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Design competition through multidimensional 
auctions 
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This article studies design competition in government procurement by developing a model 
of two-dimensional auctions, wherejirms bid on both price and quality, and bids are evaluated 
by a scoring rule designed by a buyer. Three auction schemes-first score, second score, and 
second preferred offer-are introduced and related to actualpractices. If the buyer can commit 
to a scoring rule in his best interest, .the resulting optimal scoring rule underrewards quality 
relative to the buyer's utility function and implements the optimal outcome for the buyer 
zinderjirst- and second-score auctions. Absent the commitment power, the onlyfeasible scoring 
rule is the buyer's utilityfunction, zinder which ( I )  all three schemes yield the same expected 
utility to the buyer, and (2 )jirst- and second-score auctions induce the first-best level of 
quality, which tzlrns out to be excessive from the buyer's point of view. 

1. Introduction 

The Department of Defense (DoD) often relies on competitive source selection to procure 
weapons systems.' Unlike most private auctions, this procurement competition involves 
many performance/quality dimensions other than price; typically, competitors specify in 
their bids such information as promised technical characteristics, delivery date, and man-
agerial performance, as well as an estimated project cost. DoD's evaluation of bids then 
involves application of an elaborate scoring system: each individual component of a bid is 
evaluated and assigned a score, these scores are summed to yield a total score, and the firm 
achieving the highest total score wins a contract. 

Previous studies of defense procurement have generally assumed that the design spec-
ification for any weapons system is fixed prior to competitive source selection-hence bidding 
competition is restricted to the price dimension. While such an approach may be appropriate 
for auctions of homogeneous goods, or for goods for which design competition is relatively 
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unimportant, in defense procurement design competition frequently dominates price com- 
petition (typically, more than 50% of the total score for a submitted bid is assigned for 
nonprice factors; see Fox ( 1974)). Therefore, it seems important to take account of the 
multidimensional nature of procurement competition. In this article I develop a model of 
two-dimensional auctions in which each firm bids on both quality and price and bids are 
evaluated according to a scoring rule designed by the buyer. In the model, firms have private 
information about the costs of improving quality. 

A number of other articles have considered a similar procurement problem. Laffont 
and Tirole ( 1987), McAfee and McMillan ( 1987), and Riordan and Sappington ( 1987) 
identify an optimal direct revelation mechanism in a competitive environment similar to 
the one considered here. This article complements their results by focusing on how to 
implement the optimal mechanism via a score-based system of two-dimensional auctions. 
Hansen ( 1988) and Desgagne ( 1988) have previously considered two-dimensional auctions 
where bids are evaluated according to an ad hoc rule; in contrast, in this article the auctioneer 
(buyer) designs an optimal scoring rule. Most closely related to my analysis is Dasgupta 
and Spulber ( 1990). They consider implementation by per-unit bid auctions, where firms 
offer per-unit bids against a given quantity (quality in my framework) schedule. Compared 
with the approach of Dasgupta and Spulber, the score-based auctions in this article have 
some attractive features: first, implementation does not require a special form of cost function 
(per-unit bids implementation requires a cost function to exhibit increasing returns to scale); 
second, this model fits well with the description of the DoD source-selection procedure by 
explicitly modelling design competition. 

I consider three two-dimensional auctions. In what I call a "first-score" auction, each 
firm submits a sealed bid and, upon winning, produces the offered quality at the offered 
price. In other auction rules, labelled respectively "second-score" and "second-preferred- 
offer" auctions, the winner (highest-scorer) is required to match the highest rejected score 
in the contract. The second-score auction differs from the second-preferred-offer auction in 
that the latter requires the winner to match the exact quality-price combination of the 
highest rejected bid while the former has no such constraint. These second-bid auctions can 
be implemented by a two-stage sealed-bidlnegotiation scheme (which will be described in 
the text), just as a second-price auction can be implemented by an open oral (ascending 
English) auction. Actual DoD practices seem to be represented by these two auction rules: 
the sealed-bid procedure of the actual practice appears similar to the first-score auction, and 
the process of negotiation whereby DoD goes back and forth between firms in an effort to 
get the best offer is similar to the second-bid auctions. 

