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S.1 Analysis of the Example in Section 2

Let r be the number of workers with each of the two types who are matched to f . We

consider the following cases:

1. Suppose r > q/2. For any such matching, at least one position is vacant at firm f ′

because f ′ has q positions, but strictly more than q workers are matched to f out of

the total of 2q workers. Thus such a matching is blocked by f ′ and a type θ′ worker

who is currently matched to f .

2. Suppose r < q/2. Consider the following cases.

(a) Suppose that there exists a type θ worker who is unmatched. Then such a

matching is unstable because that worker and firm f ′ block it (note that f ′

prefers θ most).

(b) Suppose that there exists no type θ worker who is unmatched. This implies that

there exists a type θ′ worker who is unmatched (because there are 2q workers in

total, but firm f is matched to strictly fewer than q workers by assumption, and

f ′ can be matched to at most q workers in any individually rational matching).

Then, since f is the most preferred by all θ workers, a θ′ worker prefers f to ø,

and there is some vacancy at f because r < q/2, the matching is blocked by a

coalition of a type θ worker, a type θ′ worker, and f .
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S.2 Preliminaries for the Continuum Economy Model

S.2.1 Proof of Lemma 1

For any subset Y ⊂ X , define

Y (E) := sup{
∑
i

Yi(Ei) | {Ei} is a finite partition of E in Σ and

{Yi} is a finite collection of measures in Y ,∀i},∀E.

and Y analogously (by replacing “sup” with “inf”). We prove the lemma by showing that

Y = supY ∈ Y and Y = inf Y ∈ X .

First of all, note that Y and Y are monotonic, i.e. for any E ⊂ D, we have Y (D) ≥ Y (E)

and Y (D) ≥ Y (E), whose proof is straightforward and thus omitted.

We next show that Y and Y are measures. We only prove the countable additivity of

Y , since the other properties are straightforward to prove and also since a similar argument

applies to Y . To this end, consider any countable collection {Ei} of disjoint sets in Σ and

let D = ∪Ei. We need to show that Y (D) =
∑

i Y (Ei). For doing so, consider any finite

partition {Di} of D and any finite collection of measures {Yi}. Letting Eij = Ei ∩Dj, for

any i, the collection {Eij}j is a finite partition of Ei in Σ. Thus, we have∑
i

Yi(Di) =
∑
i

∑
j

Yi(Eij) ≤
∑
i

Y (Ei).

Since this inequality holds for any finite partition {Di} of D and collection {Yi}, we must

have Y (D) ≤
∑

i Y (Ei). To show that the reverse inequality also holds, for each Ei,

we consider any finite partition {Eij}j of Ei in Σ and collection of measures {Yij}j in

Y . We prove that Y (D) ≥
∑

i

∑
j Yij(Eij), which would imply Y (D) ≥

∑
i Y (Ei) as

desired since the partition {Eij}j and collection {Yij}j are arbitrarily chosen for each i.

Suppose not for contradiction. Then, we must have Y (D) <
∑k

i=1

∑
j Yij(Eij) for some

k. Letting E := ∪ki=1(∪jEij), this implies Y (D) <
∑k

i=1

∑
j Yij(Eij) ≤ Y (E), where the

second inequality holds by the definitioin of Y . This contradicts with the monotonicity of

Y since E ⊂ D.

We now show that Y and Y are the supremum and infimum of Y , respectively. It is

straightforward to check that for any Y ∈ Y , Y @ Y and Y @ Y . Consider any X,X ′ ∈ X
such that for all Y ∈ Y , Y @ X and X ′ @ Y . We show that Y @ X and X ′ @ Y . First,

if Y 6@ X to the contrary, then there must be some E ∈ Σ such that Y (E) > X(E). This

means there are a finite partition {Ei} of E and a collection of measures {Yi} in Y such that

Y (E) ≥
∑
Yi(Ei) > X(E) =

∑
X(Ei). Thus, for at least one i, we have Yi(Ei) > X(Ei),
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which contradicts the assumption that for all Y ∈ Y , Y @ X. An analogous argument can

be used to show X ′ @ Y .

S.2.2 Proof of Proposition 1

Suppose that matching M is not Pareto efficient. Then by definition of Pareto efficiency,

there exists M ′ 6= M such that M ′ �F M and M ′ �Θ M . Let f ∈ F be a firm such that

M ′
f 6= Mf . By assumption, M ′ �f M .

Next, since M ′ �Θ M , for each f̃ , D�f̃ (M ′) A D�f̃ (M), or∑
f ′:f ′�P f̃

M ′
f ′(ΘP ∩ E) ≥

∑
f ′:f ′�P f̃

Mf ′(ΘP ∩ E), ∀E ∈ Σ.

This implies that ∑
f ′:f ′�P f

P
−

M ′
f ′(ΘP ∩ E) ≥

∑
f ′:f ′�P f

P
−

Mf ′(ΘP ∩ E), ∀E ∈ Σ,

where fP− refers to the firm that is ranked immediately above f according to P (whenever

it is well defined),1 or equivalently∑
f ′:f ′�P f

M ′
f ′(ΘP ∩ E) ≥

∑
f ′:f ′�P f

Mf ′(ΘP ∩ E),∀E ∈ Σ.

This in turn implies that, for each P ,∑
f ′:f ′�P f

M ′
f ′(ΘP ∩ E) ≤

∑
f ′:f ′�P f

Mf ′(ΘP ∩ E),∀E ∈ Σ,

or equivalently,

D�f (M ′) @ D�f (M).

By definition, M ′
f @ D�f (M ′), so we have M ′

f @ D�f (M).

Collecting the observations made so far, we conclude that f and M ′
f block M , implying

that M is not stable. Therefore, we have established that stability implies Pareto efficiency.

S.3 Substitutable Preferences

A class of preferences studied extensively in the matching theory literature are substi-

tutable preferences. A well-known set of results, including existence of a stable matching,

1This is defined later as an immediate predecessor. Formally, fP− �P f and if f ′ �P f , then f ′ �P fP− .
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obtain under these preferences. We show that the same set of results follow in our con-

tinuum economy model with a suitable formulation of substitutable preferences. Since the

arguments establishing these results are by now fairly standard, we shall be brief in our

treatment of this case. One novel issue, though, is the question of uniqueness of a stable

matching. Azevedo and Leshno (2014) show that multiplicity of stable matchings disap-

pears in the large economy if firms have rich preferences over workers or if their quotas

are generic. This striking result is obtained with the restricted preference domain of “re-

sponsive” preferences. We provide a condition for uniqueness of a stable matching under

general substitutable preferences. We begin by defining the class of preferences:

Definition S1. Firm f ’s preference is substitutable if Rf (X) @ Rf (X
′) whenever X @

X ′.

In words, substitutability means that a firm rejects more of any given worker types

when facing a bigger set of workers. Importantly, the assumption excludes the kind of

complementary preferences studied in the main text of this paper. At the same time, the

substitutable preferences are not a special case of the preferences considered in Section 4

either, since continuity of preferences need not be satisfied here.

