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1 Endogenous Entry: Proof of Proposition 3

Given the optimality of revealing good news whenever it is received, we can without loss

focus on the agents’ check in times and their experimentation decisions as the two control

variables. The optimal policy is therefore described by a process (Xt, αt)t where Xt ≤ t is

the right-continuous measure of all agents that have checked in by time t, and αt ∈ [0, 1]

is the probability of consumption (or experimentation) by agents who check in at time t,

conditional on having received no news by t. As will be seen below, the set of all such

processes is not rich enough to admit an optimal mechanism. We thus consider a richer

space of policies.

Specifically, we allow for the possibility that a mass of agents check in instantaneously—

that is, without elapse of any real time—but sequentially experiment at rates that depend

on the ℓ. Formally, we enrich the policy space so that whenever Xt jumps at t (so a mass of

agents check in at t), we allow the designer to run a second “virtual” clock s ∈ [0, mt], where

mt := Xt −X−
t , where X

−
t := limt′↑tXt′ . This virtual clock does not take any real time, but

can be used to sequence the agents’ check in and experimentation decisions.1

Formally, we use (Xs
t , α

s
t ) to denote the enriched policy, where Xs

t is the mass of agents

who check in by real time t and virtual time s, and αs
t is the experimentation probability

for agents who check in at (t, s). For consistency, we require Xs
t ≥ X−

t′ and Xmt
t = Xt.

The virtual clock can be used to split the atom into flows of agents checking in sequentially,

1The need for the virtual clock, or the enrichment of the strategy space more generally, arises from the
peculiarity of the continuous time game that the soonest next time after any time t is not well defined.
To avoid nonexistence, therefore, it is sometimes necessary to allow for sequential moves that do not take
any real time. See Simon and Stinchcombe (1989) and Ausubel (2004) for adopting similar enrichment of
strategies to guarantee existence of an equilibrium. Note also that the need for the virtual clock disappears
once we formulate the policy as a function of ℓ, in which case a split mass is captured by a time “state”
variable t(ℓ) that is constant for an interval of ℓ’s.
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in which case Xs
t admits density for all s ∈ (0, mt). In such a case, we shall without loss

assume that Xs
t = s+X−

t . The virtual clock also admits the entire mass of agents checking

in simultaneously, in which case Xs
t = Xt for all s. The current framework also allows for

the mass to be split in finite number of lumps.

Throughout, we fix an optimal policy (X,α) and derive properties it must satisfy.

Lemma 1. At the optimal policy, t∗ := inf{t ≥ 0 | Xt > 0} > 0. That is, a mass of agents

are induced to wait for a strictly positive amount of time before they check in.

Proof. Let (ℓt, αt) denote the optimal policy. There exists T > 0 such that the surplus

accruing to agents checking in at T :

e−rT (ℓ0 − ℓT − αT (k − ℓT ))

is strictly positive, or else the policy will be even inferior to the full transparency. To induce

agents to check in any t < T , we must have

e−rt(ℓ0 − ℓt − αt(k − ℓt)) ≥ e−rT (ℓ0 − ℓT − αT (k − ℓT )).

The LHS of this inequality is no greater than ℓ0 − ℓt, which goes to zero as t → 0. This

proves that there exists t∗ > 0 such that no agents will check in at t < t∗. �

Lemma 2. Suppose t̂ ∈ supp(X) and t̂ > X−

t̂
:= limt↑t̂Xt. Then, X jumps at t̂.

The proof consists of two steps.

Step 1. Suppose X does not jump at t̂. Then, there exists ǫ > 0 such that positive density

of agents check in t ∈ (t̂, t̂+ ǫ) and experiment along the locus

α̌(ℓt) := 1−
r(k − ℓ0)

r(k − ℓt)− λℓρ
,

and the belief evolves according to ℓ̇ = −λ(ρ+ α̌(ℓt))ℓt.

Proof. For ǫ > 0 sufficiently small, Xt admits density xt > 0 for t ∈ (t̂, t̂ + ǫ). Consider

the agents who check in during this time interval. We shall consider the implication of the

property of the optimal policy that the designer cannot be better off by redistributing within

this time interval while maintaining their incentive to comply with the redistribution. Fix

any t ∈ (t̂, t̂ + ǫ), and let t′ = t + 2dt < t∗ + ǫ, and the designer reduces the flow of the

agents who check in during [t, t + dt) by δ < xt and increases the flow of the agents who

check in during [t+dt, t+2dt) by the same δ, while ensuring that the agents are indifferent

over the check in times during that interval. This operation is feasible for sufficiently small
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δ ∈ (0, xt). For the original policy to be optimal, such an operation should not lower the

posterior (in likelihood) ℓt′ (since a lower ℓt′ means a higher learning benefit which is strictly

preferred under commitment).

We thus require that the operation cannot lower ℓt′ . To study the effect of the operation

on ℓt′ , let α1 := αt, α2 := αt+dt, α3 := αt+2dt, and ℓ1 := ℓt, ℓ2 := ℓt+dt, ℓ3 := ℓt+2dt. A few

conditions must be satisfied:

- Agents are indifferent over consuming at time t and t+ dt, i.e.,

ℓ0 − ℓ1 − α1(k − ℓ1) = e−rdt(ℓ0 − ℓ2 − α2(k − ℓ2)).

- Since the flow of consumers picking time t is (x − δ) while the flow at time t + dt is

(x+ δ), the beliefs at ℓ2 and ℓ3 must satisfy

ℓ2 = ℓ1e
−λ(ρ+(x−δ)α1)dt,

and

ℓ3 = ℓ2e
−λ(ρ+(x+δ)α2)dt.

We now fix ℓ1 and α1 (and hence the utility for a regular consumer to choose the first instant),

and solve this system for ℓ2, ℓ3, α2, as a function of δ, α1, ℓ1. Differentiate ℓ3 with respect to

δ, and evaluate the derivative at δ = 0 to get:

sgn

(

∂ℓ3
∂δ

∣

∣

∣

∣

δ=0

)

:= sgn

(

(α(ℓt)− αt)(dt)
2 + o((dt)2)

)

.

This shows that if αt > α̌(ℓt), there exists δ ∈ (0, xt) and t′ > 0 sufficiently small such

that the redistribution of agents lowers the posterior at t′, a contradiction to its optimality.

Hence, we conclude that αt ≤ α̌(ℓt) for any t ∈ T0.

Next suppose αt < α̌(ℓt). Then, since Xt < t for all t ∈ (t̂, t̂+ ǫ), a perturbation from the

optimal policy considered above, with δ < 0 (meaning shifting forward the check-in time of

some flow of agents), is feasible and will also lower the posterior, contradicting the optimality

of the original policy.

Given the experimentation policy follows the locus α̌(·), the belief must follow the law of

motion. �

Step 2. X must jump at t̂.

Proof. By Step 1, for some ǫ > 0, a positive flow of agents check in at each t ∈ (t̂, t̂+ ǫ) and

experiment along the locus α̌(ℓt) := 1 − r(k−ℓ0)
r(k−ℓt)−λℓρ

. For the optimal policy to be incentive
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compatible, the agents must be indifferent along the locus α̌(·). In particular, the payoff of

agents who check in at t ∈ (t̂, t̂+ ǫ),

e−rt(ℓ0 − ℓt − α̌(ℓt)(k − ℓt)), (1)

must be constant in t, where the belief ℓt evolves according to ℓ̇ = −λ(ρ+ α̌(ℓt))ℓt. One can

check that this is not the case. In particular, the payoff (1) decreases in t, which contradicts

incentive compatibility. �

Lemma 3. If X jumps at t̂, then Xs
t̂
admits no atom at s ∈ [0, mt̂]. In other words, any

atom of X[·] is split into a flow of agents checking in continuously according to the virtual

clock.

Proof. Suppose to the contrary that X
[·]

t̂
jumps at ŝ ∈ [0, mt̂], and let m := X ŝ

t̂
− lims↑ŝX

s
t̂

be the mass of agents who experiment simultaneously with probability α > 0 at the virtual

clock s = ŝ. These agents enjoy the expected payoff of

e−rt̂(ℓ0 − ℓŝ
t̂
+ α(k − ℓŝ

t̂
)),

where ℓŝ
t̂
:= lims↑ŝ ℓ

s
t̂
is the belief just before (t̂, ŝ), and ℓŝ+ds

t̂
:= ℓŝ

t̂
e−λ(αm+O(ds)) is the belief

just after, for small ds > 0. Consider now a deviation in which the designer splits mass

δ ∈ (0, m) out of mass m and move it by ds in the virtual clock. After the experimentation

by the first mass m− δ, the belief becomes

ℓ̂ŝ+ds
t̂

= ℓŝ
t̂
e−λ(α(m−δ)+O(ds)),

which is smaller than, and bounded away from, ℓŝ
t̂
for any ds > 0. The second mass δ of

agents can be induced to experiment at rate α̂ such that

e−rt̂(ℓ0 − ℓ̂ŝ+ds
t̂

+ α̂(k − ℓ̂ŝ+ds
t̂

)) = e−rt̂(ℓ0 − ℓŝ
t̂
+ α(k − ℓŝ

t̂
)).

