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Abstract

An important theme of modern contract theory is the role contracts play to protect

parties from the risk of holdup and thereby encouraging their relationship specific invest-

ments. While this perspective has generated valuable insights about various contracts,

the underlying models abstract from realistic investment dynamics. We reexamine the

role of contracts in a dynamic model that endogenizes the timing of investments and

trade. The resulting interaction between bargaining and investment significantly alters

the insights learned from static models. We show that contracts that would exacerbate

the parties’ vulnerability to holdup — rather than those protecting them from the risk

of holdup — can be desirable. Specifically, separate ownership of complementary assets

can be optimal, an exclusivity agreement can protect the investments of its recipient,

and trade contracts can be beneficial with a purely cooperative investment, much in

contrast to the existing results (based on static models).
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1 Introduction

The holdup problem arises when a business partner makes relationship specific investments

that are susceptible to ex post expropriation by his associates. Examples of such investments

include acquisition of firm specific skills by workers, subcontractors’ efforts to customize their

parts to the special needs of manufacturers, and a firm’s relocation of its plant adjacent to its

partner. These investments create more surplus within a relationship than without. Hence,

absent any special safeguard, the fear of holdup may lead the parties to underinvest relative

to the efficient level. An important theme of the modern contract literature is how contracts

can protect the investors from the risk of holdup.1

While this literature has generated valuable insights about various contracts, the underly-

ing models abstract from the realistic investment dynamics present in many business relation-

ships. Specifically, the extant models assume that the partners can invest only once, and only

at a certain time. In practice, however, the timing of investment and bargaining is — at least

to some extent — chosen endogenously by the parties, and the investment and bargaining

stages are often intertwined. For instance, the Department of Defense may negotiate to order

a weapons system from a contractor based on his current technical knowledge, or it may decide

to wait until the latter invests more in R & D and develops a better technology. A similar

dynamic interaction of investment and bargaining arises in the development of new building

construction, advertising pilots or software projects.2 We develop a model that allows for the

timing of investment and trade to be endogenous. Specifically, in our model, an investing

party accumulates specific investments in each period until either the parties agree to trade

or their negotiation breaks down.

We study the effects of ex ante (incomplete) contracts in such an environment. In our

1A range of organizational and contract forms have been rationalized as safeguards against holdup: Ex-

amples include vertical integration (Klein, Crawford and Alchian, 1978; Williamson, 1979), a property rights

allocation (Grossman and Hart, 1986; Hart and Moore, 1990), contracting on renegotiation rights (Chung,

1991; Aghion, Dewatripont and Rey, 1994), option contracts (Nöldeke and Schmidt, 1995), and trade contracts

(Edlin and Reichelstein, 1996; Che and Hausch, 1999).
2Such dynamic interaction is also present in the publishing of academic articles. Consider the editorial

procedure at the Berkeley Electronic Journals. Here submission is simultaneous to four vertically differentiated

journals. Unless the initial submission is rejected, in principle the author is offered a choice of acceptance at a

lower level or following a substantial revision — incremental investment after the negotiation has commenced

— acceptance at a higher level.
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model, two parties, 1 and 2, initially sign a contract, say m, that may specify various aspects

of their relationship, such as asset ownership, future trade decisions or exclusivity of their

trading relationship. This contract may be renegotiated over time, but it affects the outcome

of renegotiation by determining its threat point. Specifically, party 1 (the investor) begins

by making a sunk investment, say k ∈ R+, and then a randomly-chosen proposer offers to

his partner a share of surplus that would obtain through trading. If that offer is accepted,

trade occurs according to the agreement, and the game ends. If the offer is rejected, then

negotiation breaks down irrevocably with probability 1− δ ∈ (0, 1). In that case, the contract

in place takes effect, generating “contract payoffs,” say ψ1(k,m) and ψ2(k,m), respectively,

to the parties. With the remaining probability δ, the game moves to the next period without

trade, and the same process is repeated; i.e., party 1 can make an incremental investment,

which is followed by a new bargaining round with a random proposer, and the game goes on

until either trade occurs or bargaining breaks down.

Absent investment, the unique subgame perfect equilibrium of this bargaining model repli-

cates the Nash Bargaining Solution (NBS), just as in Binmore, Rubinstein and Wolinsky

(1986).3 Thus, our full-fledged model can be seen as making the stake of bargaining in their

model endogenous through investment.

If the investment is allowed to occur only in the first period or equivalently if δ = 0 (i.e.,

when breakdown is certain following disagreement), the model coincides with the majority of

existing contract models which use the NBS with the contract payoffs serving as the threat

point.4 Our full-fledged model provides a natural dynamic extension of these that endogenizes

the timing of investment and trade decisions. For this reason, the equilibrium results of our

model are easily comparable to those in much of the contract literature.

We show that allowing for investment dynamics yields a new insight on the effects of

contracts. The recent contract literature has focused on the inappropriability of returns at the

margin as a source of inefficiency and a rationale for contract intervention. More precisely,

3Binmore, Rubinstein and Wolinsky (1986) present the alternating-offer version of this model. They need

to take the limit as the breakdown probability tends to zero in order to eliminate the first-mover advantage

and to show the full equivalence with the NBS. Instead, we assume that in each bargaining round the proposer

is chosen randomly, which yields the same qualitative effect.
4Examples include Grossman and Hart (1986), Hart and Moore (1990), Edlin and Reichelstein (1996),

Che and Hausch (1999), Hart and Moore (1999), Segal (1999), and Segal and Whinston (2000, 2002). The

alternative approach treats contracts as affecting the outside option payoffs of bargaining (MacLeod and

Malcomson, 1993; Chiu, 1998; de Meza and Lockwood, 1998).
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the literature has focused on how parties’ contract payoffs, ψi(k,m), vary with investment,

k. If an investor’s contract payoff increases with her specific investment, it effectively reduces

the specificity of her investment at the margin, thus reducing the exposure of her marginal

investment return to expropriation. Such a contract thus improves her incentives to make

the specific investment. Alternative contracts can be ranked along this logic: If a contract

reduces the investor’s marginal specificity exposure more than another contract, the former

contract will protect her investment return better than the latter, thus inducing a higher

level of investment.5 By the same token, if two contracts entail precisely the same marginal

specificity, their effect on investment incentives will be precisely the same, even when they

differ in terms of the investors’ exposure to absolute specificity that they induce. Hence, the

absolute degree of specificity investors are exposed to does not matter in the existing models.

In our dynamic model, absolute specificity will matter for a sufficiently large δ.

This point can be illustrated via a simplified example. Suppose party 1 has a binary choice:

either to “not invest” or to “invest”. Investment costs her C > 0 but enables the parties to

realize a gross surplus of φI through trade, whereas “not invest” costs nothing but yields

an opportunity to realize φN . Assume that φI − C > φN (so investment is efficient). Each

party has equal probability of becoming the proposer in bargaining. In case of bargaining

breakdown, the parties collect their respective contract payoffs, ψ1(m) and ψ2(m), which, as

presumed above, depend on the contract in place, m, but not on whether party 1 invests or

not. (That is, the contract does not affect marginal specificity.)

Suppose δ = 0, just as in the static models. Then, the contract payoffs are realized unless

the parties agree to trade in the first period, so, given choice j = I,N , party 1 will receive

ψ1(m) + 1
2
(φj − ψ1(m) − ψ2(m)) = 1

2
(φj − ψ2(m) + ψ1(m)) from negotiation. Consequently,

she will invest if and only if

(1) 1
2
(φI − ψ2(m) + ψ1(m))− C ≥ 1

2
(φN − ψ2(m) + ψ1(m)) ⇐⇒ 1

2
φI − C ≥ 1

2
φN ,

regardless of the contract in place, m. As argued above, contracts affecting only absolute

specificity thus have no effect on the outcome if δ = 0.

5For example, the celebrated prescription of Grossman-Hart-Moore (GHM) that complementary assets

should be owned together, can be understood in this light. The common ownership of assets lowers the owner’s

marginal specificity exposure at the expense of raising the non-owner’s. If complementarity of assets were to

mean, as was assumed by GHM, that the former’s gain exceeds the latter’s loss, then common ownership

would result in better aggregate incentives than separate ownerships.
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If δ ≈ 1, however, contracts affecting only absolute specificity do matter. In this case,

“invest” is supported in an equilibrium if and only if

(2) 1
2
(φI − ψ2(m) + ψ1(m))− C ≥ ψ1(m) ⇐⇒ 1

2
φI − C ≥ 1

2
(ψ2(m) + ψ1(m)).

This can be seen as follows. Suppose party 1 invests. Then, since no further investment is

possible, the ensuing subgame coincides with the standard random-proposer bargaining game

with a fixed surplus (and probabilistic breakdown). That game has a unique (subgame perfect)

equilibrium in which party 1 receives the payoff in the LHS of (2). Since she can guarantee

the payoff of ψ1(m) by not investing and perpetually inducing rejection, (2) is necessary to

support “invest” in equilibrium. The condition is also sufficient to support “invest” if δ ≈ 1.

