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Abstract

Complementarities of preferences have been known to jeopardize the stability of

two-sided matching, and yet they are a pervasive feature of many markets. We revisit

the stability issue with such preferences in a large market. Workers have preferences

over firms while firms have preferences over distributions of workers and may exhibit

complementarity. We demonstrate that if each firm’s choice changes continuously

as the set of available workers changes, then there exists a stable matching even

with complementarity. Building on this result, we show that there exists an approx-

imately stable matching in any large finite economy. We extend our framework to

accommodate indifferences in firms’ preferences, construct a stable mechanism that is

strategy-proof and equitable for workers perceived as indifferent by firms, and apply

the analysis to probabilistic and time-share matching models with a finite number of

firms and workers.
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1 Introduction

Since the celebrated work by Gale and Shapley (1962), matching theory has taken a center

stage in market design and economic theory more broadly. In particular, its successful

application in medical matching and school choice has fundamentally changed how these

markets are organized. A key desideratum in the design of such matching markets is

“stability”—that the mechanism admits no incentives for its participants to “block” (i.e.,

side-contract around) the suggested matching. Stability is crucial for long-term sustain-

ability of a market; unstable matching would be undermined by the parties side-contracting

around it either during or after a market.1 When one side of the market is under centralized

control, as with school choice, blocking by a pair of agents on both sides is less of a concern;

but even in this case, stability is desirable from a fairness standpoint, as it would eliminate

justified envy—envy that cannot be explained away by the preferences of the agents on the

other side. In the school choice application, if schools’ preferences rest on the test score

or other priority that a student feels entitled to, eliminating justified envy appears to be a

necessary requirement.

Unfortunately, a stable matching exists only under restricted conditions. It is well

known that existence of a stable matching is not generally guaranteed unless the preferences

of participants, say firms, are substitutable.2 In other words, complementarity can lead to

nonexistence of a stable matching.

This is a serious limitation on the applicability of centralized matching mechanisms,

since complementarities of preferences are a pervasive feature of many matching markets.

Firms often seek to hire workers with complementary skills. For instance, in professional

athletic leagues, teams demand athletes that complement one another in skills as well as

in the positions they play. Some public schools in New York City seek diversity of their

student bodies in their skill levels. US colleges tend to exhibit a desire to assemble a

class that is complementary and diverse in terms of their aptitudes, life backgrounds, and

demographics.

Unless we can get a handle on complementarities, we would not know how to organize

1Table 1 in Roth (2002) shows that unstable matching algorithms tend to die out while stable ones

survive the test of time.
2Substitutability here means that a firm’s demand for a worker never grows with more workers being

available. More precisely, if a firm does not wish to hire a worker from a set of workers, then it never

prefers to hire that worker from a bigger (in the sense of set inclusion) set of workers. Existence of a stable

matching under substitutable preferences is established by Kelso and Crawford (1982), Roth (1985), and

Hatfield and Milgrom (2005), while substitutability was shown to be the maximal domain for existence by

Sönmez and Ünver (2010), , Hatfield and Kojima (2008), and Hatfield and Kominers (2014).
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such markets, and the applicability of centralized matching will remain severely limited.

The limitation is particularly pertinent for many decentralized markets that may poten-

tially benefit from centralization. College admissions and graduate admissions are obvious

examples. Decentralized matching leaves much to be desired in terms of efficiencies and

fairness, and of the yield management burden put on the institutions (see Che and Koh

(2013)). Despite the potential benefit from centralizing these markets, the exact benefit as

well as the method of centralized matching remains unclear, given the instability that may

arise from complementary preferences of the participants.

This paper takes a step toward accommodating complementarities and other forms of

general preferences. The general impossibility means, however, that the notion of stability

needs to be weakened in some way. Our approach is to consider a large market. Specifically,

we consider a market which consists of a large number of workers/students on one side

and a finite number of firms/colleges with large capacities on the other, and ask whether

stability can be achieved in an “asymptotic” sense—i.e., whether participants’ incentives

for blocking disappears as the number of workers and firms’ capacities grow large. Large

markets we envision approximate college admissions and labor markets. Our stability

notion also preserves the motivation behind the original notion of stability: as long as the

incentive for blocking is sufficiently weak, the instability and fairness concerns will not be

so serious as to jeopardize the mechanism.

We first consider a continuum model in which there are a finite number of firms and

a continuum of workers. Each worker desires to match with at most one firm. Firms

have preferences over groups of workers, and importantly, their preferences may exhibit

complementarities. A matching is a distribution of workers across firms. The model gen-

eralizes Azevedo and Leshno (2011) who assume responsive preferences (a special case of

substitutable preferences) for the firms.

Our main result is that there exists a stable matching if firms’ preferences exhibit

continuity—that is, the set of workers chosen by each firm varies continuously as the set

of workers available to that firm changes. This result is quite general since continuity

is satisfied by a rich class of preferences including those exhibiting complementarities.3

The existence of a stable matching follows from two results: (i) a stable matching can be

characterized as a fixed point of a suitably defined mapping over a functional space, and

(ii) such a fixed point exists given the continuity assumption. The construction of our fixed

point mapping differs from the existing matching literature such as Adachi (2000), Hatfield

3For instance, it allows for Leontief-type preferences with respect to alternative types of workers,

desiring to hire all types in equal size (or density).
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and Milgrom (2005), and Echenique and Oviedo (2006), among others. The existence of

a fixed point is established by using the Kakutani-Fan-Glicksberg fixed point theorem—a

generalization of Kakutani’s fixed point theorem to functional spaces—which appears to

be new to the matching literature.

Building on our analysis of the continuum model, we show that there is a sense in

which it serves as a legitimate approximation of large finite economies. More specifically

we demonstrate that, for any large finite economy that is sufficiently close to our continuum

economy (in terms of the distribution of worker types and firms’ preferences), there exists

an approximately stable matching in the sense that the incentives for blocking is arbitrarily

small.

Although the basic model assumes that firm preferences are strict, our framework can be

extended to allow for indifferences in the firms’ preferences. Accommodating indifferences

is particularly important in the school choice context, in which preferences are given by

coarse priorities that put many students in the same priority class. Firms’ indifferences

raise a further issue about fairness, for the standard notion of stability does not ensure that

the workers who are perceived by firms as equivalent are treated equitably. Hence, it may

be important, particularly in the school choice context, to strengthen the notion of stability

to eliminate discrimination among such workers (in addition to eliminating justified envy).

How such workers are treated also raises an incentive issue, for inequitable treatment among

workers perceived by firms as equivalent may lead to untruthful reporting by workers. To

accommodate indifferences, we represent a firm’s preference as a choice correspondence

(as opposed to a function). We then extend both the fixed point characterization (via

a correspondence defined on a functional space) and the proof of the existence result.

We finally show that there exists a matching mechanism that satisfies both the stronger

notion of stability (“strong stability,” as defined by Kesten and Ünver (2014)) and strategy-

proofness for workers.

Further, our general model with indifferences has a natural application to fractional/time

share matching models. These models study how schools/firms and students/workers can

share time or match probabilistically in a stable manner in a finite economy (see Sotomayor

(1999), Alkan and Gale (2003), and Kesten and Ünver (2014), among others). Our con-

tinuum model lends itself to studying such a probabilistic/time share environment; we can

simply interpret types in different subsets within the type space as probabilistic/time units

belonging to alternative (finite) workers. Our novel contribution is to allow for more general

preferences for firms, including complementarities as well as indifferences. As mentioned,

accommodating indifferences is important in school choice design, and complementarities

are also relevant since some schools (as those in NYC) seek diversity in their student bod-
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ies.4

Relationship with the Literature

The present paper is connected with several strands of literature. Most importantly, it is

related to the growing literature on matching and market design. Since the seminal contri-

butions by Gale and Shapley (1962) and Roth (1984), stability has been recognized as the

most compelling solution concept in matching markets.5 As argued and demonstrated by

Sönmez and Ünver (2010), Hatfield and Milgrom (2005), Hatfield and Kojima (2008), and

Hatfield and Kominers (2014) in various situations, the substitutability condition is neces-

sary and sufficient for guaranteeing the existence of a stable matching when the number of

agents is finite. Our paper contributes to this line of studies by showing that substitutabil-

ity is not needed for the existence of a stable matching once there is a continuum of agents

on one side of the market and, moreover, there exists an approximately stable matching in

large finite markets.

Our study was inspired by a recent research on matching with a continuum of agents

by Azevedo and Leshno (2011).6 As in our paper, they assume that there are a finite

number of firms and a continuum of workers and, among other things, show the existence

and uniqueness of a stable matching in that setting. The crucial difference relative to the

current work is that they assume firms have responsive preferences (which is a special case

of substitutability). One of our contributions is that, while almost universally assumed in

the literature, restrictions on preferences such as responsiveness or even substitutability are

unnecessary for guaranteeing the existence of a stable matching in the continuum markets.

Also, one of the uniqueness results by Azevedo and Leshno (2011) is obtained as a special

case of our uniqueness result under substitutable, not necessarily responsive, preferences.

An independent study by Azevedo and Hatfield (2012) also analyzes matching with a

4As mentioned in Conclusion, we investigate further issues. First, we study a setting with substitutable

preferences, provide a condition for uniqueness of a stable matching, and apply it to the setup that gen-

eralizes Azevedo and Leshno (2011) by allowing for affirmative action constraints. Second, we generalize

our basic model to the model of matching with contracts.
5See Roth (1991) and Kagel and Roth (2000) for empirical and experimental evidence on the importance

of stability in labor markets, and Abdulkadiroğlu and Sönmez (2003) for the interpretation of stability as

a fairness concept in school choice.
6Also related, although formally different, are various recent studies on large matching markets, such

as Roth and Peranson (1999), Immorlica and Mahdian (2005), Kojima and Pathak (2009), Kojima and

Manea (2010), Manea (2009), Che and Kojima (2010), Lee (2012), Liu and Pycia (2013), Che and Tercieux

(2015b), Che and Tercieux (2015a), Ashlagi, Kanoria and Leshno (2014), Kojima, Pathak and Roth (2013),

and Hatfield, Kojima and Narita (2014b).
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continuum of agents.7 Like the current paper, their study finds that a stable matching

exists even when not all agents have substitutable preferences. There are a number of

notable differences between their study and ours, however. First, they consider a large

number (more precisely, continuum) of firms each employing a finite number of workers, so

they consider a continuum of agents on both sides of the market. By contrast, we consider

a finite number of firms each employing a large number (continuum) of workers. These two

models provide complementary approaches for studying large markets. In the school choice

context, for example, in many school districts, there are usually a small number of schools

each admitting hundreds of students, which fits well with our modeling approach. But in

a large school district such as New York City, the number of schools is also large, so their

model may offer a reasonably good approximation. Second, Azevedo and Hatfield (2012)

assume that there is a finite number of firm and worker types. This enables them to use

Brouwer’s fixed point theorem to show the existence of a stable matching. By contrast,

we put no restriction on the number of workers’ types, allowing for both finite and infinite

numbers of types. This generality in type spaces requires a topological fixed point theorem

from functional analysis. This type of mathematics has never been applied to discrete

two-sided matching literature to our knowledge, and we view the introduction of these

tools to the matching literature as one of our methodological contributions. Our model

also has an advantage of subsuming the previous work by Azevedo and Leshno (2011) as

well as many others mentioned above, which assume a continuum of worker types. Finally,

they also consider many-to-many matchings, although our applications to time-share and

probabilistic matching models allow for many-to-many matching.

Our methodological contribution is also related to another recent advance in matching

theory based on the monotone method. In the one-to-one matching context, Adachi (2000)

defines a certain operator whose fixed points are equivalent to stable matchings. His work

has been generalized in many directions by such papers as Fleiner (2003), Echenique and

Oviedo (2004, 2006), Hatfield and Milgrom (2005), Ostrovsky (2008), and Hatfield and

Kominers (2014). We also define an operator whose fixed points are equivalent to stable

matchings. A crucial difference is, however, that these previous studies impose restrictions

on preferences (e.g., responsiveness or substitutability) so that the operator is monotone,

which enables one to apply Tarski’s fixed point theorem to show existence of stable match-

ings. By contrast, we do not impose responsiveness or substitutability restrictions and

instead rely on the continuum of workers, along with continuity of firms’ preferences, to

7Although less related, our study also has some analogy with Azevedo, Weyl and White (2013). They

show the existence of competitive equilibrium in an exchange economy with continuum agents and indivis-

ible objects.
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guarantee continuity of the operator (in an appropriately chosen topology). That approach

allows us to use (a generalization of) Kakutani fixed point theorem, a more familiar tool

in traditional economic theory such as the existence proofs of general equilibrium and the

Nash equilibrium in mixed strategies.

The current paper is also related to the literature on matching with couples. Like a

firm in our model, a couple can be seen as a single agent with complementary preferences

over contracts. Roth (1984) and unpublished work by Sotomayor show that there does

not necessarily exist a stable matching if there exists a couple. Klaus and Klijn (2005)

provide a condition to guarantee the existence of stable matchings. A more recent work

by Kojima, Pathak and Roth (2013) presents conditions under which the probability that

a stable matching exists even in the presence of couples converges to one as the market

becomes infinitely large, and similar conditions have been further analyzed by Ashlagi,

Braverman and Hassidim (2014). Pycia (2012) and Echenique and Yenmez (2007) study

many-to-one matching with complementarity as well as peer effect. Our paper is different

from these studies in various respects, but it complements these papers by formalizing a

sense in which finding a stable matching becomes easier in a large market even in the

presence of complementarities.

The remainder of this paper is organized as follows. Section 2 provides an example

that illustrates the main contribution of our paper. Section 3 describes a matching model

in the continuum economy. Section 4 establishes the existence of a stable matching under

general, continuous preferences. In Section 5, we use this existence result to show that an

approximately stable matching exists in any large finite economy. In Section 6, we extend

our analysis to the case where firms may have multi-valued choice mappings (that is, choice

correspondences), and apply it to study fairness and incentive compatibility, as well as time

share/probabilistic matching models. Section 7 concludes.

2 Illustrative Example

Before proceeding, we illustrate the main contribution of our paper using an example.

We first illustrate how complementary preferences may lead to non-existence of a stable

matching when there are a finite number of agents. To this end, suppose that there are

two firms f1 and f2 and two workers θ and θ′. The agents have the following preferences:

θ : f1 � f2; f1 : {θ, θ′} � ø;

θ′ : f2 � f1; f2 : {θ} � {θ′} � ø.
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That is, worker θ prefers f1 to f2, and worker θ′ prefers f2 to f1; firm f1 prefers employing

both workers to employing no one, which the firm in turn prefers to employing only one

of them; and firm f2 prefers worker θ to θ′, which it in turn prefers to employing neither.

Firm f1 has a “complementary” preference, and this creates instability. To see this, recall

stability requires that there be no blocking coalition. Due to f1’s complementary preference,

it must employ either both workers or neither in any stable matching. The former case is

unstable since worker θ′ prefers firm f2 to firm f1, and f2 prefers θ′ to being unmatched,

thus they can block the matching. The latter is also unstable since, in such a case, f2

will only hire θ, leaving θ′ unemployed; and this outcome will be blocked by f1 forming a

coalition with θ and θ′, benefiting all members of the coalition.

