.

Theorem 1. An equilibrium is characterized by a profile of cutoff functions \(\{(\hat{e}_A(v), \hat{e}_B(v))\}_v \), each of which lies between the upper and lower cutoffs for the respective college, where

\[
\hat{e}_i(v) = \inf \{ e \in \mathcal{H}_i(v, e; \hat{e}_j(v)) \geq 0 \} \quad \text{for} \quad i, j = A, B \quad \text{and} \quad i \neq j,
\]

(and is equal to one when the set is empty). For each \(i = A, B \), if \(\hat{e}_i(v) \in (0, 1) \) and \(\hat{e}_j(v) \) is strictly decreasing in \(v \), then

\[
|\hat{e}_i'(v)| \leq \frac{U_i(v, e_i)}{U_{e_i}(v, e_i)} \bigg|_{e_i = \hat{e}_i(v)},
\]

where the RHS of (2) is infinite if \(U_{e_i} = 0 \).

Proof. See Appendix A.3. \(\blacksquare \)

The first part of Theorem 1 suggests that the equilibrium is characterized via an intersection of colleges’ “best responses” in their choice of cutoffs. Figure 2 depicts the best responses for a fixed \(v \) that corresponds to the “gray zone” for both colleges.

Strategic substitutability means that the best response curves are (weakly) negatively sloped. Depending on the importance of fit, however, the strategic interaction can vary dramatically. The left panel depicts the case in which the colleges only value the scores (i.e., \(U_i(v, e_i) \equiv v \)). One response could be perfect targeting; one college admits the students and

\(^{12}\)Let the cutoffs be zero if the respective sets are empty.
the other rejects them (either corner). They may also coordinate by “mixing”—or selecting an interior fraction of students,—by using the e_i as a randomization device. Colleges playing this latter strategy will appear to value the e_i even though they are of no intrinsic value to them. The right panel depicts the case in which colleges value their fit highly. Placing a large weight on a college-specific attribute lowers enrollment uncertainty and weakens the strategic link between the colleges. Consequently, the best-response curves are relatively flat, and a unique (and interior) intersection $(\hat{e}_i^*, \hat{e}_j^*)$ obtains in this case.

Ultimately, one is interested in how the cutoffs $(\hat{e}_A(v), \hat{e}_B(v))$ vary with v. An interesting question is whether $\hat{e}_i(v)$ is decreasing in v in equilibrium, which would imply that the equilibrium admissions policy is **monotonic**: if college i admits a type-(v, e_i) student, then it must also admit a type-(v', e_i') student, provided $(v', e_i') \geq (v, e_i)$. Our equilibrium does not guarantee such a monotonicity; the reason is that, while $H^i(v, e_i, \hat{e}_j)$ is increasing in v for a fixed (e_i, \hat{e}_j), $H^i(v, e_i, \hat{e}_j^*(v))$ need not; namely, the strategic response by the opponent can give rise to a non-monotonic reaction. Indeed, non-monotonicities may arise in equilibrium when the colleges primarily value the score, as will be seen below. Even when the admission policies are monotonic, the colleges do not admit students according to their intrinsic preferences. Indeed, the second part of Theorem 1 reveals that colleges systematically distort the admissions criteria to favor those students who rank highly in fit at the expense of those who rank highly in scores. The “overweighting” of fit (or a college-specific attribute) is seen formally by the fact that the slope of the cutoff curve $\hat{e}_i(\cdot)$ is less than that of the indifference curve, i.e., the college’s true marginal rate of substitution of v for e_i.

More precise understanding of the equilibrium can be gained by focusing on two special cases, to which we now turn.
Figure 3: Colleges’ admission strategies when they only value \(v \). We assume \(v \sim U[0, 1], \) \(\lambda = 20, \kappa = 0.36 \) and \(\mu(s) = \frac{1}{2}s + \frac{2}{5}. \)

\(\square \) Colleges only value the score.

As mentioned, in this case, colleges may strategically target or mix over the students in the gray zone. We focus on the equilibrium in which each college \(i = A, B \) mixes over the students using \(e_i \) as a randomization device. More precisely, in a mixing equilibrium, they choose \((\hat{e}_A(v), \hat{e}_B(v))\) so that \(\mathcal{H}^i(v, \hat{e}_i(v), \hat{e}_j(v)) = 0 \) for any \(v \in (\max\{u_A, u_B\}, \min\{\overline{u}_A, \overline{u}_B\}) \).\(^{13}\) Such an equilibrium always exists, as will be shown below.\(^{14}\)

The example depicted in Figure 3 shows equilibrium admissions strategies when college \(A \) is slightly more popular than college \(B \). In line with Figure 1(a), both upper and lower cutoffs are step functions, indexed by their vertical segments. Interestingly, the vertical segments

\(^{13}\)Since the upper and lower cutoffs are endogenous, it is a priori unclear if this gray zone would be non-empty in equilibrium. Theorem 2 provides a sufficient condition for the gray zone to appear in equilibrium.

\(^{14}\)There may exist another equilibrium in which colleges target students perfectly based on \(v \), as depicted by a corner intersection in Figure 2(a). Such an equilibrium requires a great deal of coordination between colleges that may be implausible, whereas the “mixing” equilibrium is more “anonymous” in the way the colleges treat different \(v \) types. The welfare and fairness implications we report in Theorem 4 also apply to this perfect coordinating equilibrium, however.
are not aligned between the two colleges. The figure shows, rather intuitively, that college A is more “selective” than college B with respect to both upper and lower cutoffs (.75 and .54 respectively for college A, versus .71 and .42 respectively for college B). This misalignment of the cutoffs gives rise to a “trough” in A’s admissions policy (for \(v \in [0.71, 0.75] \)) and a “ridge” in B’s admissions policy (for \(v \in [0.42, 0.54] \)). The “trough” corresponds to the students that B is committed to admit, irrespective of A’s decision (i.e., above B’s upper cutoff), so the optimal response by A is to “shun” them altogether, although A admits some students with lower \(v \). The “ridge” corresponds to the group of students A is certain to reject, which makes them attractive enough for B to admit fully; this is in contrast to B’s “harsh” treatment of the students with slightly higher \(v \). These features bring about “non-monotonicity” in the colleges’ admissions decisions. In particular, the “harsh” treatment by B of students with \(v \) just above 0.54 corresponds to the classical “fall-through-the-cracks” phenomenon whereby good students are neglected by a weaker college for fear that a stronger college may admit them. Indeed, the students just above the ridge (\(\approx 0.54 \)) have discontinuously lower chance of getting any offer than the students just below, precisely because former students are appealing enough to attract admission from the stronger college with some chance!

Conforming to the second part of Theorem 1, the cutoffs in the gray zone are flatter than the indifference curve (which should be vertical), meaning that a college “appear” to value \(e_i \) despite its being of no intrinsic value to them. The presence of this gray zone distinguishes our equilibrium from the characterization in the existing literature, where colleges employ monotonic cutoff strategies (Avery and Levin, 2010; Chade, Lewis, and Smith, 2014). The main source of the difference, as noted earlier, is the presence of enrollment uncertainty in our model. We show below that the presence of the gray zone—or the lack of monotonic cutoff equilibrium structure—is a general feature when colleges are sufficiently symmetric.

Theorem 2. There exists a mixing equilibrium in which colleges choose interior cutoffs \((\hat{e}_A(v), \hat{e}_B(v)) \in (0, 1)^2\) that are strictly decreasing in \(v \) for any \(v \in (\max_{i=A,B} u_i, \min_{i=A,B} u_i) \), where \(\max_{i=A,B} u_i < 1 \). Furthermore, there exists \(\varepsilon > 0 \) such that if \(\mu_A(s) \in (1 - \mu_A(1 - s) - \varepsilon, 1 - \mu_A(1 - s) + \varepsilon) \) for all \(s \), then the mixing interval is nonempty.

Proof. See Appendix A.4. ■

Although the result is not limited to symmetric equilibria, the intuition can be seen more clearly when we focus on symmetric equilibria (in the case that colleges are symmetric). Suppose to the contrary that both colleges adopt cutoff strategies using the same cutoff \(\bar{v} \). Namely, they compete for students of types \([\bar{v}, 1]\). Suppose that a college deviates by shifting its admissions from students of types \([\bar{v}, \bar{v} + \varepsilon] \) to types \([\bar{v} - \varepsilon', \bar{v}] \). Note that the former students receive a competing offer, thus entailing uncertainty in enrollment, while the latter do

\(^{15}\)The last property implies that \(\mathcal{U}_{AB} \) has a positive measure.
not. For small enough ε and ε', chosen to keep the expected yield unchanged, the resulting drop in the quality of the admission pool is negligible but the benefit in reducing the uncertainty is of first-order importance. Hence, the (symmetric) monotonic cutoff equilibrium cannot be sustained.\footnote{16}{When the two colleges are ex-ante symmetric (i.e., $\mu_A(s) = 1 - \mu_A(1 - s)$), there exists a symmetric equilibrium in which $\pi_A = \pi_B$ and $\mu_A = \mu_B$. This equilibrium does not involve a “trough” or “ridge.” Yet, the presence of the “mixing” interval (as shown by Theorem 2) means that the equilibrium differs from a “monotonic cutoff equilibrium.” Moreover, an asymmetric equilibrium (resembling Figure 3) may also exist.}

Colleges value fit significantly.

In this case, colleges’ preferences are sufficiently independent, so their incentive to strategically target students based on v is not very strong. Hence, the equilibrium admissions strategies are now likely to exhibit monotonicity. However, as stated in Theorem 1, the yield management consideration will still cause them to bias their admissions policies in favor of students with high fit.

To state the result formally, we assume that there exists $\delta > 0$ such that $\frac{U_i^i(v, e_i)}{U_j^j(v, e_j)} \leq \delta \frac{U_i^i(v, e_i)}{U_j^j(v, e_j)}$ for all $(v, e_i, e_j) \in (0, 1)^3$, where $i, j = A, B$ and $i \neq j$. We further assume that

$$U^i(v, 0) = 0 \text{ and } \frac{U_i^i(v, e_i)}{U^i(v, e_i)} > \max \left\{ \frac{1 - \pi_i}{\mu_i}, \frac{\pi_i}{1 - \pi_i}, \delta \right\} \text{ for all } (v, e_i),$$

where $\pi_i := \mathbb{E}[\mu_i(s)]$ for $i = A, B$. This condition implies that colleges value fit sufficiently highly, relative to the score.

Theorem 3. Given (3), an equilibrium exists, and in any equilibrium, college i’s cutoff $\hat{e}_i(v)$ is nonincreasing in v everywhere and strictly decreasing in v whenever $\hat{e}_i(v) \in (0, 1)$. In particular, there exists $\hat{v} < 1$ such that for all $v > \hat{v}$, $(\hat{e}_A(v), \hat{e}_B(v))$ are strictly decreasing in v (hence U_{AB} has a positive measure). The colleges overweight fit in the sense of (2) for $v > \hat{v}$.

Proof. See Appendix A.5.

Figure 4 depicts an example of symmetric equilibrium admissions behavior. The dashed lines depict the colleges’ indifference curves; in particular, the top and bottom ones correspond to the upper and lower cutoffs, π_i and μ_i, respectively. The admission cutoff locus, $\hat{e}_i(\cdot)$ for $i = A, B$, lies in between the two cutoffs. The cutoff curve exhibits clear bias in favor of e_i. The true preferences exhibit $MRS^i = 1.63$, but the admission cutoffs underweight v relative to e_i, with a ratio of less than 1.23.