Again, by Theorem 1, the fixed points of the map T characterize the stable matchings.

Since we do not assume continuity of the choice mappings, however, Theorem 2 does not

apply. Instead, as shown in the proof of the next theorem, substitutability of the firms’

preferences implies that the map T is monotone increasing with respect to the partial order

@F̃ . Next, recall from Lemma 1 that a partially ordered set (X ,@), and thus the partially

ordered set (X n+1,@F̃ ), is a complete lattice, where XF̃ @F̃ X
′
F̃

if Xf @ X ′f for all f ∈ F̃ .

Hence, Tarski’s fixed point theorem yields existence as well as the lattice structure of stable

matchings.

To describe the lattice structure, it is also worth describing the extreme points based on

the preference orders defined earlier. We say that a stable matching M is firm-optimal

(resp., firm-pessimal) if M �F M (resp., M �F M) for every stable matching M . A

matching M is worker-optimal (resp., worker-pessimal) if M �Θ M (resp., M �Θ M)

for every stable matching M . The result is then stated as follows:

Theorem S1. When the firms’ preferences are substitutable, (i) the set X ∗ of fixed points of

T is nonempty, and (X ∗,@F̃ ) is a complete lattice; and (ii) there exists a firm-optimal (and

worker-pessimal) stable matching M = (Cf (Xf ))f∈F̃ , where X = sup@F̃
X ∗, and a firm-

pessimal (and worker-optimal) stable matching M = (Cf (Xf ))f∈F̃ , where X = inf@F̃
X ∗.
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Proof. The part (i) immediately follows from Tarski’s fixed point theorem and the fact

that each Rf is monotonic in @F̃ due to the substitutability of f ’s preference and thus T

is monotonic as well.

We next prove part (ii). To see that the stable matching M is firm-optimal, observe

first that for any stable matching M , there is some X ∈ X ∗ such that Mf = Cf (Xf ) for

all f ∈ F̃ . Thus, we have Mf @ Xf @ Xf , which implies that M f = Cf (Mf ∨M f ) by

revealed preference since M f = Cf (Xf ) and (Mf ∨M f ) @ Xf . Thus, M f �f Mf for each

f ∈ F , as desired. To show that M is worker-pessimal, fix any stable matching M . Then,

by Theorem 1, there is some X ∈ X ∗ (i.e., a fixed point of T ) such that Mf = Cf (Xf ) and

Xf = D�f (M) for all f ∈ F̃ . Thus, for each P ∈ P and E ∈ Σ,2

TfP+ (X)(ΘP ∩ E) = XfP+
(ΘP ∩ E) = D�f

P
+ (M)(ΘP ∩ E) =

∑
f ′∈F̃ :f ′≺P f

Mf ′(ΘP ∩ E).

Similarly, for X, we have TfP+ (X)(ΘP ∩E) =
∑

f ′∈F̃ :f ′≺P f
M f ′(ΘP ∩E). Since Tf is mono-

tonic and X @F̃ X, we obtain∑
f ′∈F̃ :f ′�P f

M f ′(ΘP ∩ E) =G(ΘP ∩ E)− TfP+ (X)(ΘP ∩ E)

≤G(ΘP ∩ E)− TfP+ (X)(ΘP ∩ E) =
∑

f ′∈F̃ :f ′�P f

Mf ′(ΘP ∩ E) (S1)

for all P ∈ P , E ∈ Σ, and f ∈ F̃ , as desired.

As has been noted by Hatfield and Milgrom (2005), the algorithm finding the fixed

point corresponds to the Gale and Shapley’s deferred acceptance algorithm, although the

algorithm may not terminate in finite rounds in our continuum model.

Consider an additional restriction on the preferences.

Definition S2. Firm f ’s preference exhibits the law of aggregate demand if for any

X,X ′ ∈ X with X @ X ′, Cf (X)(Θ) ≤ Cf (X
′)(Θ).3

This property simply ensures that a firm demands more workers (in terms of cardinality)

when more workers (in terms of set inclusion) become available. This property is needed

to obtain the next two results.

2Recall that fP+ denotes an immediate successor of f ∈ F̃ at P ∈ P.
3This property is an adaptation of the same property to our continuum economy that appears in the

literature such as Hatfield and Milgrom (2005), Alkan (2002), and Fleiner (2003).
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Theorem S2 (Rural hospital theorem). If firms’ preferences exhibit substitutability and

the law of aggregate demand, then for any stable matching M , we have Mf (Θ) = M f (Θ)

for each f ∈ F and Mø = Mø.

Proof. Let M be a stable matching. Then, by Theorem 1, there exists X ∈ X ∗ such that

Mf = Cf (Xf ) for each f ∈ F . Since X @F̃ X by Theorem S1, by the law of aggregate

demand, we have

M f (Θ) = Cf (Xf )(Θ) ≥ Cf (Xf )(Θ) = Mf (Θ),∀f ∈ F. (S2)

Next since M is worker pessimal, (S1) holds for any f ∈ F̃ . Let wP := øP− be the

immediate predecessor of ø (i.e., the worst individually rational firm) for types in ΘP .

Then, setting f = wP in (S1), we obtain∑
f ′∈F

M f ′(ΘP ∩ E) =
∑

f ′∈F̃ :f ′�PwP

M f ′(ΘP ∩ E)

≤
∑

f ′∈F̃ :f ′�PwP

Mf ′(ΘP ∩ E) =
∑
f ′∈F

Mf ′(ΘP ∩ E),∀E ∈ Σ,

or equivalently ∑
f ′∈F

M f ′(E) ≤
∑
f ′∈F

Mf ′(E),∀E ∈ Σ. (S3)

Since this inequality must hold with E = Θ, combining it with (S2) implies that Mf (Θ) =

M f (Θ) for all f ∈ F , as desired.

Further, we must have
∑

f∈F M f =
∑

f∈F Mf , which means that Mø = Mø. To prove

this, suppose otherwise. Then, by (S3), we must have
∑

f ′∈F M f ′(E) <
∑

f ′∈F Mf ′(E)

for some E ∈ Σ. Also, by (S3),
∑

f ′∈F M f ′(E
c) ≤

∑
f ′∈F Mf ′(E

c). Combining these two

inequalities, we obtain
∑

f ′∈F M f ′(Θ) <
∑

f ′∈F Mf ′(Θ), which contradicts with (S2).

The result implies that the measure of workers matched with each firm f ∈ F as well

as the measure of unmatched workers is identical across all stable matchings.