Suppose party 1 adopts the strategy of “investing whenever she hasn’t invested before.” Her

payoff from investing is again the LHS of (2), but her deviation payoff is reduced (relative to

the RHS of (1)) by the prospect that she will invest next period in case of disagreement. If

no agreement is reached, the pie will grow due to party 1’s investment. Since the investment

cost will be borne solely by the investor, the prospect of the investment causes party 2 to

demand more credibly to settle, leaving less for the investor when she deviates. Given (2),

the “investment” strategy thus becomes self-enforcing.6

The condition on the right in (2) shows that absolute specificity matters, and in particular

that a lower aggregate contract payoff is more likely to support “invest.” This means contracts

that would increase the parties’ vulnerability to holdup, rather than those protecting them

from it, can be desirable. This insight will be seen to provide novel predictions on well known

contracts, such asset ownership structures, exclusivity agreements, and trade contracts.

Several papers have developed somewhat similar insights, though in differing modelling

contexts. Halonen (2002) shows in a repeated-game model that joint ownership of an asset

6More precisely, suppose party 1 deviates and chooses “not invest.” Since she will invest next period if

it arrives, party 2’s continuation payoff following no agreement – and, therefore his reservation utility – is

δ 1
2 (φI − ψ1 + ψ2) + (1− δ)ψ2. Thus, party 1’s payoff from “not invest” is at most

max
{
φN − δ 1

2 (φI − ψ1 + ψ2)− (1− δ)ψ2, δ[ 12 (φI − ψ2 + ψ1)− C] + (1− δ)ψ1

}
.

The first payoff is received if party 1 offers party 2’s continuation payoff, which he will accept; the second

payoff is received if party 1 offers a lower amount (which party 2 will reject) or if party 2 becomes the proposer

(in which case he will offer party 1’s net continuation payoff, δ[ 12 (φI −ψ2 +ψ1)−C]+(1− δ)ψ1, which she will

accept). Given (2) and that investment is efficient, for δ ≈ 1, both terms are dominated by party 1’s “invest”

payoff — the LHS of (2).
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strictly dominates single ownership for intermediate values of players’ discount factor, δ, since

the former can make the repeated game punishment more severe. Baker et al. (2001, 2002)

also demonstrate that the absolute payoff levels can affect the efficiency ranking of different

ownership structures in a repeated trade setting. The repeated trade opportunities assumed

in these papers make the folk theorem of repeated games applicable, which implies that

an efficient outcome is sustainable as δ → 1, irrespective of the underlying organizational

arrangements. In this sense, the organizational issues become irrelevant for a sufficiently large

δ in these papers. By contrast, the parties have a single trading opportunity in our model

(just as in the standard holdup problem), which makes the folk theorem inapplicable. Indeed,

the organizational issues remain relevant when δ ≈ 1 in our model. Matouschek (2004)

studies the effects of ex ante contracts on the ex post trading (in)efficiencies when the parties

have two-sided asymmetric information (à la Myerson-Sattherthwaite), but have no ex ante

investments. Contracts inducing low disagreement payoffs can facilitate efficient agreement

(but prove more costly when agreement fails). Most closely related to the current paper is

its prequel, Che and Sákovics (2004). That paper studied a dynamic holdup model much like

the current one, but without the possibility of breakdown – and therefore, effectively in the

absence of ex ante contracts. The roles of ex ante contracts are the focus of the current study.

The rest of the paper is organized as follows. Section 2 describes the model, establishes

several benchmarks and reviews the results of the (existing) static contract models. Section 3

analyzes the equilibria in our dynamic contract model and establishes the effects of contracts.

Section 4 then applies the results to several well-known contracts/organizations. Section 5

concludes.

2 The model

2.1 Description of the model

Two risk-neutral parties, 1 and 2, can create a surplus from trade. The joint surplus from trade

at a given date increases with the aggregate investment party 1 (“investor”) has accumulated.

If the parties agree on a trade decision, q ∈ Q, with the cumulative investment, k ∈ K, by

party 1 (measured in the cost of investment), then it creates the joint surplus of Φ(q, k) (gross

of the investment cost). The set of feasible trades, Q, is a compact subset of Rm for some

m ∈ N, and contains a null trade q0 that yields a zero surplus, i.e., φ(q0, ·) ≡ 0. We assume
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that K = [0, k̄] for some k̄ > 0.7 As will become clear, it is useful to focus on the efficient

trade decision conditional on the level of investment,

φ(k) := max
q∈Q

Φ(q, k),

which we assume is well defined. Further, we assume that the efficient surplus function, φ(·),
is strictly increasing, strictly concave and differentiable.

Investments and trade can occur at any discrete period, t = 1, 2, ..., in the shadow of

a contract, m ∈ M, signed at period t = 0, for some arbitrary set of contracts M. The

subsequent time line follows the extensive form sketched in the introduction. To be more

precise, each period t ≥ 1 (if it is reached) consists of two stages: first investment and then

bargaining. In the investment stage, party 1 makes a non-negative incremental investment,

which adds to the existing stock. Once it is made, the investment is sunk and its level

becomes a common (yet unverifiable) knowledge to the parties. In the bargaining stage, a

party is chosen randomly to offer to his partner a share of the surplus that would result from

trade at that point. We assume that party 1 is chosen with probability α ∈ (0, 1), and party

2 is chosen with the remaining probability, 1 − α. If the offer is accepted, then trade takes

place according to the agreed-upon terms, and the game ends. If the offer is rejected, then,

with probability δ ∈ [0, 1), the game moves to the next period without trade, and the same

process is repeated; i.e., party 1 can make an incremental investment, which is followed by

a new bargaining round with a random proposer. With probability 1 − δ, bargaining breaks

down irrevocably, and the two parties collect their contract payoffs, ψ1(k;m) and ψ2(k;m),

respectively,8 when the cumulative investment up to that point is k.

Our model is general enough accommodate a broad set of circumstances in terms of the

underlying environment and the allowed contracts/organizations. In particular, several well-

known contract problems are included in our model.9

7All of our results remain unchanged, although they become cumbersome to present, if K is discrete.
8In some occasion, we will refer to these payoffs will be also referred to as “status quo payoffs.”
9In principle, a more sophisticated contract, e.g., one requiring exchanges of messages, can be incorporated

into our model, with ψi interpreted as the equilibrium payoff of party i in that contract (sub)game. Of

course, there is the issue of how these latter payoffs are determined and what contract payoffs are feasible.

These are difficult questions to address even in the static model (as is well known from the debates on the

incomplete contract paradigm). The more complex extensive form makes our dynamic model even less suitable

for analyzing, let alone likely to offer any new insight on, these problems. For these reasons, we do not address

the question of optimal contracts, limiting attention instead to several well known contracts and organization
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Example 1 (Ownership contracts) The asset ownership model of Grossman-Hart-Moore

can be represented with m denoting a partition of total physical assets, A, into assets owned

by party 1, Am
1 , and the assets owned by party 2, Am

2 , and M denoting the set of all such par-

titions. Suppose that, given allocation m ∈M, the two parties realize the surplus of π1(k;A
m
1 )

and π2(k;A
m
2 ) from individual production, respectively, when their team production fails. This

model is subsumed in our model by setting the contract payoffs ψ1(k;m) := π1(k;A
m
1 ) and

ψ2(k;m) := π2(k;A
m
2 ).

Example 2 (Trade contracts) A seller (party 1) delivers a good to a buyer (party 2). If the

seller invests k, trading q ∈ [0, q̄] =: Q units of the good generates a gross surplus of v(q, k) to

the buyer but requires the seller to incur the production cost of c(q, k). Prior to the investment,

the parties sign a contract requiring the exchange of q̂ ∈ Q units for the price of t̂ ∈ R. Edlin

and Reichelstein (1996) studied such a contract, which can be indexed by m = (q̂, t̂). This

model conforms to our model with Φ(q, k) := v(q, k) − c(q, k), ψ1(k; q̂, t̂) = t̂ − c(q̂, k), and

ψ2(k; q̂, t̂) = v(q̂, k)− t̂.

Example 3 (Exclusivity contracts) Party i = 1, 2 has the outside opportunity to trade

with a third party and realize πO
i > 0, respectively. (These payoffs do not depend on k when

investments are not transferable to the external trades.) Suppose that at t = 0 the parties can

sign an exclusivity agreement that would prohibit such external trades. Segal and Whinston

(2000) studied whether such a contract can protect returns to specific investments. Our model

can be used to reexamine this issue by setting M = {EX, NEX} and ψ1(k;EX) = ψ2(k;EX) ≡
0 and ψ1(k;NEX) ≡ πO

1 , ψ2(k;NEX) ≡ πO
2 .