Can stability be restored if the market becomes large? As long as the market remains

finite, the answer is no. To see this, consider a scaled-up version of the above model: there

are q workers of type θ and q workers of type θ′, and they have the same preferences as

above. Firm f2 prefers type-θ workers to type-θ′ workers, and wishes to hire in that order

but at most q workers in total. Firm f1 has a complementary preference for hiring exactly

identical numbers of type-θ and type-θ′ workers (with no capacity limit). Formally, if x

and x′ are the numbers of available workers of types θ and θ′, respectively, then firm f1

would choose min{x, x′} workers of each type.

As long as q is odd (including the original economy with q = 1), there exists no stable

matching.8 To see this, first note that if firm f1 hires more than q/2 workers of each type,

then firm f2 has a vacant position, so f2 can block with a type-θ′ worker who prefers f2

to f1. If f1 hires fewer than q/2 workers of each type, then some workers will remain

unmatched (since f2 hires at most q workers). If a type-θ worker is unmatched, then f2

will form a blocking coalition with that worker. If a type-θ′ worker is unmatched, then firm

f1 will form a blocking coalition by adding that worker along with a θ worker (possibly

matched with f2).

Consequently, “exact” stability is not guaranteed even in a large market. Nevertheless,

one may hope to achieve approximate stability. This is indeed the case with the above

example; the “magnitude” of instability diminishes as the economy grows large. To see

this, let q be odd and consider a matching in which f1 hires q+1
2

workers of each type while

f2 hires q−1
2

workers of each type. This matching is unstable because f2 has one vacant

position it wants to fill and a type-θ′ worker who is matched to f1 prefers f2. However, note

that this is the only possible block of this matching, and it involves only one worker. As

8Here we sketch the argument, which is in Section S.1 of the Supplementary Notes in fuller form. When

q is even, a matching in which each firm hires q
2 of each type of workers is stable.
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the economy grows large, if the additional single worker becomes insignificant for firm f2

relative to its size—and this is what the continuity of a firm’s preference captures—, then

the payoff consequence of forming such a block must also become insignificant, suggesting

that the instability problem becomes insignificant as well.

This can be seen most clearly in the limit of the above economy. Suppose there is a

unit mass of workers, half of whom are of type θ and the other half are of type θ′. Their

preferences are the same as before. And suppose firm f1 wishes to maximize min{x, x′},
where x and x′ are the measures of type-θ and type-θ′ workers, respectively. Firm f2 can

hire at most measure 1
2

of workers, and prefers to fill as much of this quota as possible

with type-θ workers and fill the remaining quota with type-θ′ workers. In this economy,

there is a (unique) stable matching in which each firm hires exactly one half of workers of

each type. To see this, note that any blocking coalition involving firm f1 requires taking

away a positive, and identical, measure of type-θ′ and type-θ workers from firm f2, which

is impossible since type-θ′ workers will object to it. Also, any blocking coalition involving

firm f2 requires taking away a positive measure type-θ workers away from firm f1 and

replacing the same measure of type-θ′ workers in its workforce, which is impossible since

type-θ workers will object to it. Our analysis below will show that the continuity of firms’

preferences, to be defined more clearly, is responsible for guaranteeing existence of a stable

matching in the continuum economy and approximate stability in the large finite economies

in this example.

3 Model of a Continuum Economy

Agents and their measures. There exist a finite set F = {f1, . . . , fn} of firms and a

unit mass of workers. Let ø be the null firm, representing the workers’ option of not being

matched with any firm, and define F̃ := F ∪ {ø}. The workers are identified with types

θ ∈ Θ, where Θ is a compact metric space. Let Σ denote a Borel σ-algebra of space Θ. Let

X be the set of all nonnegative measures such that for any X ∈ X , X(Θ) ≤ 1. Assume that

the entire population of workers is distributed according to a finite, nonnegative (Borel)

measure G ∈ X on (Θ,Σ). That is, for any E ∈ Σ, G(E) is the measure of workers

belonging to E. Assume G(Θ) = 1 for normalization. For illustration, the limit economy of

the example in the previous section is a continuum economy with F = {f1, f2}, Θ = {θ, θ′},
and G({θ}) = G({θ′}) = 1/2.9 In the sequel, we shall use this as our leading example for

9From now on, given any measure X, we will write X(θ) to denote a measure of singleton set {θ} to

simplify notation.
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the purpose of illustrating various concepts we develop.

Any subset of the population, or subpopulation, is represented by a nonnegative

measure X on (Θ,Σ) such that X(E) ≤ G(E) for all E ∈ Σ. Let X ⊂ X denote the set of

all subpopulations. We further say that a nonnegative measure X̃ ∈ X is a subpopulation

of X ∈ X , denoted X̃ @ X, if X̃(E) ≤ X(E) for all E ∈ Σ. We use XX to denote the set

of all subpopulations of X.

Given the partial order @, for any X, Y ∈ X , we define X ∨ Y (join) and X ∧ Y (meet)

to be the supremum and infimum of X and X ′, respectively.10 That X ∨ Y and X ∧ Y
are well-defined, i.e. they are also measures belonging to X , follows from the next lemma,

whose proof is in Section S.2.1 of the Supplementary Notes.

Lemma 1. The partially ordered set (X ,@) is a complete lattice.

The join and meet of X and Y in X can be illustrated via a couple of examples. In

our leading example with two types of workers, given X := (x, x′), Y := (y, y′), we have

X ∨ Y = (max{x, y},max{x′, y′}), and X ∧ Y = (min{x, y},min{x′, y′}). Consider next a

continuum economy with types Θ = [0, 1] and suppose the measure G admits a bounded

density g for all θ ∈ [0, 1]. In this case, it easily follows that for X, Y @ G, their densities

x and x′ are well defined,11 and Z := (X ∨ Y ) and Z ′ := (X ∧ Y ) admit densities z and z′

defined by z(θ) = max{x(θ), y(θ)} and z′(θ) = min{x(θ), y(θ)} for all θ, respectively. As

usual, for any two measures X, Y ∈ X , X +Y and X −Y denote their sum and difference,

respectively.12

Consider the space of all (signed) measures (of bounded variation) on (Θ,Σ). We endow

this space with a weak-∗ topology and its subspace X with the relative topology. Given a

sequence of measures (Xk) and a measure X on (Θ,Σ), we write Xk
w∗−→ X to indicate that

(Xk) converges to X as k →∞ under weak-∗ topology, and simply say that (Xk) weakly

converges to X.13

10That is, X ∨ Y for instance is the smallest measure of which both X and Y are subpopulations. One

can show that for all E ∈ Σ,

(X ∨ Y )(E) = sup
D∈Σ

X(E ∩D) + Y (E ∩Dc),

which is a special case of Lemma 1.
11Since |X([0, θ′])−X([0, θ])| ≤ |G([0, θ′])−G([0, θ])| ≤ N |θ′ − θ|, where N := sups g(s), so X([0, θ)) is

Lipschitz continuous, and its density is well defined.
12In case X + Y 6@ G (resp., 0 6@ X − Y ), we abuse notation to let X + Y (resp., X − Y ) denote the

meet of X + Y and G (resp., the join of of X − Y and 0).
13 We use the term “weak convergence” since it is common in statistics and mathematics, though weak-

∗ convergence is a more appropriate term from the perspective of functional analysis. As is well known,
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Agents’ preferences. We now describe agents’ preferences. Each worker is assumed

to have a strict preference over F̃ . Let P denote the (finite) set of all possible worker

preferences, and let P ∈ P denote its generic element (i.e., a particular worker preference).

We write f �P f ′ to indicate that f is strictly preferred to f ′ according to P . For each

P ∈ P , let ΘP ⊂ Θ denote the set of all worker types whose preference is given by P ,

and assume that ΘP is measurable and G(∂ΘP ) = 0, where ∂ΘP denotes the boundary of

ΘP .14 Since all worker types have strict preferences, Θ can be partitioned into the sets in

PΘ ≡ {ΘP : P ∈ P}.
We next describe firms’ preferences. We do so indirectly by defining a firm f ’s choice

function, Cf : X → X , where Cf (X) is a subpopulation of X for any X ∈ X and

satisfies the following revealed preference property: for any X,X ′ ∈ X with X ′ @ X,

if Cf (X) @ X ′, then Cf (X
′) = Cf (X).15 Note we are assuming that the firm’s demand is

unique given any set of available workers. In Section 6.1, we consider a generalization of the

model in which the firm’s choice is not unique. Let Rf : X → X be a rejection function

defined by Rf (X) := X − Cf (X). By convention, we let Cø(X) = X, ∀X ∈ X , meaning

that Rø(X)(E) = 0 for all X ∈ X and E ∈ Σ. In our leading example, the choice functions

of firms f1 and f2 are given respectively by Cf1(x1, x
′
1) = (min{x1, x

′
1},min{x1, x

′
1}) and

Cf2(x2, x
′
2) = (min{x2,

1
2
},min{1

2
− x2, x

′
2}), when xi of type θ-workers and x′i of type-θ′

workers are available to firm fi, i = 1, 2.

In sum, a continuum matching model is summarized as a tuple (G,F,PΘ, CF ).

Remark 1. Our model takes firms’ choice functions as a primitive, which gives us some

flexibility in describing their preferences, in particular preferences over alternatives that

are not chosen. This approach is also adopted by other studies in matching theory, which

include Alkan and Gale (2003) and Aygün and Sönmez (2013) among others. An alterna-

tive, albeit more restrictive, approach would be to assume that each firm is endowed with

a complete, continuous preference relation over X . Maximization with such a preference

will result in an upper hemicontinuous choice correspondence defined over X .16 Assuming

Xk
w∗

−→ X if
∫

Θ
hdXk →

∫
Θ
hdX for all bounded continuous function h. See Theorem 8 in Appendix A to

see some implications of this convergence.
14Formally, ∂E := E ∩Ec, where E and Ec are the closures of E and Ec, respectively. This means that

if Θ is discrete as in our leading example, then we have E = E and Ec = Ec, so E ∩ Ec = E ∩ Ec = ∅.
Hence, the assumption is satisfied.

15This property must hold if the choice is made by a firm optimizing with a well-defined preference

relation. See for instance Hatfield and Milgrom (2005), Fleiner (2003), and Alkan and Gale (2003) for

some implicit or explicit use of the revealed preference property in matching theory literature. Recently,

Aygün and Sönmez (2013) have clarified the role of this property in the context of matching with contracts.
16This also relies on the fact that the set of alternatives X is compact, a fact we establish in the proof
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a unique optimal choice will then give us a choice function (which is also continuous), al-

though, as will be shown in Section 6.1, our results generalize to the case in which each

firm’s choice is not unique.

Matchings, and their efficiency and stability requirements. A matching is M =

(Mf )f∈F̃ such that Mf ∈ X for all f ∈ F̃ and
∑

f∈F̃ Mf = G. Firms’ choice functions can be

used to define a partial order on firms’ preferences over matchings. For any two matchings,

M and M ′, we say that M ′
f �f Mf (or firm f prefers M ′

f to Mf ) if M ′
f = Cf (M

′
f ∨Mf ).

17

We also say M ′
f �f Mf if M ′

f �f Mf and M ′
f 6= Mf . The resulting preference (partial)

order amounts to taking a minimal stance on the firms’ preferences, limiting attention to

those revealed via their choices. Given this preference order, we say M ′ �F M if M ′
f �f Mf

for each f ∈ F .

To discuss workers’ welfare, fix any matching M and any firm f . Let

D�f (M) :=
∑
P∈P

∑
f ′∈F̃ :f ′�P f

Mf ′(ΘP ∩ ·) and D�f (M) :=
∑
P∈P

∑
f ′∈F̃ :f ′�P f

Mf ′(ΘP ∩ ·) (1)

denote the measure of workers assigned to firm f or better (according to their preferences)

and the measure of workers assigned to firm f or worse (again according to their prefer-

ences), respectively, where Mf ′(ΘP ∩·) denotes a measure that takes the value Mf ′(ΘP ∩E)

for each E ∈ Σ. Starting from M as a default matching, the latter measures the number

of workers who are available to firm f for possible rematching. Meanwhile, the former

measure is useful for characterizing the workers’ overall welfare. For any two matchings M

and M ′, we say that M ′ �Θ M if for each f ∈ F̃ , D�f (M ′) @ D�f (M). That is, if, for each

firm f , the measure of workers assigned to f or better is larger in one matching than the

other, then we can say that the workers’ overall welfare is higher in the former matching.

Equipped with these notions, we can define Pareto efficiency and stability.

Definition 1. A matching M is Pareto efficient if there exists no matching M ′ 6= M

such that M ′ �F M and M ′ �Θ M .

Definition 2. A matching M = (Mf )f∈F̃ is stable if

1. For all P ∈ P , we have Mf (ΘP ) = 0 for any f satisfying ø �P f ; and for each f ∈ F ,

Mf = Cf (Mf ), and

2. There exist no f ∈ F and M ′
f ∈ X such that M ′

f �f Mf and M ′
f @ D�f (M).

of Theorem 4.
17This is known as the Blair order in the literature. See Blair (1984).
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Condition 1 of this definition, called individual rationality, means that each matched

worker prefers the matching over being unmatched, and that no firm wishes to unilaterally

drop some of its matched workers. Condition 2, called no blocking, requires that there

be no firm and a set of workers who are not matched together but want to do so. When

Condition 2 is violated by f and M ′
f , we say that f and M ′

f block M .

Remark 2 (Equivalence to group stability). We say that a matching M is group stable if

Condition 1 of Definition 2 holds and, in addition,

2’. There exist no F ′ ⊆ F and M ′
F ′ ∈ X |F

′| such that M ′
f �f Mf and M ′

f @ D�f (Mf )

for all f ∈ F ′.

This definition is a strengthening of our stability concept, as it requires that the match-

ing be immune to blocks by coalitions potentially involving multiple firms. Such stability

concepts with coalitional blocks are analyzed by Sotomayor (1999), Echenique and Oviedo

(2006), and Hatfield and Kominers (2014), among others. Clearly any group stable match-

ing is stable, because if Condition 2 of stability is violated by a firm f and M ′
f , then

Condition 2’ of group stability is violated by a singleton set F ′ = {f} and M ′
{f}. The

converse also holds. To see why, note that if Condition 2’ of group stability is violated

by F ′ ⊆ F and M ′
F ′ , then Condition 2 of stability is violated by any f and M ′

f such that

f ∈ F ′ because M ′
f �f Mf and M ′

f @ D�f (M) by assumption.18

As in the standard finite market, stability implies Pareto efficiency:

Proposition 1. If a matching is stable, then it is Pareto efficient.

Proof. See Section S.2.2 of the Supplementary Notes.