We next introduce a condition that would ensure uniqueness of a stable matching. The

condition refers to some new notation. For any matching M and subset F ′ of firms, let

M f
F ′ be a subpopulation of workers defined by

M f
F ′(E) :=

∑
P∈P

∑
f ′:f�P f ′,f ′ 6∈F ′

Mf ′(ΘP ∩ E) for each E ∈ Σ,

who are matched outside firms F ′ and available to firm f under M . Recall the worker-

optimal stable matching M . Then, our condition is stated as follows.
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Definition S3 (Rich preferences). The firms’ preferences are rich if for any individually

rational matching M̂ 6= M such that M̂ �F M , there exists f ∗ ∈ F such that M f∗ 6=
Cf∗((M f∗ + M̂ f∗

F̄
) ∧G), where F̄ := {f ∈ F |M̂f �f M f}.

In words, the condition is explained as follows. Consider any (individually rational)

matching M̂ that is preferred to the worker-optimal matching M by all firms, strictly by

firms in F̄ ⊂ F . Then, the richness condition requires that, at matching M , there must

exist a firm f ∗ that would be happy to match with some workers who are not hired by the

firms in F̄ but are willing to match with f ∗ under M̂ . Since firms are more selective at M̂

than at M , it is intuitive that a firm would demand at the latter matching some workers

that the more selective firms would not demand at the former matching. The presence of

such worker types requires richness of the preference palette of firms as well as workers—

hence the name. This point will be seen more clearly when one considers (a general class

of) responsive preferences, and we shall illustrate this in an example later.

Theorem S3. If firms’ preferences are rich and substitutable, and exhibit the law of ag-

gregate demand, then a unique stable matching exists.

Proof. Suppose otherwise. Then there exists a stable matching M that differs from the

worker-optimal stable matching M . Let X and X be respectively fixed points of T such

that Mf = Cf (Xf ), M f = Cf (Xf ) and Xf @ Xf , for each f ∈ F .

First of all, by Theorem S2,
∑

f∈F Mf =
∑

f∈F M f . Next, since Xf @ Xf for each

f ∈ F , we have (M f ∨Mf ) @ Xf . Revealed preference then implies that, for each f ∈ F ,

Mf = Cf (M f ∨Mf )

or M �F M . Moreover, since M 6= M , the set F̄ := {f ∈ F |Mf �f M f} is nonempty. But

then by the rich preferences, there exists f ∗ ∈ F such that

M f∗ 6= Cf∗((M f∗ +M f∗

F̄
) ∧G).

For each f ∈ F \ F̄ , Mf = M f , by definition of F̄ , and Theorem S2 guarantees that

Mø = Mø. Consequently, we have for each E ∈ Σ, that

M f∗

F̄
(E) =

∑
P∈P

∑
f ′:f∗�P f ′,f ′ 6∈F̄

Mf ′(ΘP ∩ E) =
∑
P∈P

∑
f ′:f∗�P f ′,f ′ 6∈F̄

M f ′(ΘP ∩ E) = M f∗

F̄
(E).

It then follows that (M f∗ + M f∗

F̄
) ∧ G = (M f∗ + M f∗

F̄
) ∧ G = M f∗ + M f∗

F̄
(since M is a

matching), so

M f∗ 6= Cf∗(M f∗ +M f∗

F̄
). (S4)
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Letting M̂f∗ := Cf∗(M f∗ +M f∗

F̄
), we have M̂f∗ @ (M f∗ ∨ M̂f∗) @ (M f∗ +M f∗

F̄
). Revealed

preference then implies that

M̂f∗ = Cf∗(M f∗ ∨ M̂f∗).

By (S4), we then have M̂f∗ �M f∗ . Further, M̂f∗ @ (M f∗+M
f∗

F̄
) @ D�f

∗
(M). We therefore

have a contradiction to the stability of M .

Checking the rich preference condition requires identifying the worker-optimal matching

M , which can be done by adapting the worker-proposing DA to the continuum economy

and running it in a given environment.4 Once M is found, it is often straightforward to

inspect the existence of M̂ and f ∗ that satisfy the stated property, as Example S1 will

illustrate later. The rich preference condition can also be useful for identifying (possibly

stronger) sufficient conditions for uniqueness. Specifically, a full support condition that

Azevedo and Leshno (2014) have shown to yield a unique stable matching when firms have

responsive preferences will be shown to be sufficient for our rich preferences condition in

a more general environment in which firms have responsive preferences but may face caps

on the number of workers they can hire from different groups of workers. Such group

specific quotas, typically based on socio-economic status or other characteristics, may arise

from affirmative action or diversity considerations. As pointed out by Abdulkadiroğlu and

Sönmez (2003), the resulting preferences (or choice functions) may violate responsiveness

but they nonetheless satisfy substitutability.

Responsive preferences with affirmative action. Assume that there is a finite set

T of “ethnic types” that describe characteristics of a worker such as ethnicity, gender,

and socio-economic status, such that type θ is mapped to T via some measurable function

τ : Θ → T . For each t ∈ T , a (measurable) set Θt := {θ ∈ Θ|τ(θ) = t} of agents has an

ethnic type t. Each firm f faces (maximum) quota qf for the workers and qtf for workers

in ethnic type t. We assume qf ≤
∑

t∈T q
t
f , allowing for the possibility that the quota for

some ethnic type may not bind. Aside from the quotas, a firm’s preference is responsive

and described by a continuous score function sf : Θ → [0, 1], with the interpretation that

firm f prefers a type θ′ worker to a type θ worker if and only if sf (θ
′) > sf (θ). We assume

that G is absolutely continuous and admits density g in the interior of Θ.5 Such firms are

4Note that we may need to take M as the limit of the algorithm in case it does not finish in a finite

time. See a leading example of Azevedo and Leshno (2014), for instance.
5This assumption is reasonable, and is implied by the firms’ preferences to involve no ties over a positive

measure of worker types. One can define a worker’s type as θ = (P, t, (sf )f∈F ), where P , t, and sf are

respectively the worker’s preference, her ethnic type, and the firm f ’s score of the worker. For firm f ’s
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said to have responsive preferences with affirmative action. The corresponding choice

functions are defined formally in Section S.3.1. As shown there, the choice function exhibits

substitutability and satisfies the law of aggregate demand. Consistent with Azevedo and

Leshno (2014), the optimal choice by a firm is characterized by the cutoffs, possibly different

across different ethnic types. The full support condition defined by Azevedo and Leshno

(2014) in the context of pure responsive preferences is easily generalized to the current

environment:

Definition S4 (Full Support). Firms’ preferences have full support if for each preference

P ∈ P , any ethnic type t ∈ T , and for any non-empty open cube set S ⊂ [0, 1]n, the worker

types

Θt
P (S) := {θ ∈ ΘP ∩Θt | (sf (θ))f∈F ∈ S}

have a positive measure; i.e., G(Θt
P (S)) > 0.

Our full support condition boils down to the full support condition of Azevedo and

Leshno (2014), if T is a singleton set so there is no affirmative action constraint.

Proposition S1. If firms have responsive preferences with affirmative action that satisfy

the full support condition, then the preferences are rich.