Since ℓ̂ŝ+ds
t̂

is smaller than and is bounded away from ℓŝ
t̂
, it follows that α̂ − α is bounded

away from zero for any ds. Hence, the deviation results in the belief,

ℓŝ
t̂
e−λ(α(m−δ)+α̂δ+O(ds)) < ℓŝ

t̂
e−λ(αm+O(ds)) = ℓŝ+ds

t̂
,

for ds small enough. This is a contradiction to the optimality of the original policy. We

therefore conclude that Xs
t̂
is atomless in s. �

Remark 3. The argument of Lemma 3 also implies that the optimal policy is not well defined

without the enriching of the space. Lemmas 1 and 2 imply that a positive of mass of agents

is induced to wait before they check in, and check in at some time t∗ > 0. But it is never
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optimal for them to check in all simultaneously. The argument given in the proof of Lemma

3 suggests that it is optimal to split the mass and move them later, with an arbitrarily small

delay.

We next investigate an atom X . As Lemma 3 suggests, any atom must be split. We

derive a necessary condition for the endpoint of the atom split.

Lemma 4. Let (αs
t , ℓ

s
t)s∈[0,mt] be the process of experimentation and beliefs associated with a

split atom at t. Then, defining

ᾱ(ℓ) :=
rℓ0 − ℓ(ρλ + r)

rk − ℓ(ρλ+ r)
,

it must hold that there exists a (unique) (αs
t , ℓ

s
t) with s ∈ [0, mt] such that ℓst = α̂(ℓst ).

Proof. Let there be a mass at t, with Xt − X−
t > 0, and Lemma 3, the mass is split with

(α−, ℓ−) and (α+, ℓ+) denoting start and end points of the split mass. We shall consider a

variation which moves the a small segment of the mass forward or backward slightly, and ask

when such a variation is profitable. Specifically, we move a segment {Xs
t }

t
s′ of agents with

sufficiently small mass m := X t
t −Xs′

t forward in time by a small interval dt > 0 subject to

the constraint that the moved agents enjoy the same discounted payoffs, and that the belief

at time t + dt remain the same as before, namely ℓ+ − λρℓ+dt. We then derive the belief

at (t, s′), denoted ℓ′, that would allow for such a move to be feasible. If ℓ′ > ℓs
′

t , then this

means that starting from ℓs
′

t , it is indeed possible to move the segment that would result in

the belief at t+dt being strictly lower than ℓ+, a welfare improvement. So, the optimality of

the original policy will require that ℓ′ ≤ ℓs
′

t . We shall show that this requirement produces

a condition: α+ ≤ ᾱ(ℓ+).

To begin, consider the variation. First, we require the agents involved in the moved

segment to be indifferent to the move. In particular, the agents at the end point of the

moved split must enjoy the utility equal to:

Ut = e−rt
(

ℓ0 − ℓ+ − α+(k − ℓ+)
)

.

Upon differentiating, this means that

(k − ℓ+)dα+ = ((1− α+)ρλℓ+ − r(ℓ0 − ℓ+ − α+(k − ℓ+)))dt, (2)

using that dℓ+ = −λρℓ+dt, which follows from the requirement that the belief at t+dt must

be equal to ℓ+ − λρℓ+dt, the level that would prevail at t+ dt had there been no variation.

Meanwhile, the agents involved in the split atom must be indifferent along the process

(ασ, ℓσ)σ∈[0,m], where σ is the new virtual clock that is run to sequence the agents who are
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moved. Let (α1, ℓ1) := (α0, ℓ0) be the start point of the moved agents. The end point is

(αm, ℓm) = (α+, ℓ+). The indifference means that

ℓ0 − ℓσ − ασ(k − ℓσ) = ℓ0 − ℓ+ − α+(k − ℓ+),

for all σ ∈ [0, m]. Hence,

ασ = α(ℓσ) :=
h− ℓσ

k − ℓσ
, (3)

where h := ℓ+ + α+(k − ℓ+).

Now, the equation
dℓσ

ds
= −λℓσα(ℓσ)

can be solved for the virtual time s(ℓ) that it takes to reach a given belief:

s′(ℓ) = −
k − ℓ

λℓ(h− ℓ)
,

which gives, along the curve,

s(ℓ) = C −
k ln ℓ+ (h− k) ln(h− ℓ)

λh
, C ∈ R.

Now recall that s(ℓ+)− s(ℓ1) = m. We therefore obtain:

m =
k ln ℓ1 + (h− k) ln(h− ℓ1)

λh
−
k ln ℓ+ + (h− k) ln(h− ℓ+)

λh
. (4)

We may derive dℓ1 from this expression, by totally differentiating with respect to α+ and

ℓ+, using (2). This yields (as a change for a given dt)

dℓ1 =

ℓ1 (h− ℓ1)

(

k(h−ℓ0)r
(

ln
(

h−ℓ+

h−ℓ1

)

+ln( ℓ1
ℓ+
)
)

h
−

hλρ(h−ℓ1)(k−ℓ+)−(h−ℓ0)(ℓ+−ℓ1)r(h−k)

(h−ℓ+)(h−ℓ1)

)

h (k − ℓ1)
dt+ o(dt).

We now consider doing this for a small change m. That is, we are considering delaying by dt

the experimentation performed by a small mass m (that is, picking a small measure of those

agents supposed to check in, and delaying this checking-in –making sure they are willing to

wait). To be clear, the change in m is small (so that Taylor expansions apply to (4)), but

given this m, we take dt to be small (so that the previous differential holds approximately).

Expanding ℓ1 from (4) in m gives that (in terms of m)

ℓ1 = ℓ+ + λα+ℓ+m+ o(m).
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This is the impact of the mass m on the belief at the end of the splitting. We now delay their

experimentation by dt, and use the expression for dℓ1. Because some background learning

would have occurred after the original splitting during the dt interval, to evaluate the new

belief at t, we must account for the learning. To obtain the effect on the new belief at t

consistent with the move, we are moving backward in time, so we must add ρλℓ1dt (we had

already subtract λρℓ+dt).2 In sum, the effect on the belief that must prevail at t for the

above variation to be possible must equal:

dℓ1 + λρℓ1dt =
ℓ+

k − ℓ+
(

(α+k − ℓ0)r + (1− α+)ℓ+(r + λρ)
)

λm+ o(m).

If this expression were positive, this means that the new belief at t consistent with this move

is higher than the original belief at (t, s′), meaning that it would be possible to move the

agents in a way that keeps the incentives of all agents intact and yields a lower belief at

t + dt. Since the latter move would be strictly profitable for the designer, the optimality of

the original policy requires the expression above to be nonpositive, or

α+ ≤
rℓ0 − ℓ+(ρλ+ r)

rk − ℓ+(ρλ+ r)
.

Similar reasoning applies at the start of the atom splitting, pushing backward in time by dt

a small mass m of experimenters. For this not be profitable, we then get

α− ≥
rℓ0 − ℓ−(ρλ+ r)

rk − ℓ−(ρλ+ r)
.

Combining the inequalities, we conclude that the atom splitting must cross the locus

(ℓ, α̂(ℓ)). It is readily checked from (3) that the slope of the locus αs
t (ℓ) is larger than the

slope dα/dℓ along the locus (αs
t , ℓ

s
t )s∈[0,mt], so that they cross only once. �

Lemma 5. Suppose αt > 0 at t > 0.3 Then, the discounted utility of the agents who check

in before cannot be strictly higher.

Proof. We will prove that the discounted utility of an agent at time t is not boundedly lower

than those who check in immediately before. The argument can be extended, as mentioned

below, to show that the agents’ discounted utility does not decline over time. Suppose that

the utility of an agent at time t is boundedly lower than the utility of an agent who has not

checked in at time t− ǫ, for all ǫ > 0. The reasoning below assumes a gradual check in over

some interval [t−∆, t+∆], but can be adjusted (in case there is a mass point). Let α denote

2The change of experimentation due to agents arriving during the interval [t, t+ dt) and possibly asked
to experiment is of order dt · dm and so ignored.

3In case X has a mass point at t, we select αt := sups α
s
t .
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the probability of recommendation at times [t−∆, t). More precisely, let α = limτ↑t ατ and

let ∆ > 0 be such that |ατ − α| < ε for all τ ∈ [t − ∆, t), for some fixed ε > 0 arbitrarily

small.)

Similarly, let α′ denote the probability of recommendation at times [t, t+∆) (again, take

limits in the obvious way.) Because the utility is boundedly lower at times in [t, t +∆), we

may increase the probability α by some δ > 0 and decrease α′ by the same amount, so that

(i) the total experimentation (and hence belief) at time t + ∆ is the same before and after

the change, (ii) agents supposed to check in at times [t−∆, t) prefer to do so than to check

at times [t, t +∆). Clearly, agents checking in at time [t, t +∆) gain from this change and

so will still check in.4

We ask, when does such a change increase welfare? By construction, it does not affect

what happens before (agents before certainly don’t want to wait now) nor after (the belief

at t +∆ hasn’t changed). Hence, the change in payoff is

(ℓ0 − ℓ− (α + δ)(k − ℓ) + e−r∆(ℓ0 − ℓ∆ − (α′ − δ)(k − ℓ∆)) + o(∆),

where ℓ, ℓ∆ are the beliefs at the beginning of each subinterval. Taking derivatives with

respect to δ and then a Taylor expansion with respect to ∆, evaluated at δ = 0, gives that

the derivative equals

(ℓ(1 + ρ+ r)− rk)∆ + o(∆),

where we normalize λ to 1 (Alternatively, replace all occurrences of r by r/λ). Hence, such

a change is profitable if ℓ > rc
1+ρ+r

. Thus, we may assume otherwise.