18By requiring M ′f @ D�f (Mf ) for all f ∈ F ′ in Condition 2’, our group stability concept is implicitly

assuming that workers who are considering participating in a blocking coalition with f ∈ F ′ use the current

matching M−f as the reference point. This means that workers are available to firm f as long as they prefer

f to their current matching. However, given that a more preferred firm f ′ ∈ F ′ may be making offers to

workers in D�f (Mf ) as well, the set of workers available to f may be smaller. Such a consideration would

result in a weaker notion of group stability. Any such concept, however, will be equivalent to our notion of

stability, because in this remark we establish that even the most restrictive notion of group stability, i.e.,

the concept using D�f (Mf ) in Condition 2’, is equivalent to stability, while stability is weaker than any

group stability concept described above.
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4 Existence of a Stable Matching in the Continuum

Economy

Finding a stable matching is tantamount to identifying the “opportunities” available to

each participant that are compatible with opportunities available to all other participants,

given their preferences. The mutually compatible opportunity sets are endogenous and of

a fixed point character. For each firm f , its opportunities—or the workers available to the

firm—in a stable matching are precisely those workers who have no better choice than f .

So, to identify such workers, one must identify the opportunities available to the workers,

namely the firms that would like to hire them. To identify these firms in turn requires

identifying the workers available to them, thus coming to a full circle.

This logic suggests that a stable matching is associated with a fixed point of a mapping—

or more intuitively, a stationary point of a process that repeatedly revises the set of available

workers to the firms, based on the preferences of the workers and the firms. Formally, we

define a map T : X n+1 → X n+1 where T (X) = (Tf (X))f∈F̃ for each X ∈ X n+1. For each

f ∈ F̃ , the map Tf : X n+1 → X is defined by

Tf (X)(E) :=
∑

P :fP−=∅

G(ΘP ∩ E) +
∑

P :fP− 6=∅

RfP−
(XfP−

)(ΘP ∩ E), (2)

where fP− ∈ F̃ , called the immediate predecessor of f , is a firm that is ranked im-

mediately above firm f according to P .19 The map can be interpreted as a tâtonnement

process whereby an auctioneer quotes “budgets” of workers that firms can choose from.

The auctioneer, just like the classical Walrasian one, revises the budget quotes based on

the preferences of the market participants, shrinking the budget for a firm f (i.e., making

smaller work force available to it) when more workers are demanded by the firms that they

rank ahead of f , and expanding it otherwise. Once the process converges, reaching a fixed

point, workers who are “truly” available to firms—in the sense of being compatible with

the preferences of other market participants—will have been found.

Alternatively, the mapping can be seen as a process by which firms rationally adjust their

beliefs about available workers based on the preferences of the other market participants.

The fixed point of the mapping then captures the workers firms can iteratively rationalize as

being available to them. To illustrate, fix a firm f . Consider first the worker types θ ∈ ΘP

for which f is at the top of their preference P (i.e., fP− = ∅). Firm f can rationally believe

19An immediate predecessor of f is formally defined such that fP− �P f and if f ′ �P f for f ′ ∈ F̃ , then

f ′ �P fP− .
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all such workers are available to that firm, which explains the first term of (2). Consider

next the worker types θ ∈ ΘP for which f is the second-best according to P . Firm f can

rationally believe that among them only those who would be rejected by their top choice

firm are available to it, which explains the second term of (2). Now, consider the worker

types for which f is their third-best. Firm f analogously rationalizes as being available to

it only those among them who would be rejected by their first-best and second-best firms.

But the workers who would be rejected by the first-best are available to the second-best,

according to the earlier rationalization. This in turn rationalizes f ’s belief that the workers

available to f are precisely those who are available to but rejected by the second-best

firm. In general, for any worker types, the same iterative process of belief rationalization

establishes the validity of (2).

Remark 3. Our map can be rewritten to mimic Gale and Shapley’s deferred acceptance

algorithm, where the firms and workers take turns to reject dominated proposals in each

round. Specifically, we can write T = Ψ ◦ Φ, where, for each profile X = (Xf )f∈F̃ ∈ X n+1

of workers, the map

Φf (X) := G−Rf (Xf )

returns the workers that are not rejected by each firm, and for Y = (Yf ) ∈ X n+1, the

subsequent map

Ψf (Y ) := G−
∑
P∈P

YfP− (ΘP ∩ ·),

returns workers available for each firm f—more specifically, those that remain after remov-

ing the workers who would be accepted by firms they consider better than f . The map

written in this way resembles those developed in the context of the finite matching markets

(e.g., see Adachi (2000), Hatfield and Milgrom (2005), and Echenique and Oviedo (2006)),

but the construction here differs due to dealing with a richer space of worker types. As will

be also clear, this new construction is needed for a new method of proof for characterizing

the fixed point.

Theorem 1. A matching M is stable if and only if there is a fixed point X = T (X) such

that Mf = Cf (Xf ),∀f ∈ F̃ . Also, any such X and M satisfy Xf = D�f (M),∀f ∈ F̃ .

Proof. This result follows as a corollary of Theorem 7. For details, see Appendix A.

Example 1. To illustrate how a stable matching can be found from T mapping, consider

our leading example. We can denote candidate measures of available workers by a tuple:

(Xf1 , Xf2) = (x1, x
′
1;x2, x

′
2) ∈ [0, 1

2
]4, where Xf1 = (x1, x

′
1) are the measures of workers of

types θ and θ′ available to f1 and Xf2 = (x2, x
′
2) are the measures of workers of types θ and
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θ′ available to f2. Since f1 is most preferred by θ and f2 is most preferred by θ′, according

to our T , all of these workers are available to the respective firms. So, we can without

loss set x1 = G(θ) = 1
2

and x′2 = G(θ′) = 1
2

and consider (1
2
, x′1;x2,

1
2
) as our candidate

measures. To compute T (1
2
, x′1;x2,

1
2
), we first consider the choice by each firm given the

respective available worker sets. Note Cf1(
1
2
, x′1) = (x′1, x

′
1), so Rf1(

1
2
, x′1) = (1

2
− x′1, 0).

Similarly, Cf2(x2,
1
2
) = (x2,

1
2
− x2), so Rf2(x2,

1
2
) = (0, x2). Now applying our formula in

(2), we get T (1
2
, x′1;x2,

1
2
) = (1

2
, x2; 1

2
− x′1, 1

2
). So, (1

2
, x′1;x2,

1
2
) is a fixed point of T if and

only if (1
2
, x′1;x2,

1
2
) = (1

2
, x2; 1

2
− x′1, 1

2
), or x′1 = x2 = 1

4
. The optimal choice from the fixed

point then gives a matching

M =

(
f1 f2

1
4
θ + 1

4
θ′ 1

4
θ + 1

4
θ′

)
,

where the notation here (analogous notation is used throughout) means that each of the

firms f1 and f2 is matched to mass 1
4

of worker types θ and θ′. This matching M is stable.

We now introduce a condition on the firms’ preferences that ensures existence of a stable

matching.

Definition 3. Firm f ’s preference is continuous if, for any sequence (Xk)k∈N and X in

X such that Xk
w∗−→ X, it holds that Cf (Xk)

w∗−→ Cf (X).

As suggested by the name, continuity of a firm’s preferences means that the firm’s

choice changes continuously with the distribution of workers available to it. Under this

assumption, we obtain a general existence result as follows:

Theorem 2. If each firm’s preference is continuous, then there exists a stable matching.

Proof. This result follows as a corollary of Theorem 4. For details, see Appendix A.

To prove that T admits a fixed point, we first demonstrate that continuity of firms’

preferences implies that mapping T is also continuous. We also verify that X is a compact

and convex set. Continuity of T and compactness and convexity of X allow us to apply the

Kakutani-Fan-Glicksberg fixed-point theorem to guarantee that T has a fixed point. Then,

the existence of a stable matching follows from Theorem 1, which shows the equivalence

between the set of stable matchings and the set of fixed points of T .

Many complementary preferences are compatible with continuous preferences and thus

with existence of a stable matching. Recall Example 1. In that example, firm f1 has a

Leontief type preference, for it wishes to hire an equal measure of workers of types θ and

θ′ (so, in particular, the firm wants to hire type-θ workers only if type-θ′ workers are also
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available, and vice versa). As seen in Example 1, a stable matching exists despite the

extreme complementarity. And the reason has to do with the continuity: As the firm’s

preferences are clearly continuous in that example, the existence of a stable matching in

that example is implied by Theorem 2.

A stable matching may fail to exist even in the continuum economy unless all firms have

continuous preferences, as the following example illustrates.

Example 2 (Role of continuity). Consider the following economy, which is modified from

Example 1. There are worker types θ and θ′ (each with measure 1/2) and firms f1 and

f2. Firm f1 wants to hire only measure 1/2 of each of the two types, and would like to

be unmatched otherwise; meanwhile, firm f2’s choice function is continuous: it exhibits

“responsive” preferences preferring type-θ workers to type-θ′ workers and in turn prefers

the latter to leaving a position vacant, and faces a capacity of measure 1/2. Then, Cf1
violates continuity, while Cf2 does not. As before, we assume

θ : f1 � f2;

θ′ : f2 � f1.

No stable matching exists in this environment. To see this, consider the following two cases:

1. Suppose f1 hires measure 1/2 of each type of workers. For such a matching, none of

the capacity of f2 is filled. Thus such a matching is blocked by f2 and type-θ′ workers

(note that every type-θ′ worker is currently matched with f1, so they are willing to

participate in the block).

2. Suppose f1 hires no worker. Then, the only candidate for a stable matching is one in

which f2 hires measure 1/2 of type-θ workers (or else, f2 and unmatched workers of

type θ would block the matching). Then, since f1 is most preferred by all θ workers,

and type-θ′ workers prefer f1 to ø, the matching is blocked by a coalition of measure

1/2 of type-θ workers, measure 1/2 of type-θ′ workers, and f1.

The continuity assumption is important for existence of a stable matching, as this

example shows that nonexistence can happen even if only one firm has a discontinuous

choice function. This example also suggests that non-existence can reemerge once some

“lumpiness” is reintroduced into the continuum economy (i.e., one firm can only hire a

certain minimum mass of workers). However, this kind of lumpiness may not be the most

natural in a continuum economy in contrast to a finite economy, where lumpiness is a

natural consequence of the fact that each worker is indivisible.
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5 Approximate Stability in Finite Economies

As we have seen in the illustrative example of Section 2, no matter how large the economy

is, as long as it is finite, there does not necessarily exist a stable matching. This motivates

us to look for an approximately stable matching in a large finite economy. In this section,

we build on the existence of a stable matching in the continuum economy to demonstrate

that approximate stability can be achieved if the economy is finite but sufficiently large.

In order to analyze economies of finite sizes, we consider a sequence of economies (Γq)q∈N

indexed by a positive integer q. In each economy Γq, there is a set of n firms f1, . . . , fn which

is fixed across all q. There are also q workers, each with a type in Θ. The worker distribution

is normalized with the economy’s size. Formally, let the (normalized) population Gq of

workers in Γq be defined so that Gq(E) represents the number of workers with types in

E divided by q. A subpopulation Xq is feasible in economy Γq if Xq @ Gq and it is a

measure whose value for any E is a multiple of 1/q. Let X q denote the set of all feasible

subpopulations. Note that Gq, and thus every Xq ∈ X q, belongs to X , though it does

not have to be an element of X , i.e. subpopulation of G. Let us say that a sequence of

economies (Γq)q∈N converges to a continuum economy Γ if the measure Gq of worker

types converges weakly to the measure G of the continuum economy, that is, Gq w∗−→ G.

In order to formalize the approximate stability concept, we assume that in economy

Γq, each firm f evaluates the set of workers it matches with using its preferences as in the

continuum economy, but with the distribution of workers normalized by the economy’s size.

In particular, we first endow the firms with cardinal utility functions over distributions of

workers. Let uf : X → R denote the continuous utility function of firm f , with uf (X)

denoting the firm’s utility from matching with a subpopulation of workers X ∈ X . This

utility function rationalizes firm f ’s choice in both continuum and finite economies, in

the sense that firm f chooses a subpopulation that is feasible and maximizes uf in the

respective economies.20 We assume that the choice function Cf in the continuum economy

is continuous and a unique maximizer of uf : that is, for any X ∈ X ,

Cf (X) = arg max
X′@X

uf (X
′),

is a singleton.21 That the same utility function applies to finite as well as continuum

economies means that the preferences of the firms remain constant (or consistent) over a

20To guarantee existence of such a utility function, we may assume as in Remark 1 that each firm

is endowed with a complete, continuous preference relation. Then, since the set of alternatives, X , is a

compact metric space, such a preference can be represented by a continuous utility function according to

the Debreu representation theorem (Debreu, 1954).
21The continuity of Cf follows from the continuity of uf and the uniqueness of the maximizer.
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sequence of economies (Γq)q∈N and its limit Γ. In each finite economy Γq, for any subpopu-

lation of available workers Xq ∈ X q, each firm f chooses a subpopulation of Xq in X q that

maximizes its utility uf . The continuity of the utility function then implies that each firm’s

optimal choice in the finite economy (which we do not assume to be unique) converges to

the optimal choice in the limit economy as q →∞.22 An example is a sequence of replica

economies in which each firm has a responsive preference that is constant throughout the

sequence, but faces capacity of rk in the r-replica (where q increases proportionately to r

as the latter increases).

A matching in finite economy Γq is M q = (M q
f )f∈F̃ such that M q

f ∈ X q for all f ∈ F̃
and

∑
f∈F̃ M

q
f = Gq. The measure of available workers for each firm f at matching M q ∈

(X q)n+1 is D�f (M q), where D�f (·) is defined as in (1).23 Note that as M q
f for each f ∈ F̃ is

a multiple of 1/q, so is D�f (M q), meaning that D�f (M q) is feasible in Γq. We now define

ε-stability in finite economy Γq.

Definition 4. A matching M q ∈ (X q)n+1 in economy Γq is ε-stable if (i) it is individually

rational, and (ii) uf (M̃
q) < uf (M

q
f ) + ε for any f ∈ F and M̃ q ∈ X q with M̃ q @ D�f (M q).

Condition (i) of this definition is identical to the one for exact stability, so the only

relaxation of ε-stability compared to stability is with respect to its condition (ii). Note

ε-stability does not require the absence of a blocking coalition,24 but in case a blocking

coalition exists, it requires the utility gain for the blocking firm to be small, specifically

less than ε.

Remark 4. For ε > 0, we say that matching M is ε-Pareto efficient if there exists no

matching M ′ 6= M and firm f ∈ F such that M ′ �F M , M ′ �Θ M , and uf (M
′
f ) ≥

uf (Mf ) + ε. By an argument analogous to Pareto efficiency of a stable matching presented

in Section 3, it is easy to see that for sufficiently small ε′ > 0, any ε′-stable matching is

ε-Pareto efficient.

Theorem 3. Fix any ε > 0 and a sequence of economies (Γq)q∈N that converges to a

continuum economy Γ. For any sufficiently large q, there exists an ε-stable matching M q

in Γq.

Proof. See Appendix B.

22This statement is formally proved in Lemma 7 of Appendix B.
23To be precise, D�f (Mq) is given as in (1) with G and X being replaced by Gq and Mq, respectively.
24A blocking coalition is unavoidable if a stable matching does not exist, as is demonstrated in Section

2.
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Remark 5. One could define approximate stability slightly differently. Say a matching M q

is ε-distance stable if (i) it is individually rational and (ii) |M̃ q
f−M

q
f | < ε for any coalition

f and M̃ q
f ∈ X q that blocks M q in the sense that M̃ q

f @ D�f (M q) and uf (M̃
q
f ) > uf (M

q
f ).25

In words, if a matching M q is ε-distance stable, then any alternative matching a firm may

propose for blocking must be within distance ε from the original matching. One advantage

of this concept is that it is an ordinal concept, that is, we do not need to endow the firms

with cardinal utility functions in order to formalize the notion. Note also that the notion

requires the ε bound for any blocking coalition, not just the “optimal” blocking coalition in

the sense defined in Definition 2-2, making the notion more robust than the standard one.