As Example 3 illustrates, the absence of a contract is a special case of our model. Clearly,

the status quo payoffs are not necessarily lower in such a case, particularly when compared

with an exclusivity contract.10 Throughout, we make the following assumptions, which are

natural with the above examples.

forms.
10In Che and Sákovics (2004), the status quo payoffs are assumed to be zero. But this is just a normalization,

and the reader should not interpret the current paper as assuming that the status quo payoffs will indeed rise

as the parties sign some ex ante contract. As the exclusivity example illustrates, a contract may increase or

decrease the parties’ status quo payoffs.
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Assumption 1 (Regularity) For each m ∈ M, (a) ψi(·;m) is nonnegative, nondecreasing

and twice differentiable; (b) φ(·)−zψ2(·;m) and ψ1(·;m) are strictly concave for all z ∈ [0, 1];11

and (c) ψ1(k;m)− k is strictly decreasing in k.

Assumption 2 (Specificity) For each m ∈ M and k ∈ K, φ(k) − ψ1(k;m) − ψ2(k;m) is

strictly positive and nondecreasing in k.

Assumption 1 implies that parties’ contract-induced disagreement payoffs are nondecreas-

ing in their investments and satisfy other technical conditions. Assumption 1-(c) implies that

party 1 will not invest unless there is internal trade between the partners. It simplifies our

equilibrium characterization. Assumption 2 means that the parties’ investments are specific

in the sense that they generate higher total surplus when the parties trade efficiently than

when they disagree, both in the absolute and marginal senses. These assumptions are sensible

in the context of the above examples. For instance, the disagreement outcome under any

ownership may be inefficient since non-owners may not exert sufficient human capital input

(as is assumed in GHM); a trading contract may not specify the efficient trade level (as with

Edlin and Reichelstein (1996) and Che and Hausch (1999)); and external trading does not

yield as much surplus as the efficient internal trading both under exclusive and nonexclusive

regimes (see Segal and Whinston (2000)). Some applications will require relaxing Assump-

tions 1(c) and Assumption 2, in which case a remark will be made to note the implication of

the relaxation.

Assumption 2 implies that the disagreement outcome can never be efficient, so the social

optimum can be characterized independently of the contract in place. The first-best is achieved

when the seller chooses

k∗ = arg max
k∈K

φ(k)− k,

and the parties trade immediately to realize φ(k∗). We assume that k∗ ∈ (0, k̄), which implies

that k∗ satisfies φ′(k∗) = 1.

11A sufficient condition is that both φ and ψ2 are concave but the former is more concave; i.e., φ′′(·) ≤
ψ′′

2 (·;m). Existing models often assume that ψ′
2(·;m) ≡ 0, in which case the assumption follows from the strict

concavity of φ.
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2.2 Benchmark outcomes

Before proceeding, it is useful to establish the equilibrium outcome of the static game as

a benchmark, and replicate the main insight from the traditional contract literature in our

model. We do so in a way that will facilitate comparison with the subsequent dynamic results.

Consider the following payoff function of party 1 under contract m:

(3) Uδ(k;m) := α[φ(k)− (1− δ)ψ2(k;m)] + (1− α)(1− δ)ψ1(k;m)− (1− (1− α)δ)k,

and let kδ(m) := arg maxk∈K Uδ(k;m) denote its unique maximizer, which is well defined by

Assumption 1(b).

The highest investment level implementable by m is will be seen later to equal kδ(m).

For now, we observe that the payoff function corresponds to two important benchmarks when

δ takes extreme values. First, if δ = 1, then Uδ(k;m) = α[φ(k) − k], the (re-scaled) social

objective function. Hence, k1(m) = k∗ regardless of the contract m in place. Next, if δ = 0,

then Uδ(k;m) = α[φ(k)−ψ2(k;m)]+(1−α)ψ1(k;m)−k. This is precisely party 1’s equilibrium

payoff in the (standard) static model, where all the investment is done at once, followed by

(asymmetric) Nash bargaining.12 Hence, its maximizer, k0(m), represents the equilibrium

investment induced by contract m in the static model. Finally, we can observe how kδ(m)

varies with δ.

Lemma 1 Given Assumption 1(a)-(b), kδ(m) is nondecreasing in δ, and approaches to k0(m)

as δ → 0 and to k∗ as δ → 1. If Assumption 1(c) holds additionally, then kδ′(m) > kδ(m) for

δ′ > δ, whenever kδ′ > 0.

Proof. See the Appendix.

As mentioned in the Introduction, in the static models, the value of contracts lies in

reducing the investor’s marginal specificity exposure. For instance, if contract m causes party

1’s contract payoff, ψ1(k;m), to increase strictly with k, then his exposure to holdup at the

margin, φ′(k) − ψ′1(k;m), will be reduced (compared with the null contract case). It is thus

useful to characterize how contracts compare in terms of the extent to which they reduce each

party’s marginal specificity exposure. Let us write ψi(k;m) =
∫ k

0
ψ′i(k̃;m)dk̃ + ψ̄i(m), where

ψ̄i(m) := ψi(0;m) for i = 1, 2.

12In the special case when α = 1
2 , it coincides with the NBS.
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Definition 1 (a) A contract m′ is (weakly) M-specificity reducing on m for party i =

1, 2, or m′ �M
i (�M

i )m, if ψ′i(k;m
′) > (≥)ψ′i(k;m) for all k ∈ K.

(b) Contracts m and m′ are M-specificity invariant for party i = 1, 2, or m ∼M
i m′

if m �M
i m′ and m �M

i m′. The contracts are M-specificity invariant, or m ∼M m′, if

m ∼M
i m′ for i = 1, 2.

If contracts m and m′ are M-specificity invariant, then their associated contract payoffs

differ only in absolute magnitude, i.e., ψi(k;m
′) − ψi(k;m) = ψ̄i(m

′) − ψ̄i(m) for all k ∈ K.

In the static setting, the investment levels are partially characterized by the order on M-

specificity, as is shown next.

Proposition 1 In the static model (δ = 0), if m′ �M
1 m and m′ �M

2 m, then k0(m
′) ≥ k0(m).

The inequality is strict if (in addition) k0(m
′) > 0 and if either m′ �M

1 m or m �M
2 m′.

Proof. Observe that

U ′
0(k;m

′)− U ′
0(k;m) = (1− α)[ψ′1(k;m

′)− ψ′1(k;m)]− α[ψ′2(k;m
′)− ψ′2(k;m)] ≥ 0,

if m′ �M
1 m and m′ �M

2 m. Since the payoff function has a unique maximizer, given As-

sumption 1, the inequality implies that k0(m
′) ≥ k0(m). Further, the inequality is strict if, in

addition, k0(m
′) > 0 and if m′ �M

1 m. The latter condition implies that

U ′
0(k0(m

′);m) = α[ψ′2(k0(m
′);m′)−ψ′2(k0(m

′);m)]−(1−α)[ψ′1(k0(m
′);m′)−ψ′1(k0(m

′);m)] < 0.

Since k0(m
′) > 0, then k0(m) 6= k0(m

′), implying that k0(m
′) > k0(m).

This result shows that a shift from a contract, m, to another, m′, improves party 1’s

incentive for investment, if the shift lowers her marginal specificity exposure (i.e., φ′(k) −
ψ′1(k;m

′) ≤ φ′(k)−ψ′1(k;m)) and raises party 2(= non-investor)’s. This insight underlies the

GHM’s asset ownership prescriptions, as mentioned before.13 Meanwhile, if two contracts are

13 To illustrate, suppose as in Hart (1995) that there are two assets, A = {a1, a2}. An ownership structure,

m, is then represented by a partition of A, (Am
1 , A

m
2 ), where Am

i , i = 1, 2 refers to the asset(s) party i owns

under ownership structure m. Suppose as with GHM, that the parties’ contract payoffs in case of disagreement

depend on the assets they own (and possibly, party 1’s investment k), given by πi(k;Am
i ). There are three

alternative structures: (1) separate ownership or non-integration: mN := ({a1}, {a2}), (2) common ownership

by party 1: m1 := ({a1, a2}, ∅), and (3) common ownership by party 2: m2 := (∅, {a1, a2}). Given our

one-sided investment model, then the notion of strictly complementary assets coincide with an M-specificity

order: m1 �M
1 mN (see Hart (1995): conditions (2.2) and (2.3) (p. 37)). Then, Proposition 1 implies that

k0(m1) > k0(mN ), thus replicating a crucial result of GHM’s asset ownership theory.
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M-specificity invariant, they yield the same incentive for the investment.

Corollary 1 In the static model, M-specificity invariant contracts lead to the same invest-

ment: if m ∼M m′, then k0(m
′) = k0(m).

In other words, differences in absolute specificities do not matter. This result underlies

Segal and Whinston (2000)’s claim of irrelevance of exclusivity: if investments are not trans-

ferable to external trades (ψ′1(k;m) ≡ 0), then any two contracts are M-specificity invariant

and therefore whether the parties have an exclusivity agreement does not affect the incentives

for specific investment (since it affects the contract payoffs only in the absolute magnitude).

It will be seen later that absolute specificity does matter in our dynamic model. Specifically,

the aggregate level of specificity φ(0) − ψ̄1(m) − ψ̄2(m) may affect the level of sustainable

investment. It is thus useful to compare contracts by the associated level of absolute specificity.