If the change in utility is not bounded below by some constant, the same reasoning

applies, but δ = δ(τ) must be chosen so that δ(t) = 0, δ(τ) > 0 for τ < t, and δ(τ) > 0 for

τ > t, such that agents do not wish to change their check-in time over these intervals. If

there is an atom at t, then there must be an black-out immediately before t, and a similar

reasoning applies for moving a small mass m′ of split atom backward in time and raise their

experimentation by small δ. Both extensions are omitted.

Let us now recall that the total continuation payoff is given by

J =

∫

s≥t

e−rs(ℓ0 − ℓs − αs(k − ℓs))ds.

Because ℓ̇ = −(ρ+α)ℓs, we can substitute to obtain an expression that only depends on ℓ, ℓ̇,

integrate by parts to eliminate the terms involving ℓ̇, and ignoring constants, obtain that,

4Adding small δ > 0 to α does not violate the incentive constraint for consumption since the constraint
is not binding.
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up to a constant, J is equal to

J =

∫

s≥t

e−rs(ℓ0 − ℓs − αs(k − ℓs))ds

=

∫

s≥t

e−rs(ℓ0 − ℓs + (ρ+
ℓ̇

λℓs
)(k − ℓs))ds

=

∫

s≥t

e−rs

(

ℓ0 − (1 + ρ)ℓs −
ℓ̇s
λ

+
ℓ̇

λℓs
k

)

ds

=

∫

s≥t

e−rs(ℓ0 − (1 + ρ)ℓs)ds− e−rt

(

ℓs
λ

−
ln ℓs
λ
k

)∞

t

−

∫

s≥t

e−rsr

(

ℓs
λ

−
ln ℓs
λ
k

)

ds

= −
1

λ

∫

s≥t

e−rs (λ(1 + ρ) + r)ℓs − rk ln ℓs) ds+ Const.

The derivative of the integrand with respect to ℓ is

rk − (λ(1 + ρ) + r)ℓ > 0.

Hence, given t as defined above, we note that this derivative is positive: if we replace the

trajectory {ℓτ : τ ≥ t} by a trajectory {ℓ̂τ : τ ≥ t}, with ℓ̂τ ≥ ℓτ (with a strict inequality for

some non-zero measure interval of times), the payoff increases. Hence, decrease α at time

t (or rather, fix a time higher than, but arbitrarily close to t and decrease α at that time),

and adjust ατ for all later τ ∈ T0 so that incentives to check in do not change. This requires

non-positive changes in ατ (which can be expressed in terms of a differential equation),

and results in a higher trajectory ℓ̂, and hence an increase in payoff. We thus obtain a

contradiction. �

Lemma 6. Xt = 0 for t < t∗ and Xt = t for t ≥ t∗.

Proof. By Lemma 1, t∗ := inf{t ≥ 0|Xt > 0} > 0. Since X−
t∗ = 0 < t∗, by Lemma 2, X has

a mass point at t∗. Further, by Lemma 3, the atom at t∗ must be split. Let (α+, ℓ+) be the

end point of the split atom at t∗. Then, by Lemma 4, α+ ≤ α̂(ℓ+). One can show hat α̂(·)

is steeper than α(·).

We next show that for any t > t∗, Xt = t. Suppose to the contrary that there exists

t′ > t such that Xt′ < t′. Then, by Lemmas 2–4, X has an atom at t′, and it is split, and the

splitting crosses the locus α̂(·). But this is impossible, since by Lemma 5, the agents’ utility

never strictly decrease for t ∈ [t∗, t′], and this means that during that interval, α can never

rise at a faster rate in ℓ than α(ℓ) (the locus followed in the first split atom) does. Since

Xt′ = t′ for all t′ > t, and since X is required to be right continuous, the claim follows. �

Armed with the lemmas, we now complete our characterization of the optimal policy.

9



Proof of Proposition 3 and the solution algorithm. Lemmas 4-6 pin down the struc-

ture of the optimal policy: there exist times t∗ > 0 and T > t∗ such that agents who arrive

before t∗ wait until t∗; the accumulated mass is split at t∗; and then the agents who arrive

after t∗ check in upon arrival and experiment at a rate that falls to zero at T . All agents’

discounted payoff is constant for all argents arriving prior to T , and the agents arriving after

T enjoys payoff according to full transparency regime. This structure, along with further nec-

essary conditions, enables us to derive an one-dimensional family of optimal policies indexed

by the belief ℓ̄ at which agents’ experimentation stops fully.

Initially, we fix both ℓ̄ and t∗. The variables to be determined are (ℓ−, α+, ℓ+, T ), where

T is such that ℓT = ℓ̄. Several conditions are derived to determine these variables. First,

since only background learning occurs during the blackout, the (designer’s) belief just prior

to the splitting must satisfy

ℓ− = ℓ0e−λρt∗ . (5)

Second, the agents associated with split mass must be indifferent across the locus (αs
t , ℓ

s
t )s∈[0,t∗].

This requires (3). This, together with the fact that the entire mass of t∗ is split, gives rise

to an equation (4) with m = t∗, or

t∗ =
k ln ℓ− + (h− k) ln(h− ℓ−)

λh
−
k ln ℓ+ + (h− k) ln(h− ℓ+)

λh
, (6)

where h := ℓ+ + α+(k − ℓ+).

Third, by Lemma 6, agents check in as they arrive during the the smooth tapering phase,

and by Lemma 5, they must experiment at levels that make them all indifferent. Hence,

during the t ∈ (t∗, T ), (αt, ℓt) must satisfy the indifference condition:

e−rt(ℓ0 − ℓt − αt(k − ℓt)) = e−rT (ℓ0 − ℓ̄), (7)

and the belief evolution condition:

ℓt = ℓ̄eλ
∫ T
t
(ρ+αs)ds. (8)

Given (t∗, ℓ̄), conditions (7) and (8) uniquely determine (α+, ℓ+) as a function of T .5

In sum, the conditions (5)–(8) uniquely pin down T, ℓ−, α+, ℓ+ as functions of (ℓ̄, t∗).

Next, we hold ℓ̄ fixed and characterize the condition for optimal choice of t∗. In particular,

we use the fact that for a fixed ℓ̄, T must be minimized. This follows from the fact that

the earlier time T at which a given belief ℓ̄ is reached without affecting the payoff of the

5Essentially, given any T > t∗, the two conditions give rise to a differential equation that runs from T

backward to t∗, with the initial value (αT , ℓT ) = (0, ℓ̄), which admits a unique solution (αt, ℓt), the end point
of which is (α+, ℓ+).
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agents who arrive before, the higher the payoff is for all agents arriving afterwards, and thus

the higher the overall welfare is. This means that, as t∗ is varied slightly by dt, subject to

the constraint that all agents who arrive before T should enjoy the same payoff, the optimal

choice of T remains constant. Since the variation should not alter T at the optimum, as t∗

is raised by dt, the last phase is shortened by length dt. Hence, the variation affects ℓ+, the

belief at which (going backward) the differential equation ends, by:

dℓ+ = −λ(ρ+ α+)ℓ+dt. (9)

Next, the variation keeps the payoff of early agents constant. Totally differentiating the

indifference condition, we obtain the change in α+ arising from the variation:

r(ℓ0 − ℓ+ − α+(k − ℓ+))dt = −(1− α+)dℓ+ − (k − ℓ+)dα+. (10)

Now, since the initial phase has been lengthened by dt, we should have

ℓ− + dℓ− = ℓ0e
−λρ(t∗+dt),

or
dℓ−

ℓ−
= −λρdt. (11)

Finally, substituting from (5) into (6) to eliminate t∗, we get

ℓ+ + α+(k − ℓ+)

ρ
ln
ℓ−

ℓ0
= k ln

ℓ+

ℓ−
+ (1− α+)(k − ℓ+) ln

(

1 +
ℓ+ − ℓ−

α+(k − ℓ+)

)

, (12)

The effect of the variation on the end points of split mass can be obtained by totally differen-

tiating (12). The resulting equation, after (9)–(11) are substituted into it, must hold for any

small dt. This gives rise to another condition, which is too long and cumbersome to include

here. This condition, together with the earlier observations, pins down (t∗, T, ℓ−, α+, ℓ+) as

functions of only one variable, ℓ̄. (Incidentally, one can vary ℓ̄ and trace out the locus of

(ℓ+, α+) at which the atom splitting terminates under the optimal policy, yielding a dashed

locus in Figure 2.)

Let t∗(ℓ̄), α+(ℓ̄), ℓ+(ℓ̄), T (ℓ̄) be the key variables of the optimal policy as functions of ℓ̄.

The resulting welfare is:

U(ℓ̄) := T (ℓ̄)e−rt∗(ℓ̄)(ℓ0 − ℓ+(ℓ̄)− α+(t∗)(k − ℓ+(ℓ̄))) +

∫ ∞

T (ℓ̄)

e−rt(ℓ0 − ℓt)dt.

where

ℓt := ℓ̄e−λρ(t−T (ℓ̄)), ∀t ≥ T (ℓ̄).