Matching M q constructed in the proof of Theorem 3 is ε-distance stable for any sufficiently

large q, as shown in the proof.

Below we revisit the example in Section 2 to give a concrete example of an approximately

stable matching.

Example 3. Recall the finite economy described in Section 2.26 If the index q is odd, then

a stable matching does not exist. Let us consider the following matching: firm f1 matches

with q+1
2

workers of each type and firm f2 matches with all remaining workers, i.e. q−1
2

workers of each type. After normalization (i.e., dividing by 2q), we obtain a matching(
f1 f2

q+1
4q
θ + q+1

4q
θ′ q−1

4q
θ + q−1

4q
θ′

)
,

which converges to the stable matching in the limit economy. Given this matching, it is

straightforward to see that there is no blocking coalition involving firm f1. Also, the only

blocking coalition involving firm f2 entails taking only a single worker of type θ′ away from

firm f1. Thus, for any ε > 0, if q is sufficiently large, then the above matching is ε-distance

stable, as well as ε-stable (provided the firms’ utility functions are continuous).

25The notion of distance | · | is Prokhorov metric that metrizes the weak-∗ topology on a measure space.

Specifically, for any X,Y ∈ X , we let

|X − Y | := inf {ε > 0 | X(E) ≤ Y (Eε) + ε and Y (E) ≤ X(Eε) + ε for all E ∈ Σ} ,

where Eε := {θ ∈ Θ | ∃θ′ ∈ E, |θ − θ′| < ε}.
26With a slight abuse of notation, this example assumes that there are a total of 2q workers (q workers

of θ and θ′ each) rather than q. Of course, this is done for purely expositional purposes.
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6 Indifferences, Fairness, and Strategy-Proofness

In this section, we generalize our continuum economy framework to allow for firms that are

indifferent over different subpopulations of workers. There are at least three motivations for

this generalization. First, there is a continuum of workers in our environment, and in such

a situation it is natural to allow for a firm to be indifferent across some subpopulations

and choose more than one subpopulation as the most preferred. Second, indifferences

appear to be inherent in some applications. In school choice, for instance, schools are

often required by law to regard many students to have the same priority,27 in which case

school preferences encoding the priority will exhibit indifferences over students. Last but

not least, our continuum model can be applied to study “time share” or “probabilistic”

matching in a finite market. In the time share model, a finite set of workers contract with a

finite set of firms for fractional time share. As we describe more precisely later, we can use

the continuous measures of workers in our large market model to represent “time units”

a single worker may supply in this finite economy model. Hence, to study a firm (e.g., a

school) indifferent over a set of workers (e.g., students in the same priority class) in the

latter model, we must allow a firm to be indifferent across different types of workers in our

large market model.

Formally, firms’ indifferences can be accommodated by extending their choice functions

to be multi-valued, namely by introducing choice correspondences for firms. The notion

of stability as well as its characterization and existence must be extended for this new

environment. We therefore begin with this generalization in Section 6.1. Our main focus

will be, however, on the two new issues that become important in this new environment.

First, an important new question is how equitably the workers who are perceived as

equivalent by a firm are treated in the matching. As mentioned in the introduction, stabil-

ity involves a desirable fairness property, and in particular our stable matching (implicitly)

treats the workers of the same type (in terms of their preferences as well as firms’ prefer-

ences over them) identically. But our stability notion alone permits many different possible

matchings, and some of them treat workers differently even if they are perceived as equiv-

alent by the firms. As pointed out by Kesten and Ünver (2014), a stronger notion of

fairness than implied by the standard notion of stability is not only attainable but may be

important in settings such as school choice.

27 In the public school choice program in Boston prior to 2005, for instance, a student’s priority at a

school is based only on coarse criteria such as the student’s residence and whether her sibling is currently

enrolled at that school. Consequently, at each school, many students are equipped with the same priority

(Abdulkadiroğlu et al., 2005).
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Second, firms’ indifferences make workers’ incentives for truthful reporting nontrivial.

In a large market setting, each worker is insignificant in her ability to influence the match-

ing through her preference reporting; more precisely, a matching in our continuum economy

framework is insensitive to a change in the measure zero types. This does not mean, how-

ever, that the incentive problem disappears on the worker side. A worker may still influence

her (probabilistic) assignment by manipulating her preference report, if the workers with

different preference but same productivity types—note they are perceived as equally de-

sirable from the firms’ perspectives—are treated differently. As it turns out, the incentive

issue is closely related to the fairness issue. In Section 6.2, we propose a mechanism that

will solve both issues and show that such a mechanism exists. Section 6.3 applies the result

to a general time share model.

6.1 Stable Matching with Choice Correspondence

In order to accommodate firms’ indifferences, we introduce choice correspondences for firms.

Let Cf : X ⇒ X be a choice correspondence: i.e., for any X ∈ X , Cf (X) ⊂ XX is

the set of subpopulations of X that are the most preferred by f among all subpopulations

of X (recall XX is the set of all subpopulations of X). By convention, we let Cø(X) =

{X}, ∀X ∈ X . Then, let Rf (X) := X − Cf (X), or equivalently Rf (X) = {Y ∈ X |Y =

X − X ′ for some X ′ ∈ Cf (X)}. We assume that for any X ∈ X , Cf (X) is nonempty.

Assume further that Cf (·) satisfies the revealed preference property: For any X,X ′ ∈ X
with X ′ @ X, if Cf (X) ∩ XX′ 6= ∅, then Cf (X

′) = Cf (X) ∩ XX′ . Define a function

D�f : X n+1 → X for each f ∈ F in the same manner as in (1).

Definition 5. A matching M is stable if

1. For all P ∈ P , we have Mf (ΘP ) = 0 for any f satisfying ø �P f ; and for each f ∈ F ,

Mf ∈ Cf (Mf ), and

2. There exist no f ∈ F and M ′
f ∈ X such that M ′

f @ D�f (M), M ′
f ∈ Cf (M ′

f ∨Mf ),

and Mf /∈ Cf (M ′
f ∨Mf ).

Clearly, this definition is a generalization of Definition 2 to the case of choice correspon-

dences. The existence of a stable matching then follows from existence of a fixed point for

a correspondence operator defined analogously to the mapping T in Section 4. To this end,

we extend the notion of continuous preferences as follows:

Definition 6. The firm f ’s choice correspondence Cf is upper hemicontinuous if, for
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any sequences (Xk)k∈N and (X̃k)k∈N in X such that Xk w∗−→ X, X̃k w∗−→ X̃, and X̃k ∈
Cf (X

k), ∀k, we have X̃ ∈ Cf (X).28

By Berge’s maximum theorem (see, for instance, Ok (2011) for a textbook treatment),

an upper hemicontinuous choice correspondence arises when a firm has a utility function

u : X → R that is continuous in weak-∗ topology.

Theorem 4. Suppose that for each f ∈ F , Cf is convex-valued and upper hemicontinuous.

Then, there exists a stable matching.

Proof. See Appendix A.

This result shows that our main result — that there exists a stable matching when there

is a continuum of workers — does not hinge on the restrictive assumption that each firm’s

choice is unique. On the contrary, this result holds for a wide range of specifications that

allow for indifferences and choice correspondences. As will be seen in the next section, this

generalization turns out to be useful when analyzing fairness and incentive compatibility

properties of matching mechanisms.

6.2 Fairness and Incentive Compatibility

In this section, we study the fairness and incentive issues that arise in a general model in

which firms may be indifferent over a set of workers. For this purpose, it is convenient

to describe the type of each worker by a pair θ = (a, P ), where a denotes the worker’s

productivity or skill, and P is her preference for firms and the outside option, as before.

We assume that a worker’s preference does not affect firms’ preferences and is private

information, whereas the productivity type may affect firms’ preferences and is observable

to the firms (and also to the mechanism designer). Let A and P be the sets of productivity

types and preference types, respectively, and Θ = A × P . We assume that A is a finite

set.29 This implies that Θ is a finite set, so the population G of worker types is a discrete

measure.
28This definition is often referred to as the “closed graph property,” which implies (the standard def-

inition of) upper hemicontinuity and closed-valuedness if the range space is compact, as is true in our

case.
29Finiteness of A is necessitated by our use of weak-∗ topology and the construction of strong stability

and strategy-proof mechanisms below. To illustrate the difficulty, suppose A were a unit interval, say,

and G has a well defined density. Our construction below would require that the density associated with

firms’ choice mappings satisfy a certain population-proportionality property. Convergence in our weak-∗
topology does not preserve this restriction on density. As a consequence, the operator T may violate

upper hemicontinuity, which may result in the failure of the nonempty-valuedness of our solution. It may
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As before, a matching is described by a profile M = (Mf )f∈F̃ of subpopulations of

workers matched with alternative firms or the outside option (note that given discreteness

of G, each matching M can be expressed as a profile of discrete distributions). We assume

that all workers of the same (reported) type are treated ex ante identically. Hence, given

matching M , a worker of type (a, P ) in the support of G is matched to f ∈ F̃ with

probability
Mf (a,P )

G(a,P )
. Note that

∑
f∈F̃

Mf (a,P )

G(a,P )
= 1 holds by construction, giving rise to a

valid probability distribution over F̃ . A mechanism is a function ϕ that maps any G ∈ X
to a matching.

We next describe firms’ preferences. To accommodate indifferences, we let a partition

Pf := {Θ1
f , ...,Θ

Kf
f } of Θ denote the set of indifference classes for firm f . The partition

means that firm f is indifferent over matching with different types of workers as long as the

total measure of workers within each group Θk
f is unchanged. Let If = {1, ..., Kf} be the

associated index set. Note that the partitional structure may be arbitrary; in particular, it

may differ across different firms.

We next assume that, for any given measure X @ G of available workers, the firm

has a unique optimal choice in terms of the measure of workers in each indifference class.

Formally, for each k ∈ If , we let Λkf : X → R+ denote firm f ’s unique choice of total

measure of workers in the indifference class Θk
f . Specifically, we assume that for eachX @ G,

Λkf (X) ∈ [0,
∑

θ∈Θkf
X(θ)] and Λkf (X

′) = Λkf (X) whenever
∑

θ∈Θk
′
f
X ′(θ) =

∑
θ∈Θk

′
f
X(θ) for

all k′ ∈ If . We also assume that Λkf (X
′) = Λkf (X) whenever Λk

′

f (X) ≤
∑

θ∈Θk
′
f
X ′(θ) ≤∑

θ∈Θk
′
f
X(θ) for all k′ ∈ If , which captures the revealed preference property. Finally, we

assume that Λkf (X) is continuous in (
∑

θ∈Θk
′
f
X(θ))k′∈If (in the Euclidean topology).

The resulting economy described by (G,F,PF , ΛF ), where PF = (Pf )f∈F , Λf := (Λkf )k∈If
for each f ∈ F and ΛF = (Λf )f∈F , is called a general indifferences model. It is easy to

see that a general indifference model admits a stable matching. Observe that the functions

Λf = (Λkf )k∈If induce a choice correspondence for firm f , given by

Cf (X) := {Y @ X |
∑
θ∈Θkf

Y (θ) = Λkf (X),∀k ∈ If}, (3)

for each X ∈ X . One can see that Cf is convex-valued and upper hemicontinuous, and

satisfies the revealed preference property (see Lemma 8 in Appendix C). It then follows by

Theorem 4 that a stable matching exists in the general indifference model.

To motivate the fairness and incentive issues that arise with indifferences, we begin with

an example.

be possible to address this issue by strengthening the topology, but whether the resulting space satisfies

conditions that would guarantee the existence of a stable matching is an open question.
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Example 4. There are two firms f1 and f2, and a unit mass of workers with two pro-

ductivity types a and a′. Firm f1 wishes to maximize min{x, x′}, where x and x′ are the

measures of workers with productivity types a and a′, respectively. Firm f2 has a respon-

sive preference with capacity 1/2 and prefers a-productivity type to a′-productivity type.

There are three possible worker preferences:

P : f1 � f2 � ø;

P ′ : f2 � f1 � ø;

P ′′ : f2 � ø � f1.

Letting θ = (a, P ), θ′ = (a′, P ′), and θ′′ = (a′, P ′′), the type distribution is given as

G(θ) = 1/2 and G(θ′) = 1/4 = G(θ′′). (Note that this example is the same as our leading

example except mass 1/4 of type θ′ workers now have a new preference P ′′.)

Consider first a mechanism that maps G to matching

M =

(
f1 f2

1
4
θ + 1

4
θ′ 1

4
θ + 1

4
θ′′

)
.

This matching is stable, which can be seen by the fact that the firms are matched with

the same measures of productivity types as in the stable matching in our leading example.

Observe, however, that the matching treats the type-θ′ and type-θ′′ workers differently—

the former workers match with f1 and the latter workers match with f2 (which they both

prefer)—despite the fact that the firms perceive them as equivalent. This lack of “fairness”

leads to an incentive problem: type-θ′ workers have an incentive to (mis)report to be of

type θ′′ and thereby match with f2 instead f1.

These problems can be addressed by another mechanism that maps G to matching

M̄ =

(
f1 f2

1
6
θ + 1

6
θ′ 1

3
θ + 1

12
θ′ + 1

12
θ′′

)
.

This matching is stable just like M , but in addition firm f2 treats type-θ′ and type-θ′′

workers identically in this matching. Further, neither type θ′ nor type θ′′-workers have

incentive to misreport. (One can show that this is a unique matching that satisfies both

stability and incentive compatibility.)

This example suggests that stability alone does not guarantee equal treatment of workers

perceived as equally desirable by the firms and for that reason may also fail strategy-

proofness. It thus motivates strengthening the notion of stability. In particular, we consider

the following (stronger) notion of fairness, proposed by Kesten and Ünver (2014).
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Definition 7. A matching M is strongly stable if (i) it is stable and (ii) for any f ∈ F ,

k ∈ If , and θ, θ′ ∈ Θk
f , if

Mf (θ)

G(θ)
<

Mf (θ′)

G(θ′)
, then

∑
f ′∈F̃ :f ′≺θf Mf ′(θ) = 0.

In words, strong stability requires that if a worker type θ is assigned a firm f with

strictly lower probability than another type θ′ in the same indifference class for firm f ,

then the type-θ worker should never be assigned any firm f ′ the worker ranks below f . In

that sense, the workers in the same priority class should not be discriminated against one

another. This is an additional requirement that is not implied by stability (which requires

fairness, or more precisely, elimination of justified envy, across workers that a firm is not

indifferent among).