Several issues arise. The first one is, Which auction rule performs the best for the buyer? 
This question would have important implications for whether DoD should emphasize the 
sealed bid aspect or the negotiation aspect of the current procedure. It turns out that the 
answer depends critically on how the buyer (DoD) designs the scoring rule. This is also 
related to the buyer's commitment power. Given the difficulties associated with contracting 
upon complicated quality specifications, it may be realistic to assume that DoD can only 
credibly commit to a scoring rule that reflects its true preference ordering. With this "naive" 
scoring rule, I find that all three schemes yield the same expected utility to the buyer. (This 
is a two-dimensional version of the revenue equivalence theorem (Riley and Samuelson, 
198 1; Myerson, 198 1 ) .) 

The second issue concerns the optimality of the winning firm's quality choice under 
alternative auctions. Compared to the optimal mechanism identified by the revelation prin- 
ciple, the naive scoring rule entails excessive quality under first- and second-score auctions. 
It does so because it fails to take account of the information costs (the costs the buyer bears 
due to his inferior informational position) associated with increased quality and thus 
overrewards quality. This suggests that there may be an incentive for the buyer to deviate 
from the naive scoring rule. The optimal deviation of the scoring rule from the naive rule 



670 / THE RAND JOURNAL OF ECONOMICS 

corresponds to an optimal distortion often discussed in the mechanism-design literature 
(Baron and Myerson, 1982; Laffont and Tirole, 1986). If the buyer is allowed to commit 
to any scoring rule, we find: ( 1) the first- and second-score auctions can implement the 
optimal outcome, correcting the excessive quality, while the second-preferred-offer scheme 
cannot, and ( 2 )  the optimal scoring rule systematically discriminates against quality. 

The rest of the article is organized as follows. Section 2 sets up a model and introduces 
alternative auction rules. In Section 3 I analyze equilibrium under each auction rule. Sec-
tion 4 discusses how to design a scoring rule to implement the optimal mechanism and 
studies the implication of the buyer's commitment power. Section 5 concludes by com-
menting on related issues. 

2. A model of multidimensionalauctions 

This section describes a model of two-dimensional bidding on quality and price. A 
buyer, interpreted as the DoD, solicits bids from N firms. Each bid specifies an offer of 
promised quality, q, and price, p , 2  at which a fixed quantity of products with the offered 
level of quality q is delivered. The quantity is normalized to be one. For simplicity, quality 
is modelled as a one-dimensional attribute. (In reality, however, the quality offer includes 
technical characteristics, a delivery schedule, and other managerial performance standards.) 

The buyer and firms are characterized as follows. The buyer derives utility from a 
contract, (q ,  p )  E 3:: 

where V' > 0, V" < 0, and limq,o V1(q)= co, lim,,, V1(q)= 0 to ensure an interior 
solution. A firm i, upon winning, earns from a contract (q ,  p )  profits: 

where firm 1's cost c(q, Oi)is increasing in both quality q and its cost parameter Oi. I assume 
cqqr 0, cqe> 0, and Cqqe 2 0. That is, marginal cost is increasing with 6. Finally, it is assumed 
that the buyer never wishes to split the contract to more than one firm (i.e., the cost function 
is not too convex in q) .  These assumptions are satisfied by a cost function with constant 
unit cost 6, i.e., c(q, 6) = 6q. 

Losing firms earn reservation profits, normalized at zero. Prior to bidding, each firm i 
learns its cost parameter 8, as private information. The buyer knows only the distribution 
function of the cost parameter. It is assumed that Bi is independently and identically dis-
tributed over [ O ,  $1 ( 0  < 0 < 8 < co ), according to a distribution function F for which there 
exists a positive, continuously differentiable densityf.Because of complete symmetry among 
firms, the subscript i is dropped in the remainder of the analysis. Throughout, the following 
assumptions are made: 

F 
Assumption I. (regularity ) . Cq + - cqeis nondecreasing in 6.

f 

The auction games considered in this article differ from that of Dasgupta and Spulber ( 1990) in two respects. 
First, in their model there is a given quantity (quality in my framework) schedule enforced for each per-unit bid, 
whereas here firms offer quality and price simultaneously. Second, the price bid here is different from their per-
unit bid. (In fact, price in this article is essentially the same as the "total payment" in their framework.) The per-
unit bid auctions may not be well behaved for a decreasing-returns-to-scale technology (see footnote 10). 