Welfare and Fairness

\footnote{17}{This assumption is made only because we assume $U_i^i(v, 0) = 0$ and $U^i(v, 0) = 0$ in (3). A sufficient condition is for $\lim_{(v', c') \to (v, e)} \frac{U_i^i(v', c')}{{U_i^i(v', c')}}$ to be bounded from below and from above by some positive numbers.}
We assume $U_i^j(v, e_i) = 0.62v + 0.38e_i$, $i = A, B$, $v \sim U[0, 1]$, $\lambda = 1$, $\kappa = 0.4$ and $\mu(s) = s$.

We have seen that colleges respond to enrollment uncertainty by strategically targeting students or by distorting their admissions criteria in favor of non-common attributes (even when they do not intrinsically value them). We now explore the implications of this behavior for welfare and fairness.

For each state s, an assignment is a mapping from a student type $V \times E_A \times E_B$ into a college $\{A, B, \emptyset\}$, where \emptyset denotes the “null” college. An outcome is a mapping from a state to an assignment, i.e., the realized allocation in state s. Welfare and fairness can be defined based on the colleges’ and the students’ (ordinal) preferences. We say that a student has justified envy at state s if at that state she prefers a college to the one that enrolls her, even though the former college enrolls a student it ranks below her according to its true preference. An outcome is said to be fair if for almost all states, the assignment it selects causes no justified envy for almost all students. An outcome is Pareto efficient if the associated assignment is Pareto undominated for almost every state—namely, there is no other assignment in which both colleges and all students are weakly better off and at least one college or a positive measure of students is strictly better off.

Theorem 4. In any equilibrium of a decentralized matching (in which U_{AB} has positive measure), the allocation is Pareto inefficient. The outcome is also unfair if for at least one college $i = A, B$, its admission cutoff $\hat{e}_i(v)$ is interior and its opponent’s cutoff $\hat{e}_j(v), j \neq i$, is strictly decreasing in v for $v \in (v', v'')$.

Proof. The first statement follows directly from Lemma 1, according to which there exists $(\hat{s}_A, \hat{s}_B) \in (0, 1)^2$ such that college A over-enrolls for $s > \hat{s}_A$ and college B under-enrolls for $s > \hat{s}_B$. Hence, for $s > \max\{\hat{s}_A, \hat{s}_B\}$, a positive measure of unmatched students can fill vacancies that exist at college B, without altering the matching of the other students. This reassignment Pareto dominates the equilibrium outcome.
To prove the latter claim, suppose \(\hat{e}_i(v) \in (0, 1) \) and \(\hat{e}_j(v) \) is strictly decreasing in \(v \) for an interval \((v', v'')\). By the second part of Theorem 1, we have \(|\hat{e}_i'(v)| < \frac{U_i'(v, \hat{e}_i)}{U_i(v, \hat{e}_i)}|_{\hat{e}_i = \hat{e}_i(v)}\). This means that one can find two sets of students \(X, \tilde{X} \subset (v', v'') \times E_i \) and \(u \) such that, for all \((v, e) \in X, e > \hat{e}_i(v) \) and \(U_i(e, v) < u \), and for all \((\tilde{v}, \tilde{e}) \in \tilde{X}, \tilde{e} < \hat{e}_i(\tilde{v}) \) and \(U_i(\tilde{v}, \tilde{e}) > u \). (In Figure 4, \(X \) can be found in region I, at the top between solid and dotted lines, and \(\tilde{X} \) can be found in region II, at the bottom between dotted and solid lines). Clearly, the students in \(\tilde{X} \) have justified envy toward students in \(X \). Since the justified envy exists for a positive measure of students for all states, the outcome is unfair.

Theorem 2 and Theorem 3 give sufficient conditions for the outcome to be unfair.

Corollary 1. The outcome is unfair in any equilibrium given (3) or in the mixing equilibrium of the one dimensional model if the colleges are sufficiently symmetric.

4 Different Responses to Enrollment Uncertainty

In this section, we study additional measures that colleges may employ to manage their enrollment. We focus on the environment in which colleges only value the score \(v \) throughout this section.

4.1 Restricted Applications

One common method colleges employ is to limit the number of applications that students can submit. The restriction may be coordinated by colleges, or even institutionalized, as in the UK, Korea and Japan.\(^{18}\) It may also be a result of colleges’ unilateral actions, as with the “single-choice” requirement some US colleges place in their early admissions plans,\(^{19}\) or with the synchronized scheduling of on-site entrance exams by colleges in Korea and Japan.\(^{20}\)

Restricting applications eases colleges’ burden of managing uncertainty in enrollment; yield rates rise because applicants have fewer choices and students are forced to become

\(^{18}\)Students cannot apply to both Cambridge and Oxford in the UK, and applicants in Japan can apply to at most two public universities. Korean colleges (more precisely, college-department pairs) are partitioned into three groups, and students are allowed to apply to only one in each group. \(^ {19}\)Early admissions consist of Early Decision, which requires students to enroll if admitted, and Early Action, which does not involve such commitment. While pursuing admission under an Early Decision plan, students may apply to other institutions, but may have only one Early Decision application pending at any time (NACAC, 2012). Some Early Action plans place restrictions on student applications to other early plans. Selective universities such as Harvard, Stanford, Yale and Princeton restricted applicants to a single private university in their 2014 Early Action plans. \(^ {20}\)The Korean government has offered several dates, and many Korean universities have voluntarily chosen to schedule their exam on the same date. See Avery, Lee, and Roth (2014) about the colleges’ strategic scheduling problem in such an environment. Public universities in Japan coordinate on three dates for on-site entrance exams.
more credible with their choices. Consequently, colleges face fewer incentives to act strategically. With two colleges in our model, for instance, limiting students to apply to one would eliminate the uncertainty since students will never reject an admission. Thus, colleges will meet their targets exactly by simply admitting students above an appropriately-chosen cutoff. At the same time, the students will be forced to act strategically with their applications. In a nutshell, this method shifts the strategic burden from colleges to students.

To illustrate the implications of restricting applications, consider our baseline model in which colleges value only v. To understand the strategic problem of students, we introduce cardinal preferences: each student draws a payoff $y \in [0, 1]$ from attending college A and $1 - y$ from attending B. Suppose that there are two equally-likely states a and b, and that y is drawn according to the CDFs $K(y|a) = y^2$ and $K(y|b) = y$, in the two states. This assumption ensures that college A is more popular overall and relatively more popular in state a than in state b. For simplicity, suppose each student knows her preference y but not her score v at the time of application.21 Assume that each college faces a capacity of $\kappa = 0.4$ and a marginal cost $\lambda > 1$, where $U^i(1, 1) = 1$ for all $i = A, B$.22 The shaded areas of Figure 5 depict the set of students who applied to the two colleges and are admitted by them.

In the equilibrium, the colleges act nonstrategically, admitting students above a cutoff that fills their capacities in each state. By contrast, students apply “strategically”: they now apply to A if $y > \hat{y} := 0.55$ and to B if $y < \hat{y}$. Importantly, those with $y \in [0.5, 0.55]$ apply

21This does not alter our analysis for the baseline model. Nonobservability of scores by students makes it a strictly dominant strategy for students to apply to both colleges. Hence, the previous analyses still remain valid with this assumption. In reality, even though students submit their records to colleges, they do not know precisely how they are ranked by colleges. See Avery and Levin (2010) for a similar treatment.

22The features of the equilibrium that we highlight hold more generally. A full analysis of the equilibrium is provided in Che and Koh (2014) and is also included in the Supplementary Notes.
to B despite the fact that they prefer A to B. This is because of the overall popularity of A, which causes these students to sacrifice their moderate preference for A so as to increase the odds of getting admitted by any college.

One can see that the shifting of strategic burden from colleges to students does not eliminate the fairness and welfare problems of congestion. First, the equilibrium is unfair. Justified envy arises in state a for students with $(v, y) \in [0, \hat{v}_A(a)] \times [0.5, 1]$ who are unassigned despite having scores exceeding B’s cutoff of $\hat{v}_B(a) = 0$, and it arises in state b for students with $(v, y) \in [\hat{v}_A(b), 1] \times [0.5, 0.55]$ who get into B even though they prefer A and have scores above its cutoff $\hat{v}_A(b)$. Second, the equilibrium is inefficient. In state a, only mass 0.3 of students apply to B, leaving its capacity $\kappa = 0.4$ unfilled. This outcome is inefficient because some students are unmatched even though they are acceptable to B in that state.

4.2 Sequential Admissions: Wait-listing

Colleges also manage enrollment uncertainty by offering admissions sequentially. According to this method, a college admits some applicants and wait-list others in the first round. Later it admits students from the wait list when some offers are rejected. This process may repeat for several rounds. Most colleges in France and Korea use wait lists. In the US, nearly 45% of four-year colleges adopted wait lists in 2011, up from 32% in 2002 (NACAC, 2012). Typically, admissions in each round are not deferred and/or the number of iterations is limited. Hence, even though wait-listing allows for more admission offers and acceptances than the baseline model, it does not fully eliminate congestion. For this reason, strategic targeting remains an issue.23

This point can be seen by a simple extension of our baseline model. There are three colleges, A, B and C, each with a mass $\kappa < \frac{1}{3}$ capacity. Colleges again evaluate students based only on their common score v, as before. All students prefer A and B to C, but C is significantly better than not attending any school. A college’s utility is given by students’ scores, but for each student, there is a probability $\varepsilon \in (0, 1)$ that each of colleges A and B finds the student unacceptable. College C admits students simply based on their scores.

There are two equally-likely states, a and b. In state $j \in \{a, b\}$, a fraction s_j of students gets utility u from A and $u' < u$ from B, and the remaining $1 - s_j$ students have the opposite preference, where $s_a = 1 - s_b > \frac{1}{2}$. (In other words, college i is more popular in state s_i,

23While allowing for many iterations will ease the problem, the design of the market still matters. In principle, the market for clinical psychologists admits numerous rounds of iterations, but suffers from congestion (Roth and Xing (1997)). Korean college admissions involve many rounds, but nontrivial congestion appears to exist, as we show below (see Section 5). Another measure of congestion is the number of “repeat applicants”—the applicants who are either unmatched or refuse to accept their assignments and wait one full year to take another “crack” at the assignment process. That number reached 127,000 in Korea in 2014. While much of the problem may be solved by a “frictionless aftermarket,” what form the market should take is far from clear.
i = A, B, and the two colleges are ex ante symmetric in popularity.) In either state, a student gets utility u'' from C, where $(1-\varepsilon)u < u'' < u$, so having C with certainty is better than having the more preferred of the two other colleges with probability $1 - \varepsilon$. In addition, suppose that λ is so high that a college never admits more than κ in total. Consider the following model of wait-listing: in each round, each college admits a set of students and wait-lists the remaining applicants. A student who has received an offer must accept or reject it immediately. After the first round, colleges A and B learn the state, so the game effectively ends in two rounds.

We show that there is no symmetric equilibrium in which both colleges A and B use a cutoff strategy (i.e., admit the top κ acceptable students) in the first round.

Theorem 5. There is no symmetric equilibrium in which both colleges A and B offer admissions to the top κ acceptable students in the first round.

Proof. See Appendix A.6.

The intuition behind this result is as follows. Suppose A and B admit the best candidates up to their capacities while keeping the next best group in mind in case some offers are turned down. The problem with this strategy is that when some of those admitted turn down their offers, the next-best students the colleges have in mind may not be available, since these students, uncertain about whether A or B would find them acceptable, may have accepted an offer from C. This implies that the students who remain after the first round are likely to be far worse than the next-best group. Hence, a college would deviate profitably by skipping over some of the top κ students and preemptively admitting some of the second-best students. Theorem 5 implies that strategic targeting—i.e., a non-monotonic equilibrium—must occur in any symmetric equilibrium, and this also implies that the outcome will be, in general, unfair and inefficient.