We next discuss incentive compatibility of a mechanism. To this end, we assume as

before that the workers evaluate lotteries via the partial order given by first-order stochastic

dominance, and define strategy-proofness as follows:

Definition 8. ϕ is strategy-proof for workers if, for each (reported) population G ∈ X ,

productivity type a ∈ A, preference types P and P ′ in P such that both (a, P ) and (a, P ′)

are in the support of G, and f ∈ F̃ , we have∑
f ′:f ′�P f

ϕf ′(G)(a, P )

G(a, P )
≥

∑
f ′:f ′�P f

ϕf ′(G)(a, P ′)

G(a, P ′)
. (4)

Some comments on our modeling assumptions are in order. First, a worker can misreport

only her preference type, and not her productivity type (recall that a worker’s productivity

type determines firms’ preferences on her): this assumption is the same as in the standard

setting in the literature. Second, unlike in finite population models, the worker cannot

alter the population G by unilaterally misreporting her preferences, because there are a

continuum of workers. Third, we only impose the restriction (4) for types (a, P ) and

(a, P ′) that are in the support of G. For the true worker type (a, P ), this is the same

assumption as in the standard strategy-proofness concept for finite markets. We do not

impose any condition for misreporting a measure-zero type, since if ϕ is a mechanism that

is individually rational (which is the case for stable mechanisms), then the incentives for

misreporting to be a measure-zero type can be eliminated by specifying the mechanism to

assign a worker reporting such a type to the outside option with probability one. Finally,

strategy-proofness is closely related to a standard fairness property. We say that a matching

M is envy-free if, for each productivity type a ∈ A, as well as preference types P and P ′

in P such that both (a, P ) and (a, P ′) are in the support of G, the matching for a worker

of type (a, P ) weakly first-order stochastically dominates the matching for type (a, P ′) at

preference P . Clearly, this definition is “equivalent” to strategy-proofness in the sense that
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a mechanism ϕ is strategy-proof if and only if ϕ(G) is envy-free for every worker population

G. This connection between strategy-proofness and envy-freeness has been observed in the

literature on mechanisms in large markets, by Che and Kojima (2010) for instance.

We are now ready to state our main result. Our approach is to show existence of a

stable matching that satisfies an additional property. Say a matching M is population-

proportional if, for each f ∈ F and k ∈ If , there is some αkf ∈ [0, 1] such that

Mf (θ) = min{D�f (M)(θ), αkfG(θ)}, ∀θ ∈ Θk
f . (5)

In words, the measure of workers hired by firm f from the indifference class Θk
f is given

by the same proportion αkf of G(θ) for all θ ∈ Θk
f , unless the measure of worker types θ

available to f is less than the proportion αkf of G(θ), in which case the entire available

measure of that type is assigned to that firm. In short, a population-proportional matching

seeks to match a firm with workers of different types in proportion to their population sizes

at G whenever possible, if they belong to the same indifference class for the firm. The

stability and population-proportionality of a mechanism translate into the desired fairness

and incentive properties, as the following result shows.

Theorem 5. (i) If a matching is stable and population-proportional, then it is strongly

stable.

(ii) If a mechanism ϕ implements a strongly stable matching for every measure in X ,

then the mechanism is strategy-proof for workers.

Proof. See Appendix C.

The following result then guarantees existence of a stable and population-proportional

matching.

Theorem 6. For any population of workers, there exists a matching which is stable and

population-proportional.

Proof. See Appendix C.

A key step in the proof of this result is to select from each firm’s choice correspondence

Cf an optimal choice C̃f ∈ Cf that satisfies population-proportionality. The selection

C̃f is then shown to be continuous, so by Theorem 2, a “stable matching” exists in the

“hypothetical” continuum economy in which firms have preferences represented by the

choice functions C̃f . The last step is to show that the stable matching of the hypothetical

economy is in turn stable in the original economy and satisfies population-proportionality.

27



This result establishes the existence of a matching that satisfies strong stability and

strategy-proofness for workers for the large economy environment. In contrast to the ex-

isting literature, our result holds under general preferences of firms that may involve both

indifferences and complementarities.

Remark 6 (Non-strategy-proofness for firms). Even with a continuum of workers, no sta-

ble mechanism is strategy-proof for the firms. To show this fact, consider the following

example.30 Let F = {f1, f2}, Θ = {θ, θ′}, and G(θ) = G(θ′) = 1/2. Worker preferences are

given as follows:

θ :f2 � f1 � ø,

θ′ :f1 � f2 � ø.

Firm preferences are responsive; f1 prefers θ to θ′ to vacant positions, and wants to be

matched with workers of up to measure 1; and f2 prefers θ′ to θ to vacant positions, and

wants to be matched with workers of up to measure 1/2.

Let ϕ be any stable mechanism. Given the above input, the following matching is the

unique stable matching:

M ≡

(
f1 f2

1
2
θ′ 1

2
θ

)
.

Matching M is clearly stable because it is individually rational and every worker is matched

to her most preferred firm. To see the uniqueness, note first that in any stable matching,

every worker has to be matched to a firm (if there is a positive measure of unmatched

workers, then there is also a vacant position in firm f1, and they block the matching).

All workers of type θ′ are matched with f1, because otherwise f1 and θ′ workers who are

not matched with f1 block the matching (note that f1 has vacant positions to fill with θ′

workers). Given this, all workers of type θ are matched with f2, because otherwise f2 and θ

workers who are not matched with f2 block the matching (note that f2 has vacant positions

to fill with type θ workers).

Now, assume that f1 misreports its preferences, declaring that θ is the only acceptable

worker type, while it still has a responsive preferences and wants to be matched to the

same measure as before, 1. And assume that preferences for other agents are unchanged.

30This example is a continuum-population variant of an example in Section 3 of Hatfield, Kojima and

Narita (2014a). See also Azevedo (2014) who shows that stable mechanisms are manipulable via capacities

even in markets with continuum of workers.
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Then, it is easy to verify that the unique stable matching is

M ′ ≡

(
f1 f2

1
2
θ 1

2
θ′

)
.

Therefore, firm f1 prefers its outcome at M ′ to the one at M , proving that no stable

mechanism is strategy-proof for the firms.

6.3 Applications to Time-Share/Probabilistic Matching Models

Our general indifference model introduced in Section 6.2 has a connection with time share

and probabilistic matching models. In these models, a finite set of workers contract with

a finite set of firms for time shares or they are matched probabilistically. Probabilistic

matching is often used in allocation problems without money such as school choice, while

time-share models have been proposed as a solution to labor matching markets in which

part-time jobs are available (see Biró, Fleiner and Irving (2013) for instance).

Our general indifference model can be reinterpreted as a time-share model. Let Θ be

the finite set of workers whose shares firms may contract for, as opposed to the finite types

of continuum of workers. The measure G(θ) represents the total endowment of time or

probability that a worker θ has available for matching. A matching M describes time or

probability Mf (θ) that a worker θ and a firm f are matched.

The partition Pf then describes firm f ’s set of indifference classes, where each class

describes a set of workers the firm finds equivalent. The function Λf = (Λkf )k∈If describes

the time shares firm f wishes to choose from available time shares in alternative indifference

classes. The structure of indifferences as well as firms’ preference we permit is very general.

Recall that our indifferences model allows different firms to be indifferent across different

sets of workers. On the worker side, for each worker θ ∈ ΘP , the first-order stochastic

dominance induced by P describes the preference of the worker in evaluating lotteries.

With this reinterpretation, Definitions 5 and 7 provide appropriate notions of a stable

matching and a strongly stable matching, respectively.31

31The notion of strong stability in Definition 7 requires the proportion of time spent with a firm out of

total endowment to be equalized among workers that the firm considers equivalent. This notion is sensible

in the context of time share model, particularly when G(θ) is the same across all workers, as with school

choice (where each student has a unit demand). When G(θ) is different across θ’s, however, one could

consider an alternative notion, for instance one that equalizes the absolute amount of time (not divided by

G(θ)) a worker spends with a firm. Our analysis can be easily modified to prove the existence of matching

that satisfies this alternative notion of strong stability.
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We call a time share model induced in this way by our general indifference model a

general time share model. This model clearly encompasses a broad class of existing

time share models, both in terms of the structure of indifferences that it permits as well

as firms’ preferences, which include non-substitutable as well as substitutable preferences.

The only significant assumption is the continuity of Λf . The following result is immediate:

Corollary 1. A general time share model admits a strongly stable—and thus stable—

matching.32

This result generalizes the existence of a strongly stable matching in the school choice

problem studied by Kesten and Ünver (2014), where schools may regard multiple students

as having the same priority. In their model, there are a finite number of students and a

matching specifies a profile of match probabilities (so each worker θ represents a student and

G(θ) = 1 for all θ). They define probabilistic matchings that satisfy our strong stability

property (which they call strong ex ante stability), and show their existence under the

assumption that schools have responsive preferences with ties. In their context, strong

stability requires—in addition to stability—that two students with the same priority at

a school be assigned to that school with the same probability, unless the student with

the smaller probability is matched with each of her less preferred outcomes with zero

probability. Our contribution here lies in establishing the existence of a stable matching

with general preferences that may violate responsiveness or even substitutability. Our result

could be useful for school choice environments in which the schools may need a balanced

student body in terms of gender, ethnicity, income, or skill levels. For example, in New

York City, the so-called Education Option (EdOpt) school programs are required to assign

16 percent, 68 percent, and another 16 percent of the seats to the top performers, middle

performers, and the lower performers, respectively (Abdulkadiroğlu, Pathak and Roth,

2005). Strong stability will ensure ex ante fairness in the sense that it not only implements

the desired mix of students but also ensures fairness in the treatment of students.

7 Conclusion

Complementarity is prevalent in matching markets, and it poses difficulty for designing

desirable mechanisms. The present paper took a step toward solving this problem by

studying stable matching in large economies. We demonstrated that if the firm preferences

32Unlike the continuum model, population proportionality does not guarantee strategy-proofness. As

is shown by Kesten and Ünver (2014), strategy-proofness is generally impossible to attain in the time-

share/probabilistic models with finitely many workers.
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are continuous, then an economy with a continuum of workers always has a stable matching,

even in the presence of complementarities. Building upon this result, we established that

there exists an approximately stable matching in large finite economies. We extended our

analysis to the case in which firms’ choices may not be unique, and used this framework

to show that there is a stable mechanism that is strategy-proof for workers and satisfies an

additional fairness property, strong stability.

To our knowledge, this paper is the first to analyze a continuum matching model with

the level of generality as presented here. As such, our paper may pose as many questions as

it answers. One issue worth pursuing is the computation of a stable matching. Existence

of a stable matching, as established in this paper, is clearly necessary to find a desired

mechanism, but for practical implementation one needs an algorithm that is computable

and fast. Our mapping T not only characterizes stable matchings but also is interpretable

as a tâtonnement adjustment process for revising the “budget quotes” that has a potential

to be used as an actual mechanism.33 However, this process is not guaranteed to always

converge to a stable matching.34 This is not a surprise, given that similar algorithms such

as a tâtonnement process in general equilibrium theory or a best response process in game

theory also fail convergence in general. Studying the computationally efficient algorithms

to find stable matchings would be an interesting and challenging future research topic.

Another research direction is to find structural properties of stable matchings. Sec-

tion S.3 of the Supplementary Notes studies this issue for the case where firm preferences

satisfy substitutability (but not necessarily continuity). We show that the set of stable

matchings forms a (nonempty) complete lattice, which in particular implies the existence

of side-optimal stable matchings. A version of the rural hospital theorem also holds given

an appropriate version of the law of aggregate demand. While these results may be ex-

pected from the existing theory, we also provide a novel condition that generalizes the full

support assumption of Azevedo and Leshno (2011) and guarantees the uniqueness of stable

matching. Although our analysis in the Supplementary Notes has already established these

33In fact, in case of substitutable preferences, the map T entails a monotonic process that converges

regardless of the initial state, and in particular corresponds to the celebrated and largely successful Gale

and Shapley’s deferred acceptance (DA) algorithms when the initial measures are set at either the largest

(firm-proposing DA) or at the smallest measures (worker-proposing DA).
34Recall our leading example in Example 1. We can see that starting from any state ( 1

2 , x
′
1;x2,

1
2 ), T

cycles back to itself:

( 1
2 , x
′
1;x2,

1
2 )→ ( 1

2 , x2; 1
2 − x

′
1,

1
2 )→ ( 1

2 ,
1
2 − x

′
1; 1

2 − x2,
1
2 )→ ( 1

2 ,
1
2 − x2;x′1,

1
2 )→ ( 1

2 , x
′
1;x2,

1
2 ).

Hence, unless one starts with the stable matching x1 = x′2 = 1/2, the map T never finds a stable matching.
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key structural properties, further studies along this line seems promising.

While our model substantially generalizes previous models, further generalizations would

be another interesting research topic. In Section S.4 of the Supplementary Notes, we gen-

eralize our continuum matching model to the setting of matching with contracts due to

Hatfield and Milgrom (2005). We establish basic results, namely the existence and a fixed-

point characterization of stable matchings, and it appears that many other basic properties

should hold. Just as many papers have successfully generalized and applied the finite model

of matching with contract, future research on matching with contracts in large economies

may prove fruitful.

The approach of this paper was theoretical, and our theoretical findings suggest a num-

ber of complementary research directions using different methodologies. For instance, it

would be important to see whether approximate stability is sufficient for keeping the given

matching undisturbed in practice. Testing this hypothesis with real data is likely challeng-

ing and certainly outside the scope of this particular paper, but it may be an interesting

future research topic. Given the difficulty with using real data, lab experiments or numer-

ical methods may be promising. Theses are just a few examples of research topics, and we

expect that many other questions can be asked in the framework presented in the current

paper.
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A Proofs of Theorems 1, 2 and 4

Since Theorems 1 and 2 follow as corollaries from their counterparts (Theorems 7 and 4)

in the correspondence case, we only consider the case where Cf and thus Rf are correspon-

dences.

Let us extend the mapping T to the case of correspondences as follows: For any X ∈
X n+1,

T (X) = {X̃ ∈ X n+1 | X̃f (·) =
∑
P∈P

YfP− (ΘP ∩ ·),∀f ∈ F̃ ,

for some (Yf )f∈F̃ such that Yf ∈ Rf (Xf ),∀f ∈ F̃},

where YfP− (ΘP ∩ ·) = G(ΘP ∩ ·) if f is the top-ranked firm at P .

First, we obtain the characterization of stable matchings as fixed points of T , from

which Theorem 1 follows as a corollary since the above T mapping coincides with that in

(2), as can be easily verified.

Theorem 7. A matching M ∈ X n+1 is stable if and only if there is a fixed point X ∈ T (X)

such that Mf ∈ Cf (Xf ),∀f ∈ F̃ . Also, any such X and M satisfy Xf = D�f (M),∀f ∈ F̃ .

Proof. (“Only if” part): Suppose M is a stable matching in X n+1. Define X = (Xf )f∈F̃
as

Xf (E) = D�f (M)(E) =
∑
P∈P

∑
f ′∈F̃ :f ′�P f

Mf ′(ΘP ∩ E),∀E ∈ Σ.

We prove that X is a fixed point of T . Let us first show that for each f ∈ F̃ , Xf ∈ X . It

is clear that as each Mf ′(ΘP ∩ ·) is nonnegative and countably additive, so is Xf (·). It is

also clear that since (Mf )f∈F̃ is a matching, Xf @ G. Thus, we have Xf ∈ X .