'Although both a contract and a proposal are denoted as ( q ,p), they may not coincide, depending on the 
auction rules. This point will become clear after the auction rules are introduced. 

Assumption I is made to guarantee strict monotonicity of the quality schedule, while Assumption 2 guarantees 
that the contract is awarded for all cost types for every scheme considered here. Without this assumption, the 
solution of auction games will remain qualitatively the same, but will involve a reserve score. 
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Assumption 2. The trade always takes place (even with the highest cost type a ) .  
By the revelation principle (Myerson, 1982), an optimal outcome can be identified as 

a direct revelation mechanism. The following proposition is due to Laffont and Tirole 
( 1987), McAfee and McMillan ( 1987), and Riordan and Sappington ( 1987) .5 

Proposition 1.In the optimal revelation mechanism, the firm with the lowest 8 is selected; 
the winning firm is induced to choose quality go, which for each 19maximizes 

V(q)  - J (q ,  O), where J (q ,  8) = c(q, 8 )  + -F ( B )cs(q, 8) .  
f ( 8 )  

A standard interpretation applies: in the optimal mechanism, quality is distorted down- 
ward to limit the information rents accruing to relatively efficient firms, while competition 
further curtails the absolute magnitude of the rents. In this article I take this optimal outcome 
as a benchmark and focus on how it can be implemented through two-dimensional auctions 
that capture the salient features of the DoD source selection. 

I consider the following three auction rules: first-score auction, second-score auction, 
and second-preferred-offer auction. In all three auction schemes, the buyer selects the winning 
firm based on a scoring rule; more specifically, a contract is awarded to a firm whose offer 
achieves the highest score.6 Let S = S(q ,  p )  denote a scoring rule for an offer (q, p ) .  The 
rule is assumed to be publicly known to the firms at the start of bidding, and initially it is 
assumed that the buyer can design and commit to a rule in his best interest. The assumption 
of commitment is subsequently relaxed. Lack of commitment power on the part of the 
buyer will imply that the true preference of the buyer must be reflected in the scoring rule: 
i.e., S (q ,  p )  = U(q, p). ' In general, I restrict attention to quasi-linear scoring rules: 

Assumption 3. S (q ,  p )  = s (q )  - p ,  where s(q)  - c(q, 8) has a unique interior maximum 
in q for all 19E [f l ,  81 and s (  .) is increasing at least for q I argmax s (q )  - c(q, 8 ) .  

Many scoring rules belong to this class, including the naive rule U(q, p )  and the optimal 
rule discussed in Section 4. 

To understand the differences among the three auction schemes, it is convenient to 
distinguish between a winning firm's offer and a contract finally awarded to the firm. In a 
first-score auction, a winning firm's offer is finalized as a contract. Thus, this auction rule 
can be considered a two-dimensional analogue of the first-price auction. Second-score and 
second-preferred-offer auction rules represent two variants of the second-price auction. In 
a second-score auction, a winning firm is required (in the contract) to match the highest 
rejected score. In meeting this score, however, the firm is free to choose any quality (or 
quality-price combination). A second-preferred-offer auction rule, suggested by Desgagne 
( 1988), is the same as the second-score auction except that a winner has to match not only 
the score but also the exact quality choice of the highest losing firm.' 

These three schemes are not just abstract mechanisms. To some extent, the actual 
source-selection procedure employed by DoD resembles aspects of all three mechanisms. 

In fact, my model is a special. limiting case of Riordan and Sappington (1987)in which first- and second- 
period costs are perfectly correlated. It is also a special case of Laffont and Tirole ( 1987),which also incorporates 
a moral hazard problem. 

If there is more than one firm that achieves the highest score, then a random drawing determines the winner. 
As is typical with atomless distributions, a particular tie-breaking rule does not affect expected equilibrium payoffs. 