11



To characterize the optimal policy, it remains to choose ℓ̄ to maximize U(ℓ̄). A closed

form solution on the optimal ℓ̄, or a simple characterization, is difficult to come by.6 But a

numerical solution for the optimal ℓ̄, and thus the optimal policy, can be obtained. Figure 2

in the paper describes the optimal policy for the case (r, λ, ρ, k, ℓ0) = (1/2, 2, 1/5, 15, 9).

The optimal policy employs a “blackout” until t∗ ≃ 1.45, and the mass accumulated by

then is then split at time t∗ into (sequential) check in; this mass experiments along the locus

that starts from (α−, ℓ−) ≃ (0.017, 5.04) and ends at (α+, ℓ+) ≃ (.066, 4.52). After time t∗,

the agents check in as they arrive. They experiment along the locus of (α, ℓ)’s that begins

at (α+, ℓ+) and tapers gradually down to (α, ℓ) ≃ (0, 2.72). �

2 General Signal Structure: Proof from Section 7.1

Here, we extend our model to allow for both good news and bad news. Specifically, if a flow

of size µ consumes the good over some time interval [t, t+dt), then the designer learns during

this time interval that the movie is “good” with probability λg(ρ + µ)dt, that it is “bad”

with probability λb(ρ+ µ)dt, where λg, λb ≥ 0, and ρ is the rate of background learning.

The designer commits to the following policy: At time t, she recommends the movie to

a fraction γt ∈ [0, 1] of agents if she learns the movie to be good, a fraction βt ∈ [0, 1] if she

learns it to be bad, and she recommends to fraction αt ∈ [0, 1] if no news has arrived by t.

Clearly,

µt = ρ+ αt.

The designer’s belief evolves according to

ṗt = −(λg − λb)µtpt(1− pt), (13)

with the initial value p0 = p0. It is worth noting that the evolution of the posterior depends

on the relative arrival rates of the good news and the bad news. If λg > λb (so the good news

arrive faster than the bad news), then “no news” leads the designer to form a pessimistic

inference on the quality of the movie, with the posterior falling. By contrast, if λg < λb, then

“no news” leads to on optimistic inference, with the posterior rising. We label the former

case good news case and the latter bad news case. Recall that main body of the paper

treats the special case of λb = 0, a pure good news case.

Let gt and bt denote the probability that the designer’s belief is 1 and 0, respectively.

6In particular, we have no proof that this constrained maximization admits a unique solution ℓ̄. There
might be (presumably non-generic) parameter configurations for which this is the case, in which case there
would be multiple optimal policies.
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Given the experimentation rate µt, these probabilities evolve according to

ġt = (1− gt − bt)λgµtpt, (14)

with the initial value g0 = 0, and

ḃt = (1− gt − bt)λbµt(1− pt), (15)

with the initial value b0 = 0.7 Further, these beliefs must form a martingale:

p0 = gt · 1 + bt · 0 + (1− gt − bt)pt. (16)

The designer chooses the policy (α, β, γ), measurable, to maximize social welfare, namely

W(α, β, χ) :=

∫

t≥0

e−rtgtγt(1− c)dt+

∫

t≥0

e−rtbtβt(−c)dt+

∫

t≥0

e−rt(1− gt − bt)αt(pt − c)dt,

where (pt, gt, bt) must follow the required laws of motion: (13), (14), (15), and (16), where

µt = ρ+ αt is the total experimentation rate and r is the discount rate of the designer.8

Given policy (α, β, γ), conditional on being recommended to watch the movie, the agent

will have the incentive to watch the movie, if and only if the expected quality of the movie—

the posterior that it is good—is no less than the cost, or

gtγt + (1− gt − bt)αtpt
gtγt + btβt + (1− gt − bt)αt

≥ c. (17)

The following is immediate:

Lemma 7. It is optimal for the designer to disclose the breakthrough (both good and bad)

news immediately. That is, an optimal policy has γt ≡ 1, βt ≡ 0.

Proof. If one raises γt and lowers βt, it can only raise the value of objective W and relax

(17) (and do not affect other constraints). �

7These formulae are derived as follows. Suppose the probability that the designer has seen the good news
by time t and the probability that she has seen the bad news by t are respectively gt and bt. Then, the
probability of the good news arriving by time t + dt and the probability of the bad news arriving by time
t+ dt are, respectively, and to the first-order,

gt+dt = gt + λgµtptdt(1− gt − bt) and bt+dt = bt + λbµt(1 − pt)dt(1− gt − bt).

Dividing these equations by dt and taking the limit as dt → 0 yields (14) and (15).
8More precisely, the designer is allowed to randomize over the choice of policy (α, β, γ) (using a relaxed

control, as such randomization is defined in optimal control). A corollary of our results is that there is no
gain for him from doing so.
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Using ℓt =
pt

1−pt
, (13) can be restated as:

ℓ̇t = −ℓt∆λgµt, ℓ0 :=
p0

1− p0
, (18)

where ∆ := λg−λb

λg
, assuming for now λg > 0.

The two other state variables, namely the posteriors gt and bt on the designer’s belief,

are pinned down by ℓt (and thus by pt) at least when λg 6= λb (i.e., when no news is not

informationally neutral.) (We shall remark on the case of the neutrality case ∆ = 0.)

Lemma 8. If ∆ 6= 0, then

gt = p0

(

1−

(

ℓt
ℓ0

)
1
∆

)

and bt = (1− p0)

(

1−

(

ℓt
ℓ0

)
1
∆
−1
)

.

Proof. Let κt := p0/(p0 − gt). Note that κ0 = 1. Then, it follows from (14) and (16) that

κ̇t = λgκtµt, κ0 = 1. (19)

Dividing both sides of (19) by the respective sides of (18), we get,

κ̇t

ℓ̇t
= −

κt
ℓt∆

,

or
κ̇t
κt

= −
1

∆

ℓ̇t
ℓt
.

It follows that, given the initial condition,

κt =

(

ℓt
ℓ0

)− 1
∆

.

We can then unpack κt to recover gt, and from this we can obtain bt via (16). �

This result is remarkable. A priori, there is no reason to expect that the designer’s belief

pt serves as a “sufficient statistic” for the posteriors that the agents attach to the arrival of

news, since different histories for instance involving even different experimentation over time

could in principle lead to the same p.
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Next, substitute gt and bt into (17) to obtain:

αt ≤ ᾱ(ℓt) := min











1,

(

ℓt
ℓ0

)− 1
∆
− 1

k − ℓt
ℓt











, (20)

if the normalized cost k := c/(1− c) exceeds ℓt and ᾱ(ℓt) := 1 otherwise.

The next lemma will figure prominently in our characterization of the second-best policy

later.

Lemma 9. If ℓ0 < k and ∆ 6= 0, then ᾱ(ℓt) is zero at t = 0, and increasing in t, strictly so

whenever ᾱ(ℓt) ∈ [0, 1).9

Proof. We shall focus on

α̃(ℓ) :=

(

ℓ
ℓ0

)− 1
∆

− 1

k − ℓ
ℓ.

Recall ᾱ(ℓ) = min{1, α̃(ℓ)}. Since ℓt falls over t when ∆ > 0 and rises over t when ∆ < 0. It

suffices to show that α̃(·) is decreasing when ∆ > 0 and increasing when ∆ < 0.

We make several preliminary observations. First, α̃(ℓ) ∈ [0, 1) if and only if

1− (ℓ/ℓ0)
1
∆ ≥ 0 and kℓ

1
∆
−1ℓ

− 1
∆

0 > 1. (21)

Second,

α̃′(ℓ) =
(ℓ0/ℓ)

1
∆h(ℓ, k)

∆(k − ℓ)2
, (22)

where

h(ℓ, k) := ℓ− k(1−∆)− k∆(ℓ/ℓ0)
1
∆ .

Third, (21) implies that
dh(ℓ, k)

dℓ
= 1− kℓ

1
∆
−1ℓ

− 1
∆

0 < 0, (23)

on any range of ℓ over which α̃ ≤ 1. Note

h(0, k) = −k(1−∆) = −k
λb
λg

≤ 0. (24)

It follows from (23) and (24) that h(ℓ, k) < 0 for any ℓ ∈ (0, k) and α̃(ℓ) ∈ [0, 1). By (22),

this last fact implies that α̃′(ℓ) < 0 if ∆ > 0 and α̃′(ℓ) > 0 if ∆ < 0, as was to be shown. �

9The case ∆ = 0 is similar: the same conclusion holds but ᾱ need to be defined separately.
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Substituting the posteriors from Lemma 8 into the objective function and using µt =

ρ+αt, and with normalization of the objective function, the second-best program is restated

as follows:

[SB] sup
α

∫

t≥0

e−rtℓ
1
∆
t

(

αt

(

1−
k

ℓt

)

− 1

)

dt

subject to

ℓ̇t = −∆λg(ρ+ αt)ℓt, (25)

proposition

0 ≤ αt ≤ ᾱ(ℓt). (26)

Obviously, the first-best program, labeled [FB], is the same as [SB], except that the

upper bound for ᾱ(ℓt) is replaced by 1. We next characterize the optimal recommendation

policy. The precise characterization depends on the sign of ∆, i.e., whether the environment

is that of predominantly good news or bad news.