Definition 2 Contract m′ is (weakly) A-specificity reducing on contract m, or m′ �A

(�A)m, if ψ̄1(m
′) + ψ̄2(m

′) > (≥)ψ̄1(m) + ψ̄2(m).

3 Effects of Contracts in the Dynamic Environment

3.1 The equilibrium concept

In our model, the stake of bargaining in any given period depends only on the aggregate in-

vestment accumulated up to that point. Consequently, the cumulative investment constitutes

the only payoff-relevant part of the history. A Markov strategy profile specifies for each period

party 1’s (incremental) investment choice as a function of the cumulative investment up to the

last period, and, for the bargaining stage, a price offer and a response rule for each party — a

function mapping from an offer to {accept, reject} — both as functions of the current-period

cumulative investment. We look for subgame perfect equilibria in Markov strategies, called

Markov Perfect equilibria (MPE).

Formally, we can characterize an equilibrium corresponding to contract m ∈ M, by a

pair of value functions, (σm, βm) : R+ 7→ R2, that map from the current period cumulative

investment into the continuation values for parties 1 and 2, respectively, evaluated immediately

before the selection of a proposer in that period; and by an investment strategy, ym : K 7→ K,
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with ym(k) ≥ k, that maps party 1’s previous-period cumulative investment into her current-

period cumulative investment.

Given an ex ante contract m ∈ M, a Markov Perfect equilibrium is characterized by a

triple, 〈σm, βm, ym〉, satisfying that: for each k ∈ K,

(4)

σm(k) = αmax{φ(k)− δβm(ym(k))− (1− δ)ψ2(k;m),

δ[σm(ym(k))− (ym(k)− k)] + (1− δ)ψ1(k;m)}
+(1− α){δ[σm(ym(k))− (ym(k)− k)] + (1− δ)ψ1(k;m)},

βm(k) = (1− α) max{φ(k)− δ[σm(ym(k))− (ym(k)− k)]− (1− δ)ψ1(k;m),

δβm(ym(k)) + (1− δ)ψ2(k;m)}
+α{δβm(ym(k)) + (1− δ)ψ2(k;m)},

(5)

(6) ym(k) ∈ arg max
k̃∈[k,k̄]

{σm(k̃)− (k̃ − k)}.

Party 1’s value function is explained as follows. Given an existing investment stock of k,

party 1 is chosen with probability α to make an offer. She can either make an offer which is

unacceptable to party 2, in which case she obtains her net continuation value, δ[σm(ym(k))−
(ym(k)− k)] + (1− δ)ψ1(k;m).14 Or else, she can make the lowest offer acceptable to party 2,

which equals his continuation value, δβm(ym(k)) + (1 − δ)ψ2(k;m). In the latter case, party

1 collects φ(k) − δβm(ym(k)) − (1 − δ)ψ2(k;m). She chooses the more profitable of the two

alternatives. With probability 1 − α, party 1 becomes the responder. Based on the above

reasoning, she will earn her continuation value, δ[σm(ym(k))−(ym(k)−k)]+(1−δ)ψ1(k;m), no

matter how party 2 resolves his trade-off. Party 2’s value function has a similar explanation.

The last equation, (6), states that party 1 chooses her best incremental investment, taking into

account the current stock and the future evolution of the game. Clearly, these conditions are

necessary for Markov Perfection. They are also sufficient, since there is no profitable (possibly

non-Markovian) deviation, given the single-period deviation principle.

3.2 The characterization of implementable investments

We now characterize the set of MPE. Of particular interest is the level of investment sustain-

able under a given contract. We say that a cumulative investment, k ∈ K, is implementable

14The game continues with probability δ in which case she collects σm(ym(k)) − (ym(k) − k) and the

bargaining is terminated with probability 1− δ in which case she collects her contract payoff, ψ1(k;m).
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by contract m if there exists an MPE with ym(·) in which trade occurs after reaching k. In our

dynamic model, multiple levels of investments are typically supportable by different invest-

ment dynamics. In order to identify the entire set of implementable investments, we need to

characterize party 1’s continuation payoff, σm(k), at each k. This task is not trivial, however,

due to the multiplicity of equilibria. Unlike the pure bargaining game, where the continuation

payoff can be uniquely pinned down, a range of continuation payoffs corresponding to differ-

ent investment dynamics can be sustainable, and characterizing the former requires getting

a handle on all implementable investment dynamics. The following lemma provides several

observations.

Lemma 2 Fix any MPE with contract m satisfying Assumptions 1 and 2.

(i) If k̂ ∈ K is implementable by m, then party 1 chooses k̂ and trade occurs in the first period,

and

(7) σm(k̂)− k̂ ≤ U0(k̂;m).

(ii) For any k ∈ K,

(8) σm(k)− k ≥ Uδ(k;m)− δ[αψ2(y
∞
m (k))− (1− α)ψ1(y

∞
m (k)) + (1− α)y∞m (k)],

where y∞m (k) := limt→∞ yt
m(k).

(iii) For any k ∈ K, y∞m (k) ≤ max{k, kδ(m)}.

Part (i) states that party 1’s equilibrium payoff (under any contract) cannot exceed the

payoff she would receive in the static equilibrium. That upper bound is attained if the in-

vestment strategy has y(k̂) = k̂, i.e., no further investment is specified after reaching k̂ (in

which case a pure bargaining game ensues just as in the static game, and hence the same

payoff). Whether party 1 will actually choose k̂ depends on what payoff she will receive when

deviating from k̂, in particular on the worst sustainable punishment that can be levied against

the deviator, which is characterized in part (ii). The RHS of (8) describes the payoff party 1

will receive when the strategy has her jump to y∞(k), the highest investment level sustainable

under that strategy, next period if no agreement is reached in the current period. It turns

out that sending party 1 to the highest implementable investment level (should disagreement

occur) constitutes the worst sustainable punishment. One can then use (i) and (ii) to identify

the highest implementable investment level: It is the highest level that party 1 wishes to
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choose given the threat of any downward deviation being punished by a jump to that level

next period. That level turns out to be kδ(m).

We can establish a couple of necessary conditions for MPE based on this lemma. By

definition, once kδ(m) is reached no further investment is possible, so a pure bargaining game

will ensue, leading to a unique continuation payoff σm(kδ(m)) = U0(kδ(m);m) + k in that

equilibrium. Since party 1 can guarantee this payoff by choosing kδ(m), any implementable

investment should make party 1 no worse than that payoff. Hence, if k̂ ∈ K is implementable

by m, by Lemma 2-(i), we must have

(IC) U0(k̂;m) ≥ Uδ(kδ(m);m).

Next, suppose party 1 deviates by not investing and perpetually inducing rejection. Then

she will obtain

(1− δ)[ψ̄1(m) + δψ̄1(m) + δ2ψ̄1(m) + ...] = ψ̄1(m).

If k̂ is implementable by m, we must have

(IR) U0(k̂;m) ≥ ψ̄1(m).

Below, we refer to the highest investment level satisfying (IR), kIR(m) := sup{k ≤ k̄ |
U0(k;m) ≥ ψ̄1(m)}.

We have shown that (IC) and (IR) are necessary for any cumulative investment k imple-

mentable by m. It turns out that they are sufficient as well.

Theorem 1 Given Assumptions 1 and 2, any cumulative investment k̂ is implementable by

a contract m if and only if

k̂ ∈ Kδ(m) := {k ∈ K | U0(k;m) ≥ max{ψ̄1(m), U0(kδ(m);m)}}.

When k̂ ∈ Kδ(m) is implemented, party 1 chooses k and trade occurs all in the first period.

Proof. See the Appendix.

As can be seen in the proof (in the Appendix), any investment in Kδ is implemented by

a strategy that calls for no further investment following the target investment being reached,

but calls for the worst punishment of having party 1 go up to kδ(m) following any deviation.

The set of implementable investments, Kδ(m), can be made more transparent with the aid

of Figures 1(a) and 1(b).
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[Insert Figures 1(a) and 1(b) around here.]

Since U0(·;m) is concave (by Assumption 1), the set Kδ(m) is an interval. Its largest element,

denoted k̄δ(m), must satisfy k̄δ(m) = min{kδ(m), kIR(m)} < k∗, for all δ < 1. As can be seen

from Figure 1(a), k̄δ(m) = kδ(m) if (IR) is not binding, whereas k̄δ(m) = kIR(m) if (IR)

is binding. Likewise, the lowest sustainable investment, denoted kδ(m), must also satisfy

U0(kδ;m) = max{ψ̄1(m), U0(kδ(m);m)}. Recall that U0(k;m) is maximized at k = k0(m).

Hence, (IR) holds strictly at k = k0(m) given Assumption 2. Furthermore, if k0(m) ∈ (0, k̄)

and Assumption 1(a)-(c) holds, then kδ(m) > k0(m) for any δ > 0, so we must have

U0(k0(m);m) > max{ψ̄1(m), U0(kδ(m);m)}. This means that kδ(m) < k0(m) < k̄δ(m) when-

ever δ > 0. In other words, our dynamic game can sustain investments that are strictly

higher and those that are strictly lower than the investment level sustainable in the static

equilibrium.