'AS usual, using any monotone transfol-mation of U as a scoring rule will have the same effect. 
The following example illustrates the difference among the rules. Suppose two firms A and B offer (7, 5) 

and (5, 3). and the scoring rule is such that A gets 10 points and B gets 8 points (i.e., S(7,5 )  = 10,S(5, 3) = 8). 
Then, under all three rules A is declared the winner. However, the final contract awarded to A is: (7, 5) under the 
first-score auction; any ( y .  p )  satisfying S(q ,p) = 8 under the second-score auction: and (5, 3) under the second- 
preferred-offer auction. 
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Although the initial stage of sealed-bid competition is similar to the first-score auction, 
sealed-bid competition is often followed by a negotiation phase in which DoD approaches 
and asks each firm to beat the offers made by the other firms. The second-score auction can 
be implemented by a two-stage scheme where a winner is selected in the first period through 
a sealed-bid auction and engages in a negotiation in the second period making a take-it-or- 
leave-it offer to the buyer. The second-preferred-offer auction can be implemented by a 
similar two-stage scheme, but with an added restriction on the negotiation that the winning 
firm should dominate other firms in both price and quality.9 Therefore, studying these 
alternative auction schemes will essentially amount to examining alternative aspects of 
current DoD practice. Comparisons between the auction rules will have policy implications 
for whether a negotiation phase is desirable and whether the negotiation, if desirable, should 
involve the added restriction. 

3. Equilibria under alternative multidimensional auction rules 
In this section, the equilibrium under each alternative auction scheme is characterized 

for a general scoring rule that satisfies Assumption 3. Each auction rule can be viewed as 
inducing a Bayesian game where each firm picks a quality-price combination (q ,  p)  as a 
function of its cost parameter. Without any loss of generality, the strategy of each firm can 
be equivalently described as picking a score and quality, (S ,  q ) .  The following lemma 
establishes that the equilibrium quality bid can be determined separately from the choice 
of score in the case of first- and second-score auctions. 

Lemma I. With first- and second-score auctions, quality is chosen at q,(O) for all 
0 E [ O ,  8) ,  where q,(B) = argmax s (q)  - c(q, 8).  

Proof See the Appendix. 

The simple intuition behind the result is presented in Figure 1 .  Suppose firm i wants 
to offer any arbitrary score S ,  represented by the buyer's iso-score curve (depicted as the 
concave curve in Figure 1).  As long as the firm moves along the curve, its probability of 

FIGURE 1 

Winning firm's 

Buyer's isoscore curve 

Such a restriction may result from the political pressure of Congress, which has often demanded that a 
procured system should be the best not only in quality but also in price. Such behavior of Congress may be an 
optimal response to a buying agent that may misrepresent its preference. 
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winning remains unchanged. Clearly, the firm's profit is maximized at the tangency point 
between its iso-profit curve and the buyer's iso-score curve, since that point allows the firm 
to maximize its profit without lowering its winning probability. Since the scoring rule is 
additively separable, quality choice is set independently of the score. 

As a result of Lemma 1, there is no loss of generality in restricting attention to qs( . )  
when searching for equilibria. (Essentially, Lemma 1 reduces a two-dimensional auction 
to a single-dimensional problem.) Let So(19) = max s (q)  - c(q, 8) for all B E [ O ,  81. Then, 
by the envelope theorem, So ( . )  is strictly decreasing; therefore, its inverse exists. Now, 
consider the following change of variables: 

The problem can then be reinterpreted as one in which each firm, indexed according to its 
productive potential v with cumulative distribution H ( - ) ,  proposes to meet the level of 
score b . In particular, letting b( .) denote an equilibrium bid function of v that is symmetric 
and increasing, the objective function facing each firm in the first-score auction can be 
described as 

n(qs(8), ~ 1 0 )  = [P- c(qs(19), 011 Prob {win/  S(qs(8), P I )  

The following proposition is immediate: 

Proposition 2. ( i )  A unique symmetric equilibrium of a first-score auction is one in which 
each firm offers 

(ii)  The second-score auction game has a dominant strategy equilibrium, where each firm 
with type 8 offers 

Proof: ( i )  follows from the above change of variables and the usual equilibrium result in 
first-price auctions (for example, Riley and Samuelson, 198 1); (ii) is immediate from Vickrey 
(1961 ) after applying the change of variables. Q.E.D. 