2.1 “Good news” environment: ∆ > 0

The analysis is similar to that for Proposition 1 in the paper. As in the paper, we first

switch the roles of variables so that we treat ℓ as a “time” variable and t(ℓ) := inf{t|ℓt ≤ ℓ}

as the state variable, interpreted as the time it takes for a posterior ℓ to be reached. Up

to constant (additive and multiplicative) terms, the designer’s problem is written as: For

problem i = SB, FB,

sup
α(ℓ)

∫ ℓ0

0

e−rt(ℓ)ℓ
1
∆
−1

(

1−
k

ℓ
−
ρ
(

1− k
ℓ

)

+ 1

ρ+ α(ℓ)

)

dℓ.

s.t. t(ℓ0) = 0,

t′(ℓ) = −
1

∆λg(ρ+ α(ℓ))ℓ
,

α(ℓ) ∈ Ai(ℓ),

where ASB(ℓ) := [0, ᾱ(ℓ)], and AFB := [0, 1].

This transformation enables us to focus on the optimal recommendation policy directly

as a function of the posterior ℓ. Given the transformation, the admissible set no longer

depends on the state variable (since ℓ is no longer a state variable), thus conforming to the
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standard specification of the optimal control problem.

Next, we focus on u(ℓ) := 1
ρ+α(ℓ)

as the control variable. With this change of variable,

the designer’s problem (both second-best and first-best) is restated, up to constant (additive

and multiplicative) terms: For i = SB, FB,

sup
u(ℓ)

∫ ℓ0

0

e−rt(ℓ)ℓ
1
∆
−1

(

1−
k

ℓ
−

(

ρ

(

1−
k

ℓ

)

+ 1

)

u(ℓ)

)

dℓ, (27)

s.t. t(ℓ0) = 0,

t′(ℓ) = −
u(ℓ)

∆λgℓ
,

u(ℓ) ∈ U i(ℓ),

where the admissible set for the control is USB(ℓ) := [ 1
ρ+ᾱ(ℓ)

, 1
ρ
] for the second-best problem

and UFB(ℓ) := [ 1
ρ+1

, 1
ρ
]. With this transformation, the problem becomes a standard linear

optimal control problem (with state t and control α). A solution exists by the Filippov-Cesari

theorem (Cesari, 1983).

The characterization of the solution is summarized in the proposition which extends

Proposition 1 of the paper for the general good news case.

Proposition 1. The second-best policy prescribes, absent any news, the maximal experi-

mentation at α(p) = ᾱ( p

1−p
) until the posterior falls to p∗g, and no experimentation α(p) = 0

thereafter for p < p∗g, where

p∗g := c

(

1−
rv

ρ+ r(v + 1
λg
)

)

,

where v := 1−c
r

is the continuation payoff upon the arrival of good news. The first-best

policy has the same structure with the same threshold posterior, except that ᾱ(p) is replaced

by 1. If p0 ≥ c, then the second-best policy implements the first-best, where neither No

Social Learning nor Full Transparency can. If p0 < c, then the second-best induces a slower

experimentation/learning than the first-best.

Proof. We first focus on the necessary condition for optimality to characterize the optimal

recommendation policy. To this end, we write the Hamiltonian:

H(t, u, ℓ, ν) = e−rt(ℓ)ℓ
1
∆
−1

(

1−
k

ℓ
−

(

ρ

(

1−
k

ℓ

)

+ 1

)

u(ℓ)

)

− ν
u(ℓ)

∆λgℓ
. (28)

The necessary optimality conditions state that there exists an absolutely continuous function
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ν : [0, ℓ0] such that, for all ℓ, either

φ(ℓ) := ∆λge
−rt(ℓ)ℓ

1
∆

(

ρ

(

1−
k

ℓ

)

+ 1

)

+ ν(ℓ) = 0, (29)

or else u(ℓ) = 1
ρ+ᾱ(ℓ)

if φ(ℓ) > 0 and u(ℓ) = 1
ρ
if φ(ℓ) < 0.

Furthermore,

ν ′(ℓ) = −
∂H(t, u, ℓ, ν)

∂t
= re−rt(ℓ)ℓ

1
∆
−1

((

1−
k

ℓ

)

(1− ρu(ℓ))− u(ℓ)

)

(ℓ− a.e.). (30)

Finally, transversality at ℓ = 0 implies that ν(0) = 0 (since t(ℓ) is free) .

Note that

φ′(ℓ) = −rt′(ℓ)∆λge
−rt(ℓ)ℓ

1
∆

(

ρ

(

1−
k

ℓ

)

+ 1

)

+ λge
−rt(ℓ)ℓ

1
∆
−1

(

ρ

(

1−
k

ℓ

)

+ 1

)

+ ρk∆λge
−rt(ℓ)ℓ

1
∆
−2 + ν ′(ℓ),

or using the formulas for t′ and ν ′,

φ′(ℓ) = e−rt(ℓ)ℓ
1
∆
−2 (r (ℓ− k) + ρ∆λgk + λg (ρ (ℓ− k) + ℓ)) , (31)

so φ cannot be identically zero over some interval, as there is at most one value of ℓ for which

φ′(ℓ) = 0. Every solution must be “bang-bang.” Specifically,

φ′(ℓ)
>
=
<
0 ⇔ ℓ

>
=
<
ℓ̃ :=

(

1−
λg(1 + ρ∆)

r + λg(1 + ρ)

)

k > 0.

Also, φ(0) ≤ 0 (specifically, φ(0) = 0 for ∆ < 1 and φ(0) = −∆λge
−rt(ℓ)ρk for ∆ = 1). So

φ(ℓ) < 0 for all 0 < ℓ < ℓ∗g, for some threshold ℓ∗g > 0, and φ(ℓ) > 0 for ℓ > ℓ∗g. The constraint

u(ℓ) ∈ U i(ℓ) must bind for all ℓ ∈ [0, ℓ∗) (a.e.), and every optimal policy must switch from

u(ℓ) = 1/ρ for ℓ < ℓ∗g to 1/(ρ + ᾱ(ℓ)) in the second-best problem and to 1/(ρ + 1) in the

first-best problem for ℓ > ℓ∗g. It remains to determine the switching point ℓ∗g (and establish

uniqueness in the process).

For ℓ < ℓ∗g,

ν ′(ℓ) = −
r

ρ
e−rt(ℓ)ℓ

1
∆
−1, t′(ℓ) = −

1

ρ∆λgℓ

so that

t(ℓ) = C0 −
1

ρ∆λg
ln ℓ, or e−rt(ℓ) = C1ℓ

r
ρ∆λg
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for some constants C1, C0 = −1
r
lnC1. Note that C1 > 0; or else C1 = 0 and t(ℓ) = ∞ for

every ℓ ∈ (0, ℓ∗g), which is inconsistent with t(ℓ∗g) <∞. Hence,

ν ′(ℓ) = −
r

ρ
C1ℓ

r
ρ∆λg

+ 1
∆
−1
,

and so (using ν(0) = 0),

ν(ℓ) = −
r∆λg
r + ρλg

C1ℓ
r

ρ∆λg
+ 1

∆ ,

for ℓ < ℓ∗g. We now substitute ν into φ, for ℓ < ℓ∗g, to obtain

φ(ℓ) = ∆λgC1ℓ
r

ρ∆λg ℓ
1
∆

(

ρ

(

1−
k

ℓ

)

+ 1

)

−
r∆λg
r + ρλg

C1ℓ
r

ρ∆λg
+ 1

∆ .

We now see that the switching point is uniquely determined by φ(ℓ) = 0, as φ is continuous

and C1 cancels. Simplifying,
k

ℓ∗g
= 1 +

λg
r + ρλg

,

which leads to the formula for p∗g in the Proposition (via ℓ = p/(1 − p) and k = c/(1 − c)).

We have identified the unique solution to the program for both first- and second-best, and

shown in the process that the optimal threshold p∗ applies to both problems.

The second-best implements the first-best if p0 ≥ c, since then ᾱ(ℓ) = 1 for all ℓ ≤ ℓ0. If

not, then ᾱ(ℓ) < 1 for a positive measure of ℓ ≤ ℓ0. Hence, the second-best implements a

lower and thus a slower experimentation than does the first-best.

As for sufficiency, we use Arrow sufficiency theorem (Seierstad and Sydsæter, 1987, The-

orem 5, p.107). This amounts to showing that the maximized Hamiltonian Ĥ(t, ℓ, ν(ℓ)) =

maxu∈U i(ℓ) H(t, u, ℓ, ν(ℓ)) is concave in t (the state variable), for all ℓ. To this end, it suf-

fices to show that the terms inside the big parentheses in (28) are negative for all u ∈ U i,

i = FB, SB. This is indeed the case:

1−
k

ℓ
−

(

ρ

(

1−
k

ℓ

)

+ 1

)

u(ℓ)

≤1−
k

ℓ
−min

{(

ρ

(

1−
k

ℓ

)

+ 1

)

1

1 + ρ
,

(

ρ

(

1−
k

ℓ

)

+ 1

)

1

ρ

}

=−min

{

k

(1 + ρ)ℓ
,
1

ρ

}

< 0,

where the inequality follows from the linearity of the expression in u(ℓ) and the fact that

u(ℓ) ∈ U i ⊂ [ 1
ρ+1

, 1
ρ
], for i = FB, SB. The concavity of maximized Hamiltonian in t, and

thus sufficiency of our candidate optimal solution, then follows. �
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2.2 “Bad news” environment: ∆ < 0

The analysis is qualitatively the same for the general bad news case. The same change of

variable produces the following program for the designer: For problem i = SB, FB,

sup
u

∫ ∞

ℓ0
e−rt(ℓ)ℓ

1
∆
−1

((

1−
k

ℓ

)

(1− ρu(ℓ))− u(ℓ)

)

dℓ,

s.t. t(ℓ0) = 0,

t′(ℓ) = −
u(ℓ)

∆λgℓ
,

u(ℓ) ∈ U i(ℓ),

where as before USB(ℓ) := [ 1
ρ+α(ℓ)

, 1
ρ
] and UFB(ℓ) := [ 1

ρ+1
, 1
ρ
]. Again, a solution exists

Filippov-Cesari theorem (Cesari, 1983).