Proof. To simplify notation, let M = M , i.e., the worker-optimal matching. Fix any indi-

vidually rational matching M̂ such that M̂ �F M and assume that F̄ := {f ′ ∈ F |M̂f ′ �f
Mf ′} is nonempty. For any f, t, let M t

f := Mf (Θ
t ∩ ·) and M̂ t

f := M̂f (Θ
t ∩ ·). Since G is

absolutely continuous, for any f, t, both M t
f and M̂ t

f , being its subpopulations, admit den-

sities, denoted respectively by mt
f and m̂t

f . Let ptf and p̂tf respectively denote the optimal

cutoffs associated with Mf = Cf (Mf ) and M̂f = Cf (Mf ∨ M̂f ).

Because Cf satisfies the law of aggregate demand (as established in Section S.3.1),

M̂f = Cf (M̂f ∨Mf ) and Mf = Cf (Mf ) imply Mf (Θ) ≤ M̂f (Θ) for each f ∈ F . Then,

Proposition S1 follows from proving a sequence of claims.

Claim S1. Mø = M̂ø.

Proof. Suppose to the contrary that Mø 6= M̂ø. Then, with their densities denoted by mø

and m̂ø, Eø = {θ ∈ Θ |mø(θ) > m̂ø(θ)} must be a non-empty set of positive (Lebesgue)

measure, due to the fact that Mø(Θ) = G(Θ) −
∑

f∈F Mf (Θ) ≥ G(Θ) −
∑

f∈F M̂f (Θ) =

M̂ø(Θ). Also, letting Êf = {θ ∈ Θ | m̂f (θ) > mf (θ)}, there must be at least one firm f

preference to involve no ties among a positive measure of worker types, the marginal distribution of its

scores, sf , must not involve a mass point. This requires the distribution of θ to be absolutely continuous.
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for which Eø ∩ Êf is a non-empty set of positive measure, since otherwise we would have∑
f ′∈F̃ mf ′(θ) >

∑
f ′∈F̃ m̂f ′(θ) for all θ ∈ Eø, a contradiction. Now fixing such a firm f and

letting Ẽ = Eø ∩ Êf , define

m̃f (θ) =

min{mf (θ) +mø(θ), m̂f (θ)} if θ ∈ Ẽ

mf (θ) otherwise.

and let M̃f denote the corresponding measure. Note that m̃f (θ) > mf (θ) for all θ ∈ Ẽ, and

also that (Mf ∨ M̃f ) = M̃f 6= Mf and M̃f @ (Mf ∨ M̂f ). Letting M ′
f = Cf (M̃f ), we show

below that f and M ′
f are a blocking coalition for M , contradicting the stability of M .

First of all, it follows from revealed preference that Cf (Mf ∨M ′
f ) = M ′

f . To show that

M ′
f 6= Mf , note first that m̂f (θ) > mf (θ),∀θ ∈ Ẽ means (M̂f ∨Mf )(Ẽ) = M̂f (Ẽ), so

Rf (Mf ∨ M̂f )(Ẽ) = (Mf ∨ M̂f )(Ẽ)− Cf (Mf ∨ M̂f )(Ẽ) = M̂f (Ẽ)− M̂f (Ẽ) = 0.

Then, since f has a substitutable preference and M̃f @ (Mf∨M̂f ), we have Rf (M̃f )(Ẽ) = 0,

which means M ′
f (Ẽ) = Cf (M̃f )(Ẽ) = M̃f (Ẽ) 6= Mf (Ẽ). It only remains to show that

M ′
f @ D�f (M). For this, note that since M̂ is individually rational and m̂f (θ) > 0,∀θ ∈ Ẽ,

we have f �θ ø,∀θ ∈ Ẽ. Given the definition of M̃f , this implies that M̃f @ D�f (M) and

thus M ′
f @ M̃f @ D�f (M).

Meanwhile,
∑

f∈F Mf =
∑

f∈F M̂f since Mø = M̂ø as shown in the above claim. Hence,

we conclude that Mf (Θ) = M̂f (Θ) for each f ∈ F .

We then prove the next claim.

Claim S2. For each f ∈ F̄ , there must be some t such that ptf < p̂tf .

Proof. Suppose to the contrary that p̂tf ≤ ptf (< 1) for all t ∈ T . Since
∑

t∈T M
t
f (Θ) =

Mf (Θ) = M̂f (Θ) =
∑

t∈T M̂
t
f (Θ) and Mf 6= M̂f , there must exist t ∈ T such that the set

{θ ∈ Θt|sf (θ) > ptf ≥ p̂tf and mt
f (θ) > m̂t

f (θ)} has a positive measure. A contradiction

then arises since, due to the fact that Cf selects all workers of type t whose scores are above

the optimal cutoff p̂tf and that M̂f = Cf (M̂f ∨Mf ), the measure of type θ ∈ Θt workers

selected when M̂f ∨Mf is available is equal to m̂t
f (θ) = max{m̂t

f (θ),m
t
f (θ)} for all θ ∈ Θt

with sf (θ) ≥ p̂tf , which cannot be smaller than mt
f (θ).

Claim S3. For any f ∈ F̄ and t ∈ T , if p̂tf = 0, then M̂f (Θ
t ∩ ·) = Mf (Θ

t ∩ ·).

Proof. Let us first observe that for any f ∈ F̄ and t, if M̂f (Θ
t) < Mf (Θ

t), then we have

p̂tf > ptf since, as we argued in the proof of Claim S2, the fact that M̂f = Cf (M̂f ∨Mf )

10



implies that m̂t
f (θ) = max{m̂t

f (θ),m
t
f (θ)} ≥ mt

f (θ) for all θ ∈ Θt with sf (θ) ≥ p̂tf . We also

know that if M̂f (Θ
t) < qtf , then p̂tf = p̂f ≤ p̂t

′

f , for all t′ ∈ T . Hence, if M̂f (Θ
t) < Mf (Θ

t)

for f ∈ F̄ and t, then ptf < p̂tf ≤ p̂t
′

f , for all t′ ∈ T .

Fix now any f ∈ F̄ and t ∈ T for which p̂tf = 0. Since it means p̂tf ≤ ptf , we must have

M̂f (Θ
t) ≥ Mf (Θ

t) according to the above argument. If, in addition, M̂f (Θ
t) > Mf (Θ

t),

then the fact that M̂f (Θ) = Mf (Θ) implies that there must exist t′ such that M̂f (Θ
t′) <

Mf (Θ
t′). This means that pt

′

f < p̂t
′

f ≤ p̂tf = 0, a contradiction. Hence, M̂f (Θ
t) = Mf (Θ

t).

Given p̂tf = 0 (i.e. the lowest possible score), we must have max{m̂t
f (θ),m

t
f (θ)} = m̂t

f (θ)

for all θ ∈ Θt. In order that M̂f (Θ
t) = Mf (Θ

t), we must then have m̂t
f (θ) = mt

f (θ) for

(almost) all θ ∈ Θt, which leads to the desired conclusion.