4.3 Centralized Matching via Deferred Acceptance

The most systemic response to enrollment uncertainty is to centralize the admissions via a clearinghouse. College admissions are centralized in countries such as Australia, China, Germany, Taiwan, Turkey and the UK. While a number of matching algorithms may be used for this purpose, one popular method is Gale and Shapley’s Deferred Acceptance algorithm (henceforth DA). Not only is DA employed in many centralized markets, such as public school admissions and medical residency assignments, but it also has a number of desirable properties compared to decentralized matching, as we shall highlight below.

In the DA algorithm (student-proposing version), students and colleges report their ordinal preferences to the clearinghouse, which then uses the information to simulate the
following multi-round procedure. In each round $t = 1, ..., t$, students apply to the most preferred colleges that have not yet rejected them. The colleges then tentatively accept the most preferred applicants up to their capacities and reject the rest (permanently). This process is repeated until no further applications are made, in which case each student is assigned to a college that has tentatively accepted the student. While the sequential nature of the mechanism resembles the “wait-listing” considered earlier, it differs in several respects: first, students apply to one college per round; second, a college’s admission is tentative in each round; and third, the number of rounds is not limited. These features eliminate congestion.

To see this, consider how DA would proceed in our baseline model with only score v (assuming truthful reporting by agents on both sides). For concreteness, fix a realized state s such that $\mu_A(s) > 1/2$. DA takes two rounds, and Figure 6 describes the set of students who apply to the two colleges and are admitted by them in each of the two rounds. In the first round, a mass $\mu_A(s)$ of students apply to college A, and the remaining mass $\mu_B(s) = 1 - \mu_A(s)$ of students apply to college B. Each college tentatively admits the top κ students among the applicants. Thus, colleges’ cutoffs in this round, denoted by $\hat{v}_i(s)$, satisfy $\mu_i(s) \left(1 - G(\hat{v}_i(s))\right) = \kappa$ for $i = A, B$ (see Figure 6(a)). The rejected students then apply to the remaining college in the second round, and again, colleges reselect the top κ students among those admitted tentatively in the first round and the new applicants. Thus, colleges’ cutoffs are readjusted to satisfy $\mu_A(s)(1 - G(\hat{v}_A(s))) = \kappa$ and $1 - G(\hat{v}_B(s)) = 2\kappa$ (see Figure 6(b)). Since there are no more colleges to which rejected students can apply, the algorithm terminates, and the tentative assignment becomes final. The outcome is clearly fair since a student never envies another with a lower score v, and it is also Pareto efficient.

More generally, the following results hold for our baseline model.

Theorem 6. DA makes truthful reporting a weakly dominant strategy for students and it
makes truthful reporting of rankings (based on v) and capacities an ex post equilibrium for colleges. In the resulting equilibrium, in each state s, there are cutoffs $(\hat{v}_A(s), \hat{v}_B(s))$ such that each student v is assigned to the best college among those whose cutoff is below v, and the colleges fill their capacities exactly. The outcome is fair and Pareto efficient.

Proof. The dominant strategy property (or “strategy-proofness”) is a well-known consequence of the DA (Dubins and Freedman, 1981; Roth, 1982). The fairness and efficiency properties are similarly well-known (Gale and Shapley, 1962; Balinski and Sönmez, 1999; Abdulkadiroğlu and Sönmez, 2003). The incentive property of the colleges is due to their common ordinal preferences and is proven in Appendix A.7.

The colleges are collectively better off under DA than under decentralized matching; colleges attain their enrollment targets exactly and jointly enroll the top 2κ students. This does not mean, however, that a consensus would form in favor of centralization under DA.

Example 1. Assume $v \sim U[0, 1]$, $\lambda = 5$, $\kappa = 0.45$ and $\mu(s) = \frac{2}{5}s + \frac{3}{5}$. Then, a decentralized matching admits a mixed equilibrium similar to that in Figure 3. With the shift to the DA, the colleges’ payoffs improve jointly, but college B’s payoff falls. The reason is that college B now loses many good students that it was able to attract under decentralized matching.

This example may explain why centralized matching is not as common in college admissions as in other contexts, such as public high-school admissions. Unlike public high schools which are largely under the control of a central authority, colleges are independent strategic players with their own interests to pursue.24

5 Empirical Evidence

Our main thesis is that the “congestion” of decentralized matching causes colleges to avoid head-on competition, by strategically targeting students based on their scores and by placing excessive weight on their fit. While conclusive evidence on the uncertainty colleges face and their strategic responses is difficult to obtain, there are some suggestive facts.

First, there is some evidence on the uncertainty facing colleges with respect to their enrollment. As a simple test for the presence of aggregate uncertainty, we investigated if the yield rates for 34 US colleges varied significantly across 2011-2013 (for the classes of

24There are other difficulties associated with centralizing college admissions particularly in the US. First, US colleges provide financial aid to students based on a variety of factors (see Epple, Romano, and Sieg, 2006). Second, US colleges often seek to assemble a cohesive student body, thus exhibiting so-called “complementary preferences” (see Che, Kim, and Kojima, 2015). Designing a centralized matching mechanism that accommodates these features may be difficult. Third, as we discuss in Section 6, decentralized matching may have an advantage in economizing on the costs students incur in evaluating their choices than some centralized matching algorithms.
Table 1: CSAT scores: Department of Economics and Finance

<table>
<thead>
<tr>
<th>Year</th>
<th>Round</th>
<th>Admittees</th>
<th>Average CSAT Scores</th>
<th>90th Percentile</th>
<th>10th Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td>≥90th Percentile</td>
<td>≤10th Percentile</td>
</tr>
<tr>
<td>2011</td>
<td>1</td>
<td>35</td>
<td>95.200</td>
<td>95.585</td>
<td>95.010</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>7</td>
<td>95.029</td>
<td>95.081</td>
<td>94.971</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3</td>
<td>94.939</td>
<td>94.994</td>
<td>94.896</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>2</td>
<td>94.962</td>
<td>95.023</td>
<td>94.901</td>
</tr>
<tr>
<td></td>
<td>≥5</td>
<td>4</td>
<td>94.943</td>
<td>95.007</td>
<td>94.857</td>
</tr>
<tr>
<td>2012</td>
<td>1</td>
<td>34</td>
<td>97.884</td>
<td>98.067</td>
<td>97.747</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2</td>
<td>97.746</td>
<td>97.801</td>
<td>97.691</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>7</td>
<td>97.633</td>
<td>97.721</td>
<td>97.516</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>3</td>
<td>97.552</td>
<td>97.604</td>
<td>97.514</td>
</tr>
<tr>
<td></td>
<td>≥5</td>
<td>8</td>
<td>97.416</td>
<td>97.606</td>
<td>97.281</td>
</tr>
<tr>
<td>2013</td>
<td>1</td>
<td>31</td>
<td>97.307</td>
<td>98.049</td>
<td>96.995</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3</td>
<td>97.003</td>
<td>97.029</td>
<td>96.977</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3</td>
<td>96.915</td>
<td>96.970</td>
<td>96.816</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>3</td>
<td>96.874</td>
<td>96.943</td>
<td>96.806</td>
</tr>
<tr>
<td></td>
<td>≥5</td>
<td>5</td>
<td>96.812</td>
<td>97.043</td>
<td>96.679</td>
</tr>
</tbody>
</table>

Note: The total score of CSAT is normalized by 100, while the actual score may depend on the subjects taken by students.

Source: Office of Admissions, Hanyang University.

2015-2017 applicants), using the data reported in NYT “The Choice” blog. One could take the yield rate—the rate at which admitted students accept a college—as a proxy for the realized preference for a college for a given year (μᵢ(s) in our model), and its variability as a measure of uncertainty facing the college. Both Fisher’s exact test and a Chi-square test reject the null hypothesis that the rates are the same over three years (i.e., no aggregate uncertainty) for (the same) 15 colleges out of 34 in the sample, at the p = 0.05 significance level (see the Supplementary Notes).

Second, the admissions decisions made by Hanyang University in Korea show a pattern consistent both with the strategic targeting and the overweighting of non-common attribute identified in the paper. Each department at Hanyang admits students in multiple rounds

25 We thank a referee for suggesting this test and the editor for bringing the data to our attention. See http://thechoice.blogs.nytimes.com/category/admissions-data.

26 Given our model, the number of enrollment at college i follows B(nᵢ, pᵢ), where nᵢ is the number of students admitted by college i and pᵢ is the probability that an admitted student accepts i’s admission. The presence of aggregate uncertainty means that pᵢ is a random variable that varies with the state of the world. Admittedly, the measure is imperfect since the choice set for admitted students differs across years. More importantly, nᵢ is not exogenous but rather chosen by the college to combat precisely the sort of uncertainty that would result in different yield rates across years. We thus believe that the observed variability in yield rates understates the uncertainty facing a college.

27 There are 37 colleges in the data. We excluded three colleges (Harvard, Yale and Emory) from the sample since the first two schools contain missing variables and the last one had an extreme fall in yield rates, which we suspect is due to a some regime change in the way accounting is done.

28 We gratefully acknowledge Hanyang University for providing their admissions data.
Note: The horizontal axis is an admittee’s CSAT score, and the vertical axis is the number of students of given score admitted in each round of admission.

Figure 7: Admissions on Wait Lists by DEF in 2013

via wait-listing for its regular admissions. In the case of the Department of Economics and Finance (henceforth DEF), one of the largest departments at Hanyang, the admissions process took 8 rounds in each of 2011 and 2013, and 11 rounds in year 2012. These numbers of rounds are typical for other departments at Hanyang and reflect the magnitude of uncertainty facing the department. The composition of applicants admitted at different rounds reveals an interesting pattern. Table 1 summarizes the scores of the nationwide College Scholastic Ability Test (CSAT) earned by the students who were admitted by DEF at different sequential rounds in years 2011-2013.29 For each year, the number “i = 1, ..., 4” denotes the admissions round, and “≥ 5” denotes all rounds after 5th round. The third and the fourth columns respectively present the number of admittees and their average CSAT scores in different rounds. The numbers in the fourth and the fifth columns are the average CSAT scores of the top and the bottom 10% admittees in each round, respectively.

29As noted in Section 4.1, for the regular admissions stage, college-department pairs in Korea are divided into three groups, called groups Ga, Na and Da, and students can apply to at most one in each group. Thus, a unit in each group competes with other units in the same group but does not face competition with units in other groups. DEF divides its quota into two groups, Ga and Na, and admits students separately for the two groups. We focus on the admissions decision on the group Ga applications, which is the primary target group of DEF. The quota assigned for group Ga is twice as many as the quota for group Na.
A monotone admissions strategy (i.e., cutoff strategy) would result in students admitted on earlier rounds having uniformly higher CSAT scores than those admitted in later rounds. Consistent with Theorem 5, however, the table shows significant non-monotonicity across rounds. Observe that in each year, the average CSAT score of the top 10% students admitted in the $i + 1$-th round is higher than that of the bottom 10% students admitted in the i-th round. (The only exceptions are the second and the third rounds in 2013.) The exact distribution of CSAT scores earned by admittees at different rounds is presented in Figure 7 for year 2013. In the Supplementary Notes, we provide summaries of students’ CSAT scores for the Department of Business and the Department of Mechanical Engineering, which exhibit similar non-monotonicity.