Proposition 2. The first-best policy (absent any news) prescribes no experimentation until

the posterior p rises to p∗∗b , and then full experimentation at the rate of α(p) = 1 thereafter,

for p > p∗∗b , where

p∗∗b := c

(

1−
rv

ρ+ r(v + 1
λb
)

)

.

The second-best policy implements the first-best if p0 ≥ c or if p0 ≤ p̂0 for some p̂0 < p∗∗b .

If p0 ∈ (p̂0, c), then the second-best policy prescribes no experimentation until the posterior

p rises to p∗b , and then maximal experimentation at the rate of ᾱ( p

1−p
) thereafter for any

p > p∗b, where p
∗
b > p∗∗b . In other words, the second-best policy triggers experimentation at a

later date and at a lower rate than does the first-best.

Proof. As before, the necessary conditions for the second-best policy now state that there

exists an absolutely continuous function ν : [0, ℓ0] such that, for all ℓ, either

ψ(ℓ) := −φ(ℓ) = ∆λge
−rt(ℓ)ℓ

1
∆

(

ρ

(

1−
k

ℓ

)

+ 1

)

− ν(ℓ) = 0, (32)

or else u(ℓ) = 1
ρ+α(ℓ)

if ψ(ℓ) > 0 and u(ℓ) = 1
ρ
if ψ(ℓ) < 0. The formula for ν ′(ℓ) is the

same as before, given by (30). Finally, transversality at ℓ = ∞ (t(ℓ) is free) implies that

limℓ→∞ ν(ℓ) = 0.

Since ψ(ℓ) = −φ(ℓ), we get from (32) that

ψ′(ℓ) = −e−rt(ℓ)ℓ
1
∆
−2 (r (ℓ− k) + ρ∆λgk + λg (ρ (ℓ− k) + ℓ)) .

Letting ℓ̃ :=
(

1− λg(1+ρ∆)
r+λg(1+ρ)

)

k, namely the solution to ψ(ℓ) = 0. Then, ψ is maximized at
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ℓ̃, and is strictly quasi-concave. Since limℓ→∞ h(ℓ) = 0, this means that there must be a

cutoff ℓ∗b < ℓ̃ such that ψ(ℓ) < 0 for ℓ < ℓ∗b and ψ(ℓ) > 0 for ℓ > ℓ∗b . Hence, the solution is

bang-bang, with u(ℓ) = 1/ρ if ℓ < ℓ∗b , and u(ℓ) = 1/(ρ+ α(ℓ)) if ℓ > ℓ∗b .

The first-best policy has the same cutoff structure, except that the cutoff may be different

from ℓ∗b . Let ℓ
∗∗
b denote the first-best cutoff.

First-best policy: We shall first consider the first best policy. In that case, for ℓ > ℓ∗∗b ,

t′(ℓ) = −
1

∆λg(1 + ρ)ℓ

gives

e−rt(ℓ) = C2ℓ
r

(1+ρ)∆λg ,

for some non-zero constant C2. Then

ν ′(ℓ) = −
rk

1 + ρ
C2ℓ

r
(1+ρ)∆λg

+ 1
∆
−2

and limℓ→∞ ν(ℓ) = 0 give

ν(ℓ) = −
rk∆λg

r + (1 + ρ)(1−∆)λg
C2ℓ

r
(1+ρ)∆λg

+ 1
∆
−1
.

So we get, for ℓ > ℓ∗∗b ,

ψ(ℓ) = −∆λgC2ℓ
r

(1+ρ)∆λg ℓ
1
∆
−1 (ℓ(1 + ρ)− kρ) +

rk∆λg
r + (1 + ρ)(1−∆)λg

C2ℓ
r

(1+ρ)∆λg
+ 1

∆
−1
.

Setting ψ(ℓ∗∗b ) = 0 gives

k

ℓ∗∗b
=
r + (1 + ρ)(1−∆)λg
r + ρ(1 −∆)λg

=
r + (1 + ρ)λb
r + ρλb

= 1 +
λb

r + ρλb
,

or

p∗∗b = c

(

1−
rv

ρ+ r(v + 1
(1−∆)λg

)

)

= c

(

1−
rv

ρ+ r(v + 1
λb
)

)

.

Second-best policy. We now characterize the second-best cutoff. There are two cases,

depending upon whether α(ℓ) = 1 is incentive-feasible at the threshold ℓ∗∗b that characterizes

the first-best policy. In other words, for the first-best to be implementable, we should have
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ᾱ(ℓ∗∗) = 1, which requires

ℓ0 ≥ k

(

r + ρλb
r + (1 + ρ)λb

)1−∆

=: ℓ̂0.

Observe that since ∆ < 0, ℓ̂0 < ℓ∗∗. If ℓ0 ≤ ℓ̂0, then the designer begins with no experimen-

tation and waits until the posterior belief improves sufficiently to reach ℓ∗∗, at which point

the agents will be asked to experiment with full force, i.e., with ᾱ(ℓ) = 1, that is, given that

no news has arrived by that time. This first-best policy is implementable since, given the

sufficiently favorable prior, the designer will have built sufficient “credibility” by that time.

Hence, unlike the case of ∆ > 0, the first best can be implementable even when ℓ0 < k.

Suppose ℓ0 < ℓ̂0. Then, the first-best is not implementable. That is, ᾱ(ℓ∗∗b ) < 1. Let ℓ∗b
denote the threshold at which the constrained designer switches to ᾱ(ℓ). We now prove that

ℓ∗b > ℓ∗∗b .

For the sake of contradiction, suppose that ℓ∗b ≤ ℓ∗∗b . Note that ψ(x) = limℓ→∞ φ(ℓ) = 0.

This means that
∫ ∞

ℓ∗
b

ψ′(ℓ)dℓ =

∫ ∞

ℓ∗
b

e−rt(ℓ)ℓ
1
∆
−2 ((r + λbρ)k − (r + λg(ρ+ 1))ℓ) dℓ = 0,

where ψ′(ℓ) = −φ′(ℓ) is derived using the formula in (32).

Let t∗∗ denote the time at which ℓ∗∗b is reached along the first-best path. Let

f(ℓ) := ℓ
1
∆
−2 ((r + λbρ)k − (r + λg(ρ+ 1))ℓ) .

We then have
∫ ∞

ℓ∗
b

e−rt∗∗(ℓ)f(ℓ)dℓ ≥ 0, (33)

(because ℓ∗b ≤ ℓ∗∗b ; note that f(ℓ) ≤ 0 if and only if ℓ > ℓ̃, so h must tend to 0 as ℓ → ∞

from above), yet
∫ ∞

ℓ∗
b

e−rt(ℓ)f(ℓ)dℓ = 0. (34)

Multiplying ert
∗∗(ℓ̃) on both sides of (33) gives

∫

ℓ∗
b

e−r(t∗∗(ℓ)−t∗∗(ℓ̃))f(ℓ)dℓ ≥ 0. (35)
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Likewise, multiplying ert(ℓ̃) on both sides of (34) gives

∫ ∞

ℓ∗
b

e−r(t(ℓ)−t(ℓ̃))f(ℓ)dℓ = 0. (36)

Subtracting (35) from (36) gives

∫

ℓ∗
b

(

e−r(t(ℓ)−t(ℓ̃)) − e−r(t∗∗(ℓ)−t∗∗(ℓ̃))
)

f(ℓ)dℓ ≤ 0. (37)

Note t′(ℓ) ≥ (t∗∗)′(ℓ) > 0 for all ℓ, with strict inequality for a positive measure of ℓ. This

means that e−r(t(ℓ)−t(ℓ̃)) ≤ e−r(t∗∗(ℓ)−t∗∗(ℓ̃)) if ℓ > ℓ̃, and e−r(t(ℓ)−t(ℓ̃)) ≥ e−r(t∗∗(ℓ)−t∗∗(ℓ̃)) if ℓ < ℓ̃,

again with strict inequality for a positive measure of ℓ for ℓ ≥ ℓ∗∗b (due to the fact that the

first best is not implementable; i.e., ᾱ(ℓ∗∗b ) < 1). Since f(ℓ) < 0 if ℓ > ℓ̃ and f(ℓ) > 0 if

ℓ < ℓ̃, we have a contradiction to (37).

For sufficiency, the same argument as with Proposition 1 establishes that the maximized

Hamiltonian will necessarily be concave in t, which implies optimality of our candidate

solution, by Arrow’s sufficiency theorem. �

2.3 “Neutral news” environment: ∆ = 0

In this case, the designer’s posterior on the quality of the good remains unchanged in the

absence of breakthrough news. Experimentation could be still desirable for the designer. If

p0 ≥ c, then the agents will voluntarily consume the good, so experimentation is clearly self-

enforcing. If p0 < c, then the agents will not voluntarily consume, so spamming is needed to

incentivize experimentation. As before the optimal policy has the familiar cutoff structure.