Despite the multiplicity, the set of MPE’s in our dynamic model has some desirable conti-

nuity features. For instance, it attains the static equilibrium outcome as a unique MPE when

δ = 0: Since kδ(m) → k0(m) as δ → 0, Kδ(m) collapses to a unique equilibrium investment,

k0(m).

Finally, since k̄δ(m) ≤ k∗ and φ(·) is concave, the highest sustainable investment, k̄δ(m),

generates the highest net joint surplus for the parties. If the parties have credible ways to

coordinate on selecting the equilibrium, the highest equilibrium investment will be selected

(assuming that any distributional issue can be addressed by the exchange of side payments).

Focusing on the best equilibrium also isolates the new predictions made available from the

current dynamic model. In particular, we can interpret the existing predictions as coming

from our dynamic model but with a particular selection. In this sense, focusing on the best

equilibrium serves to effectively complement the existing literature. For this reason, we will

focus on the highest implementable investment, k̄δ(m), throughout the rest of the paper.

3.3 The effects of a contract shift

To study how the choice of a contract m ∈ M affects the highest implementable investment,

we need to examine both kIR(m) and kδ(m), since k̄δ(m) = min{kIR(m), kδ(m)}. Since (IR)

is not binding at k = k0(m), however, there exists δ̂ > 0 such that, for all δ ≤ δ̂, (IR) is not

binding; i.e., k̄δ(m) = kδ(m) ≤ kIR(m). Hence, for a sufficiently low δ, it suffices to examine

how kδ(m) varies with contracts. Consider a shift from contract m to contract m′. Observe
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that

Uδ(k;m
′)− Uδ(k;m) = (1− δ){(1− α)[ψ1(k;m

′)− ψ1(k;m)]− α[ψ2(k;m
′)− ψ2(k;m)]}

= (1− δ)[U0(k;m
′)− U0(k;m)].

It follows that the effect of a contract shift on kδ is much the same as that on k0. This

shows that, while the dynamic model allows a higher investment to be sustained than the

static model, the comparative statics associated with a contract shift remains unchanged, for

a sufficiently low δ. In this sense, the results found the extant contract literature are robust.

We thus have the following generalization of Proposition 1:

Proposition 2 For any two contracts m,m′ ∈ M, there exists δ̂ > 0 such that, for any

δ ≤ δ̂, if m′ �M
1 m and m �M

2 m′, then k̄δ(m
′) ≥ k̄δ(m). (The inequality is strict if, in

addition, k̄δ(m
′) > 0 and either m′ �M

1 m or m �M
2 m′.) In particular, if m ∼M m′, then

k̄δ(m
′) = k̄δ(m).

What happens for a large δ? We next show that our dynamic contract model does make a

difference in this case. In such a case, the (IR) constraint may be binding, which introduces

a different type of consideration in terms of contract design. In fact, there is a sense in which

comparison of alternative contracts is meaningful only if (IR) is binding. To see this, fix any

contract m ∈ M, and suppose that kIR(m) ≥ k∗ so that (IR) can never be binding. Then,

since kδ(m) ≤ k∗ ≤ kIR(m), we have k̄δ(m) → k∗ as δ → 1 (i.e., the first-best outcome is

attainable arbitrarily closely). This result holds regardless of the contract (or its absence15)

as long as the (IR) holds at k∗ with that contract. In that sense, contracts become irrelevant

for δ ≈ 1, unless (IR) binds under some contracts.

Proposition 3 (Irrelevance of (IC) in the Limit) For any m ∈ M with kIR(m) ≥ k∗,

k̄δ(m) → k∗ as δ → 1.

To the extent that one cares about the implementability of the best equilibrium, this

proposition underscores the significance of (IR) in comparative contract research when δ ≈ 1.

To see whether the (IR) constraint introduces a new insight absent in the existing literature,

again fix a contract m and write the (IR) condition as

(9) α[φ(k)− ψ2(k;m)] + (1− α)ψ1(k;m)− k ≥ ψ̄1(m),

15In Che and Sákovics (2004), we show asymptotic efficiency in a model without breakdown (with discount-

ing), corresponding to the absence of a contract.
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which can be rewritten as:

(10) αφ(k) + (1− α)

∫ k

0

ψ′1(k̃;m)dk̃ − α

∫ k

0

ψ′2(k̃;m)dk̃ − α[ψ̄1(m) + ψ̄2(m)] ≥ 0.

Clearly, changes in M-specificities have the same qualitative effect on the (IR) constraint

as on kδ, for an increase in ψ′1 and a decrease in ψ′2 relax the constraint. There is a new

effect, however: absolute specificity matters for (IR). In particular, the higher the absolute

specificity, the more relaxed the constraint is; i.e., a decrease in ψ̄2 + ψ̄1 relaxes the constraint.

The effect of a contract shift can be clearly seen by how it affects the LHS of (10). Consider

as before a shift from contract m to contract m′. The resulting increase in the LHS is written

as:

(1− α)

∫ k

0

[ψ′1(k̃;m
′)− ψ′1(k̃;m)]dk̃ − α

∫ k

0

[ψ′2(k̃;m
′)− ψ′2(k̃;m)]dk̃

−α[ψ̄1(m
′) + ψ̄2(m

′)− ψ̄1(m)− ψ̄2(m)].(11)

Inspecting (11) yields our main general result.

Proposition 4 For any two contracts m,m′, if m′ �M
1 m, m′ �M

2 m, and m′ �A m, then

k̄δ(m
′) ≥ k̄δ(m). The latter inequality is strict if one of the first two orders is strict and (IR)

is not binding for both contracts, or the last order is strict and (IR) is binding for either

contract.

Proof. As noted, if m′ �M
1 m and m′ �M

2 m, then kδ(m
′) ≥ kδ(m). Also, if m′ �M

1 m and

m′ �M
2 m, and m′ �A m, then kIR(m′) ≥ kIR(m). The last statement follows from that fact

that k̄δ(m̃) = min{kIR(m̃), kδ(m̃)}, for m̃ = m,m′.

The new effect becomes most clear when two contracts are M-specificity invariant.

Corollary 2 (Contract Payoffs Minimization Principle) Suppose that m′ ∼M m.

Then, k̄δ(m
′) ≥ k̄δ(m) if and only if m′ �A m, or equivalently,

(12) ψ̄1(m
′) + ψ̄2(m

′) ≤ ψ̄1(m) + ψ̄2(m).

If (12) is strict and (IR) is binding for either m or m′, then k̄δ(m
′) > k̄δ(m).

This corollary has some striking implications for several contracts, as will be seen in the

next section.
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4 Applications

This section applies Proposition 4 and Corollary 2 to various contracting/organizational set-

tings. In some cases, we will focus on M-specificity invariant contracts, i.e., the ones that

expose the investor to the same degree of marginal specificity. All such contracts yield the

same outcome in the static models (see Corollary 1). Yet, these contracts may entail different

outcomes in our dynamic model if the investor is exposed to different degrees of absolute speci-

ficity (see Corollary 2). Hence, these contracts make our novel contributions most transparent.

Moreover, M-specificity invariant contracts are realistic in many settings. For instance, if the

investments are completely specific and their values are not realized without the participation

of both parties’ human capital, then the contract payoffs arising from different ownership

structures will not vary with the parties’ specific investment, so they will differ only in the

absolute magnitude. Likewise, if the investments are not transferable to the external trades,

whether the internal partners have exclusivity agreements or not will affect the contract payoffs

only in absolute magnitude. In these cases, we derive some surprising new results.

4.1 Ownership contracts

To begin, suppose there are two assets, A = {a1, a2}. An ownership structure, m, is then

represented by a partition of A, (Am
1 , A

m
2 ), where Am

i , i = 1, 2 refers to the asset(s) party i owns

under ownership structurem. Suppose, as with GHM, that the parties’ contract payoffs in case

of disagreement depend on the assets they own (and possibly, party 1’s investment k), given by

πi(k;A
m
i ). There are three alternative structures: (1) separate ownership or nonintegration:

mN := ({a1}, {a2}), (2) common ownership (or integration) by party 1: m1 := ({a1, a2}, ∅),
and (3) common ownership (or integration) by party 2: m2 := (∅, {a1, a2}). As mentioned

earlier, this setup is accommodated in our model by setting ψi(k;m) := πi(k;A
m
i ) for i = 1, 2.

Suppose these alternative ownership structures are M-specificity invariant. As mentioned

before, specificity invariance may arise because the investment is totally specific, so the entire

return to the investment is lost when there is disagreement: i.e., πi(k;A
m
i ) = πi(0;A

m
i ) for all

k.

Of special interest in the GHM model is the case in which the assets are complementary.

Complementarity of assets is defined there in terms of effects alternative ownership structures

have on marginal specificities (see footnote 13). Since we want to be able to talk about
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complementarity even under M-specificity invariance, we define an alternative, perhaps more

natural, notion of complementarity:

Definition 3 Assets are absolutely complementary if

ψ̄2(mN) + ψ̄1(mN) < min{ψ̄1(m1) + ψ̄2(m1), ψ̄1(m2) + ψ̄2(m2)}.