Several observations can be made. First, the equilibrium in the first-score auction is 
reduced to the equilibrium in the first-price auction if c(q, 19) = I9 (i.e., quality is fixed). 
Second, the Vickrey auction intuition applies for the second-score auction: Given the score 
So(8), if a firm with type 6' bids a higher score, it would risk winning at negative profits 
without increasing its profit conditional on winning; if it bids a lower score, it would forgo 
some opportunity of winning at positive profits. Finally, implementation of these auctions 
relies on the invertibility of So( . ) ,  which is always satisfied; this is in contrast to imple- 
mentation via per-unit bid auctions, which requires costs to exhibit increasing returns to 
scale (Dasgupta and Spulber, 1990). 

'O If a technology exhibits decreasing returns to scale, a more efficient firm may have a higher average cost 
(since it is induced to produce more quantity) and thus may offer a higher per-unit bid than a less efficient firm. 
Thus, a bid function may not be monotonic. This problem does not arise in my auction implementation, since the 
score bid function is always monotone decreasing in B. 
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Substituting equilibrium bids from ( 1) yields the buyer's expected utility under the 
first-score auction: 

where 8, is, with a slight abuse of notation, the lowest-order statistic (i.e., 
0, =min { 0, )El ) . I  ' Since in general revenue equivalence may not hold, the expected utility 
under the second-score auction is separately obtained. 

where ps(O1, 02) is the price a winning firm actually pays to the buyer; i.e., 

Applying the argument used for the second-score auction, one can show that, in the 
second-preferred-offer auction, each firm will offer a score that will earn the firm zero profit, 
should the bid be finalized as a contract. However, in the second-preferred-offer auction a 
winning firm has no control over the quality choice. Therefore, each firm's zero-profit score 
offer depends on the quality-price bids of other firms. Hence, a dominant strategy equilibrium 
does not exist. In fact, the following proposition shows that there are many symmetric 
Bayesian-Nash equilibria in which each firm offers a zero-profit score. 

Proposition 3.In the second-preferred-offer auction, any (q( .),p(  .)) is a symmetric Bayesian- 
Nash equilibrium strategy for each firm ifp(8) = c(q(  O), O), and S(q(O), p (0) )  is decreasing 
in 8. 

Proof Suppose all the firms except for the one under consideration follow the suggested 
equilibrium strategy, (q(  ), p(  .)). Define the equilibrium score offer S,(O) = S(q(O), p(O)) 6 

for all O E [e, 81, and let S2denote the highest score of all the scores offered by the remaining 
N - 1 firms. Then, there exists a distribution of S2, G, induced by the equilibrium strategy 
such that G(S2) = F(s ; ' ( s~) )~- ' .  (The inverse function is well defined since S , ( - )  is 
decreasing.) 

The firm under consideration (with cost type c) faces the following problem: 

= max J-,S ( 4 , p )  

[ c (4 ( s i1 ( s2 ) ) ,  s , I ( s~) )  - c (q ( s i1 ( s2 ) ) ,  O ) I ~ G .  
4,P 

Since S, is decreasing, the integrand is positive if and only if S,(O) < S2. Therefore, the 
optimal strategy is any (q,  p )  such that S(q ,  p)  = S,(O). In particular, the firm can do no 
better than offer the suggested (q(O), p(0)) .  Q.E.D. 

From the set of equilibria identified by this proposition, consider the equilibrium in 
which each firm offers the highest score that does not incur losses, (i.e., (qs(0), f i (8 ) ) ) .  
This equilibrium is the most score-efficient in that the offered score is the highest (among 
all the equilibria) for a given price offer. From now on, I shall restrict attention to this 
particular equilibrium. 

In this equilibrium, each firm offers q,(O), just as for the two other auction rules. But 
since the winning firm is obligated to produce the quality offered by the highest losing firm, 

" Analogously, I use 6'2 for the second-lowest-order statistic. 
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the equilibrium quality produced by the winning firm will be qS(O2),which is lower than 
its offer qs(O,). 