The reason for the observed non-monotonicity is that DEF offers a significant number of its admissions based on a measure that “garbles” a student’s CSAT score by another measure, called “student record.” Because of a legal restriction on the way the latter is complied, the CSAT score is widely regarded as a more reliable indicator of a student’s academic performance compared to his/her student record. Indeed, Hanyang’s objective for the regular admissions is to “attract high CSAT scorers.” In keeping with this objective, DEF awards a small number of the so-called “priority” admissions in its first round admission based solely on applicants’ CSAT scores, but for the remaining admissions in the first and the subsequent rounds, it makes selections based on the weighted sum of the student record and CSAT scores. Accordingly, the students receiving priority admissions have higher CSAT scores than all other admitted students. (Both Table 1 and Figure 7 include the students receiving priority admissions as part of the first-round admittees.) However, because of the garbled selections for the remaining admissions, the students admitted in the earlier rounds need not have higher CSAT scores than those admitted in later rounds.

6 Conclusion

The current paper has presented a new model of decentralized college admissions. In this model, colleges face enrollment uncertainty that arises from aggregate uncertainty in students’ preferences. We have shown that colleges respond to enrollment uncertainty by strategically targeting their admissions based on students’ common attribute and by overweighting

30 The student record is a measure that a college compiles based on several aspects of the student profile, including high school grades. In case high school grades are used, however, the college is explicitly prohibited by law from adjusting them for the quality of high schools the students obtained their grades from, although the quality of high schools differs significantly across regions and between “special-purpose” schools and regular schools.

31 This objective is stated in an internal document provided by the Hanyang university’s admissions office, which is available upon request from the authors.
their non-common attributes in admissions, and that this equilibrium behavior leads to justified envy and Pareto inefficiency.

We have also studied other responses by colleges whereby they limit the number of a student’s applications, admit students in multiple rounds via wait-listing, or centralize admissions via DA. Both restricted application and wait-listing alleviate colleges’ yield control burden, but strategic targeting and enrollment uncertainty remain, leaving justified envy and inefficiency unaddressed. Centralized matching via DA achieves efficiency and eliminates enrollment uncertainty and justified envy, at least when colleges evaluate students only by a common measure. However, not all colleges necessarily benefit from such a centralized matching. This last observation may explain why college admissions remain decentralized in many countries. Our analyses have several other implications.

Early admissions. Early admissions are widely adopted by colleges in the US and Korea. Early admissions programs allow students to apply to sponsoring colleges early, and the colleges in turn process their applications prior to the regular admissions round (with binding or non-binding requirements for students to accept them early). The remaining students and seats are then allocated through regular admissions. This process resembles sequential admissions studied in Section 4.2. In addition, some early admissions programs restrict applications just as in Section 4.1. Although the model involving both sequential admissions and restricted application is not tractable (especially with aggregate uncertainty), our analyses imply that these features can help colleges to cope with enrollment uncertainty. We believe this is an important function of early admissions not emphasized by other recent papers (Avery and Levin, 2010; Lee, 2009). Despite this benefit to colleges, our analyses suggest that the outcomes of these programs are unlikely to be efficient or fair.

Loyalty and legacy. It is well documented that colleges favor students who show eagerness to attend them. Students who signal their interests through campus visits, essays, letters of intention, or webcam interviews are known to be favored by colleges. According to the 2004 and 2005 NACAC Admission Trends Survey, 59% of the colleges surveyed assigned some level of importance to a student’s “demonstrated interest” in their admissions decisions. Table 2 shows the extent to which certain applicant activities would be considered as a “plus factor” in the admission process by institutions with varying yield rates.

Early admissions, as Avery and Levin (2010) argue, also serve as a tool for colleges to identify enthusiastic applicants and favor them in the admission. It is entirely plausible that these preferences by colleges are intrinsic, as postulated by Avery and Levin (2010). However, our theory suggests that such a preference could also arise endogenously from the desire to manage enrollment uncertainty. Like the students without a competing offer in our
Table 2: Percentage of institutions that consider a “plus factor” in the admission process

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>< 30%</td>
<td>61.9</td>
<td>59.0</td>
<td>58.3</td>
<td>56.6</td>
<td>35.8</td>
<td>26.9</td>
<td>39.8</td>
<td>39.6</td>
<td>43.3</td>
<td>38.5</td>
</tr>
<tr>
<td>30 ~ 40%</td>
<td>51.3</td>
<td>47.2</td>
<td>54.1</td>
<td>42.5</td>
<td>37.0</td>
<td>34.0</td>
<td>24.4</td>
<td>26.5</td>
<td>38.0</td>
<td>36.4</td>
</tr>
<tr>
<td>46 ~ 60%</td>
<td>30.9</td>
<td>32.3</td>
<td>36.3</td>
<td>32.3</td>
<td>25.9</td>
<td>26.2</td>
<td>10.3</td>
<td>11.1</td>
<td>32.5</td>
<td>36.9</td>
</tr>
<tr>
<td>> 60%</td>
<td>32.6</td>
<td>45.0</td>
<td>37.0</td>
<td>52.5</td>
<td>23.9</td>
<td>39.3</td>
<td>17.4</td>
<td>7.3</td>
<td>33.3</td>
<td>48.3</td>
</tr>
</tbody>
</table>

Source: NACAC (2012)

model, those with demonstrated interest add less to the capacity cost, since their preference is unlikely to vary much with the popularity of the college among regular students.\(^{32}\) Accordingly, even a college with no intrinsic preference for loyal students has a reason to favor them. Consistent with this view, Table 2 shows that colleges suffering lower yield rates tend to favor students with “demonstrated interest” more than the colleges enjoying higher yield rates. A similar explanation applies to the favoring of legacy students (who have a family history with the school).\(^{33}\)

Yield manipulation. Colleges in our model exhibit endogenous preference for a high yield. While such a preference arises in our model from the desire to manage enrollment uncertainty, colleges in practice may prefer a high yield rate for an intrinsic reason—favorable perception and brand image. Importantly, “yield and acceptance rates for a college’s entering class account for one-fourth of the ‘student selectivity’ score in the influential US News & World Report annual rankings of colleges and universities, enough to raise or lower a school’s position by several spots.”\(^{34}\) Our analysis implies that “yield-motivated” colleges will behave

\(^{32}\)To see this, suppose there are two groups of students, loyal (L) and regular (R), for college A. A regular student prefers college A with probability \(\mu(s)\) in state \(s \in [0, 1]\) as before, but a loyal student prefers A with probability \(\mu_L(s) = \mu(s) + a\), for some constant \(a > 0\). That is, a higher fraction of loyal students prefer A than regular students at every state. Suppose there are two students, one loyal and one regular, and suppose both receive an offer from B. The loyal student adds to capacity cost \(\lambda\) whenever college A over-enrolls. This latter probability conditional on the loyal student accepting A’s offer is

\[
(1 - s_A) \frac{E[\mu_L(s) | s > s_A]}{E[\mu_L(s)]} = (1 - s_A) \frac{E[\mu(s) | s > s_A]}{E[\mu(s)]} + a,
\]

which is strictly lower than \((1 - s_A) \frac{E[\mu(s) | s > s_A]}{E[\mu(s)]}\), the corresponding probability of A over-enrolling conditional on the regular student accepting A’s offer.

\(^{33}\)Espenshade, Chung, and Walling (2004) show that legacy applicants have nearly three times the likelihood of being accepted as non-legacies.

similarly to colleges in our model; namely, they will strategically target students overlooked by stronger colleges and reject students who are unlikely to accept their offers (or are “too good for them”). This behavior is consistent with anecdotal evidence.\footnote{The \textit{Wall Street Journal} article cited in footnote \ref{fn:wait-listing} reports one such practice employed by Franklin and Marshall College: “By wait-listing top applicants who didn’t visit the campus or interview with college representatives, the college bumped up its yield for the next school year to 27\% from 25\%. It also improved its acceptance rate – the ratio of acceptances to total applications – to a more selective 51\% from 53\%. Such numbers could help Franklin and Marshall rise in the US News ranking of national liberal-arts colleges from its current position of 33rd.”}

\textbf{Information acquisition and evaluation costs.} Often students do not have clear preferences about colleges and must incur costly efforts to rank them. There is a sense in which decentralized matching economizes on such costs better than centralization via DA. Applicants under decentralized matching (in our baseline model) need only rank colleges that admit them. By contrast, under DA, students do not know which colleges will admit them at the time of submitting their preferences, so they may end up evaluating colleges that will never admit them or not evaluating colleges that will admit them. More formally, in the context of our model, for a sufficiently low evaluation cost of ranking between A and B, a student will incur the cost only when both colleges admit the student under decentralized matching, but under DA, there exists a cutoff \hat{v} such that students above the cutoff find it worthwhile to incur the cost and those below do not evaluate the colleges and rank them simply based on their prior.\footnote{The Supplementary Notes present this result more formally.} It is unclear how important this benefit of decentralized matching is in comparison with its disadvantages recognized earlier. Moreover, restriction on application will have an “informational inefficiency” similar to that of DA, so if decentralized matching involves that feature, as has been the case in many settings, the informational advantage of decentralized matching is not clear. Most important, the informational inefficiency is not an inherent feature of centralization. If College-Proposing DA (instead of Student-Proposing DA) were run in “real time,” then students need only evaluate colleges that are willing to admit them at each round, so informational efficiency can be achieved.\footnote{In our model with only common measure of merit, there is no distinction between College-Proposing and Student-Proposing DA. In fact, both Turkey and Victorian Province of Australia use College-Proposing DA. Whether the informational efficiency of the mechanism was a motive behind this design is unclear, but in the case of the Victorian college admissions, the students are asked “real time” in each round of college admissions to accept or reject college’s offer, although they are not allowed to revise their rankings.}

\textbf{Students’ responses to admissions.} Students’ types are treated as exogenous in our model. In practice, students may influence these measures through ex ante efforts. Our theory implies that the students will have reduced incentives to raise the common measure both because the admissions decisions may be non-monotonic and because the common
measure is underweighted relative to the non-common measure. By contrast, over weighting of the latter measure would mean that students face excessive incentives for improving them.

A Appendix: Proofs

A.1 Proof of Lemma 1

The proof consists of three steps.

Step 1. In equilibrium, \(m_A(0) \leq \kappa \leq m_A(1) \) and \(m_B(1) \leq \kappa \leq m_B(0) \).

Proof. Consider college \(A \). The analysis for \(B \) is analogous. Suppose \(m_A(1) < \kappa \). Let \(A \) admit a mass \(\kappa - m_A(1) \) of students in addition to those it currently admits. The resulting enrollment, denoted by \(\tilde{m}_A(s) \), satisfies that for any \(s < 1 \),

\[
m_A(s) < m_A(s) + \mu_A(s)(\kappa - m_A(1)) \leq \tilde{m}_A(s) \leq m_A(s) + (\kappa - m_A(1)) < \kappa,
\]

where the last inequality holds since \(m_A(s) < m_A(1) \) for \(s < 1 \). Note that \(A \) benefits from the deviation since it admits more students without exceeding its capacity. Similarly, if \(m_A(0) > \kappa \), then \(A \) can benefit by rejecting \(m_A(0) - \kappa \) of students. Thus, we must have \(m_A(0) \leq \kappa \leq m_A(1) \) in equilibrium. ■

Step 2. In equilibrium, there is a unique \(\hat{s}_i \in (0,1) \), for \(i = A, B \), such that \(m_i(\hat{s}_i) = \kappa \).