In words, this simply means that, absent investment effects, total asset values are higher

when they are owned together than when they are owned separately. Clearly, given absolutely

complementary assets, the contract payoffs minimization principle (Corollary 2) yields the

following implication.

Proposition 5 If the alternative ownership contracts are M-specificity invariant and the as-

sets are absolutely complementary, then separate ownership implements a [strictly] higher

investment than either form of common ownership [if individual rationality were binding at

the common ownership].

This result contrasts with the important GHM prescription that (marginally) complemen-

tary assets should always be owned together. Clearly, the difference stems from the fact that

the IR constraint plays an important role in our dynamic setting. As mentioned above, the

GHM result is based on, and driven by, the effects ownership structures have on how the

contract payoffs depend on the investment. While the above result assumes that the con-

tract payoffs do not vary with investment, it will continue to hold when some degree of such

co-movement is allowed.

Remark 1 (Joint ownership) A similar argument can be used to justify joint ownership

of assets, which is often viewed as suboptimal in the static literature. Suppose, as is often

argued by authors, that a joint ownership of assets entails even less efficient utilization of

assets than a common ownership of the assets, for instance because conflicting interests result

in ineffective decision making under joint ownership.16 This simply means that

ψ̄2(mJ) + ψ̄1(mJ) < min{ψ̄1(m1) + ψ̄2(m1), ψ̄1(m2) + ψ̄2(m2)},
16For instance, Hart (1995, pp48) describes joint ownership as a regime in which both parties have veto

power over the use of assets. According to this view, the joint ownership will be similar in effect to a mutual

exclusivity agreement, discussed below.
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where mJ refers to the joint ownership regime. Then, our contract payoffs minimization

principle will imply that the joint ownership can support higher investment than any common

ownership, provided that the joint ownership is M-specificity invariant to the other ownership

structures. A similar implication can be drawn on the value of joint ownership relative to

separate ownership, if the former entails less efficient use of assets than the latter.

Remark 2 (Does asset ownership motivate investment?) The above analysis casts

doubt on the robustness of some incentivizing effects of asset ownership found in the existing

literature. The GHM view was that transferring an asset ownership to a party unambiguously

motivates his specific investments. Meanwhile, the static models based on the outside option

specification of bargaining hold that, given some plausible condition, the ownership transfer

unambiguously demotivates the asset gainer’s investment. Our dynamic model affirms neither

view. Given absolute complementarity of assets, transfer of an asset to party 1 motivates his

investment, starting from a common ownership by party 2, but demotivates his investment

when transfer occurs starting from separate ownership.

4.2 Exclusivity contracts

A long-held belief was that a right to prohibit one’s partner from trading with a third party

— the so-called exclusivity agreement — protects the return of specific investments made

by the recipient of that right, thus promoting such an investment. A recent paper by Segal

and Whinston (2000) challenges the wisdom of this belief. They observe that, if investments

are specific and non-transferable to external trade, such an agreement can affect the parties’

contract payoffs only in absolute magnitude but not in the way investments affect those payoffs.

Hence, exclusivity and non-exclusivity are M-specificity invariant. As is clear from Corollary

1, then an exclusivity agreement would have no effect on the outcome in such a circumstance

according to the traditional models (see Segal and Whinston (2000), Proposition 1).

In our dynamic model, however, a change in the absolute level of the contract payoffs

matters, since it affects the individual rationality constraints. To see this, suppose as in

Example 3 that the parties’ contract payoffs are πO
1 > 0 and πO

2 > 0 if there is no exclusivity

agreement, whereas their contract payoffs are zero under the exclusivity agreement. It thus

follows that

ψ̄1(EX) + ψ̄2(EX) ≡ 0 < πO
1 + πO

2 ≡ ψ̄1(NEX) + ψ̄2(NEX).
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Given the M-specificity invariance between the two regimes, the next result follows immedi-

ately from the contract payoffs minimization principle:

Proposition 6 An exclusivity agreement implements a [strictly] higher investment [if the

individual rationality were binding under non-exclusivity].

This result shows that, if the individual rationality constraint were binding for a party,

awarding him the exclusivity right can protect his specific investment, which contrasts with

the irrelevance result by Segal and Whinston (2000). It is worth noting that exclusive dealing

relaxes the individual rationality constraints by making the status quo outcome (= failure of

internal trade) less attractive for the parties. It is also important to note that this effect arises

not only for the party who offers the exclusivity protection but also for the recipient of such

a protection (who may not offer the same protection to the other party in return).17

4.3 Trade contracts

Trade contracts specify the terms of ex post trade between the parties. Whether trade con-

tracts — renegotiable if the parties so choose — can solve the holdup problem has been the

focus of several recent works (see Chung 1991; Edlin and Reichelstein, 1996; Che and Hausch,

1999; and Segal and Whinston, 2002). The answer, according to them, depends on the nature

of the investment. If the investment is selfish in the sense that the investor directly benefits

from her investment (ck < 0 and vk = 0 in our case), then Edlin and Reichelstein (1996)

showed that a simple trade contract specifying a fixed quantity of trade, q̂, and a transfer

payment t̂ (to be made by the buyer [party 2] to the seller [party 1]) can implement the first

best outcome. Rephrased in terms of our framework, the main idea behind the efficiency

result is that the trade contract, with an appropriately chosen q̂, can eliminate the investor’s

marginal specificity exposure entirely if the investment is selfish. By contrast, if the invest-

ment is cooperative in the sense that the direct beneficiary of the investment is the investor’s

partner (ck = 0 and vk > 0 in our case), then no trade contract can reduce the investor’s

exposure to marginal specificity. Rather it reduces her partner’s marginal specificity, so the

contract can only worsen underinvestment, as shown in Che and Hausch (1999).

17de Meza and Selvaggi (2003) obtain a similar result, using a three-way bargaining game with the possibility

of reallocating/subcontracting the production assignment (in case of non-exclusivity). Their result and ours

complement each other toward a positive role exclusivity may play in promoting specific investments.
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The effects of trade contracts can be reexamined in our dynamic model. As will be seen,

some flavor of the standard results carries over, but there are some new elements. To begin,

consider a simple trade contract indexed by (q̂, t̂). The contract payoffs associated with this

contract are ψ1(k; q̂, t̂) = t̂− c(q̂, k) and ψ2(k; q̂, t̂) = v(q̂, k)− t̂. Clearly, trade contracts with

different q̂’s will not be M-specificity invariant. It is useful to consider the cases of selfish and

cooperative investments separately.

4.3.1 Selfish investments

If the investments are purely selfish, then we have vk ≡ 0 while ck < 0. Suppose, as with Edlin

and Reichelstein, that the parties sign a contract specifying q̂ = q∗(k∗) := arg maxq∈Q v(q, k
∗)−

c(q, k∗). (t̂ does not influence the outcome and thus can be arbitrary.) Note that, with this

contract,

Uδ(k; q̂, t̂) = α[φ(k)− (1− δ)ψ2(k; q̂, t̂)] + (1− α)(1− δ)ψ1(k; q̂, t̂)− (1− (1− α)δ)k

= α[φ(k)− (1− δ)(v(q∗, k)− t̂)] + (1− α)(1− δ)(t̂− c(q∗, k))− (1− (1− α)δ)k.

Differentiating this function with respect to k, using vk ≡ 0, yields

U ′
δ(k; q̂, t̂) = [1− (1− α)δ](φ′(k)− 1).

It then follows that kδ(q̂, t̂) = k∗, with q̂ = q∗(k∗). Since Uδ(k; q
∗, t̂) is maximized at k = k∗,

regardless of δ, U0(k; q
∗, t̂) is also maximized at k = k∗. Since U0(·; q∗, t̂) is strictly concave,

this means that only k = k∗ satisfies

U0(k; q̂, t̂) ≥ U0(kδ(q̂, t̂); q̂, t̂).

Hence, the only investment level implementable by a contract with q̂ = q∗, if there is any, would

be k = k∗. Indeed, it is straightforward to show that k∗ can be implemented in equilibrium

by the investment strategy18

y(k) =

{
k∗ if k ∈ [0, k∗],

k if k ∈ (k∗, k̄]

18The payoff at k given the strategies is:

σ(k)− k =

{
max{Uδ(k)− δ[αψ2(k∗))− (1− α)ψ1(k∗) + (1− α)k∗], δ[U0(k∗) + k]− k} if k ∈ [0, k∗],

U0(k) if k ∈ (k∗, k̄].

Ignoring the payoff term associated with delay (which is always less than U0(k∗)), the payoff function is

quasi-concave and attains a maximum at k∗. Hence the described strategies are an equilibrium.
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Since the set of MPE investments Kδ(q̂, t̂) is a singleton {k∗}, the chosen trade contract

implements the first-best outcome as a unique equilibrium.

Proposition 7 With selfish investments, a trade contract (q̂, t̂) with q̂ = q∗(k∗) implements

the first-best outcome as a unique MPE.