The buyer's expected utility under this equilibrium is given by 

4. Optimal scoring rule and the buyer's commitment power 

The previous section establishes the equilibrium outcomes under alternative auctions 
given a general scoring rule that satisfies Assumption 3. Two questions can be raised. First, 
what is the optimal scoring rule if the buyer has full commitment power? Second, does the 
optimal scoring rule allow any auction scheme to achieve the optimal outcome identified 
in Proposition l? It turns out that these two questions can be answered simultaneously. 

Consider the following scoring rule: S ( q ,p )  = V ( q )- p - A ( q ) .Here, A ( q )is chosen 
to be 

and A ( q )  = m for q 4 [ q 0 ( g ) ,q 0 ( 8 ) ] ,where k is any arbitrary real number. Recall that 
qo(.) is the optimal quality defined in Proposition 1. Note that this scoring rule differs from 
the true utility function by the term A ( q ) .  Roughly speaking, the rule subtracts additional 
points from a firm for an incremental increase in quality according to the function A ( q ) .  
The following proposition demonstrates that this modified scoring rule can work remarkably 
well for first- and second-score auctions but not for the second-preferred-offer auction. 

Proposition 4. Under the scoring rule $ ( q ,  p ) ,  first- and second-score auctions implement 
the optimal mechanism; the second-preferred-offer auction cannot implement the optimal 
mechanism under any scoring rule. 

Proof See the Appendix. 

Proposition 4 demonstrates a potential advantage of the two-dimensional auctions: 
with an appropriate scoring rule, first- and second-score auctions can implement the optimal 
outcome. The optimal scoring rule involves systematic discrimination against quality. The 
intuition behind this is well known. As Proposition 1shows, an optimal mechanism induces 
a downward distortion of quality from the first-best level, to internalize the information 
costs of the buyer. This optimal downward distortion can be implemented by a scoring rule 
that penalizes quality relative to the buyer's actual valuation of quality. 

One should note that implementation of the optimal scoring rule warrants a caveat. 
The optimal scoring rule may sometimes require the buyer to choose an expost unappealing 
proposal. Figure 2 shows one example of this possibility. In Figure 2, a scoring rule is 
represented by an iso-score curve that is less steep than the buyer's indifference curve. 
According to the scoring rule, bid A should be preferred to bid B. But after the two bids 
are received, the buyer may renege on the scoring rule and select B over A .  

Thus, for the optimal scoring rule to be implementable, the buyer needs strong com-
mitment power to support the scoring system. In the defense procurement context, such 
commitment power is often absent. First, it is practically very difficult for DoD to com-
municate its preference over complicated technical tradeoffs, especially in a way that is 
verifiable to a third party. This makes quality almost impossible to contract upon. Second, 
the government often abstains from disclosing its evaluation procedure so as to avoid be-
coming entangled in costly bid disputes, as public access to the evaluation documents makes 
it easy for losing firms to bring lawsuits. 

These arguments suggest that it may be more appropriate to consider a case where the 
buyer is unable to commit to the optimal scoring rule. If the buyer lacks commitment 
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FIGURE 2 

1 Buyer's indifference curve 

Buyer's isoscore curve 

~ 

power, the only feasible scoring rule is one that reflects the buyer's preference ordering. The 
following proposition shows that, in this noncommitment case, all three schemes yield the 
same expected utility to the buyer-a two-dimensional extension of the revenue equivalence 
theorem. 

Proposition 5. (equivalence). If the buyer is unable to commit to a scoring rule differing 
from U( ., .), all three auction schemes yield the same expected utility to the buyer, equal 
to 

where q*( 8, ) = argmax V ( q )- c( q,  8 , ) , the first-best quality level. 

Proof See the Appendix. 