Proof. Suppose \(\hat{s}_A = 1 \). Then, \(m_A(s) < m_A(1) = \kappa \) for all \(s < 1 \), so college \(A \) does not pay the capacity cost. Consider a deviating strategy such that \(A \) admits a small fraction of students, say \((v, e_A) \in (c, c + \delta) \times (e, e + \eta)\) for some \(c, e < 1 \) and small \(\delta, \eta > 0 \), who are not admitted currently. The resulting enrollment is

\[
\tilde{m}_A(s) = m_A(s) + \int_{c}^{c+\delta} \int_{e}^{e+\eta} (1 - \overline{\sigma}_B(v) + \mu_A(s)\overline{\sigma}_B(v))de_A g(v)dv.
\]

Let \(\tilde{s}_A \) be such that \(\tilde{m}_A(\tilde{s}_A) = \kappa \). Note that \(\tilde{s}_A < \hat{s}_A < 1 \) since \(\tilde{m}_A(s) > m_A(s) \). Next, choose \(\delta \) and \(\eta \) such that \(1 - \hat{s}_A < \varepsilon \) for sufficiently small \(\varepsilon \). From the deviation, \(A \) gains from admitting more students but incurs capacity costs. Hence, its net payoff is

\[
\int_{c}^{c+\delta} \int_{e}^{e+\eta} U^A(v, e_A)(1 - \overline{\sigma}_B(v) + \overline{\mu}_A\overline{\sigma}_B(v))de_A g(v)dv - \lambda \int_{\tilde{s}_A}^{1} (\tilde{m}_A(s) - \kappa)ds
\]

If a student can “pick” his score \(v \) precisely (say, below some level), then adding the ex ante stage of student choosing \((v, e_i)\) can “undo” the kind of non-monotonicities observed in Figure 3. In practice, however, it is unlikely that students can choose their scores precisely. If the distribution of \(v \) has full support, for instance, our equilibrium characterization will remain valid with the introduction of ex ante effort by students.
the last inequality holds for sufficiently small ε by rejecting a small fraction of students who are currently admitted. Hence, we must have

Without loss of generality, suppose $0 < c < 1$ is less than 1. Similarly, if $\hat{s}_A = 0$, then A can benefit by rejecting a small fraction of students who are currently admitted. Hence, we must have $\hat{s}_A \in (0, 1)$ in equilibrium. The proof for B is analogous.

Note that Step 1 and Step 2 imply that $m_A(0) < \kappa < m_A(1)$ and $m_B(1) < \kappa < m_B(0)$.

Step 3. In equilibrium, the measure of $U_A \cup U_B$ is less than 1.

Proof. Suppose to the contrary that almost all students are admitted by either college. Without loss of generality, suppose $[0, c] \times [0, e] \times [0, 1] \cap U_A \neq \emptyset$ for some $c, e < 1$. Let \hat{s}_A be the cutoff state. Now, let A reject a small fraction of students, say $(v, e_A) \in [0, \delta) \times [0, \eta)$ for small $\delta < c$ and $\eta < e$, who are currently admitted. The resulting enrollment is

$$m_A(s) = m_A(s) - \int_0^\delta \int_0^{\eta} \sigma_A(v, e_A)(1 - \sigma_B(v) + \mu_A(s)\sigma_B(v))de_A g(v)dv,$$

(A.1)

and let \tilde{s}_A be such that $m_A(\tilde{s}_A) = \kappa$. Note that $\tilde{s}_A > \hat{s}_A$ since $m_A(s) < m_A(s)$. Next, choose δ and η such that $\lambda(1 - \tilde{s}_A) > U^A(\delta, \eta)$. From the deviation, A loses its revenue by

\[
(*) = \int_0^{\delta} \int_0^{\eta} U^A(v, e_A)\sigma_A(v, e_A)(1 - \sigma_B(v) + \mu_A(s)\sigma_B(v))de_A g(v)dv
\]

\[
< U^A(\delta, \eta) \int_0^1 \int_0^{\eta} \sigma_A(v, e_A)(1 - \sigma_B(v) + \mu_A(s)\sigma_B(v))de_A g(v)dv ds,
\]

where the inequality holds since U^A is strictly increasing in v and nondecreasing in e_A, but
saves the capacity costs by

\[(**) = \lambda \left(\int_{\hat{s}_A}^{1} (m_A(s) - \kappa) ds - \int_{\hat{s}_A}^{1} (\hat{m}_A(s) - \kappa) ds \right) \]

\[= \lambda \left(\int_{\hat{s}_A}^{\hat{s}_A} (m_A(s) - \kappa) ds + \int_{\hat{s}_A}^{1} (m_A(s) - \kappa) ds - \int_{\hat{s}_A}^{1} (\hat{m}_A(s) - \kappa) ds \right) \]

\[> \lambda \int_{\hat{s}_A}^{1} \int_{0}^{\delta} \int_{0}^{\eta} \sigma_A(v,e_A)(1 - \sigma_B(v) + \mu_A(s)\sigma_B(v)) de_A g(v) dv ds \]

where the inequality follows from from (A.1) and the fact that \(m_A(s) > \kappa \) for any \(s \in (\hat{s}_A, \bar{s}) \).

Hence, \(A \)'s payoff increase from the deviation is

\[(**) - (*) > (\lambda - U^A(\delta, \eta)) \int_{\hat{s}_A}^{1} \int_{0}^{\delta} \int_{0}^{\eta} \sigma_A(v,e_A)(1 - \sigma_B(v) + \mu_A(s)\sigma_B(v)) de_A g(v) dv ds \]

\[- U^A(\delta, \eta) \int_{0}^{\hat{s}_A} \int_{0}^{\delta} \int_{0}^{\eta} \sigma_A(v,e_A)(1 - \sigma_B(v) + \mu_A(s)\sigma_B(v)) de_A g(v) dv ds \]

\[> (\lambda - U^A(\delta, \eta))(1 - \hat{s}_A) \int_{0}^{\delta} \int_{0}^{\eta} \sigma_A(v,e_A)(1 - \sigma_B(v) + \mu_A(\hat{s}_A)\sigma_B(v)) de_A g(v) dv \]

\[- U^A(\delta, \eta) \hat{s}_A \int_{0}^{\delta} \int_{0}^{\eta} \sigma_A(v,e_A)(1 - \sigma_B(v) + \mu_A(\hat{s}_A)\sigma_B(v)) de_A g(v) dv \]

\[= (\lambda(1 - \hat{s}_A) - U^A(\delta, \eta)) \int_{0}^{\delta} \int_{0}^{\eta} \sigma_A(v,e_A)(1 - \sigma_B(v) + \mu_A(\hat{s}_A)\sigma_B(v)) de_A g(v) dv \]

\[> 0, \]

where the first inequality holds since \(\lambda > U^A(\delta, \eta) \) and the last equality holds since \(\lambda(1 - \hat{s}_A) > U^A(\delta, \eta) \) by construction. \(\blacksquare \)

A.2 Proof of Lemma 2

Claim A.1. \((\sigma_A, \sigma_B)\) is an equilibrium if and only if (i) \(H^i(v, e_i, \sigma_j(v)) > 0 \) implies \(\sigma_i(v, e_i) = 1 \) and (ii) \(H^i(v, e_i, \sigma_j(v)) < 0 \) implies \(\sigma_i(v, e_i) = 0 \), where \(i, j = A, B \) and \(i \neq j \).

Proof. “If” part. We show that the strategy profile satisfying the stated conditions forms a best response. Let \(\sigma_i(v, e_i; t) := t\bar{\sigma}_i(v, e_i) + (1 - t)\sigma_i(v, e_i) \) for \(t \in [0, 1] \), where \(\bar{\sigma}_i(v, e_i) \) is an arbitrary strategy, and \(\hat{s}_i(t) \) be the cutoff state in equilibrium for given \(\sigma_i(v, e_i; t) \). Let

\[V(t) := \pi_i(\sigma_i(v, e_i; t)) = \int_{0}^{1} \int_{0}^{1} U^i(v, e_i)\sigma_i(v, e_i; t)(1 - \sigma_j(v) + \mu_i(\sigma_j(v)) de_i g(v) dv \]

\[- \lambda \int_{0}^{1} \max \left\{ \int_{0}^{1} \sigma_i(v; t)(1 - \sigma_j(v) + \mu_i(\sigma_j(v)) g(v) dv - \kappa, 0 \right\} ds, \]

30
where \(\overline{\mu}_i = \mathbb{E}[\mu_i(s)] \) and \(\overline{\sigma}_i(v; t) = \mathbb{E}_e[\sigma_i(v, e; t)] \). Observe that \(V(t) \) is concave in \(t \), since \(\sigma_i(v, e; t) \) is linear in \(t \) and \(\pi_i(\sigma_i) \) is concave in \(\sigma_i \). We have

\[
V'(0) = \int_0^1 \int_0^1 (\overline{\sigma}_i(v, e_i) - \sigma_i(v, e_i)) H'(v, e_i, \overline{\sigma}_j(v)) d e_i g(v) dv \leq 0,
\]

(A.2)

since if \(H'(v, e_i, \overline{\sigma}_j(v)) > 0 \), then \(\sigma_i(v, e_i) = 1 \geq \overline{\sigma}_i(v, e_i) \) and if \(H'(v, e_i, \overline{\sigma}_j(v)) < 0 \), then \(\sigma_i(v, e_i) = 0 \leq \overline{\sigma}_i(v, e_i) \); and \(H'(v, e_i, \overline{\sigma}_j(v)) = 0 \) otherwise. Therefore, we have

\[
\pi_i(\overline{\sigma}_i) = V(1) \leq V(0) + V'(0) \leq V(0) = \pi_i(\sigma_i),
\]

where the first inequality holds since \(V \) is concave and the last follows from (A.2). Since \(\overline{\sigma}_i \) is arbitrary, this proves that \(\sigma_i \) is a best response to \(\sigma_j \).

“Only if” part. We show that any equilibrium strategy profile must satisfy the stated conditions. Let \(\mathcal{U}_+ := \{(v, e_i)| H'(v, e_i, \overline{\sigma}_j(v)) > 0 \} \) and \(\mathcal{U}_- := \{(v, e_i)| H'(v, e_i, \overline{\sigma}_j(v)) < 0 \} \). Suppose to the contrary that in equilibrium, either \(\sigma_i(v, e_i) < 1 \) for \((v, e_i) \in \mathcal{U}_+ \) or \(\sigma_i(v, e_i) > 0 \) for \((v, e_i) \in \mathcal{U}_- \) (or both). Consider a strategy \(\tilde{\sigma}_i \), where \(\tilde{\sigma}_i(v, e_i) = 1 \) for every \((v, e_i) \in \mathcal{U}_+ \), \(\tilde{\sigma}_i(v, e_i) = 0 \) for every \((v, e_i) \in \mathcal{U}_- \), and \(\tilde{\sigma}_i(v, e_i) = \sigma_i(v, e_i) \) for all other \((v, e_i) \)’s. Now, define \(\sigma_i(v, e_i; t) := t\tilde{\sigma}_i(v, e_i) + (1 - t)\sigma_i(v, e_i) \) for \(t \in [0, 1] \) and \(V(t) \) similar as above. Observe that

\[
V'(0) = \int_{\mathcal{U}_+} (1 - \sigma_i(v, e_i)) H'(v, e_i, \overline{\sigma}_j(v)) d e_i g(v) dv - \int_{\mathcal{U}_-} \sigma_i(v, e_i) H'(v, e_i, \overline{\sigma}_j(v)) d e_i g(v) dv > 0,
\]

where the inequality holds since \(H_i(v, e_i, \overline{\sigma}_j(v)) > 0 \) for \((v, e_i) \in \mathcal{U}_+ \) and \(H_i(v, e_i, \overline{\sigma}_j(v)) < 0 \) for \((v, e_i) \in \mathcal{U}_- \). Thus, for sufficiently small \(t > 0 \), a deviation strategy \(\sigma_i(\cdot, \cdot; t) \) is profitable. We thus have a contradiction. \(\blacksquare \)

Claim A.2. If \(H'(v, e_i, x) \leq 0 \), then \(H'(v, e_i, x') < 0 \) for any \(x' > x \).