Claim S4. For any t ∈ T , if there is some f ∈ F̄ such that p̂tf > ptf , then we must have

p̂tf ′ > 0,∀f ′ ∈ F̄ .

Proof. Fix a firm f ∈ F̄ with p̂tf > ptf . Suppose to the contrary that the set F̄0 = {f ′ ∈
F̄ |p̂tf ′ = 0} is nonempty, and note that f 6∈ F̄0. Then, let us define F̄+ = F̄\F̄0 and consider

the set

{θ ∈ Θ|f �θ f ′′,∀f ′′ 6= f, sf (θ) ∈ (ptf , p̂
t
f ), and sf ′(θ) < p̂tf ′ ∀f ′ ∈ F̄+ \ {f}}.

Since M is stable, all worker types in this set must be matched with f under M , which

implies that they cannot be matched with any firm in F̃\F̄ under M̂ since M̂f = Mf

for each f ∈ F\F̄ by assumption and also since M̂ø = Mø by Claim S1. Moreover, these

workers cannot be matched with any firm f ′ ∈ F̄+ under M̂ since their scores are below p̂tf ′ .

It thus follows that they must be matched with firms in F̄0 under M̂ while being matched

with f /∈ F̄0 under M , which contradicts Claim S3.

Claim S5. Rich preferences hold.

Proof. Fix any f ∈ F̄ and t ∈ T (given by Claim S2) such that ptf < p̂tf , and let

Θ̃t
f := {θ ∈ Θ|f �θ f ′′,∀f ′′ 6= f, sf (θ) ∈ (ptf , p̂

t
f ), and sf ′(θ) < p̂tf ′ ∀f ′ ∈ F̄ \ {f}}

be a set of ethnic type t workers who prefer f to all other firms and have scores that will

make them employable at f under M but not under M̂ and not employable at all other

firms in F̄ under M̂ . Let M ′ :=
∑

t∈T G(Θ̃t
f ∩ ·) denote the measure of these workers. The

full support assumption and the fact (given by Claim S4) that p̂tf ′ > 0,∀f ′ ∈ F̄ implies

that M ′(Θ) > 0.

We show that these workers are not employed by any firm in F̄ under either M̂ or M .

It is easy to see that these workers are not employed by any firm in F̄ under M̂ since their

11



scores are below the cutoffs of these firms at M̂ . Since
∑

f∈F Mf =
∑

f∈F M̂f , and since

Mf = M̂f for each f ∈ F \ F̄ , we must have
∑

f∈F̄ Mf =
∑

f∈F̄ M̂f . It thus follows that

these workers are not employed by firms in F̄ under matching M either.

Next, note that the above argument implies M ′ @ M̂ f

F̄
. Since p̂tf > ptf , firm f will wish to

replace some of its workers with these workers under M . Hence, Mf 6= Cf ((Mf + M̂ f

F̄
) ∧G),

so the rich preferences property follows.

The above claims complete the proof of the proposition.

Proposition S1 and Theorem S3 then imply the following:

Corollary S1. Suppose the firms’ preferences are responsive with affirmative action, and

satisfy the law of aggregate demand. If the full support condition holds, then a unique stable

matching exists.

Lastly, the next example demonstrates that the law of aggregate demand is also crucial

for the uniqueness result: if the firm preferences violate the law of aggregate demand, then

uniqueness of a stable matching does not necessarily hold even if the firm preferences are

rich.

Example S1 (Necessity of LoAD for uniqueness). Consider a continuum economy with

worker types θ1 and θ2 (each with measure 1/2) and firms f1 and f2. Preferences are as

follows:

1. Firm f1 wants to hire as many workers of type θ2 as possible if no worker of type θ1

is available, but if any positive measure of type θ1 workers is available, then f1 wants

to hire only type θ1 workers and no type θ2 workers at all, and f1 wants to hire only

up to measure 1/3 of type θ1 workers.

2. The preference of firm f2 is symmetric, changing the roles of worker types θ1 and

θ2. More specifically, Firm f2 wants to hire as many workers of type θ1 as possible

if no worker of type θ2 is available, but if any positive measure of type θ2 workers is

available, then f2 wants to hire only type θ2 workers and no type θ1 workers at all,

and f2 wants to hire only up to measure 1/3 of type θ2 workers.

3. Worker preferences are as follows:

θ1 : f2 � f1 � ø,

θ2 : f1 � f2 � ø.

12



Clearly, the firm preferences are substitutable. To check the rich preference, note first that

M =

(
f1 f2

1
2
θ2

1
2
θ1

)
,

where the notation is such that measure 1/2 of type θ1 workers are matched to f2 and

measure 1/2 of type θ2 workers are matched to f1.6 Finally, firm preferences violate the

law of aggregate demand because, for instance, the choice of f1 from measure 1/2 of θ2 is

to hire all of them, but even adding a measure ε < 1/2 of type θ1 workers would cause f1

to reject all θ2 workers. As it turns out, there is a firm-optimal stable matching that is

different from M and given as follow:

M =

(
f1 f2

1
3
θ1

1
3
θ2

)
.

S.3.1 Choice Functions Representing Responsive Preferences with

Affirmative Action

For any firm f and subpopulation X @ G available to f , we can define firm f ’s optimal

choice from X as a solution to the following problem:

[C] max
Y @X

∫
sf (θ)dY

subject to

Y (Θ) ≤ qf , and Y (Θt) ≤ qtf ,∀t ∈ T.

As in Theorem 2, one can show that the feasible set is compact. Since its objective

function is continuous in X (by the definition of weak convergence, given continuity of

s(·)), the maximum is well defined. Further, the set of optimal choices is closed, so it is

compact.

6That this is a worker-optimal matching follows from the fact that the worker-proposing DA ends after

the first round where each worker applies to her preferred firm while the firm accepts her. Then, under any

matching M̂ 6= M that satisfies M̂f = Cf (M̂f ∨Mf ) for all f , some firm, say f1, must be matched with a

positive measure of θ1 workers. Given that M̂ is individually rational, this implies that f1 is not matched

with any θ2 workers. Also, since f2 is matched with no more than measure 1/3 workers of θ2 under any

individual rational matching, at least measure 1/6 of θ2 workers are unemployed under M̂ , which means

that these workers belong to M̂f2
F̄

since they prefer f2 to ø and ø /∈ F̄ . If they are available to f2 in addition

to Mf2
, then f2 would choose not to be matched with any θ1 workers, to whom it is matched under Mf2

.

Thus, the rich preference condition is satisfied.
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We next show that an optimal choice can be found in a class of feasible subpopulations

with a cutoff structure. For each t ∈ T , let p̃tf := inf{s ∈ [0, 1]|X(Θt ∩ {θ ∈ Θ|sf (θ) ≥
s}) ≤ qtf}. Then, we say Y is the optimal cutoff rule for firm f at X if Y (Θt ∩ {θ ∈
Θ|sf (θ) ≥ ptf}) = X(Θt∩{θ ∈ Θ|sf (θ) ≥ ptf}), and Y (Θt∩{θ ∈ Θ|sf (θ) < ptf}) = 0, where

ptf := max{pf , p̃tf}, and “the common cutoff” pf is the supremum of the set of common

cutoffs that maximize Y (Θ) subject to Y (Θ) ≤ qf and Y (Θt) ≤ qtf ,∀t ∈ T . Note that the

optimal cutoff rule is uniquely determined.