Several remarks are in order. First, in first- and second-score auctions, the winning 
firm produces the first-best level of quality, which the buyer finds excessive (relative to the 
optimal quality in Proposition 1 ). The reason that the lack of commitment power induces 
more-than-optimal quality must be clear from Proposition 4; i.e., the true utility function 
fails to internalize the informational costs associated with increasing quality. Second, the 
equivalence property has an interesting policy implication. Recalling that the second-pre- 
ferred-offer auction can be implemented with a phase of restricted negotiation, the above 
result can be interpreted as suggesting that the added restriction on negotiation does not 
harm DoD. Third, even though all three auction rules are equivalent from the buyer's 
standpoint, the same equivalence may not hold for firms. Since in the second-preferred- 
offer auction a winning firm picks the highest losing firm's first-best level of quality, q*( 02) 
(which is lower than its own first-best level, q*(O1)), the total surplus under the second- 
preferred-offer auction is strictly smaller than under the other two auction rules. Since the 
expected utility for the buyer is the same under all auction rules, we obtain the following 
corollary. 

Corollary. Expected profits of the winning firm are the same in the first- and second-score 
auctions but strictly smaller in the second-preferred-offer auction. 
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5. Some concluding remarks 

This article has studied alternative multidimensional auction rules to describe DoD's 
source-selection procedure. The basic framework of the model can be further extended to 
shed light on some relevant features of defense procurement. The following are some ex-
amples. 

Quality standard, quality ceiling. Given the potential difficulty associated with implementing 
the optimal scoring rule, one may wonder if there are simpler rules to which procurement 
officers can commit. Quality standards that fix quality before competition begins, and a 
quality ceiling that provides a cap on quality while allowing for downward flexibility in 
quality choice are two obvious instruments. Quality standards are actually used in some 
sequential procurement competitions, in which quality is determined first and then price 
is determined in a second round. One might also hope that a quality cap could correct the 
excessive quality entailed by DoD's lack of commitment. However, using our multidimen-
sional auction framework it is easy to show that these instruments cannot improve upon 
the naive scoring rule (that results in the noncommitment case). This is true because a 
rigid quality regulation does not ameliorate the incentive compatibility of firms but does 
aggravate technological flexibility; Dasgupta and Spulber ( 1990) find a similar result. 

Misrepresentation of the scoring rule by an agent. Often, a buyer delegates the evaluation 
of bids to an agent with the expertise to understand the technical characteristics of a procured 
system. In fact, DoD can be regarded as an agent that procures on behalf of Congress, the 
eventual buyer. For many reasons, the agent may have an incentive to misrepresent the 
buyer's interest. Rogerson ( 1990)identifies one such circumstance in which the agent induces 
more quality than the buyer desires. If, in fact, the agent systematically overvalues or un-
dervalues quality (relative to the buyer's true preference), the equivalence of the alternative 
auction schemes will break down. Moreover, since the second-preferred-offer auction induces 
a lower equilibrium quality than the other two schemes, one can easily verify that when the 
agent systematically overvalues quality, the buyer may prefer the second-preferred-offer 
auction to the other auctions.'* 

Prebidding R&D investment by jirms. Firms usually undertake R&D investment before 
entering into source selection competition. Even though such R&D investment has a very 
significant and lasting effect on the overall procurement performance, the government cannot 
easily control this investment because it cannot usually be directly contracted upon. Several 
authors have observed that production contracts can indirectly serve as incentives for pre-
bidding R&D investment, noting that firms will try to improve their design specifications 
to increase the probability of winning (Rogerson, 1990; Lichtenberg, 1988). In this regard, 
Riordan and Sappington ( 1989) found that the incentives for precontractual investment 
are positively related to the informational rents a firm expects to earn upon winning a 
contract. Similarly, it can be argued that the investment incentives depend on the way the 
scoring rule is designed. If the investment is to reduce the cost of quality improvement, the 
weight a scoring rule gives to quality will matter: in particular, rewarding quality through 
a higher weight will motivate firms to engage in more investment. In such a case, the optimal 
scoring rule obtained in Proposition 4 ought to be modified to provide a greater reward for 
quality. Furthermore, this may imply that the excess quality that results from the buyer's 
lack of commitment may not be as serious a problem as it appears. 

l 2  In fact, the buyer may want to do more than select an auction scheme in responding to a conflicting 
incentive of the agent. Laffont and Tirole ( 1991), for example, study a contractual mechanism through which a 
buyer can respond to potential favoritism on the part of the auctioning agent. 
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There are several ways to extend the model. The multidimensional bidding model 
discussed in this article does not address distinctive features of quality: q in the model could 
well be interpreted as quantity. In the context of defense procurement, however, quality is 
distinguished from quantity by the sequential decision making: quality is determined first 
and quantity is determined afterwards as a result of the budgetary decisions of Congress. 
Another feature of quality is its imperfect verifiability. In practice, evaluation of bids is 
based on signals of quality rather than actual quality. An interesting extension will be to 
incorporate these features of quality in the framework of multidimensional bidding. 