Proof. Suppose for any \(x \in [0, 1] \), \(H'(v, e_i, x) \leq 0 \). Consider any \(x' > x \). If \(U_i(v, e_i) < \underline{u}_i \), then clearly \(H'(v, e_i, x') < 0 \), so suppose \(U_i(v, e_i) \geq \underline{u}_i \). Then,

\[
H'(v, e_i, x) - H'(v, e_i, x') = (x' - x)(U_i(v, e_i) - \underline{u}_i - \overline{\mu}_i(U_i(v, e_i) - \overline{u}_i)) \\
> (x' - x)(U_i(v, e_i) - \overline{u}_i)(1 - \overline{\mu}_i) \geq 0,
\]

where the first inequality holds since \(x' > x \) and \(\overline{\mu}_i > \underline{u}_i \), and the second inequality holds since \(U_i(v, e_i) \geq \underline{u}_i \). Since \(H'(v, e_i, x) \leq 0 \), it follows that \(H'(v, e_i, x') < 0 \). \(\blacksquare \)
A.3 Proof of Theorem 1

Observe that for any interior value of \(\hat{e}_i(v) \), we must have \(\mathcal{H}^i(v, \hat{e}_i(v), \hat{e}_j(v)) = 0 \). Together with the fact that \(\hat{e}_j(v) \) has an interior value (since it is strictly decreasing in \(v \)), this implies that \(U^i(v, \hat{e}_i(v)) \in (u_i, \bar{u}_i) \). Next,

\[
\mathcal{H}_v^i(v, e_i, \hat{e}_j(v))|_{e_i=\hat{e}_i} = U^i_v(v, \hat{e}_i(v))(\hat{e}_j(v) + (1 - \hat{e}_j(v))\bar{\mu}_i) + (U^i(v, \hat{e}_i(v)) - u_i - \bar{\mu}_i(U^i(v, \hat{e}_i(v)) - \bar{u}_i))\hat{e}_j'(v) < U^i_v(v, \hat{e}_i(v))(\hat{e}_j(v) + (1 - \hat{e}_j(v))\bar{\mu}_i), \tag{A.3}
\]

where \(\bar{\mu}_i = \mathbb{E}[\mu_i(s)] \) and the inequality follows from the facts that \(\hat{e}_j'(v) < 0 \) and \(U^i(v, \hat{e}_i(v)) \in (u_i, \bar{u}_i) \). Since \(\mathcal{H}_e^i > 0 \), by the implicit function theorem,

\[
|\hat{e}_i'(v)| = \frac{\mathcal{H}_v^i(v, e_i, \hat{e}_j(v))}{\mathcal{H}_e^i(v, e_i, \hat{e}_j(v))} \bigg|_{e_i=\hat{e}_i(v)} < \frac{U^i_v(v, \hat{e}_i(v))(\hat{e}_j(v) + (1 - \hat{e}_j(v))\bar{\mu}_i)}{U^i_e(v, \hat{e}_i(v))(\hat{e}_j(v) + (1 - \hat{e}_j(v))\bar{\mu}_i)} = \frac{U^i_i(v, \hat{e}_i(v))}{U^i_e(v, \hat{e}_i(v))},
\]

where the inequality follows from \((A.3) \).

A.4 Proof of Theorem 2

The proof consists of three steps.

Step 1. There exists a mixing equilibrium described in the theorem.

Proof. We shall identify a mixing equilibrium in terms of the threshold states \(\hat{s} := (\hat{s}_A, \hat{s}_B) \).
To begin, fix any candidate threshold states \(\hat{s} := (\hat{s}_A, \hat{s}_B) \). We construct the cutoffs \((\hat{e}_A, \hat{e}_B) \) associated with a mixing equilibrium given \(\hat{s} \), as follows.

\[
\hat{e}_i(v; \hat{s}) = \begin{cases}
0 & \text{if } \mathcal{H}^i(v, e_i, 0; \hat{s}) > 0 \\
1 & \text{if } \mathcal{H}^i(v, e_i, 0; \hat{s}) < 0, \mathcal{H}^j(v, e_j, 0; \hat{s}) > 0 \\
\hat{e}_i^*(v; \hat{s}) & \text{if } \mathcal{H}^i(v, e_i, 0; \hat{s}) < 0 < \mathcal{H}^i(v, e_i, 1; \hat{s}), \mathcal{H}^j(v, e_j, 0; \hat{s}) < 0 < \mathcal{H}^j(v, e_j, 1; \hat{s}) \\
0 & \text{if } \mathcal{H}^i(v, e_i, 1; \hat{s}) > 0, \mathcal{H}^j(v, e_j, 1; \hat{s}) < 0 \\
1 & \text{if } \mathcal{H}^i(v, e_i, 1; \hat{s}) < 0
\end{cases}
\]

for \(i, j \in A, B \) and \(i \neq j \), where \(\hat{e}_i^*(v) := \sup\{e_i|\mathcal{H}^i(v, e_i, e_j; \hat{s}) \leq 0\} \). (Note that the construction is well defined since \(\mathcal{H}^i(v, e_i, e_j; \hat{s}) \) does not depend on \(e_i \).) Define the resulting enrollment for college \(i \in A, B \) at state \(s \in [0, 1] \):

\[
m_i(s; \hat{s}) = \int_0^1 (1 - \hat{e}_i(v; \hat{s}))\hat{e}_j(v; \hat{s}) + \mu_i(s)(1 - \hat{e}_j(v; \hat{s})))g(v) dv. \tag{A.4}
\]
We then define \(\Psi = (\Psi_A, \Psi_B) : [0, 1]^2 \to [0, 1]^2 \), where \(\Psi_i(\hat{s}) := \arg \min_s |m_i(s; \hat{s}) - \kappa| \). This map is well defined since \(m_i(\cdot; \hat{s}) \) is continuous and strictly monotone (strictly increasing for \(i = A \) and decreasing for \(i = B \)).

We now show that \(\Psi \) is continuous, which would imply the existence of a fixed point by Brouwer’s fixed point theorem. Note that given a fixed point \(\hat{s}^* = \Psi(\hat{s}^*) \), the profile \((\hat{e}_A(v; \hat{s}^*), \hat{e}_B(v; \hat{s}^*))\) satisfies the conditions in Lemma 2, proving that \((\hat{e}_A(v; \hat{s}^*), \hat{e}_B(v; \hat{s}^*))\) forms an equilibrium, which is mixed by construction.

To prove continuity of \(\Psi \), fix \(\hat{s} = (\hat{s}_A, \hat{s}_B) \) and \(\hat{s}' = (\hat{s}'_A, \hat{s}'_B) \neq \hat{s} \), and let \(\Psi(\hat{s}) = \hat{s} \) and \(\Psi(\hat{s}') = \hat{s}' \). Note

\[
\left| m_i(s; \hat{s}') - m_i(s; \hat{s}) \right| \\
= \left| \int_0^1 \left(\mu_i(s)(\hat{e}_i(v; \hat{s}) - \hat{e}_i(v; \hat{s}')) + \mu_j(s)(\hat{e}_j(v; \hat{s}')(1 - \hat{e}_i(v; \hat{s}')) - \hat{e}_j(v; \hat{s})(1 - \hat{e}_i(v; \hat{s})) \right) g(v) dv \right| \\
\leq \int_0^1 |\hat{e}_i(v; \hat{s}) - \hat{e}_i(v; \hat{s}')| g(v) dv + \int_0^1 |\hat{e}_j(v; \hat{s}')(1 - \hat{e}_i(v; \hat{s}')) - \hat{e}_j(v; \hat{s})(1 - \hat{e}_i(v; \hat{s}))| g(v) dv \\
\leq \int_0^1 |\hat{e}_i(v; \hat{s}) - \hat{e}_i(v; \hat{s}')| g(v) dv + \int_0^1 |\hat{e}_i(v; \hat{s}) - \hat{e}_i(v; \hat{s}')| g(v) dv + \int_0^1 |\hat{e}_j(v; \hat{s}') - \hat{e}_j(v; \hat{s})| g(v) dv \\
\leq 3 \max_{i=A,B} \left(\int_{\mathcal{V}_0} |\hat{e}_i(v; \hat{s}) - \hat{e}_i(v; \hat{s}')| g(v) dv + \int_{[0,1]\setminus\mathcal{V}_0} 1 g(v) dv \right),
\]

where

\(\mathcal{V}_0 := \{ v \in [0, 1] | \hat{e}_i(v; \hat{s}) = \hat{e}_i(v; \hat{s}'), \text{ or } \hat{e}_i(v; \hat{s}) = \hat{e}_i^0(v; \hat{s}) \text{ and } \hat{e}_i(v; \hat{s}') = \hat{e}_i^0(v; \hat{s}') \text{, } \forall i = A, B \}. \)

It is routine to show that as \(\hat{s}' \to \hat{s} \), \(\hat{e}_i^0(v; \hat{s}') \to \hat{e}_i^0(v; \hat{s}) \), implying that the first term vanishes. Furthermore, for \(i = A, B, \) \(\overline{\mu}_i \to \overline{\mu}_i \) and \(\underline{u}'_i \to \underline{u}'_i \), as \(\hat{s}' \to \hat{s} \), where \(\overline{\mu}_i \) and \(\underline{u}'_i \) are \(i \)'s upper and lower cutoffs given \(\hat{s} \) and \(\overline{\mu}'_i \) and \(\underline{u}'_i \) are the \(i \)'s respective cutoffs given \(\hat{s}' \). This means that the measure of \([0, 1] \setminus \mathcal{V}_0 \) vanishes as \(\hat{s}' \to \hat{s} \). Combining these observations, we conclude that \(|m_i(s; \hat{s}') - m_i(s; \hat{s})| \) vanishes as \(\hat{s}' \to \hat{s} \). We have thus shown that \(m_i(s; \hat{s}) \) is continuous is \(\hat{s} \). By the theorem of maxima and the fact that \(\arg \min_s |m_i(s; \hat{s}) - \kappa| \) is unique, \(\Psi \) is continuous.

Step 2. In a mixing equilibrium identified in Step 1, \(\min \{ \overline{\mu}^A, \overline{\mu}^B \} < 1 \).

Proof. If \(\overline{\mu}^A = 1 \), then \(\hat{s}^*_A = 1 \), so \(\mathcal{H}^A(v, e_A, 0; \hat{s}^*) > 0 \) for all \(v, e_A \), which implies that \(\overline{\mu}_A = 0 \). Likewise, if \(\overline{\mu}^B = 1 \), then \(\hat{s}^*_B = 0 \), so \(\mathcal{H}^B(v, 0, e_B; \hat{s}^*) > 0 \) for all \(v, e_B \), which implies \(\overline{\mu}_B = 0 \). Either way, we have a contradiction.

To show the last part, we parametrize the degree of symmetry by \(\varepsilon > 0 \) as follows: For each \(\varepsilon > 0 \), we assume \(\mu_i(s; \varepsilon) \in (1 - \mu_i(1 - s; \varepsilon) - \varepsilon, 1 - \mu_i(1 - s; \varepsilon) + \varepsilon) \) for \(i = A, B \). Let
Proof. Suppose to the contrary \(\min_{i=A,B} s_i = 0 \) for all \(s \in S(\varepsilon) \), and let \(V(\varepsilon) := \{(u_A, \overline{u}_A, u_B, \overline{u}_B) | u_i = u_i(\hat{s}), \overline{u}_i = \overline{u}_i(\hat{s}), i = A, B, \text{ for some } \hat{s} \in S(\varepsilon) \} \), be the set of lower and upper cutoffs for the colleges in all equilibria. Let \(\varepsilon = 0 \) be the limiting case in which the two colleges are exactly symmetric (i.e., \(\mu_i(s; 0) = 1 - \mu_i(1-s; 0) \)), and let \(S(0) \) and \(V(0) \) denote the corresponding sets for that case.