Claim S6. The optimal cutoff rule for firm f at X is its optimal choice from X.

Proof. For any feasible solution Y to [C], consider a cutoff rule Ŷ , given by Ŷ (Θt ∩
{θ|sf (θ) ≥ ptf} ∩E) = X(Θt ∩ {θ|sf (θ) ≥ ptf} ∩E) for each E ∈ Σ, and Ŷ (Θt ∩ {θ|sf (θ) <
ptf} ∩ E) = 0, for each E ∈ Σ, for some cutoff score ptf , for each t ∈ T . In words, a cutoff

rule selects all workers above a certain cutoff score and rejects all workers below that score.

As the cutoff score ptf rises, Ŷ (Θt) falls continuously (since Ŷ , being a subpopulation of G,

is absolutely continuous), and it equals X(Θt) when ptf = 0 and zero when ptf = 1. Hence,

there exists ptf ∈ [0, 1] such that Ŷ (Θt) = Y (Θt).

Since both Y and Ŷ , being subpopulation of G which has density, have density functions

say y and ŷ, respectively. In that case, ŷ(θ) = x(θ) ≥ y(θ) if sf (θ) ≥ ptf and ŷ(θ) = 0 ≤ y(θ)

if sf (θ) < ptf . Hence,∫
Θt

sf (θ)ŷ(θ)dθ −
∫

Θt

sf (θ)y(θ)dθ =

∫
Θt

sf (θ)(ŷ(θ)− y(θ))dθ

≥
∫

Θt

ptf (ŷ(θ)− y(θ))dθ = ptf [Ŷ (Θt)− Y (Θt)] = 0.

In short, Ŷ is feasible and yields a weakly higher value of objective than does Y . It follows

that an optimal choice can be found in the class of cutoff rules. Moreover, if Y differs from

Ŷ for a positive measure, the inequality is strict. This implies that an optimal choice must

coincide with a cutoff rule almost everywhere (i.e., for every positive measure set).

Fix any optimal choice Y that is a cutoff rule. If Y (Θt) < qtf for some t, then there

exists an optimal cutoff rule in which ptf ≤ pt
′

f for all t′ 6= t. To see this, suppose an optimal

choice has ptf > pt
′

f , where t′ is the ethnic type with the lowest cutoff at the optimal choice.

We can assume without loss of generality that pt
′

f = inf{sf (θ)|θ ∈ Θt′ , y(θ) > 0}, or else

we can raise pt
′

f slightly without any consequence. If X(Θt ∩ {θ ∈ Θ|sf (θ) ∈ [pt
′

f , p
t
f )}) = 0,

then we can lower ptf without consequence to pt
′

f , so the claim holds. If X(Θt ∩ {θ ∈
Θ|sf (θ) ∈ [pt

′

f , p
t
f )}) > 0, then we can slightly lower ptf and slightly raise pt

′

f so as to keep all

constraints satisfied, which increases the value of the objective, producing a contradiction.
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This observation implies that there exists a common cutoff pf that applies to all t whose

quota is not binding, and the cutoffs for ethnic types with binding quotas are weakly higher

than pf . Hence, we can write ptf := max{pf , p̃tf}, where p̃tf is defined above.

The common cutoff pf should be chosen to maximize Y (Θ) subject to Y (Θ) ≤ qf and

Y (Θt) ≤ qtf ,∀t ∈ T , or else it can be lowered to increase the employment (and thus increase

the value of the objective). Let P t
f be the set of maximizers,7 and let p̄tf := supP t

f . Then,

p̄tf ∈ P t
f due to the compactness of the optimal choices: Any sequence of the optimal cutoff

rules with common cutoff ptf ∈ P t
f converging to the cutoff rule with common cutoff p̄tf

must be optimal as well, so its limit must be optimal given the compactness of the optimal

choices.

Based on Claim S6, we define a choice function Cf to be an optimal cutoff rule. The

resulting choice function then satisfies the revealed preference property: If X @ X ′ and

Cf (X
′) @ X, then Cf (X

′) is also an optimal cutoff rule at X.

Next, it is routine to see that Cf satisfies the law of aggregate demand. If X @ X̂,

then the optimal cutoff rule at the latter leads to the firm choosing a weakly higher mass

of workers than the optimal cutoff rule at X.

It is also easy to see Cf exhibits substitutability. Again fix X @ X̂. We show that

Rf (X) @ Rf (X̂), where Rf is defined before. For non-triviality, assume Rf (X)(Θ) > 0.

Let (p̂tf )t be the cutoffs associated with Cf (X̂) and let (ptf )t be the cutoffs associated with

Cf (X). Note first if the quota for t is binding at the optimal choice from X, we can only

have p̂tf ≥ ptf , or else the quota for t will be violated at X̂. There are two cases. First,

suppose first Cf (X)(Θ) < qf . In this case, no mass of agents from X is rejected at Cf (X)

except for violating quotas for ethnic types, and those who are rejected for violating the

ethnic type quotas must be rejected as well at Cf (X̂) since their cutoffs are weakly higher.

Hence, Rf (X) @ Rf (X̂). Suppose next Cf (X)(Θ) = qf . In this case, the common cutoff

p̂f at Cf (X̂) must be weakly higher than the common cutoff pf at Cf (X). If not, then

feasibility of Cf (X̂) implies that there exists t such that its quota is binding at Cf (X)

but not at Cf (X̂). But then p̂tf > ptf ≥ pf > p̂f , which implies that Cf (X̂) violates the

property of the optimal cutoff rule at X̂. Since all cutoffs are uniformly higher at Cf (X̂),

we conclude that Rf (X) @ Rf (X̂).

7The set P t
f may not be a singleton. Suppose for instance that the measure of available workers is

strictly smaller than the capacity of a firm, and say the firm has no affirmative action constraint and the

infimum score of the available workers is say sm > 0. Then any ptf ∈ [0, sm] will be an optimal cutoff, since

selecting all available workers is optimal for the firm.
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S.4 Matching with Contracts

Our paper has assumed that the terms of employment contracts are exogenously given. In

many applications, however, they are decided endogenously. To study such a situation, we

generalize our basic model by introducing a continuum-population version of the “matching

with contracts” model due to Hatfield and Milgrom (2005).