This result reaffirms the efficiency result obtained by Edlin and Reichelstein (1996) in the

static setting. This efficiency result has an added dimension in our dynamic setting, though,

as it suggests the role of the trade contract as eliminating bad equilibria as much as attaining

the efficient one: While the efficient outcome may be an equilibrium under different contracts

or even without any contract if δ is close to 1 (as suggested in the previous section), it admits

less efficient outcomes as well, which the current contract eliminates.

4.3.2 Cooperative investments

If the investments are purely cooperative, then ck ≡ 0 while vk > 0. We examine how trade

contracts with different q̂ will affect the outcome in this case. Since k̄δ(m) = min{kδ(m), kIR(m)},
we investigate the effects on each of the two terms. First, the effect on kδ can be studied by

examining

Uδ(k; q̂, t̂) = α[φ(k)− (1− δ)(v(q̂, k)− t̂)] + (1− α)(1− δ)(t̂− c(q̂, k))− (1− (1− α)δ)k.

Differentiating this function with respect to k, using ck ≡ 0, gives

(13) U ′
δ(k; q̂, t̂) = αφ′(k)− α(1− δ)vk(q̂, k)− [1− (1− α)δ].

Since vk(q, k) > 0 for all k > 0 and vk(0, k) ≡ 0, this derivative is maximized when q̂ = 0.

It follows that kδ(q̂, t̂) is maximized when q̂ = 0. This observation is consistent with that of

Che and Hausch (1999) in that no non-trivial contract can improve the incentives for specific

investment. However, this does not prove that trade contracts are worthless. Even with

q̂ > 0, kδ(q̂, t̂) → k∗ as δ → 1, just as observed in Proposition 3. Hence, whether a contract is

valuable for δ ≈ 1 depends crucially on whether the contract can relax the IR constraint.

With a trade contract and cooperative investment, the (IR) constraint can be rewritten

as follows:

α[φ(k)− ψ2(k; q̂, t̂)] + (1− α)ψ1(k; q̂, t̂)− k ≥ ψ̄1(q̂, t̂)
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(14) ⇐⇒ αφ(k)− k ≥ α[v(q̂, k)− c(q̂, k)].

Clearly, the RHS of (14) vanishes with q̂ = 0. If kIR(0, 0) ≥ k∗, so that the IR constraint is

never binding in the absence of contracts. Then, any trade contract would be worthless, since

k̄δ(0, 0) = kδ(0, 0) > kδ(q̂, t̂) ≥ k̄δ(q̂, t̂) for any (q̂, t̂) with q̂ > 0.

Suppose now kIR(0, 0) < k∗, so that the IR constraint would be binding in the absence of

contracts for some large δ. In this case, a contract specifying a quantity that would create a

negative surplus, i.e., quantity in the set,

Q−
δ := {q′ ∈ Q | v(q′, kIR(0, 0))− c(q′, kIR(0, 0)) < 0},

can relax the (IR) constraint. This set will be nonempty if Q includes an excessive large

level of quantity so that any trade will propose net loss, regardless of k. Of course, even

when a contract with q̂ ∈ Q−
δ exists, it may not implement a higher investment than the

null contract, since kδ(0, 0) > kδ(q̂, t̂) for q̂ > 0. As mentioned earlier, the latter inequality

becomes unimportant as δ → 1, since the second term in (13) vanishes. That is, as δ → 1,

(IR) is all that matters. If kIR(0, 0) < k∗, then (IR) is binding in the absence of contracts.

In this case, a trade contract specifying q̂ ∈ Q−
1 relaxes the constraint and it can implement

a higher investment than the null contract.

Proposition 8 A trade contract is worthless if k∗ ≤ kIR(0, 0) or if Q−
1 is empty. If kIR(0, 0) <

k∗ (or equivalently αφ(k∗) − k∗ < 0) and Q−
1 is nonempty, then a trade contract specifying

q̂ ∈ Q−
1 strictly dominates the null contract for δ sufficiently close to 1.

This result modifies the conclusion of Che and Hausch (1999) in an important way: A

trade contract generating a negative surplus can be strictly welfare improving in the dynamic

setting. While such a contract may appear unappealing, it can improve the incentives by

making credible a larger punishment than would be feasible without that contract.

5 Conclusion

We have shown that allowing for a simple and plausible investment dynamics in a holdup model

produces much different implications on the design of important contracts and organizations

than have been suggested in the literature. The novel theme in our prediction is that the

incentives for specific investments depend not just on how a contract affects the investor’s
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exposure to the specificity at the margin — the focus on the recent contract/organization

literature — but more importantly on how the contract affects the investor’s exposure to

absolute specificity. The absolute specificity was never a concern in the static models since

the individual rationality constraint is never binding there, but it is an important consideration

in our dynamic model since the steeper incentives provided by investment dynamics may cause

the latter constraint to be binding.

A shift of emphasis from marginal specificity to absolute specificity takes us back to the

original “transaction cost analysis” (TCA) authors (Klein at el., 1978; Williamson 1979, 1985),

who were largely concerned about the absolute level of specificities parties are subject to as

the source of inefficiencies and the rationale for organizational interventions. While we agree

that the absolute specificity matters, our specific predictions differ from these authors as

well. Our theory predicts that contracts that would exacerbate the parties’ vulnerability to

holdup — rather than those protecting them from holdup (as proposed by the TCA authors)

— can be desirable. As discussed in the paper, this view throws a more positive light on

a variety of “hostage taking” or “hands-tying” arrangements such as exclusivity agreements,

joint ownership of assets, and trade contracts compelling parties to trade excessive amounts.

These contracts/organization forms can perform well in our dynamic model since they can

create a strong equilibrium punishment for deviation.

The fact that our predictions are largely based on the absolute level of quasi-rents could

also make them more empirically testable. As Whinston (2002) points out, the GHM theory

is difficult to test, since the (marginal) effects of investment on the disagreement payoffs

are difficult to estimate, especially since most feasible levels of investment are not made in

equilibrium. By contrast, hypotheses pertaining to the effects of absolute specificities can

be tested without observing payoff consequences of all investment choices, especially when

investments are totally specific.
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6 Appendix: Proofs

Proof of Lemma 1: Given Assumption 1(a)-(b), Uδ(k;m) has increasing differences in (k; δ)

and has a unique maximizer. Hence, we have kδ(m) ≤ kδ′(m) for δ′ > δ. The limiting proper-

ties hold by Berge’s theorem of maxima since Uδ is continuous and has a unique maximizer.

Given Assumption 1(a)-(c), for any k ∈ K

U ′
δ(k;m) = α[φ′(k)− (1− δ)ψ′2(k;m)] + (1− α)(1− δ)ψ′1(k;m)− [1− (1− α)δ]

< α[φ′(k)− (1− δ′)ψ′2(k;m)] + (1− α)(1− δ′)ψ′1(k;m)− [1− (1− α)δ′] = U ′
δ′(k;m),

where the strict inequality holds since ψ′1(k;m) < 1 by Assumption 1(c) and since ψ′2(k;m) ≥
0. Since U ′

1(k
∗;m) = 0, this inequality means, with δ′ = 1, U ′

δ(k
∗;m) < 0, which means that

kδ(m) < k∗ < k̄ for all δ. Now consider any δ′ > δ such that kδ′(m) > 0. Since kδ′(m) < k̄

from the above argument, we must have 0 = U ′
1(kδ′(m);m) > U ′

δ(kδ′(m);m), which implies

that kδ(m) 6= kδ′(m). Given the first statement of the lemma, we then have kδ(m) < kδ′(m),

as needed.

Proof of Lemma 2: The proof consists of several steps:

Step 1: In any MPE with contract m satisfying Assumptions 1 and 2, we have

σm(k) ≥ Uδ(k;m) + k − δ[αψ2(y
∞
m (k))− (1− α)ψ1(y

∞
m (k)) + (1− α)y∞m (k)],

for any k ∈ K. If the parties agree to trade after reaching k in MPE, then

σm(k) ≤ U0(k;m) + k.

Proof. For notational simplicity, we suppress the dependence on m. Observe first that

σ(k)

≥ αφ(k)− αδβ(y(k))− α(1− δ)ψ2(k) + (1− α)δ[σ(y(k))− (y(k)− k)] + (1− α)(1− δ)ψ1(k)

= αφ(k)− (1− δ)[αψ2(k)− (1− α)ψ1(k)]− (1− α)δ(y(k)− k)

−αδ[δβ(y2(k)) + (1− δ)ψ2(y(k))] + (1− α)δ[δ[σ(y2(k))− (y2(k)− y(k))] + (1− δ)ψ1(y
2(k))]
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= αφ(k)− (1− δ)
∞∑

t=1

δt−1[αψ2(y
t−1(k))− (1− α)ψ1(y

t−1(k))]− (1− α)
∞∑

t=1

δt(yt(k)− yt−1(k))

+ lim
t→∞

δt[(1− α)σ(yt(k))− αβ(yt(k))]

= α[φ(k)− (1− δ)ψ2(k)] + (1− α)(1− δ)ψ1(k) + (1− α)δk

−(1− δ)
∞∑

t=1

δt[αψ2(y
t(k)) + (1− α)(yt(k)− ψ1(y

t(k)))],

= Uδ(k) + k − (1− δ)
∞∑

t=1

δt[αψ2(y
t(k)) + (1− α)(yt(k)− ψ1(y

t(k)))],

where the first inequality follows since the trade may not be optimal, the first equality holds

by substituting the value functions (whether trade occurs or not at y(k)), the second equality

is obtained by following the procedure recursively and collecting terms, and the penultimate

equality follows by rearranging the summation series and since β(·) and σ(·) are both finite

(each lying in [0, φ(k̄)]).