We next claim that Mf ∈ Cf (Xf ) for all f ∈ F̃ . This is immediate for f = ø since

Mø @ Xø = Cø(Xø). To prove the claim for f 6= ø, suppose for a contradiction that

Mf /∈ Cf (Xf ), which means that there is some M ′
f ∈ Cf (Xf ) such that M ′

f 6= Mf . Note

that Mf @ Xf and thus (M ′
f ∨Mf ) @ Xf . Then, by revealed preference, we have Mf /∈

Cf (M
′
f ∨Mf ) and M ′

f ∈ Cf (M
′
f ∨Mf ) or M ′

f �f Mf , which means that M is unstable

since M ′
f @ Xf = D�f (M), yielding the desired contradiction.

We next prove X ∈ T (X). The fact that Mf ∈ Cf (Xf ),∀f ∈ F̃ means that Xf −Mf ∈
Rf (Xf ),∀f ∈ F̃ . We set Yf = Xf −Mf for each f ∈ F̃ and obtain for any E ∈ Σ∑

P∈P

YfP− (ΘP ∩ E) =
∑
P∈P

(
XfP−

(ΘP ∩ E)−MfP−
(ΘP ∩ E)

)
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=
∑
P∈P

 ∑
f ′∈F̃ :f ′�P fP−

Mf ′(ΘP ∩ E)−MfP−
(ΘP ∩ E)


=
∑
P∈P

∑
f ′∈F̃ :f ′�P f

Mf ′(ΘP ∩ E) = Xf (E),

where the second and fourth equalities follow from the definition of XfP−
and Xf , respec-

tively, while the third from the fact that fP− is an immediate predecessor of f . The above

equation holds for every firm f ∈ F̃ , so we conclude that X ∈ T (X), i.e. X is a fixed point

of T .

(“If” part): Let us first introduce some notations. Let fP+ denote an immediate

successor of f ∈ F̃ at P ∈ P : that is, fP+ ≺P f , and for any f ′ ≺P f , f ′ �P fP+ . Also,

let XfP+
(ΘP ∩ ·) ≡ 0 for the firm f that is ranked last at P . Note that for any f, f̃ ∈ F̃ ,

f = f̃P− if and only if f̃ = fP+ .

Suppose now that X ∈ X n+1 is a fixed point of T . For each firm f ∈ F̃ and E ∈ Σ,

define

Mf (E) = Xf (E)−
∑
P∈P

XfP+
(ΘP ∩ E). (6)

We first verify that for each f ∈ F̃ , Mf ∈ X . First, it is clear that for each f ∈ F̃ , as

both Xf (·) and XfP+
(ΘP ∩ ·) are countably additive, so is Mf . It is also clear that for each

f ∈ F̃ , Mf @ Xf .

Let us next show that for all f ∈ F̃ , P ∈ P , and E ∈ Σ,

Xf (ΘP ∩ E) =
∑

f ′∈F̃ :f ′�P f

Mf ′(ΘP ∩ E), (7)

which means that Xf = D�f (M). To do so, consider first a firm f that is ranked last at

P . By (6) and the fact that XfP+
(ΘP ∩ ·) ≡ 0, we have Mf (ΘP ∩E) = Xf (ΘP ∩E). Hence,

(7) holds for such f . Consider now any f ∈ F̃ which is not ranked last, and assume for an

inductive argument that (7) holds true for fP+ , so XfP+
(ΘP∩E) =

∑
f ′∈F̃ :f ′�P fP+

Mf ′(ΘP∩E).

Then, by (6), we have

Xf (ΘP ∩ E) = Mf (ΘP ∩ E) +XfP+
(ΘP ∩ E) = Mf (ΘP ∩ E) +

∑
f ′∈F̃ :f ′�P fP+

Mf ′(ΘP ∩ E)

=
∑

f ′∈F̃ :f ′�P f

Mf ′(ΘP ∩ E),

as desired.
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To show that M = (Mf )f∈F̃ is a matching, let f be a top-ranked firm at P and note

that by definition of T , if X̃ ∈ T (X), then X̃f (ΘP ∩ ·) = G(ΘP ∩ ·). Since X ∈ T (X), we

have for any E ∈ Σ

G(ΘP ∩ E) = Xf (ΘP ∩ E) =
∑

f ′∈F̃ :f ′�P f

Mf ′(ΘP ∩ E) =
∑
f ′∈F̃

Mf ′(ΘP ∩ E),

where the second equality follows from (7). Since the above equation holds for every P ∈ P ,

M is a matching.

Let us now fix any f ∈ F̃ and show that Mf ∈ Cf (Xf ), which is equivalent to showing

Xf −Mf ∈ Rf (Xf ). Recall that XfP+
(ΘP ∩ E) = Yf (ΘP ∩ E) for all P ∈ P and E ∈ Σ.

Then, (6) implies

Xf (·)−Mf (·) =
∑
P∈P

XfP+
(ΘP ∩ ·) =

∑
P∈P

Yf (ΘP ∩ ·) = Yf (·) ∈ Rf (Xf ),

as desired, where the last inclusion relationship follows from the definition of T .

We now prove that (Mf )f∈F̃ is stable. To prove the first part of Condition 1 of Definition

5, note first that Mø ∈ Cø(Xø) = {Xø}. Then, for every P ∈ P and E ∈ Σ,∑
f :f≺P ø

Mf (ΘP ) =
∑

f :f�P ø

Mf (ΘP )−Mø(ΘP ) = Xø(ΘP )−Mø(ΘP ) = 0,

where the middle equality follows from (7). The above equation means that for each f ≺P ø,

we have Mf (ΘP ) = 0, as desired. The second part of Condition 1 of Definition 5 (i.e.

Mf ∈ Cf (Mf )) follows from revealed preference since Mf @ Xf by (7) and Mf ∈ Cf (Xf ).

It only remains to check Condition 2 of Definition 5. Suppose for a contradiction that

it fails. Then, there exist f and M ′
f such that

M ′
f @ D�f (M), M ′

f ∈ Cf (M ′
f ∨Mf ), and Mf /∈ Cf (M ′

f ∨Mf ). (8)

So M ′
f @ D�f (M) = Xf . Since then Mf @ (M ′

f ∨ Mf ) @ Xf and Mf ∈ Cf (Xf ), the

revealed preference property implies Mf ∈ Cf (M ′
f ∨Mf ), contradicting (8). We have thus

proven that M is stable.

We now prove Theorem 4, from which Theorem 2 follows as a corollary since, if T is

a single-valued mapping, then the convex- and closed-valuedness hold trivially while the

upper hemicontinuity is equivalent to continuity. To prove existence, by Theorem 7, it

suffices to show that the mapping T has a fixed point. To this end, we establish a series of

Lemmas.
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We now establish the compactness of X and the upper hemicontinuity of T . Recall

that X is endowed with weak-∗ topology. The notion of convergence in this topology, i.e.

weak convergence, can be stated as follows: A sequence of measures (Xk)k∈N in X weakly

converges to a measure X ∈ X , written as Xk
w∗−→ X, if and only if

∫
Θ
hdXk →

∫
Θ
hdX for

all h ∈ C(Θ), where C(Θ) is the space of all continuous functions defined on Θ. The next

result provides some conditions that are equivalent to weak convergence.

Theorem 8. Let X and (Xk)k∈N be finite measures on Σ. The following conditions are

equivalent:35

(a) Xk
w∗−→ X;

(b)
∫

Θ
hdXk →

∫
Θ
hdX for all h ∈ Cu(Θ), where Cu(Θ) is the space of all uniformly

continuous functions defined on Θ;

(c) lim infkXk(A) ≥ X(A) for every open set A ⊂ Θ, and Xk(Θ)→ X(Θ);

(d) lim supkXk(A) ≤ X(A) for every closed set A ⊂ Θ, and Xk(Θ)→ X(Θ);

(e) Xk(A) → X(A) for every set A ∈ Σ such that X(∂A) = 0 (∂A denotes the boundary

of A).

Lemma 2. The space X is convex and compact. Also, for any X ∈ X , XX is compact.

Proof. Convexity of X follows trivially.

To prove the compactness of X , let C(Θ)∗ denote the dual (Banach) space of C(Θ) and

note that C(Θ)∗ is the space of all (signed) measures on (Θ,Σ), given Θ is a compact metric

space.36 Then, by Alaoglu’s Theorem, the closed unit ball of C(Θ)∗, denoted U∗, is weak-∗
compact.37 Clearly, X is a subspace of U∗ since for any X ∈ X , ‖X‖ = X(Θ) ≤ G(Θ) = 1.

35This theorem is a modified version of “Portmanteau Theorem” that is modified to deal with any finite

(i.e. not necessarily probability) measures. See Theorem 4.5.1 of Ash (1977) for this result, for instance.
36More precisely, C(Θ)∗ is isometrically isomorphic to the space of all signed measures on (Θ,Σ) ac-

cording to the Riesz Representation Theorem (see Royden and Fitzpatrick (2010) for instance).
37The closed unit ball is defined as U∗ := {X ∈ C∗(Θ) : ‖X‖ ≤ 1}, where ‖X‖ is the dual norm, i.e.,

‖X‖ = sup{
∣∣∫

Θ
hdX

∣∣ : h ∈ C(Θ) and max
θ∈Θ
|h(θ)| ≤ 1}.

If X is a nonnegative measure, then the supremum is achieved by taking h ≡ 1, and thus ‖X‖ = X(Θ). It

is well known (see Royden and Fitzpatrick (2010) for instance) that if C(Θ)∗ is infinite dimensional, then

U∗ is not compact under the norm topology (i.e., the topology induced by the dual norm). On the other

hand, U∗ is compact under the weak-∗ topology, which follows from Alaoglu’s Theorem (see Royden and

Fitzpatrick (2010) for instance).
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The compactness of X will thus follow if X is shown to be a closed set. To prove this, we

prove that for any sequence (Xk)k∈N in X and X ∈ C(Θ)∗ such that Xk
w∗−→ X, we must

have X ∈ X , which will be shown if we prove that 0 ≤ X(E) ≤ G(E) for any E ∈ Σ. Let

us first make the following observation: every finite (Borel) measure X on the metric space

Θ is normal,38 which means that for any set E ∈ Σ,

X(E) = inf{X(O) : E ⊂ O and O ∈ Σ is open} (9)

= sup{X(F ) : F ⊂ E and F ∈ Σ is closed}. (10)

To show first that X(E) ≤ G(E), consider any open set O ∈ Σ such that E ⊂ O. Then,

since Xk ∈ X for every k, we must have Xk(O) ≤ G(O) for every k, which, combined

with (c) of Theorem 8 above, implies that X(O) ≤ lim infkXk(O) ≤ G(O). Given (9), this

means that X(E) ≤ G(E).

To show next that X(E) ≥ 0, consider any closed set F ∈ Σ such that F ∈ Σ. Since

Xk ∈ X for every k, we must have Xk(F ) ≥ 0, which, combined with (d) of Theorem 8

above, implies that X(F ) ≥ lim supkXk(F ) ≥ 0. Given (10), this means X(E) ≥ 0.

The proof for the compactness of XX is analogous and hence omitted.

Lemma 3. The map T is a correspondence from X n+1 to itself. Also, it is convex-valued

and upper hemicontinuous.

Proof. To show that T maps from X n+1 to itself, observe that for any X ∈ X n+1 and

X̃ ∈ Tf (X), there is Yf ∈ Rf (Xf ) for each f ∈ F̃ such that for all E ∈ Σ,

X̃(E) =
∑
P∈P

YfP− (ΘP ∩ E) ≤
∑
P∈P

XfP−
(ΘP ∩ E) ≤

∑
P∈P

G(ΘP ∩ E) = G(E),

which means that X̃ ∈ X , as desired.

To prove that T is convex-valued, it suffices to show that for each f ∈ F̃ , Rf is convex-

valued. Consider any X ∈ X and Y ′, Y ′′ ∈ Rf (X). There are some X ′, X ′′ ∈ Cf (X)

satisfying Y ′ = X −X ′ and Y ′′ = X −X ′′. Then, the convexity of Cf (X) implies that for

any λ ∈ [0, 1], λX ′+(1−λ)X ′′ ∈ Cf (X) so λY ′+(1−λ)Y ′′ = X−(λX ′+(1−λ)X ′′) ∈ Rf (X).

To establish the upper hemicontinuity of T , we first establish the following claim:

Claim 1. For any sequence (Xk)k∈N ⊂ X that weakly converges to X ∈ X , a sequence

(Xk(ΘP ∩ ·))k∈N also weakly converges to X(ΘP ∩ ·) for all P ∈ P.

38See Theorem 12.5 of Aliprantis and Border (2006).
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Proof. Let XP and XP
k denote X(ΘP ∩ ·) and Xk(ΘP ∩ ·), respectively. Note first that for

any X ∈ X , we have XP ∈ X for all P ∈ P . Due to Theorem 8, it suffices to show that

XP and (XP
k )k∈N satisfy the condition (c) of Theorem 8. To do so, consider any open set

O ⊂ Θ. Then, letting Θ◦P denote the interior of ΘP ,

lim inf
k
XP
k (O) = lim inf

k
Xk(Θ

◦
P ∩O) +Xk(∂ΘP ∩O)

= lim inf
k
Xk(Θ

◦
P ∩O) ≥ X(Θ◦P ∩O) = XP (O),

where the second equality follows from the fact that Xk(∂ΘP ∩O) ≤ Xk(∂ΘP ) ≤ G(∂ΘP ) =

0, the lone inequality from Xk
w∗−→ X, (c) of Theorem 8, and the fact that ∂Θ◦P ∩ O is an

open set, and the last equality from repeating the first two equalities with X instead of

Xk. Also, we have

XP
k (Θ) = Xk(ΘP )→ X(ΘP ) = XP (Θ),

where the convergence is due to Xk
w∗−→ X, (e) of Theorem 8, and the fact that X(∂ΘP ) ≤

G(∂ΘP ) = 0. Thus, the two requirements in condition (c) of Theorem 8 are satisfied, so

XP
k

w∗−→ XP , as desired.

It is also straightforward to observe that if Cf is upper hemicontinuous, then Rf is also

upper hemi-continuous.

We now prove the upper hemicontinuity of T by considering any sequences (Xk)k∈N

and (X̃k)k∈N in X n+1 weakly converging to some X and X̃ in X n+1, respectively, such that

X̃k ∈ Tf (Xk) for each k. To show that X̃ ∈ T (X), let Xk,f and X̃k,f denote the components

of Xk and X̃k, respectively, that correspond to f ∈ F̃ . Then, we can find Yk,f ∈ Rf (Xk,f )

for each k and f such that X̃k,f (·) =
∑

P∈P Yk,fP− (ΘP ∩ ·), which implies that for all f ∈ F̃
and P ∈ P , X̃k,fP+

(ΘP ∩ ·) = Yk,f (ΘP ∩ ·) since f is the immediate predecessor of fP+ at P .