Proposition 3. The second-best policy prescribes, absent any news, the maximal experimen-

tation at ᾱt if p0 ≥ p∗0, and no experimentation if p0 < p∗0, where p
∗
0 := p∗g(= p∗∗b ) and ᾱt

(given in the Appendix) is increasing and convex in t and reaches 1 when t∗ = k−ℓ0
λb(ℓ0−kρ)

ln ℓ0
kρ
.

The first-best policy has the same structure with the same threshold posterior, except that ᾱt

is replaced by 1. The first-best is implementable if and only if p0 ≥ c or p0 < p∗0.

Proof. In that case, ℓ = ℓ0. The objective rewrites

W =

∫

t≥0

e−rt

(

gt(1− c) +
p0 − c

p0
αt(p0 − gt)

)

dt

=

∫

t≥0

e−rt

(

gt(1− c) +
p0 − c

p0

(

ġt
λg

− (p0 − gt)ρ

))

dt
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=

∫

t≥0

e−rt

(

gt(1− c) +
p0 − c

p0

(

r
gt
λg

− (p0 − gt)ρ

))

dt + Const. (Integr. by parts)

=

∫

t≥0

e−rtgt

(

1− c+
p0 − c

p0

(

r

λg
+ ρ

))

dt+ Const.

= Const.×

∫

t≥0

e−rtgt ((ℓ0 − k)(r + λgρ) + λgℓ0) dt+ Const.,

and so we see that it is best to set gt to its maximum or minimum value depending on the

sign of (ℓ0 − k)(r + λgρ) + λgℓ0, specifically, depending on

k

ℓ0
≶ 1 +

λg
r + λgρ

,

which is the relationship that defines ℓ∗g = ℓ∗∗b . Now, gt is maximized by setting ατ = ᾱτ and

minimized by setting ατ = 0 (for all τ < t).

We can solve for ᾱt from the incentive compatibility constraint, plug back into the dif-

ferential equation for gt and get, by solving the ordinary differential equation,

gt =

(

e
λg(ℓ0−kρ)t

k−ℓ0 − 1

)

ℓ0(k − ℓ0)ρ

(1 + ℓ0)(ℓ0 − kρ)
,

and finally

ᾱt =
ℓ0

ρk−ℓ0

ρ

(

1−e

λg(ℓ0−ρk)t
k−ℓ0

) − (k − ℓ0)
,

which is increasing in t and convex in t (for γ > l0) and equal to 1 when

λgt
∗ =

k − ℓ0
ℓ0 − kρ

ln
ℓ0
kρ
.

The optimal policy in that case is fairly obvious: experiment at maximum rate until t∗, at

rate 1 from that point on (conditional on no feedback). �
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3 Heterogeneous Costs: Proofs from Section 7.2

3.1 Proof of Proposition 4

The objective function reads

∫

t≥0

e−rt (gt(1− c̄) + (1− gt − bt)(qHαH(pt − cL) + qLαL(pt − cL)) dt,

where c̄ := qHcH + qLcL. Substituting for gt, bt and re-arranging, this gives

∫

t≥0

e−rtℓ(t)

(

αH(t)qH

(

1− cH

(

1 +
1

ℓ(t)

))

+ αL(t)qL

(

1− cL

(

1 +
1

ℓ(t)

))

− (1− c̄)

)

dt.

As before, it is more convenient to work with t(ℓ) as the state variable, and doing the change

of variables gives

∫ ℓ0

0

e−rt(ℓ)

(

xH(ℓ)uH(ℓ) + xL(ℓ)uL(ℓ)−
1− c̄

ρ

)

dℓ,

where for j = L,H , xj(ℓ) := 1 − cj
(

1 + 1
ℓ

)

+ 1−c̄
ρ
, and uj(ℓ) :=

qjαj(t(ℓ))

ρ+qLαL(t(ℓ))+qHαH (t(ℓ))
are the

control variables that take values in the sets U j(ℓ) = [uk, ūk] (whose definition depends on

first- vs. second-best). This is to be maximized subject to

t′(ℓ) =
uH(ℓ) + uL(ℓ)− 1

ρλℓ
.

As before, we invoke Pontryagin’s principle. There exists an absolutely continuous function

η : [0, ℓ0] → R, such that, a.e.,

η′(ℓ) = re−rt(ℓ)

(

xH(ℓ)uH(ℓ) + xL(ℓ)uL(ℓ)−
1− c̄

ρ

)

,

and uj is maximum or minimum, depending on the sign of

φj(ℓ) := ρλℓe−rt(ℓ)xj(ℓ) + η(ℓ).

This is because this expression cannot be zero except for a specific value of ℓ = ℓj . Namely,

note first that, because xH(ℓ) < xL(ℓ) for all ℓ, at least one of uL(ℓ), uH(ℓ) must be extremal,

for all ℓ. Second, upon differentiation,

φ′
H(ℓ) = e−rt(ℓ)

((

λ−
r

ρ

)

(1− c̄) + ρλ(1− cH) + ruL(ℓ)(cH − cL)

(

1 +
1

ℓ

))
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implies that, if φH(ℓ) = 0 were identically zero over some interval, then uL(ℓ) would be

extremal over this range, yielding a contradiction, as the right-hand side cannot be zero

identically, for uL(ℓ) = ūL(ℓ). Similar reasoning applies to uL(ℓ), considering φ
′
L(ℓ). Hence,

the optimal policy is characterized by two thresholds, ℓH , ℓL, with ℓ0 ≥ ℓH ≥ ℓL ≥ 0, such

that both types of regular consumers are asked to experiment whenever ℓ ∈ [ℓH , ℓ0], low-cost

consumers are asked to do so whenever ℓ ∈ [ℓL, ℓ0], and neither is asked to otherwise.

We now characterize the threshold beliefs under first-best and second-best policies. Through-

out, we shall use superscript ∗∗ to denote the first-best and superscript ∗ to denote the

second-best policy. By the principle of optimality, the threshold ℓL must coincide with

ℓ∗ = ℓ∗∗ in the case of only one type of regular consumers (with cost cL). To compare ℓ∗H
and ℓ∗∗H , we proceed as in the bad news case, by noting that, in either case,

φH(ℓH) = 0,

and

φH(ℓL) = φL(ℓL) + ρλℓLe
−rt(ℓL)(xH(ℓL)− xL(ℓL)) = −ρλe−rt(ℓL)(cH − cL) (1 + ℓL) .

Hence,
∫ ℓH

ℓL

ert(ℓL)φ′
H(ℓ)dℓ = ρλ(cH − cL) (1 + ℓL)

holds both for the first- and second-best. Note now that, in the range [ℓL, ℓH ],

ert(ℓL)φ′
H(ℓ) = e

−r
∫ ℓ
ℓH

uL(l)+uH (l)−1

ρλl
dl

((

λ−
r

ρ

)

(1− c̄) + ρλ(1− cH) + ruL(ℓ)(cH − cL)

(

1 +
1

ℓ

))

.

Because ᾱL(ℓ) > ᾱH(ℓ), ū
∗
L(ℓ) > ū∗∗L (ℓ), and also ū∗∗L (ℓ) + ū∗∗H (ℓ) ≥ ū∗L(ℓ) + ū∗H(ℓ), so that,

for all ℓ in the relevant range,

ert(ℓL)
dφ∗∗

H (ℓ)

dℓ
< ert(ℓL)

dφ∗
H(ℓ)

dℓ
,

and it then follows that ℓ∗H < ℓ∗∗H . �
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3.2 Uniform Cost: Derivation of the Optimum

We characterize the recommendation policy as r → 0. To derive this policy, let us first

describe the designer’s payoff. This is his payoff in expectation. Her objective is

∫ t1

0

e−rt

[

∫

ℓ0
1+ℓ0

0

ℓ0 − ℓt
1 + ℓ0

(1− c) dc+

∫ c̄

kt
1+kt

ℓ0 − ℓt
1 + ℓ0

(1− c) dc +

∫

ℓ0
1+ℓ0

0

1 + ℓt
1 + ℓ0

(

ℓt
1 + ℓt

− c

)

dc

]

dt

+

∫ ∞

t1

e−rt

[

∫ c̄

0

ℓ0 − ℓt
1 + ℓ0

(1− c) dc+

∫
kt

1+kt

0

1 + ℓt
1 + ℓ0

(

ℓt
1 + ℓt

− c

)

dc

]

dt.

To understand this expression, consider t < t1. Types in t ∈ (ℓ0, kt) derive no surplus,

because they are indifferent between buying or not (what they gain from being recommended

to buy when the good has turned out to be good is exactly offset by the cost of doing so when

this is myopically suboptimal). Hence, their contribution to the expected payoff cancels out

(but it does not mean that they are disregarded, because their behavior affects the amount

of experimentation.) Types above kt get recommended to buy only if the good has turned

out to be good, in which case they get a flow surplus of λ · 1 − c = 1 − c. Types below ℓ0
have to purchase for both possible posterior beliefs, and while the flow revenue is 1 in one

case, it is only pt = ℓt/(1 + ℓt) in the other case.

The payoff in case t ≥ t1 can be understood similarly. There are no longer indifferent

types. In case of an earlier success, all types enjoy their flow payoff 1 − c, while in case of

no success, types below γt still get their flow pt − c.