Appendix 

Proofs of Lemma I and Propositions 4 and 5 follow 

ProofofLemma 1. Suppose to the contrary an equilibrium bid ( q ,  p)  has q # q, at least for one firm with f l  < 8.  
A contradiction is derived by showing that the bid is strictly dominated by an alternative bid (q' ,  p') where q' = q, 
and p' = p + s(q,) - s (q ) .Notice that S ( q ,  p)  = S(qr ,  p'). Also, Prob {win 1 S ( q ,  p ) )  > 0. This can be proved as 
follows: First let &' = inf {SI Prob {win1 S }  > 0 )  and S,(B) = max, s (q )- c(q, 8 ) .  Then, &' i So($) .To prove 
this claim, suppose, to the contrary, the probability of winning for some type B < 8 is zero. Then, the choice of the 
score S must be that S 5 S .  But since So is decreasing in c, there is an alternative score S' E (S,S,(B)),which 
allows positive profits for the type 0, contradicting the optimality of the score S .  

Now, 

as desired. Q.E.D. 

Proof of Proposition 4. First I show that the new scoring rule implements the optimal quality schedule go( . )under 
first- and second-score auctions. Under both schemes, quality is chosen to maximize V ( q )- A(q)- c(q, 0) .  Notice 

To  check the second-order condition, let y --= -F(B)
cqs(q,B ) .  By Assumption 1 ,  y is increasing in 0. Then, for all 

f ( B )  
B E [O,81 and all q E [q,(g), qo(B)l, 

The second equality follows from the definition of q,(.) ,  and the last inequality uses Assumption I .  Thus, I have 
proved that the optimal quality schedule is implemented by the modified scoring rule $(q,  p).  

Now, to show 

I use a method similar to that in Milgrom (1989).Consider an abstract mechanism M. The expected profit of a 
firm with cost B under M is given by 
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~ X M ,  = X M ( P M  c ( ~ M ,o ) ) ,PM, 4 ~ 1 0 )  -

where X M  denotes the probability of winning. Define the optimized value of the expected profit 

r;(fl) d x ; ,  P;, q ; / o ) .  

Then, using the envelope theorem, 

From this it follows that 

T:(o) = l x ; ( t ) c e ( a ; ( t ) .  t )d t  + ~ 2 8 ) .  

Now, notice that xFs = x &  = [ I  - FIN-.' and * F s ( 8 )  = ~ : ~ ( 8 )= 0.  Since equilibrium quality is the same under 
both schemes equal to go, T &  = T &  = JS,8 c0(qo( f ) ,  - and hence f ) [ l  ~ ( f ) ] ~ - l d t  

Since the expected total surplus is the same in the two schemes and equal to E { V ( q , ( O 1 ) )- c(q,(Bl) ,  B , ) ) } ,  
subtracting above-expected profits from the expected total surplus yields expected utilities under the two schemes: 

Finally, that the second-preferred-offer auction implements only a random quality schedule proves that it cannot 
implement the optimal mechanism. Q.E.D. 

Proof ofProposition 5. When S ( ., .) = U ( ., .). from Propositions 2 and 3, firms propose the first-best quality, 
and p,(Bl, B 2 )  = V ( q * ( O , ) )- V ( q * ( 0 2 ) )+ c(q*(02) ,  02) .  Substituting this into ( 3 )yields that 

EUss = E { V ( q * ( 8 2 ) )- c(q*(e2),  82))  = E ~ S P O .  

The rest of the proof follows, since 

E u s s  = E ~ S P O= E { V ( q * ( 8 2 ) )- c(q*(82),  82)) 

= E { v ( q * ( 8 1 ) )- J ( q * ( 8 1 ) ,O I ) }  

= EUFs. 

The third equality uses integration by parts and the envelope theorem. Q.E.D. 
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