Step 3. For sufficiently small \(\varepsilon > 0 \), \(\max_{i=A,B} u_i < \min_{i=A,B} \overline{u}_i \) for any \((u_A, \overline{u}_A, u_B, \overline{u}_B) \in V(\varepsilon) \).

Proof. We first note that at \(\varepsilon = 0 \), the result holds.

Claim A.3. For any \((u_A, \overline{u}_A, u_B, \overline{u}_B) \in V(0) \), we have \(\max_{i=A,B} u_i < \min_{i=A,B} \overline{u}_i \).

Proof. Suppose to the contrary \(\min_{i=A,B} \overline{u}_i < \max_{i=A,B} u_i \). Let \(u_B < \overline{u}_B \leq u_A < \overline{u}_A \), without loss of generality. Note that \(\overline{u}_A \in (0,1) \) in equilibrium, since if \(\overline{u}_A = 1 \), then \(m_A(s) = 0 \) for all \(s \); and if \(\overline{u}_A = 0 \), then \(u_i = \overline{u}_i = 0 \) for all \(i = A, B \), so \(U_A \cup U_B \) has measure one. Both contradict Lemma 1. We thus have

\[
m_A(\hat{s}_A) = \mu_A(\hat{s}_A)(1 - G(\overline{u}_A)) = \kappa, \quad m_B(\hat{s}_B) = \mu_B(\hat{s}_B)(1 - G(\overline{u}_A)) + G(\overline{u}_A) - G(u_B) = \kappa.
\]

Using those, we have

\[
G(\overline{u}_A) - G(u_B) = \kappa \left(\frac{\mu_A(\hat{s}_A) - \mu_B(\hat{s}_B)}{\mu_A(\hat{s}_A)} \right).
\]

Since \(u_B < \overline{u}_A \), this implies that \(\mu_A(\hat{s}_A) > \mu_B(\hat{s}_B) = 1 - \mu_A(\hat{s}_B) = \mu_A(1 - \hat{s}_A) \), where the first equality follows from the definition of \(\mu_B \) and the last equality follows from the symmetry of \(\mu_A \). Since \(\mu_A(s) \) is strictly increasing in \(s \), it holds that \(\hat{s}_B > 1 - \hat{s}_A \), and so \(u_B = \lambda \hat{s}_B > \lambda(1 - \hat{s}_A) = u_A \), which yields a contradiction. \(\blacksquare \)

Next, we show that the correspondence \(V(\varepsilon) \) is upper hemicontinuous in \(\varepsilon \) at \(\varepsilon = 0 \). To see this, take any sequence \(\{\varepsilon_n\}_n \) with \(\varepsilon_n \to 0 \), such that the corresponding thresholds \(\hat{s}_n \in S(\varepsilon_n) \) converge to some \(\hat{s}^* \).\(^{39}\) Since \((u_i(\hat{s}), \overline{u}_i(\hat{s}))\) is continuous in \(\hat{s} \), for \(i = A, B \), the associated lower and upper cutoffs \((u^n_A, \overline{u}_A^n, u^n_B, \overline{u}_B^n) \in V(\varepsilon_n) \) also converge to some \((u^*_A, \overline{u}_A^*, u^*_B, \overline{u}_B^*) \). Then,

\[
\hat{s}^* := \lim_{n \to \infty} \hat{s}_n = \lim_{n \to \infty} \Psi(\hat{s}_n, \varepsilon_n) = \Psi(\hat{s}^*, 0),
\]

\(^{39}\)Such a sequence is well defined since the correspondence \(S(\cdot) \) lies in a compact set.
where the second equality holds since \hat{s}_n is a fixed point of Ψ, and the last follows from the continuity of Ψ. This proves that $\hat{s}^* \in S(0)$. Since $(\underline{u}_i(\hat{s}), \bar{u}_i(\hat{s}))$ is continuous in \hat{s}, for $i = A, B$, and $\hat{s}^* \in S(0)$, we have $(\underline{u}_A^*, \bar{u}_A^*, \underline{u}_B^*, \bar{u}_B^*) \in V(0)$. Since $V(\cdot)$ lies in a compact set, this (closed-graph) property implies that $V(\epsilon)$ is upper hemicontinuous at $\epsilon = 0$. (See Ok (2007), p. 295, Proposition 3, for instance).

Next, fix any $\eta > 0$ and consider an open set $U = \cup_{v \in V(0)} B_\eta(v)$, where $B_\eta(v)$ is an open ball around point v with radius η. Clearly, $V(0) \subset U$. By the upper hemicontinuity of $V(\cdot)$, there exists $\hat{\epsilon} > 0$ such that, for all $\epsilon \in (0, \hat{\epsilon})$, $V(\epsilon) \subset U$. In other words, each profile of cutoffs in $V(\epsilon)$ is within η (in Euclidean distance) of some profile of cutoffs of $V(0)$. By Claim A.3, this means that for sufficiently small $\epsilon > 0$, $\max_{i=A,B} \underline{u}_i < \min_{i=A,B} \bar{u}_i$ for any $(\underline{u}_A, \bar{u}_A, \underline{u}_B, \bar{u}_B) \in V(\epsilon)$. The inequality proves the existence of the mixing region when the colleges are sufficiently symmetric.

\section*{A.5 Proof of Theorem 3}

Assume (3). The proof consists of three steps.

\textbf{Step 1.} There exists an equilibrium, and in any equilibrium, there exists a unique cutoff profile $(\hat{e}_A(v), \hat{e}_B(v))$ for each v.

\textbf{Proof.} To this end, we first establish the following result.

\textbf{Claim A.4.} The cutoffs $(\hat{e}_A(v; \hat{s}_A, \hat{s}_B), \hat{e}_B(v; \hat{s}_A, \hat{s}_B))$, satisfying the characterization of Theorem 1, exists and is unique and continuous in (\hat{s}_A, \hat{s}_B) for all v.

\textbf{Proof.} Fix any candidate threshold states $\hat{s} = (\hat{s}_A, \hat{s}_B)$. Theorem 1 characterizes the cutoffs $(\hat{e}_A(v; \hat{s}), \hat{e}_B(v; \hat{s}))$ for each v. The characterization can be seen as identifying an intersection of two “best response correspondences,” defined for $i = A, B$ by

$$\beta_i(\hat{e}_j; v, \hat{s}_i) := \arg \min_{\hat{e}_i \in [0,1]} |\mathcal{H}_i^i(v, \hat{e}_i, \hat{e}_j; \hat{s}_i)|.$$

Note that the dependence of \mathcal{H}_i^i on \hat{s}_i is explicitly recognized here, since our subsequent argument uses it.\footnote{The dependence exists since both \bar{u}_i and \underline{u}_i depend on \hat{s}_i.} It is convenient to think of the intersection points as Nash equilibria of an auxiliary game in which player $i = A, B$ picks \hat{e}_i to maximize $-|\mathcal{H}_i|$. We make several observations. First, since \mathcal{H}_i^i is strictly increasing in \hat{e}_i, $|\mathcal{H}_i^i(v, \hat{e}_i, \hat{e}_j; \hat{s}_i)|$ has a single minimum in \hat{e}_i. Hence, $\beta_i(\hat{e}_j; v, \hat{s}_i)$ is well-defined and unique, and we shall regard β_i as a best-response function (with a slight abuse of notation).
Second, $|\mathcal{H}(v, \bar{e}_i, \bar{e}_j; \bar{s}_i)|$ is continuous in \bar{e}_j. Hence, by Brouwer’s fixed point theorem, a Nash equilibrium of the auxiliary game exists. In other words, the intersection points of the two best-response functions are non-empty.

Third, given (3), the Nash equilibrium of the auxiliary game is unique. To prove this, it suffices to show that, for each $i = A, B$, the absolute value of the slope of the best response function β_i is strictly less than one for any interior value $\beta_i(\bar{e}_j; v, \bar{s}_i) \in (0, 1)$. To see this, observe first that for any interior value $\beta_i(\bar{e}_j)$, we must have $\mathcal{H}(v, \beta_i(\bar{e}_j), \bar{e}_j) = 0$. Since $\mathcal{H}_e > 0$, by the implicit function theorem, $\mathcal{H}(v, \beta_i(\bar{e}_j), \bar{e}_j) \equiv 0$ in a neighborhood of \bar{e}_j, and its slope is well-defined and equal to:

$$|\beta_i'(\bar{e}_j)| = \frac{\mathcal{H}_e}{\mathcal{H}_i} = \frac{(1 - \bar{\mu}_i)U^i - \bar{u}_i + \bar{\mu}_i \bar{u}_i}{(\bar{e}_j + (1 - \bar{e}_j)\bar{\mu}_i)U^i} < \frac{1 - \bar{\mu}_i}{\bar{\mu}_i} \leq 1,$$

where $\bar{\mu}_i = \mathbb{E}[\mu_i(s)]$, the first inequality holds since $\bar{u}_i - \bar{\mu}_i \bar{u}_i = \lambda \text{Prob}(s \in S_i)(1 - \mathbb{E}[\mu_i(s)]) \geq 0$ and $\bar{e}_j > 0$, and the last inequality follows from (3).

Fourth, note that the payoff function of the auxiliary game, $|\mathcal{H}(v, \bar{e}_i, \bar{e}_j; \bar{s}_i)|$, is continuous in \bar{s}_i for all v. This means that the equilibrium correspondence is upper hemicontinuous in parameter (\bar{s}_A, \bar{s}_B). Since the equilibrium is unique for all (v, \bar{s}), this means that the cutoffs $(\hat{e}_A(v; \bar{s}), \hat{e}_B(v; \bar{s}))$ are continuous in \bar{s} for all v.

We now construct a mapping $\Phi : [0, 1]^2 \rightarrow [0, 1]^2$ that takes $\bar{s} = (\bar{s}_A, \bar{s}_B)$ as an input and returns another pair of cutoffs $\bar{s}' = (\bar{s}'_A, \bar{s}'_B)$ in the state space as an output. Fix any \bar{s}. Claim A.4 identifies a unique cutoff profile $\{(\hat{e}_A(v; \bar{s}), \hat{e}_B(v; \bar{s}))\}_v$, which in turn defines the enrollment for college $i = A, B$ at state s as (A.4).

We then define $\Phi_i(\bar{s}) := \arg\min_{\bar{s}} |m_i(s; \bar{s}) - \kappa|$. This map is well defined since $m_i(\cdot; \bar{s})$ is continuous and strictly monotone. Furthermore, Claim A.4 establishes that $m(s; \bar{s})$ is continuous in \bar{s}. Hence, $\Phi_i(\cdot, \cdot)$ is continuous, and so is $\Phi = (\Phi_A, \Phi_B)$. By Brouwer’s fixed point theorem, we conclude that Φ has a fixed point. Let $\bar{s}^* = (\bar{s}'_A, \bar{s}'_B)$ be a fixed point of Φ. Define

$$\{(\hat{e}^*_A(v), \hat{e}^*_B(v))\}_v := \{(\hat{e}_A(v; \bar{s}^*), \hat{e}_B(v; \bar{s}^*))\}_v.$$

One can easily see that the strategy by college $i = A, B$ to admit student types (v, e_i) if and only if $e_i \geq \hat{e}^*_i(v)$ satisfies the sufficient condition of an equilibrium of our main game given by Lemma 2. This proves the existence of an equilibrium. At any equilibrium, Claim A.4 applies, so the unique cutoff profile $(\hat{e}^*_A(v), \hat{e}^*_B(v))$ exists for each v.

Step 2. In equilibrium $\hat{e}^*_i(v) \leq 0$ for each v, with strict inequality whenever $\hat{e}^*_i(v) \in (0, 1)$.