Let Ω denote a finite set of all available contracts with its typical element denoted as

ω. Assume that Ω is partitioned into subsets, {Ωf}f∈F̃ , where Ωf is the set of contacts for

f ∈ F̃ and Ωø = {ωø} (where ωø denotes the option of not contracting with any firm). Each

contract ω specifies contract terms a firm f may offer to a worker.8 Let f(ω) ∈ F̃ denote

the firm associated with contract ω (or the outside option if ω = ωø). Thus, f(ω) = f

if and only if ω ∈ Ωf . We use P ∈ P to denote workers’ preference defined over Ω. Let

ωP− ∈ Ω denote a contract that is an immediate predecessor of ω according to preference

P , that is, ωP− is the contract with the property ωP− �P ω and ω′ �P ωP− for all ω′ �P ω.

As before, ΘP denotes the subset of types in Θ whose preference is given by P .

In the current framework, the relevant unit of analysis is the measure of workers assigned

to a particular contract. We let Xω ∈ X denote the subpopulation assigned to contract

ω ∈ Ω and Xf = (Xω)ω∈Ωf
denote a profile of subpopulations contracting with firm f . For

any profiles X,X ′ ∈ X |Ωf |, we denote X @f X
′ if Xω @ X ′ω for all ω ∈ Ωf . Given a profile

Xf = (Xω)ω∈Ωf
, we use

X�ωf (·) :=
∑
P∈P

∑
ω′∈Ωf :ω′�Pω

Xω′(ΘP ∩ ·), (S5)

to denote the measure of workers hired by f under contract ω or worse; these are the

workers who are willing to work for f under ω given their current contracts. We then let

X�f = (X�ωf )ω∈Ωf
.

For any ω ∈ Ωf , let Xω ∈ X denote the subpopulation of workers who are available

to firm f under the contract ω. Given any profile Xf = (Xω)ω∈Ωf
∈ X |Ωf |, each firm f ’s

choice is described by a map Xf 7→ Cf (Xf ) = (Cω(Xf ))ω∈Ωf
∈ Yf (Xf ), where

Yf (Xf ) := {Yf ∈ X |Ωf | |Y �ωf @ Xω,∀ω ∈ Ωf}.

For any profile of subpoulations in Yf (Xf ), the measure of workers who are hired by f

under any contract ω ∈ Ωf or worse cannot exceed the measure of workers, Xω, who are

available under ω. The requirement that the output of Cf should belong to Yf (Xf ) is

8Note that the contract itself does not contain information about the associated worker type, and that

each firm’s preference is determined by what worker types it is matched with under what contracts.
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based on the premise that each firm f is aware of workers’ preferences and also believes

(correctly) that only those workers who are available under ω ∈ Ωf can be hired under the

contracts that are weakly inferior to ω, and thus put an upper bound on the measure of

workers that can be hired under the latter contracts. As before, we let Cωø(Xωø) = Xωø .

We then assume the revealed preference property that for any X,X ′ ∈ X |Ωf | with X ′ @f X

and for Mf = Cf (X), if Mf ∈ Yf (X ′), then Mf = Cf (X
′).

An allocation is M = (Mω)ω∈Ω such that Mω ∈ X for all ω ∈ Ω and
∑

ω∈ΩMω = G.

Let Mf = (Mω)ω∈Ωf
∈ X |Ωf | denote a profile of subpopulations who are matched with

f . Given Mf = (Mω)ω∈Ωf
, define M�ω

f by (S5) and let M�
f = (M�ω

f )ω∈Ωf
. Note that

M�ω
f corresponds to a subpopulation of workers already hired by firm f who are willing

to work for f under ω given their current contracts. In other words, M�
f does not include

the workers available to firm f who are currently matched with firms other than f . A

subpopulation of all workers—not only those hired by firm f—who are available to f ∈ F̃
under contract ω ∈ Ωf is denoted as before by

D�ω(M)(·) =
∑
P∈P

∑
ω′∈Ω:ω′�Pω

Mω′(ΘP ∩ ·).

Let D�f (M) = (D�ω(M))ω∈Ωf
.

Definition S5. An allocation M = (Mω)ω∈Ω is stable if

1. (Individual Rationality) Mω(ΘP ) = 0 for all P ∈ P and ω ∈ Ω satisfying ω ≺P ωø;

and for each f ∈ F , Mf = Cf (M
�
f ), and

2. (No Blocking Coalition) There exist no f ∈ F and M̃ f ∈ X |Ωf |,M̃ f 6= Mf such that

M̃ f = Cf (M̃
�
f ∨M

�
f ) and M̃ �

f @f D
�f (M).

Note that this definition reduces to the notion of stability in Definition 2 if each firm is

associated with exactly one contract.

Let us now define a map T = (Tω)ω∈Ω : X |Ω| → X |Ω| by specifying, for each ω ∈ Ω and

E ∈ Σ,

Tω(X)(E) :=
∑

P :P (1)=ω

G(ΘP ∩ E) +
∑

P :P (1)6=ω

RωP
−

(Xf(ωP
−))(ΘP ∩ E). (S6)

Theorem S4. M = (Mω)ω∈Ω is a stable allocation if and only if Mf = Cf (Xf ), ∀f ∈ F̃ ,

where X = (Xω)ω∈Ω is a fixed point of mapping T .
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Proof. (“Only if” part) Suppose M is a stable allocation in X |Ω|. We prove that X =

(D�ω(M))ω∈Ω is a fixed point of T . Let us first show that for each ω ∈ Ω, Xω ∈ X .

It is clear that as each Mω is countably additive, so is Mω(ΘP ∩ ·), which implies that

Xω(·) = D�ω(M)(·) =
∑

P∈P
∑

ω′∈Ω:ω′�Pω
Mω′(ΘP ∩ ·) is also countably additive. It is also

clear that since (Mω)ω∈Ω is an allocation, Xω @ G. Thus, we have Xω ∈ X .

We next claim that Mf = Cf (Xf ) for all f ∈ F̃ . This is immediate for f = ø since

Mø = Xø = Cø(Xø). To prove the claim for f 6= ø, suppose for a contradiction that

Mf 6= Cf (Xf ), and let us denote M̃ f = Cf (Xf ). Since Cf (Xf ) ∈ Yf (Xf ) by definition, we

have M̃ �
f @f Xf and thus (M̃ �

f ∨M
�
f ) @f Xf . Given this and M̃ f ∈ Yf (M̃ �

f ∨M
�
f ), we

have M̃ f = Cf (M̃
�
f ∨M

�
f ) by revealed preference, which means that M is not stable since

M̃ �
f @f Xf = D�f (M), yielding the desired contradiction.