As X̃k,f
w∗−→ X̃f , ∀f ∈ F̃ , by assumption, we have X̃k,fP+

(ΘP ∩ ·)
w∗−→ X̃fP+

(ΘP ∩ ·) by Claim

1, which means that Yk,f (ΘP ∩ ·)
w∗−→ X̃fP+

(ΘP ∩ ·) for all f ∈ F̃ . This in turn implies that

Yk,f (·) =
∑

P∈P Yk,f (ΘP ∩ ·)
w∗−→
∑

P∈P X̃fP+
(ΘP ∩ ·). Now let Yf (·) =

∑
P∈P X̃fP+

(ΘP ∩ ·).
We then have X̃f (ΘP ∩ ·) = YfP− (ΘP ∩ ·) and thus X̃f (·) =

∑
P∈P YfP− (ΘP ∩ ·). Also, since

Xk,f
w∗−→ Xf and Yk,f

w∗−→ Yf , we must have Yf ∈ Rf (Xf ) by the upper hemicontinuity of

Rf , which means X̃ ∈ T (X), as desired.

Proof of Theorem 4. Lemmas 2 and 3 show that T is convex-valued and upper hemi-

continuous while it is a mapping from convex, compact space X n+1 into itself, which implies
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that T is also closed-valued. Thus, we can invoke Kakutani-Fan-Glicksberg’s fixed point

theorem to conclude that the mapping T has a nonempty set of fixed points.39

B Proof of Theorem 3

Since the utility function of each firm is continuous, it suffices to show that there exists an

ε-distance stable matching as defined in Remark 5. The rest of this proof constructs an

ε-distance stable matching.

Let Γ be the limit continuum economy which the sequence (Γq)q∈N converges to. For any

population G, fix a sequence (Gq)q∈N of finite-economy populations such that Gq w∗−→ G.

Let Θq = {θq1, θ
q
2, . . . , θ

q
q̄} ⊂ Θ be the support for Gq.40 For each firm f ∈ F̃ , define Θf to

be the set of types that find firm f acceptable, i.e., Θf := ∪P∈P:f�P øΘP (let Θø = Θ by

convention). Let Θf denote the closure of Θf . We first prove a few preliminary results.

Lemma 4. For any r > 0, there is a finite number of open balls, B1, . . . , BL, in Θ that

have radius smaller than r with a boundary of zero measure (i.e. G(∂B`) = 0,∀`) and cover

Θf for each f ∈ F .

Proof. Let B(θ, r) = {θ′ ∈ Θ | ‖θ′−θ‖ < r} and S(θ, r) = {θ′ ∈ Θ | ‖θ′−θ‖ = r}, where ‖·‖
is a metric for the space Θ. For all θ ∈ Θf and r > 0, there must be some rθ ∈ (0, r) such

that G(S(θ, rθ)) = 0.41 This means that ∂B(θ, rθ) = S(θ, rθ) has a zero measure. Consider

now a collection {B(θ, rθ) | θ ∈ Θ} of open balls that covers Θf . Since Θf is a closed subset

of the compact set Θ, it is compact and thus has a finite cover.

Lemma 5. Consider any X, Y ∈ X and any sequence (Y q)q∈N such that Y q ∈ X q, Y q w∗−→
Y , X @ Y , and X(Θ\Θf ) = 0 for some f ∈ F̃ .42 Then, there exists a sequence (Xq)q∈N

such that Xq ∈ X q, Xq w∗−→ X, Xq @ Y q, and Xq(Θ\Θf ) = 0 for all q.

Proof. Consider a decreasing sequence (εk)k∈N of real numbers converging to 0. Fix any

k. Then, by Lemma 4, we can find a finite cover {Bk
` }`=1,...,Lk of Θf for each k such that

for each `, Bk
` has a radius smaller than εk and G(∂Bk

` ) = 0. Define Ak1 = Bk
1 ∩ Θf and

39For Kakutani-Fan-Glicksberg’s fixed point theorem, refer to Theorem 16.12 and Corollary 16.51 in

Aliprantis and Border (2006).
40Note that we allow for possibility that there are more than one worker of the same type even in finite

economies, so q̄ may be strictly smaller than q.
41To see this, note first that B(θ, r) = ∪r̃∈[0,r)S(θ, r̃) and G(B(θ, r)) <∞. Then, G(S(θ, r̃)) > 0 for at

most countably many r̃’s, since otherwise the set Rn ≡ {r̃ ∈ [0, r) |G(S(θ, r̃)) ≥ 1/n} has to be infinite for

at least one n, which yields G(B(θ, r)) ≥ G(∪r̃∈RnS(θ, r̃)) ≥ ∞n , a contradiction.
42Note that if f = ø, then Θ\Θf = ∅. Thus, the restriction that X(Θ\Θf ) = 0 becomes vacuous.
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Ak` =
(
Bk
` \ (∪`−1

`′=1B
k
`′)
)
∩ Θf for each ` ≥ 2. Then, {Ak`}`=1,...,Lk constitutes a partition

of Θf . It is straightforward to see that G(∂Ak` ) = 0,∀`, since G(∂Bk
` ) = 0,∀`, and that

G(∂Θf ) = 0.43 This implies that Y (∂Ak` ) = 0,∀`. Given this and the assumption that

Y q w∗−→ Y , condition (e) of Theorem 8 implies that there exists sufficiently large q, denoted

qk, such that for all q ≥ qk

1

q
<

εk
Lk

and |Y (Ak` )− Y q(Ak` )| <
εk
Lk
,∀` = 1, . . . , Lk. (11)

Let us choose (qk)k∈N to be a sequence that strictly increases with k.

We are prepared to construct Xq as follows: (i) Xq(θ) ≤ Y q(θ),∀θ ∈ Θq; (ii) for each

q ∈ {qk, . . . , qk+1 − 1},

Xq(Ak` ) = max

{
m

q

∣∣∣∣ m ∈ N ∪ {0} and
m

q
≤ min{X(Ak` ), Y

q(Ak` )}
}

for each ` = 1, . . . , Lk.

It is straightforward to check the existence of Xq that satisfies both (i) and (ii). Note that

(i) ensures that Xq @ Y q and Xq(Θ\Θf ) ≤ Y q(Θ\Θf ) = 0.

We show that for all q ∈ {qk, . . . , qk+1 − 1}, we have

|X(Ak` )−Xq(Ak` )| <
εk
Lk
. (12)

To see this, consider first the case where X(Ak` ) < Y q(Ak` ). Then, by definition of Xq and

(11), we have 0 ≤ X(Ak` )−Xq(Ak` ) <
1
q
< εk

Lk
. In the case where X(Ak` ) ≥ Y q(Ak` ), we have

Xq(Ak` ) = Y q(Ak` ) ≤ X(Ak` ) ≤ Y (Ak` ), which implies by (11)

|X(Ak` )−Xq(Ak` )| ≤ |Y (Ak` )− Y q(Ak` )| <
εk
Lk
.

Let us now prove that Xq w∗−→ X. We do so by invoking (b) of Theorem 8, according

to which Xq w∗−→ X if and only if |
∫
hdXq −

∫
hdX| → 0 as q → ∞, for any uniformly

continuous function h ∈ Cu(Θ).

Hence, to begin, fix any h ∈ Cu(Θ), and fix any ε > 0. Next we define for each k and

q ∈ {qk, . . . , qk+1 − 1}

h̄q,k` ≡
∑

θ∈Θq∩Ak`
Xq(θ)h(θ)∑

θ∈Θq∩Ak`
Xq(θ)

=

∑
θ∈Θq∩Ak`

Xq(θ)h(θ)

Xq(Ak` )

43The latter fact holds since Θf = ∪P∈P:f�øΘP and thus ∂Θf ⊂ ∪P∈P:f�P ø∂ΘP , which implies

G(∂Θf ) ≤ G(∪P∈P:f�P ø∂ΘP ) ≤
∑

P∈P:f�P ø

G(∂ΘP ) = 0.
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if Xq(Ak` ) > 0, and if Xq(Ak` ) = 0, then define h̄q,k` ≡ h(θ) for some arbitrarily chosen

θ ∈ Ak` .
Note that Cu(Θ) is endowed with the sup norm ‖ · ‖∞ and ‖h‖∞ is finite for any

h ∈ Cu(Θ). Thus, there exists sufficiently large K ∈ N that for all k > K and q ∈
{qk, . . . , qk+1 − 1},

‖h‖∞εk <
ε

2
and

Lk∑
`=1

sup
θ∈Ak`

|h̄q,k` − h(θ)|X(Ak` ) <
ε

2
, (13)

which is possible since h is uniformly continuous, Ak` ⊂ Bk
` , and Bk

` has a radius smaller

than εk with εk converging to 0 as k →∞.

Then, for any q > Q := qK , there exists k > K satisfying q ∈ {qk, . . . , qk+1 − 1} such

that ∣∣∣∣∫ hdXq −
∫
hdX

∣∣∣∣
=

∣∣∣∣∣
∫
θ∈Θf

hdXq −
∫
θ∈Θf

hdX

∣∣∣∣∣
=

∣∣∣∣∣
Lk∑
`=1

h̄q,k` Xq(Ak` )−
∫
θ∈Θf

hdX

∣∣∣∣∣
≤

∣∣∣∣∣
Lk∑
`=1

h̄q,k` (Xq(Ak` )−X(Ak` ))

∣∣∣∣∣+

∣∣∣∣∣
Lk∑
`=1

h̄q,k` X(Ak` )−
∫
θ∈Θf

hdX

∣∣∣∣∣
≤

Lk∑
`=1

‖h‖∞|Xq(Ak` )−X(Ak` )|+

∣∣∣∣∣
Lk∑
`=1

∫
θ∈Θf

h̄q,k` 1Ak`
dX −

Lk∑
`=1

∫
θ∈Θf

h1Ak` dX

∣∣∣∣∣
≤‖h‖∞εk +

Lk∑
`=1

sup
θ∈Ak`

|h̄q,k` − h(θ)|X(Ak` )

≤ ε
2

+
ε

2
= ε,

where the first equality holds since X(Θ\Θf ) = Xq(Θ\Θf ) = 0 while the third and fourth

inequalities follow from (12) and (13), respectively.

Lemma 6. For any two sequences (Xq)q∈N and (Y q)q∈N such that Xq, Y q ∈ X q, Xq @

Y q,∀q, Xq w∗−→ X, and Y q w∗−→ Y , we have X @ Y .

Proof. Letting Zq = Y q −Xq and Z = Y −X, we have Zq w∗−→ Z because of the fact that

for any h ∈ Cu(Θ),∫
Θ

hdZq =

∫
Θ

hdY q −
∫

Θ

hdXq →
∫

Θ

hdY −
∫

Θ

hdX =

∫
Θ

hdZ
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and (b) of Theorem 8. Since Zq = Y q − Xq ∈ X , Zq w∗−→ Z, and X is compact, we have

Z ∈ X , which implies that Z(E) = Y (E)−X(E) ≥ 0 for all E ∈ Σ, as desired.

Given the utility function uf , we define each firm f ’s optimal choice(s) in the economy

Γq as follows: for any X ∈ X q,

Cq
f (X) = arg max

X′@X,X′∈X q
uf (X

′).

Note that we allow for multiple optimal choices.

Lemma 7. Consider any X ∈ X and sequence (Xq)q∈N such that Xq ∈ X q and Xq w∗−→ X.

Then, for any sequence (M q)q∈N such that M q ∈ Cq
f (X

q) for some (fixed) f ∈ F , we must

have M q w∗−→ Cf (X).

Proof. Suppose to the contrary that M q does not converge to Cf (X). Then, there exists

some subsequence of M q, denoted (M qk)k∈N, that converges to some M ′ 6= Cf (X).44 Since

M qk @ Xqk and Xqk w∗−→ X, we have M ′ @ X by Lemma 6. Since both Cf (X) and M ′ are

subpopulations of X, the assumption that Cf (X) chooses a uniquely utility-maximizing

subpopulation implies that uf (Cf (X)) − ε′ > uf (M
′) + ε′ for some ε′ > 0. To draw a

contradiction, we apply Lemma 5 to construct a sequence (M̂k)k∈N such that M̂k ∈ X qk ,

M̂k @ Xqk , and M̂k w∗−→ Cf (X). We can then find sufficiently large k such that uf (M̂
k) >

uf (Cf (X)) − ε′ > uf (M
′) + ε′ > uf (M

qk), which contradicts the optimality of M qk given

Xqk , since both M̂k and M qk are feasible subpopulations of Xqk .

We are now ready to prove Theorem 3. First of all, by Theorem 2, there exists a stable

matching M in the continuum economy. We use this matching to construct a matching

M̄ q = (M̄ q
f )f∈F̃ in the finite economy Γq as follows: order the firms in F by f1, . . . , fn, and

1. define M̄ q
f1

as Xq in Lemma 5 with X = Mf1 , Y = G, and Y q = Gq45;

2. define M̄ q
f2

as Xq in Lemma 5 with X = Mf2 , Y = G−Mf1 , and Y q = Gq−M̄ q
f1

(this

is possible since Gq − M̄ q
f1

w∗−→ G−Mf1);

3. in general, for each fk ∈ F̃ , define inductively M̄ q
fk

as Xq in Lemma 5 with X = Mfk ,

Y = G−
∑

k′<kMfk′
, and Y q = Gq −

∑
k′<k M̄

q
fk′

;

44This existence is guaranteed by the compactness of X , which is equivalent to the sequential compact-

ness in a metric space, as is the case in our model.
45Note that Mf (Θ\Θf ) = 0 for all f ∈ F since M is individually rational, so Lemma 5 can be applied.
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and define M̄ q
ø = Gq −

∑
f∈F̃ M̄

q
f .

By Lemma 5, M̄ q is feasible in Γq and individually rational for workers while M̄ q w∗−→M .

To ensure the individual rationality for firms, we define another matching M q = (M q
f )f∈F̃

as follows: for each f ∈ F , select any M q
f ∈ C

q
f (M̄

q
f ), and then set M q

ø = Gq−
∑

f∈F M
q
f . By

revealed preference, we have M q
f ∈ C

q
f (M

q
f ) and thus M q is individually rational for firms.

Also, the individual rationality of M q for workers follows immediately from the individual

rationality of M̄ q and the fact that M q
f @ M̄ q

f for all f ∈ F . Furthermore, by Lemma 7,

M q
f

w∗−→ Mf for all f ∈ F since M q
f ∈ Cq

f (M̄
q
f ), M̄ q

f

w∗−→ Mf , and Mf = Cf (Mf ). This

implies that M q
ø = Gq −

∑
f∈F M

q
f

w∗−→ G−
∑

f∈F Mf = Mø.