Proof. For the proof, it suffices to show that $\hat{e}^*_i(v) < 0$ whenever $\hat{e}^*_i(v) \in (0, 1)$. For any
\(\hat{e}^*_i(v) \in (0,1) \), we have \(\mathcal{H}(v, \hat{e}^*_i(v), \hat{e}^*_j(v)) \equiv 0 \). Since by (3) the Jacobian is nonzero:

\[
|J| := \begin{vmatrix}
\mathcal{H}^A_{e_A} & \mathcal{H}^A_{e_B} \\
\mathcal{H}^B_{e_A} & \mathcal{H}^B_{e_B}
\end{vmatrix} = \mathcal{H}^A_{e_A} \mathcal{H}^B_{e_B} - \mathcal{H}^A_{e_B} \mathcal{H}^B_{e_A} = \mathcal{H}^A_{e_A} \mathcal{H}^B_{e_B} \left(1 - \frac{\mathcal{H}^A_{e_B} \mathcal{H}^B_{e_A}}{\mathcal{H}^A_{e_A} \mathcal{H}^B_{e_B}}\right) > 0,
\]

so we can invoke the implicit function theorem to compute the derivative: (We suppress superscript * as well as arguments of functions \(\mathcal{H} \) and \(U^i \) below to avoid clutter.)

\[
\hat{e}'_i(v) = -\frac{1}{|J|}(\mathcal{H}^j_{e_j} \mathcal{H}^i_{e_i} - \mathcal{H}^j_{e_j} \mathcal{H}^i_{e_i}) = -\frac{\text{sgn}(\mathcal{H}^j_{e_j} \mathcal{H}^i_{e_i})}{\mathcal{H}^j_{e_j} \mathcal{H}^i_{e_i}} \left(\sum_{i \neq j} U^j_{e_j} U^i_{e_i} (\hat{e}_j(v) + (1 - \hat{e}_j(v)) \bar{\mu}_i) + U^j_{e_j} U^i_{e_i} (1 - \bar{\mu}_i)\right)
\]

\[
\leq -\frac{\text{sgn}(\mathcal{H}^j_{e_j} \mathcal{H}^i_{e_i})}{\mathcal{H}^j_{e_j} \mathcal{H}^i_{e_i}} \left(\sum_{i \neq j} U^j_{e_j} U^i_{e_i} \left(\frac{1 - \bar{\mu}_i}{\bar{\mu}_i}\right) U^j_{e_j} U^i_{e_i}\right)
\]

\[
\leq -\frac{\text{sgn}(\mathcal{H}^j_{e_j} \mathcal{H}^i_{e_i})}{\mathcal{H}^j_{e_j} \mathcal{H}^i_{e_i}} \left(\sum_{i \neq j} \left(\frac{\bar{\mu}_j}{1 - \bar{\mu}_j}\right) \delta\right)
\]

\[
< 0,
\]

where the first inequality holds since \(\hat{e}_j(v) > 0 \) and \(u_i \geq \bar{\mu}_i \bar{\mu}_i \) as observed in Step 1, the second inequality follows from the assumption that \(U^i_{e_j} / U^i_{e_i} \leq \delta U^j_{e_j} / U^j_{e_i} \) for some \(\delta > 0 \) and that \(\bar{\mu}_i = 1 - \bar{\mu}_j \), and the last follows from (3).

Step 3. Both \(\hat{e}_A(v) \) and \(\hat{e}_B(v) \) are strictly decreasing in \(v \) whenever \((\hat{e}_A(v), \hat{e}_B(v)) \in (0,1)^2 \). There exists \(\hat{v} < 1 \) such that, for all \(v > \hat{v} \), \((\hat{e}_A(v), \hat{e}_B(v)) \in (0,1)^2 \).

Proof. The first statement follows from Step 2. To prove the second statement, recall from (3) that \(U^i(\cdot, 0) = 0 \), for \(i = A, B \). Then, \(\hat{e}_i(v) \geq \hat{e}_i(0) > 0 \) for all \(v \in [0,1] \), since \(u_i > 0 \) in equilibrium. Let \(\hat{v} := \sup\{v \in [0,1] | \max\{\hat{e}_A(v), \hat{e}_B(v)\} = 1\} \). We must have \(\hat{v} < 1 \), or else at least one college must be admitting measure zero students in equilibrium, which is a contradiction. It then follows that, for each \(v > \hat{v} \), \((\hat{e}_A(v), \hat{e}_B(v)) \in (0,1)^2 \).

A.6 Proof of Theorem 5

Suppose to the contrary that there is a symmetric equilibrium in which colleges \(A \) and \(B \) admit all acceptable students with \(v > \tilde{v} \), where \(\tilde{v} \) satisfies \(s_a(1 - \varepsilon)(1 - G(\tilde{v})) = \kappa \) and \((1 - s_b)(1 - \varepsilon)(1 - G(\tilde{v})) = \kappa \), and wait-list the remaining students. College \(C \) will then offer admissions to students whose scores are above \(\tilde{v} \), knowing that exactly measure \(\varepsilon^2 \) of them will accept its offer. Suppose it also offers \(\kappa - \varepsilon^2 \) admissions to students with \(v \in [\tilde{v}, \bar{v}] \), where \(\bar{v} \) is such that \(G(\tilde{v}) - G(\bar{v}) = \kappa - \varepsilon^2 \). This is indeed its equilibrium behavior since all these students will accept \(C \)'s offer.
To see this, consider any student in $[\hat{v}, \bar{v})$. If such a student accepts C’s offer, then the student will get u'' for sure, but if the student turns down C’s offer, then he will at best receive an offer with probability $1 - \varepsilon$ from the less popular one between A and B and earn a payoff of at most u. Since $u'' > (1 - \varepsilon)u$, the student will accept C.

We consider college A’s payoff in this equilibrium. Since there are seats left in the less popular state, it fills those vacant seats with students in $[\hat{v}, \bar{v})$ and gets payoff

$$
\pi_A = \frac{1}{2}s_a(1 - \varepsilon)\int_{\hat{v}}^{1} vg(v)dv + \frac{1}{2}\left(s_b(1 - \varepsilon)\int_{\hat{v}}^{1} vg(v)dv + (1 - \varepsilon)\int_{\bar{v}}^{\hat{v}} vg(v)dv\right)
$$

$$
= \frac{1}{2}(1 - \varepsilon)\left(\int_{\hat{v}}^{1} vg(v)dv + \int_{\bar{v}}^{\hat{v}} vg(v)dv\right),
$$

where \hat{v} is set to fill its seats in the less popular state, or

$$(1 - \varepsilon)(G(\hat{v}) - G(\bar{v})) = \kappa - s_b(1 - \varepsilon)(1 - G(\bar{v})),$$ \hspace{1cm} (A.5)

and the second equality holds since $s_a = 1 - s_b$. Next, consider A’s deviation whereby it admits acceptable students in $[\hat{v} - \delta', \bar{v})$ and rejects those in $[\hat{v}, \bar{v} + \delta]$ for some small δ and δ', satisfying

$$s_a(G(\hat{v} + \delta) - G(\bar{v})) = G(\hat{v}) - G(\bar{v} - \delta').$$ \hspace{1cm} (A.6)

Clearly, students in $[\hat{v} - \delta', \bar{v})$ accept A’s offer, so A fills its capacity in the popular state:

$$s_a(1 - \varepsilon)(1 - G(\hat{v} + \delta)) + (1 - \varepsilon)(G(\hat{v}) - G(\bar{v} - \delta')) = s_a(1 - \varepsilon)(1 - G(\bar{v})) = \kappa.$$

Hence, A’s payoff under the deviation, denoted by π_A^d, is

$$
\pi_A^d = (1 - \varepsilon)\int_{\hat{v} - \delta'}^{\hat{v}} vg(v)dv + \frac{1}{2}(1 - \varepsilon)\left(s_a\int_{\hat{v} - \delta}^{\hat{v}} vg(v)dv + s_b\int_{\hat{v} + \delta}^{1} vg(v)dv + \int_{\bar{v}}^{\hat{v}} vg(v)dv\right)
$$

$$
= (1 - \varepsilon)\int_{\hat{v} - \delta'}^{\hat{v}} vg(v)dv + \frac{1}{2}(1 - \varepsilon)\left(\int_{\hat{v} + \delta}^{1} vg(v)dv + \int_{\bar{v}}^{\hat{v}} vg(v)dv\right),
$$

where \bar{v} is set to fill the capacity in the less popular state, i.e.,

$$(1 - \varepsilon)(G(\bar{v}) - G(\bar{v})) = \kappa - (1 - \varepsilon)(G(\hat{v}) - G(\bar{v} - \delta')) - s_b(1 - \varepsilon)(1 - G(\bar{v} + \delta)).$$ \hspace{1cm} (A.7)

Observe that $\bar{v} > \hat{v}$, since by subtracting (A.7) from (A.5),

$$
(1 - \varepsilon)(G(\bar{v}) - G(\hat{v})) = -s_b(1 - \varepsilon)(G(\hat{v} + \delta) - G(\bar{v})) + (1 - \varepsilon)(G(\hat{v}) - G(\bar{v} - \delta'))
$$

$$
= (s_a - s_b)(1 - \varepsilon)(G(\hat{v} + \delta) - G(\bar{v}))
$$
where the second equality follows from (A.6) and the inequality holds since $s_a > s_b$. Thus,

$$\frac{2(\pi_A^d - \pi_A)}{1 - \varepsilon} = 2 \int_{\bar{v}-\delta}^{\bar{v}} v g(v) dv - \left(\int_{\bar{v}-\delta}^{\bar{v}+\delta} v g(v) dv + \int_{\bar{v}}^{\bar{v}} v g(v) dv \right)$$

$$= 2\tilde{v} (G(\tilde{v}) - G(\tilde{v} - \delta')) + 2 \left(\delta' G(\tilde{v} - \delta') - \int_{\tilde{v}-\delta'}^{\tilde{v}} G(v) dv \right) - \tilde{v} (G(\tilde{v} + \delta) - G(\tilde{v}))$$

$$- \left(\delta G(\tilde{v} + \delta) - \int_{\tilde{v}}^{\tilde{v}+\delta} G(v) dv \right) - \left(\pi G(\pi) - \tilde{v} G(\tilde{v}) - \int_{\tilde{v}}^{\pi} G(v) dv \right)$$

$$> 2(\tilde{v} - \delta') (G(\tilde{v}) - G(\tilde{v} - \delta')) - (\tilde{v} - \delta) (G(\tilde{v} + \delta) - G(\tilde{v})) - \pi (G(\pi) - G(\tilde{v}))$$

$$= (s_a - s_b)(\tilde{v} - \pi) - (2s_a\delta' + \delta) (G(\tilde{v} + \delta) - G(\tilde{v}))$$

where the second equality follows from integration by parts and after some rearrangement, and the last equality follows from (A.6), (A.8) and the fact that $s_a + s_b = 1$. Thus, for sufficiently small δ and δ', we have $\pi_A^d > \pi_A$.

A.7 Proof of Theorem 6

We show that it is an ex post equilibrium for colleges to report their rankings and capacities truthfully. Recall that when both colleges report truthfully up to their capacity, they achieve jointly optimal matching. Suppose A unilaterally deviates by either reporting its preferences or capacity untruthfully and is strictly better off at some state. Then, B must be strictly worse off. Hence, there must be a positive measure of students whom A obtains from the deviation which it prefers to some students it had before. At the same time, it must be the case that either B gets a positive measure of students who are worse than the former set of students or it has some unfilled seats left. Note that the students who are assigned to A after the deviation must prefer B, or else the original matching would not be stable. But then since B prefers each of those students to some students it has in the new matching, this means that the new matching is not stable (given the stated preferences).

References