To prove the first claim, note that the bracketed term in the last line is nondecreasing in

yt(k), by Assumption 1(a) and (c). Thus, since yt(k) ≤ y∞(k), the last line cannot be less

than

Uδ(k) + k − (1− δ)
∞∑

t=1

δt[αψ2(y
∞(k)) + (1− α)(y∞(k)− ψ1(y

∞(k)))]

= Uδ(k) + k − δ[αψ2(y
∞(k)) + (1− α)(y∞(k)− ψ1(y

∞(k)))],

as needed. To prove the second claim, notice that the first inequality (of the above string)

holds with equality if trade occurs immediately at k. Next, recall that the bracketed term in

the last line is nondecreasing in yt(k). Thus, since yt(k) ≥ k, the last line — and therefore

σ(k) — is no greater than

Uδ(k) + k − (1− δ)
∞∑

t=1

δt[αψ2(k) + (1− α)(k − ψ1(k))]

= Uδ(k) + k − δ[αψ2(k) + (1− α)(k − ψ1(k))]

= U0(k) + k.

Step 2: From any initial level of investment, in an MPE with contract m satisfying

Assumptions 1 and 2, trade occurs in the first period.
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Proof. Suppose trade does not occur immediately following k = y(0) ≥ 0. (The dependence

on the contract in place, m, will be suppressed throughout.) Then, we have from (4) that

(15) σ(k) = δ[σ(y(k))− (y(k)− k)] + (1− δ)ψ1(k).

Next, we show that σ(k) = σ(y(k)) − (y(k) − k) = ψ1(k). On the one hand, incentive

compatibility implies that

σ(y(k))− (y(k)− k) ≥ σ(k)

(since y(k) is an equilibrium investment path from k), on the other hand, it also implies that

σ(k)− k ≥ σ(y(k))− y(k)

(since k = y(0) and y(k) is also feasible starting from zero investment). These two inequalities

give

σ(k) = σ(y(k))− (y(k)− k),

which implies, when substituted into (15), that σ(k) = σ(y(k))− (y(k)− k) = ψ1(k), as was

to be shown.

We consider two cases. Suppose first k = y(0) > 0. If party 1 deviates from k = y(0) by

not investing at all and perpetually inducing rejection then she will obtain

(1− δ)
[
ψ1(0) + δψ1(0) + δ2ψ1(0) + ...

]
= ψ1(0).

Since σ(k) − k = ψ1(k) − k < ψ1(0) by Assumption 1(c), the deviation is profitable. Hence,

we have a contradiction.

Suppose now y(0) = 0. Since y(y(0)) = 0, if no trade occurs at y(0) = 0, then β(0) =

δβ(0) + (1− δ)ψ2(0), implying that β(0) = ψ2(0). Hence,

σ(0) + β(0) = ψ1(0) + ψ2(0).

Meanwhile, it follows from (4) and (5) that

σ(0) + β(0) ≥ φ(0).

We then have a contradiction since, by Assumption 2, φ(0) > ψ1(0) + ψ2(0).

Step 3: In any MPE with contract m satisfying Assumptions 1 and 2, y∞m (k) ≤ max{k, kδ(m)}.
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Proof. Suppose not. Then, there must exist k ∈ K such that k̂ := y(k) > max{k, kδ}.
(The dependence on m is suppressed to economize on notation.) Since k̂ is an equilibrium

choice starting from k, we must have

σ(k̂)− k̂ ≥ σ(k′)− k′, ∀k′ ≥ k.

Let

ko := sup{k′|σ(k′)− k′ = σ(k̂)− k̂}.

By definition, for each ε > 0, there exists an kε ≤ ko within ε distance from ko, such that

σ(kε)− kε = σ(k̂)− k̂. Since σ(k′′)− k′′ < σ(k̂)− k̂ for all k′′ > ko, y∞(kε) ≤ ko. Further, this

must hold for any ε > 0, so we must have y∞(k′) ≤ ko for any k′ < ko.

Meanwhile, for ε > 0 sufficiently small, trade will occur after reaching kε (since kε → ko as

ε→ 0 and y(kε) ≤ ko, as noted above). Hence, by Lemma Step 1,

U0(kε) ≥ σ(kε)− kε ≥ Uδ(kε)− δ[αψ2(y
∞(kε)) + (1− α)(y∞(kε)− ψ1(y

∞(kε)))].

Now, take the limit of all sides as ε ↓ 0, using the fact that limε↓0 kε = ko and that y∞(kε) ≤
ko, which implies that limε↓0 y

∞(kε) = ko. Then, the left-most and the right-most sides

converge to U0(k
o), implying that limε↓0{σ(kε)− kε} = U0(k

o). Since, by the definition of kε,

limε↓0{σ(kε)− kε} = σ(k̂)− k̂, we must have σ(k̂)− k̂ = U0(k
o).

Suppose now that, starting at k, party 1 deviates to k′ ∈ [max{k, kδ}, k̂) instead of investing

up to k̂ = y(k). We have

σ(k′)− k′ ≥ Uδ(k
′)− δ[αψ2(y

∞(k′)) + (1− α)(y∞(k′)− ψ1(y
∞(k′)))]

≥ Uδ(k
′)− δ[αψ2(k

o) + (1− α)(ko − ψ1(k
o))]

> U0(k
o)

= σ(k̂)− k̂,

where the first inequality follows from Step 1, the second inequality follows since y∞(k′) ≤ ko

as noted above, the strict inequality follows since ko ≥ k̂ > k′ ≥ kδ,
19 and the last equality

follows from the argument established above. The inequality proves that the deviation to

19Note that

U0(ko)− δ[αψ2(ko) + (1− α)(ko − ψ1(ko))] = Uδ(ko) < Uδ(k′),

since ko > k′ ≥ kδ.
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k′ < k̂ is profitable, contradicting the initial hypothesis that y(k) > max{k, kδ} for some

k ∈ K.

Steps 1 and 2 yield parts (i) and (ii), whereas Step 3 has proven part (iii).

Proof of Theorem 1: We have already shown in the text that k ∈ Kδ if k is implementable

by m. Hence, it suffices to show the converse. Let k̄δ(m) := maxKδ(m), and consider the

following investment strategy:

ŷm(k) =


k̂ if k ∈ [0, k̂],

k̄δ(m) if k ∈ (k̂, k̄δ(m)]

k if k ∈ (k̄δ(m), k̄].

With this strategy, party 1 initially invests to k̂ = ym(0) and never increases further (i.e.,

ym(ym(0)) = k̂).

Substituting this investment strategy into (4) and (5) and solving for party 1’s payoff, we

obtain

σ̂(k)− k

=



max{Uδ(k)− δ[αψ2(k̂))− (1− α)ψ1(k̂) + (1− α)k̂], δ[U0(k̂) + k] + (1− δ)ψ1(k)− k}
if k ∈ [0, k̂],

max{Uδ(k)− δ[αψ2(k̄δ)− (1− α)ψ1(k̄δ) + (1− α)k̄δ], δ[U0(k̄δ) + k] + (1− δ)ψ1(k)− k}
if k ∈ (k̂, k̄δ]

U0(k) if k ∈ (k̄δ(m), k̄].

(The dependence on m is suppressed to economize on space.)

Note first that trade follows immediately after k̂ is reached, as claimed. That is, σ̂(k̂) =

U0(k̂) + k̂ ≥ δ(U0(k̂) + k̂) + (1 − δ)ψ1(k̂)] since φ(k) ≥ ψ1(k) + ψ2(k) by Assumption 2.

Observe next that likewise, σ̂(k) − k = U0(k;m) at k = k̄δ(m). In particular, k̂ and k̄δ(m)

constitute local maxima, with the former being the global maximum: party 1’s payoff at

k = k̂ dominates her payoff at any k ∈ K, and her payoff at k = k̄δ(m) dominates her payoff

at any k ∈ (k̂, k̄]. It then follows that k̂ ∈ arg maxk̃∈[k,k̄]{σ̂(k̃) − k̃} for any k ≤ k̂, and

max{k̄δ(m), k} ∈ arg maxk̃∈[k,k̄]{σ̂(k̃)− k̃} for any k > k̂. Hence, the aforementioned strategy,

ŷm(·), is optimal, given σ̂(·).
The last statement follows from Lemma 2-(i).
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Figure 1b: Kδ when IR is binding 
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Figure 1a: Kδ when IR is not binding 