Let us now denote the set of all blocking coalitions involving f under M q as Bqf : that is,

Bqf = {M̃ ∈ X q | M̃ @ D�f (M q
f ) and uf (M̃) > uf (M

q)}. Since Bqf is finite for each q, the set

Bf := ∪q∈NBqf is countable. One can index the blocking coalitions in Bf to form a sequence

(M̃k)k∈N such that for any M̃k ∈ Bqf and M̃k′ ∈ Bq
′

f with q < q′, we have k′ > k. Define q(k)

to be such that M̃k ∈ Bq(k)
f . We show that M̃k w∗−→Mf . If not, there must be a subsequence

(M̃km)m∈N that converges to some M ′ ∈ X with M ′ 6= Mf . To draw a contradiction, note

first that since D�f (·) is continuous and M q w∗−→ M , we have D�f (M q)
w∗−→ D�f (M).46

Combining this with the fact that M̃km w∗−→ M ′ and M̃km @ D�f (M q(km)), and invoking

Lemma 6, we obtain M ′ @ D�f (M), which implies that uf (Mf )− ε′ > uf (M
′)+ ε′ for some

ε′ > 0, since Cf chooses a uniquely utility-maximizing subpopulation. Since M̃km w∗−→ M ′

and M q w∗−→ Mf , we can find sufficiently large m such that uf (M
q(km)
f ) > uf (Mf ) − ε′ >

uf (M
′) + ε′ > uf (M̃

q(km)), which contradicts with the fact that M̃ q(km) ∈ Bq(km)
f . This

establishes that M̃k w∗−→ Mf . Using this and the fact that M q
f

w∗−→ Mf , one can choose

sufficiently large K such that for all k > K, we have |M̃k−Mf | < ε
2

and |Mf −M q(k)
f | < ε

2
,

which implies that |M̃k −M q(k)
f | < |M̃k −Mf | + |Mf −M q(k)

f | < ε
2

+ ε
2

= ε. This means

that for all q > q(K) and M̃ ∈ Bqf , we have |M̃ − M q
f | < ε, showing that M q is an ε-

distance stable matching. Because uf is continuous for all f ∈ F , this completes the proof

of Theorem 3.

C Proofs for Section 6.2

Proof of Theorem 5. To prove (i), suppose a matching M is stable and population-

proportional. We shall show that M satisfies the property (ii) of Definition 7. The

population-proportionality of M , equivalently equality (5), implies that, if
Mf (θ)

G(θ)
<

Mf (θ′)

G(θ′)

46The continuity of D�f (·) can be shown using an argument similar to that which we have used to

establish the continuity of T in the proof of Lemma 3.
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for any θ, θ′ ∈ Θk
f , then we must have Mf (θ) = D�f (M)(θ), or else

Mf (θ)

G(θ)
= αkf , but in that

case, we have a contradiction since αkf ≥
Mf (θ′)

G(θ′)
. Then, by definition of D�f ,

Mf (θ) = D�f (M)(θ) =
∑

f ′∈F̃ :f ′�f

Mf ′(θ) = Mf (θ) +
∑

f ′∈F̃ :f ′≺f

Mf ′(θ),

so
∑

f ′∈F̃ :f ′≺f Mf ′(θ) = 0. We have thus proven that M is strongly stable.

To prove (ii), fix any mechanism ϕ that implements a strongly stable matching for any

measure. Suppose for contradiction that inequality (4) fails for some measure G ∈ X , for

some a, P, P ′, with (a, P ) and (a, P ′) in the support of G, and for some f . Then, let f be

the most preferred firm (or the outside option) at P among those for which inequality (4)

fails. Then, ∑
f ′:f ′�P f

ϕf ′(G)(a, P )

G(a, P )
<

∑
f ′:f ′�P f

ϕf ′(G)(a, P ′)

G(a, P ′)
, (14)

while ∑
f ′:f ′�P fP−

ϕf ′(G)(a, P )

G(a, P )
≥

∑
f ′:f ′�P fP−

ϕf ′(G)(a, P ′)

G(a, P ′)
,

so it follows that

ϕf (G)(a, P )

G(a, P )
<
ϕf (G)(a, P ′)

G(a, P ′)
. (15)

By the strong stability of ϕ(G) and the fact that (a, P ) and (a, P ′) are in the same indiffer-

ence class for firm f by assumption, inequality (15) holds only if
∑

f ′:f�P f ′ ϕf ′(G)(a, P ) = 0.

Thus, because
∑

f ′∈F̃
ϕf ′ (G)(a,P )

G(a,P )
= 1 as ϕ(G) is a matching, we obtain

∑
f ′:f ′�P f

ϕf ′(G)(a, P )

G(a, P )
= 1.

This equality contradicts inequality (14) because the right hand side of inequality (14)

cannot be strictly larger than 1 as ϕ(G) is a matching, which completes the proof.

Proof of Theorem 6 requires several lemmas.

Lemma 8. The correspondence defined in (3) is convex-valued and upper hemicontinuous,

and satisfies the revealed preference property.
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Proof. To first show that Cf is convex-valued, for any given X, consider any X ′, X ′′ ∈
Cf (X). Note first that X ′, X ′′ v X implies λX ′ + (1− λ)X ′′ v X. Also, for any λ ∈ [0, 1]

and k ∈ If ,∑
θ∈Θkf

(λX ′ + (1− λ)X ′′)(θ) = λ
∑
θ∈Θkf

X ′(θ) + (1− λ)
∑
θ∈Θkf

X ′′(θ) = Λkf (X),

where the second equality holds since the assumption thatX ′, X ′′ ∈ Cf (X) implies Λkf (X) =∑
θ∈Θkf

X ′(θ) =
∑

θ∈Θkf
X ′′(θ). Thus, λX ′ + (1− λ)X ′′ ∈ Cf (X).

To next show the upper hemicontinuity, consider two sequences (X`)`∈N and (X̃`)`∈N

converging to some X and X̃, respectively, such that for each `, X̃` ∈ Cf (X`), i.e., X̃` v
X` and Λkf (X

`) =
∑

θ∈Θkf
X̃`(θ),∀k ∈ If . Since Λf is continuous, we have Λkf (X) =

lim`→∞ Λ
k
f (X

`) = lim`→∞
∑

θ∈Θkf
X̃`(θ) =

∑
θ∈Θkf

X̃(θ), which, together with the fact that

X̃ v X, means that X̃ ∈ Cf (X), establishing the upper hemicontinuity of Cf .
47 To show

the revealed preference property, let X,X ′ ∈ X with X ′ @ X, and suppose Cf (X) ∩
XX′ 6= ∅. Consider any Y ∈ Cf (X) such that Y (θ) ≤ X ′(θ) for all θ. Then, Λkf (X) =∑

θ∈Θkf
Y (θ) ≤

∑
θ∈Θkf

X ′(θ) for all k ∈ If . By the revealed preference property of Λf , it

follows that Λf (X
′) = Λf (X). Therefore, Y satisfies

∑
θ∈Θkf

Y (θ) = Λkf (X) = Λkf (X
′) for

all k ∈ If , which implies that Y ∈ Cf (X
′) and thus Cf (X) ∩ XX′ ⊆ Cf (X

′). To show

Cf (X) ∩ XX′ ⊇ Cf (X
′), consider any Y ∈ Cf (X

′) and X̃ ∈ XX′ such that X̃ ∈ Cf (X).

By the previous argument, we have X̃ ∈ Cf (X ′), which implies that for each f ∈ F and

k ∈ If ,
∑

θ∈Θkf
Y (θ) =

∑
θ∈Θkf

X̃(θ). Since X̃ ∈ Cf (X), this means that Y ∈ Cf (X) and

thus Y ∈ Cf (X) ∩ XX′ . Therefore, we conclude that Cf (X
′) = Cf (X) ∩ XX′ as desired.

From now, we establish a couple of lemmas (Lemmas 9 and 10) and use them to prove

Theorem 6. To do so, define a correspondence Bf from X to itself as follows:

Bf (X) := {X ′ @ X | for each k ∈ If , there is some αk ∈ [0, 1] such that

X ′(θ) = min{X(θ), αkG(θ)} for all θ ∈ Θk
f}. (16)

We then modify the choice correspondence Cf in (3) to

C̃f (X) = Cf (X) ∩Bf (X), (17)

for every f ∈ F while we let C̃ø = Cø.

47The argument for X̃ v X is that for each θ ∈ Θ, X̃`(θ) ≤ X`(θ), so taking the limit with respect to `

yields X̃(θ) ≤ X(θ).
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Lemma 9. For any X @ G, C̃f (X) is nonempty and a singleton set (i.e., C̃f is a function).

Also, C̃f satisfies the revealed preference property.

Proof. We first establish that for X, C̃f (X) is a singleton set. To do so, for any X ∈ X ,

f ∈ F , k ∈ If , and αk ∈ [0, 1], define ζkf (αk) :=
∑

θ∈Θkf
min{X(θ), αkG(θ)}. From now

on, we assume Cf (X) 6= {X} since, if Cf (X) = {X}, then we have C̃f (X) = {X}, a

singleton set as desired. We show that there exists a unique α̂k satisfying ζkf (α̂k) = Λkf (X),

which means that C̃f (X) is a singleton set. First, we must have α̂k < maxθ∈Θkf
X(θ)

since otherwise ζkf (α̂k) =
∑

θ∈Θkf
X(θ) > Λkf (X) (which follows from the assumption that

Cf (z) 6= {X} and thus, for any X ′ ∈ Cf (X), X ′ @ X and X ′ 6= X). Next, observe that

ζkf (·) is strictly increasing in the range [0,maxθ∈Θkf

X(θ)
G(θ)

). Then, the continuity of ζkf , along

with the fact that ζkf (0) = 0 and ζkf (maxθ∈Θkf

X(θ)
G(θ)

) > Λkf (X), implies that there is a unique

α̂k ∈ [0,maxθ∈Θkf

X(θ)
G(θ)

) satisfying ζkf (α̂k) = Λkf (X).

To show the revealed preference property, consider any X,X ′, X ′′ ∈ X such that

C̃f (X) = {X ′} and X ′ @ X ′′ @ X. Since we already know that Cf (·) satisfies the re-

vealed preference property, we have X ′ ∈ Cf (X ′′). It suffices to show that X ′ ∈ Bf (X
′′),

since it means C̃f (X
′′) = {X ′}, from which the revealed preference property follows. To do

so, note that X ′ ∈ Bf (X) means that X ′(θ) = min{X(θ), αkG(θ)} for each k and θ ∈ Θk
f .

Then, since X(θ) ≥ X ′′(θ) ≥ X ′(θ) and αkG(θ) ≥ X ′(θ), we have

X ′(θ) = min{X(θ), αkG(θ)} ≥ min{X ′′(θ), αkG(θ)} ≥ X ′(θ),

so X ′(θ) = min{X ′′(θ), αkG(θ)} as desired.

Lemma 10. Any stable matching in the economy (G,F,PΘ, C̃F ) is stable and population-

proportional in the economy (G,F,PΘ, CF ).

Proof. Consider a stable matching M = (Mf )f∈F̃ in (G,F,PΘ, C̃F ) and let Xf = D�f (M)

for each f ∈ F̃ . We first show that M is stable in (G,F,PΘ, CF ). It is straightforward,

thus omitted, to check the individual rationality. To check the condition of no blocking

coalition, suppose to the contrary that there is a blocking pair f and M ′
f , which means that

M ′
f @ Xf , M

′
f ∈ Cf (M ′

f ∨Mf ), and Mf /∈ Cf (M ′
f ∨Mf ). Given this, by Lemma 9, there

exists M̃f such that C̃f (M
′
f ∨Mf ) = {M̃f}. First, by the revealed preference property of

C̃f and the fact that M̃f @ (M̃f ∨Mf ) @ (M ′
f ∨Mf ), we have M̃f ∈ C̃f (M̃f ∨Mf ) and

Mf /∈ C̃f (M̃f∨Mf ). Second, since Mf @ Xf and M ′
f @ Xf , we have M̃f @ (M ′

f∨Mf ) @ Xf .

In sum, f and M̃f form a blocking pair in (G,F,PΘ, C̃F ), which is a contradiction.

To show the population-proportionality of M , observe that since M is stable in the

economy (G,F,PΘ, C̃F ), we have Mf = C̃f (D
�f (M)) = Cf (D

�f (M)) ∩ Bf (D
�f (M)) for
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each f ∈ F . Thus, Mf ∈ Bf (D
�f (M)), that is, there is some αk for each k ∈ If such that

(5) holds.

Proof of Theorem 6. Given Lemma 10, it suffices to establish the existence of stable

matching in the economy (G,F,PΘ, C̃F ). For doing so, we prove the continuity of C̃f and

invoke Theorem 2. The continuity of C̃f = Cf ∩Bf follows if both Cf and Bf are shown to

be upper hemicontinuous, since the intersection of a family of closed-valued upper hemi-

continuous correspondences, one of which is also compact-valued, is upper hemicontinuous

(see 16.25 Theorem of Aliprantis and Border (2006) for instance), implying that C̃f , which

is a single-valued correspondence by Lemma 9, is continuous.

Since Cf is upper hemicontinuous by Lemma 8, it remains to show that Bf is upper

hemicontinuous. Consider sequences (X`)`∈N and (X̃`)`∈N with X̃` ∈ Bf (X
`),∀`, converg-

ing weakly to X and X̃, respectively. So, for each k ∈ If , there is a sequence (αk` )`∈N such

that X̃`(θ) = min{X`(θ), αk`G(θ)},∀θ ∈ Θk
f . For each k, let αk be a limit to which a subse-

quence of the sequence (αk` )`∈N converges. We claim that X̃(θ) = min{X(θ), αkG(θ)},∀θ ∈
Θk
f . If X̃(θ) > min{X(θ), αkG(θ)}, then one can find sufficiently large ` to make X̃`(θ),

X`(θ), and αk` close to X̃(θ), X(θ), and αk, respectively, so that X̃`(θ) > min{X`(θ), αk`G(θ)},
which is a contradiction. The same argument applies to the case with X̃(θ) < min{X(θ), αkG(θ)}.
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Abdulkadiroğlu, Atila, Parag A. Pathak, and Alvin E. Roth. 2005. “The New

York City High School Match.” American Economic Review Papers and Proceedings,

95: 364–367.

Adachi, Hiroyuki. 2000. “On a Characterization of Stable Matchings.” Economics Let-

ters, 68(1): 43–49.

Aliprantis, Charalambos D., and Kim C. Border. 2006. Infinite Dimensional Anal-

ysis: A Hitchhiker’s Guide. Berlin:Springer.

47



Alkan, Ahmet, and David Gale. 2003. “Stable Schedule Matching Under Revealed

Preferences.” Journal of Economic Theory, 112: 289–306.

Ashlagi, Itai, Mark Braverman, and Avinatan Hassidim. 2014. “Stability in Large

Matching Markets with Complementarities.” Operations Research, 62(4): 713–732.

Ashlagi, Itai, Yash Kanoria, and Jacob Leshno. 2014. “Unbalanced Random Match-

ing Markets: The Stark Effect of Competition.” Unpublished mimeo.

Ash, Robert B. 1977. Real Analysis and Probability. San Diego:Academic Press.

Aygün, Orhan, and Tayfun Sönmez. 2013. “Matching with Contracts: Comment.”

American Economic Review, 103(5): 2050–2051.

Azevedo, Eduardo M. 2014. “Imperfect Competition in Two-Sided Matching Markets.”

Games and Economic Behavior, 83: 207–223.

Azevedo, Eduardo M., and Jacob D. Leshno. 2011. “A Supply and Demand Frame-

work for Two-Sided Matching Markets.” Unpublished mimeo, Harvard Business School.

Azevedo, Eduardo M., and John William Hatfield. 2012. “Complementarity and

Multidimensional Heterogeneity in Matching Markets.” Unpublished mimeo.

Azevedo, Eduardo M., E. Glen Weyl, and Alexander White. 2013. “Walrasian

Equilibrium in Large, Quasilinear Markets.” Theoretical Economics, 8(2): 281–290.
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