We next prove X = T (X). The fact that Mω = Cω(Xf(ω)),∀ω ∈ Ω means that Xω −
Mω = Rω(Xf(ω)),∀ω ∈ Ω. Then, for each ω ∈ Ω and E ∈ Σ, we obtain∑

P :P (1)=ω

G(ΘP ∩ E) +
∑

P :P (1)6=ω

RωP
−

(Xf(ωP
−))(ΘP ∩ E)

=
∑

P :P (1)=ω

G(ΘP ∩ E) +
∑

P :P (1)6=ω

(
XωP

−
(ΘP ∩ E)−MωP

−
(ΘP ∩ E)

)

=
∑

P :P (1)=ω

G(ΘP ∩ E) +
∑

P :P (1)6=ω

 ∑
ω′∈Ω:ω′�Pω

P
−

Mω′(ΘP ∩ E)−MωP
−

(ΘP ∩ E)


=

∑
P :P (1)=ω

∑
ω′∈Ω:ω′�Pω

Mω′(ΘP ∩ E) +
∑

P :P (1)6=ω

∑
ω′∈Ω:ω′�Pω

Mω′(ΘP ∩ E) = Xω(E),

where the second and fourth equalities follow from the definition of XωP
−

and Xω, re-

spectively, while the third from the fact that ωP− is an immediate predecessor of ω and∑
ω′∈Ω:ω′�PP (1)Mω′(ΘP ∩ E) = G(ΘP ∩ E). The above equation holds for every contract

ω ∈ Ω, so we conclude that X = T (X), i.e. X is a fixed point of T .

(“If” part) Let us first introduce some notations. Let ωP+ denote an immediate

successor of ω ∈ Ω at P ∈ P : that is, ωP+ ≺P ω, and for any ω′ ≺P ω, ω′ �P ωP+. Note

that for any ω, ω̃ ∈ Ω, ω = ω̃P− if and only if ω̃ = ωP+.

Suppose now that X = (Xω)ω∈Ω ∈ X |Ω| is a fixed point of T . For each contract ω ∈ Ω

and E ∈ Σ, define

Mω(E) = Xω(E)−
∑

P :P (|Ω|)6=ω

XωP
+

(ΘP ∩ E), (S7)

where P (|Ω|) 6= ω means that ω is not ranked lowest at P .
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We first verify that for each ω ∈ Ω, Mω ∈ X . First, it is clear that for each ω ∈ Ω, as

both Xω(·) and XωP
+

(ΘP ∩ ·) are countably additive, so is Mω. It is also clear that for each

ω ∈ Ω, Mω @ Xω.

Let us next show that for all ω ∈ Ω, P ∈ P , and E ∈ Σ,

Xω(ΘP ∩ E) =
∑

ω′∈Ω:ω′�Pω

Mω′(ΘP ∩ E), (S8)

which means that Xω = D�ω(M). To do so, consider first a contract ω that is ranked

lowest at P . By (S7) and the fact that XωP
+

(ΘP ∩ ·) ≡ 0, we have Mω(ΘP ∩E) = Xω(ΘP ∩
E). Hence, (S8) holds for such ω. Consider now any ω ∈ Ω which is not ranked last,

and assume for an inductive argument that (S8) holds true for ωP+, so XωP
+

(ΘP ∩ E) =∑
ω′∈Ω:ω′�Pω

P
+
Mω′(ΘP ∩ E). Then, by (S7), we have

Xω(ΘP ∩ E) = Mω(ΘP ∩ E) +XωP
+

(ΘP ∩ E) = Mω(ΘP ∩ E) +
∑

ω′∈Ω:ω′�Pω
P
+

Mω′(ΘP ∩ E)

=
∑

ω′∈Ω:ω′�Pω

Mω′(ΘP ∩ E),

as desired.

To show that M = (Mω)ω∈Ω is an allocation, let ω = P (1). Then, the definition of T

and the fact that X is a fixed point of T imply that for any E ∈ Σ,

G(ΘP ∩ E) = Xω(ΘP ∩ E) =
∑

ω′∈Ω:ω′�Pω

Mω′(ΘP ∩ E) =
∑
ω′∈Ω

Mω′(ΘP ∩ E),

where the second equality follows from (S8). Since the above equation holds for every

P ∈ P , M is an allocation.

We now prove that (Mω)ω∈Ω is stable. To prove the first part of Condition 1 of Definition

S5, note first that Cωø(Xωø) = {Xωø} and thus Rωø = 0. Fix any P ∈ P and assume ø 6=
P (|Ω|), since there is nothing to prove if ø is ranked lowest at P . Consider a contract ω such

that ωP− = ωø. Then, X being a fixed point of T means Xω(ΘP ) = RωP
−

(ΘP ) = Rωø(ΘP ) =

0, which implies by (S8) that 0 = Xω(ΘP ) =
∑

ω′∈Ω:ω′�Pω
Mω′(ΘP ) =

∑
ω′∈Ω:ω′≺Pωø

Mω′(ΘP ),

as desired.

To prove the second part of Condition 1 of Definition S5, we first show that Mω =

Cω(Xf(ω)), which is equivalent to showing Xω −Mω = Rω(Xf(ω)). Since X = T (X), we

have Xω(ΘP∩·) = RωP
−

(Xf(ωP
−))(ΘP∩·) for all ω 6= P (1), or XωP

+
(ΘP∩·) = Rω(Xf(ω))(ΘP∩·)

for all ω 6= P (|Ω|). Then, (S7) implies that for any ω ∈ Ω,

Xω(·)−Mω(·) =
∑

P :P (|Ω|)6=ω

XωP
+

(ΘP ∩ ·) =
∑

P :P (|Ω|)6=ω

Rω(Xf(ω))(ΘP ∩ ·) = Rω(Xf(ω))(·),
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as desired. The last equality here follows from the fact that Rω(ΘP ∩ ·) = 0 if ω = P (|Ω|).
To see this, note that if ω = P (|Ω|) = ωø, then Rω(Xf(ω)) = Rωø(Xø) = 0 by definition

of Rωø , and that if ω = P (|Ω|) ≺P ωø, then the individual rationality of M for workers

implies that Xω(ΘP ∩ ·) = Mω(ΘP ∩ ·) = 0, which in turn implies Rω(Xf(ω))(ΘP ∩ ·) = 0

since Rω(Xf(ω))(ΘP ∩ ·) @ Xω(ΘP ∩ ·). Given that Mω = Cω(Xf(ω)) for all ω ∈ Ω or

Mf = Cf (Xf ) for all f ∈ F , Mf = Cf (M
�
f ) follows from the revealed preference and the

fact that M�
f @f Xf .

It only remains to check Condition 2 of Definition S5. Suppose for a contradiction that

it fails. Then, there exist f and M̃ f such that

Mf 6= M̃ f = Cf (M̃
�
f ∨M

�
f ) and M̃ �

f @f D
�f (M). (S9)

Then, we have Mf ∈ Yf (M̃ �
f ∨M

�
f ), (M̃ �

f ∨M
�
f ) @f D

�f (M) = Xf , and Mf = Cf (Xf ),

which, by revealed preference, implies Mf = Cf (M̃
�
f ∨M

�
f ), contradicting (S9). We have

thus proven that M is stable.

Given this characterization result, the existence of stable allocation follows from as-

suming that for each f ∈ F , Cf : X |Ωf | → X |Ωf | is continuous, since it guarantees that

T : X |Ω| → X |Ω| is also continuous:

Theorem S5. If each firm’s preference is continuous, then there a stable allocation exists.
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