This expression can be simplified to

J(k) =

∫ ∞

0

e−rt

[

∫

ℓ0
1+ℓ0

∧
kt

1+γt

0

(

ℓ0
1 + ℓ0

− c

)

dc+

∫ k̄
1+k̄

γt
1+γt

ℓ0 − ℓt
1 + ℓ0

(1− c) dc

]

dt

=

∫ ∞

0

e−rt

[

ℓ0
1 + ℓ0

(

ℓ0
1 + ℓ0

∧
γt

1 + γt

)

−
1

2

(

ℓ0
1 + ℓ0

∧
k̄t

1 + γt

)2
]

dt

+

∫ ∞

0

e−rt

[

ℓ0 − ℓt
1 + ℓ0

(

k̄

1 + k̄
−

kt
1 + kt

−
1

2

(

(

k̄

1 + k̄

)2

−

(

γt
1 + γt

)2
))]

dt,

with the obvious interpretation. For t ≥ t1,

ℓ̇t = −ℓt

∫
kt

1+kt

0

dc

c̄
= −

ℓt
c̄

kt
1 + kt

,
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while for t ≤ t1, it holds that

ℓ̇t = −ℓt

(

p0
c̄
+

∫
γt

1+γt

p0

αt(k)
dc

c̄

)

= −
ℓt
c̄

(

p0 +

∫
γt

1+γt

p0

ℓ0 − ℓt
k(c)− ℓt

dc

)

= −
ℓt
c̄

[

ktℓt + ℓ0
(1 + γt)(1 + ℓ0)

−
ℓ0 − ℓt
(1 + ℓt)2

ln
(1 + kt)(ℓ0 − ℓt)

(1 + ℓ0)(kt − ℓt)

]

.

Finally, note that the value of k0 is free.

To solve this problem, we apply Pontryagin’s maximum principle. Consider first the case

t ≥ t1. The Hamiltonian is then

H(ℓ, γ, µ, t) =
e−rt

2(1 + kt)2

(

2kt(1 + kt)
ℓ0

1 + ℓ0
− k2t +

(k̄ − kt)(2 + γt + k̄)(ℓ0 − ℓt)

(1 + k̄)2(1 + ℓ0)

)

−µtℓt
γt(1 + k̄)

(1 + γt)k̄
,

where µ is the co-state variable. The maximum principle gives, taking derivatives with

respect to the control γt,

µt = −e−rtk̄
kt − ℓt

(1 + k̄)(1 + kt)(1 + ℓ0)ℓt
.

The adjoint equation states that

µ̇ = −
∂H

∂ℓ
=

e−rt

2(1 + k̄)2(1 + ℓ0)(1 + kt)2ℓt

(

k2t (2(1 + k̄)2 + ℓt)− k̄(2 + k̄)(2kt + 1)ℓt
)

,

after inserting the value for µt. Differentiate the formula for µ, combine to get a differential

equation for kt. Letting r → 0, and changing variables to k(ℓ), we finally obtain

2(1 + k̄)2
(1 + ℓ)γ(ℓ)

1 + γ(ℓ)
γ′(ℓ) = k̄(2 + k̄)(1 + 2γ(ℓ))− γ(ℓ)2.

Along with k(0) = 0, k > 0 we get

γ(ℓ) =
k̄(2 + k̄)ℓ+ (1 + k̄)

√

k̄(2 + k̄)ℓ(1 + ℓ)

(1 + k̄)2 + ℓ
.

This gives us, in particular, γ(l0). Note that, in terms of cost c, this gives

c(ℓ) =

√

k̄(2 + k̄)ℓ/(1 + ℓ)

1 + k̄
,

We now turn to the Hamiltonian for the case t ≤ t1, or γt ≥ ℓ0. It might be that the solution

is a “corner” solution, that is, all agents experiment (γt = k̄). Hence, we abuse notation,
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and solve for the unconstrained solution γ: the actual solution should be set at min{k̄, γt}.

Proceeding in the same fashion, we get again

µt = −e−rtk̄
γt − ℓt

(1 + k̄)(1 + γt)(1 + ℓ0)ℓt
,

and continuity of µ (which follows from the maximum principle) is thus equivalent to the

values of γ(ℓ) obtained from both cases matching at ℓ = ℓ0. The resulting differential

equation for γ(ℓ) admits no closed-form solution. It is given by

(4k0 (k0 + 2) + ℓ(ℓ+ 2) + 5) k(ℓ)2 − k0 (k0 + 2)
(

(ℓ+ 1)2 + 4ℓ0
)

− 4ℓ0

− 2 (k0 (k0 + 2) (ℓ(ℓ+ 2) + 2ℓ0 − 1) + 2 (ℓ0 − 1)) k(ℓ)

= 2
(k0 + 1) 2

1 + ℓ
(k(ℓ) + 1) ((ℓ− 2ℓ0 − 1) k(ℓ)− ℓ0 + ℓ (ℓ0 + 2)) log

(

(ℓ− ℓ0) (k(ℓ) + 1)

(ℓ0 + 1) (ℓ− k(ℓ))

)

+ 2 (k0 + 1) 2(ℓ+ 1)k′(ℓ)

(

(ℓ0 − ℓ) log

(

(ℓ− ℓ0) (k(ℓ) + 1)

(ℓ0 + 1) (l − k(ℓ))

)

−
(ℓ+ 1) (ℓk(ℓ) + ℓ0)

k(ℓ) + 1

)

.

This suffices to represent the solution, as we have done in Figure 5 in the main body. �

3.3 Proof of Proposition 5

We allow the designer to randomize over finitely many paths of experimentation, so there

are finitely many possible posterior beliefs, 1, pj, j = 1, . . . , J . We allow then for multiple

(finitely many) recommendations R. So a policy is now a collection (αR
j , γ

R
j )j, depending

on the path j that is followed. Along the path j, conditional on the posterior being 1, a

recommendation R is given by probability γRj , and conditional on the posterior being pj, the

probabilities αR
j are used. One last parameter is the probability with which each path j is

being used, µj.

Correspondingly, there are as many thresholds γR as recommendations; namely, given

recommendation R, a consumer buys if his cost is no larger than

cR =

∑

j µj

(

p0−pj
1−pj

βR
j + 1−p0

1−pj
pjα

R
j

)

∑

j µj

(

p0−pj
1−pj

βR
j + 1−p0

1−pj
αR
j

) ,

Hence we set

γR =

∑

j µj

(

αR
j ℓj + βR

j (ℓ0 − ℓj)
)

∑

j µjαR
j

.
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We remark for future reference that

∑

R

γR
∑

j

µjα
R
j =

∑

R

∑

j

µj

(

αR
j ℓj + βR

k (ℓ0 − ℓj)
)

=
∑

j

µj

((

∑

R

αR
j

)

ℓj +

(

∑

R

βR
j

)

(ℓ0 − ℓj)

)

=
∑

j

µjℓ0 = ℓ0.

We now turn to the value function. We have that

rV (ℓ1, . . . , ℓJ) =
∑

j

µj

(

1 + ℓj
1 + ℓ0

∑

R

αR
j

∫ cR

0

(pj − x)dx+
ℓ0 − ℓj
1 + ℓ0

∑

R

βR
j

∫ cR

0

(1− x)dx

)

−
∑

j

ℓjµj

(

∑

R

αR
j

∫ cR

0

dx

)

∂V (ℓ1, . . . , ℓJ)

∂ℓj
.

We shall do a few manipulations. First, we work on the flow payoff. From the first to the

second equation, we gather terms involving the revenue (“pj” and 1) on one hand, and cost

(“x”) on the other. From the second to the third, we use the definition of γR (in particular,

note that the term in the numerator of γR appears in the expressions). The last line uses

the remark above.

∑

j

µj

(

1 + ℓj
1 + ℓ0

∑

R

αR
j

∫ cR

0

(

ℓj
1 + ℓj

− x

)

dx+
ℓ0 − ℓj
1 + l0

∑

R

βR
j

∫ cR

0

(1− x)dx

)

=
1

1 + ℓ0

∑

R

cR
∑

j

µk

(

ℓjα
R
j + (ℓ0 − ℓj)β

R
j

)

−
1

2(1 + ℓ0)

∑

R

(cR)2
∑

j

µj

(

(1 + ℓj)α
R
j + (ℓ0 − ℓj)β

R
j

)

=
1

1 + ℓ0

∑

R

γR

1 + γR

(

γR
∑

j

µjα
R
j

)

−
1

2(1 + ℓ0)

∑

R

(

γR

1 + γR

)2
(

(1 + γRj )
∑

j

µjα
R
j

)

=
1

2(1 + ℓ0)

∑

R

(γR)2

1 + γR

(

∑

j

µjα
R
j

)

=
1

2(1 + ℓ0)

∑

R

(

γR −
γR

1 + γR

)

(

∑

j

µjα
R
j

)

=
1

2(1 + ℓ0)

∑

R

γR
∑

j

µjα
R
j −

1

2(1 + ℓ0)

∑

R

γR

1 + γR

(

∑

j

µjα
R
j

)

=
ℓ0 −

∑

j µjxj

2(1 + ℓ0)
,
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where we define

xj :=
∑

R

γR

1 + γR
αR
j .

Let us now simplify the coefficient of the partial derivative

µj

(

∑

R

αR
j

∫ cR

0

dx

)

= µj

∑

R

αR
j

γR

1 + γR
= µjxj .

To conclude, given (µj) (ultimately, a choice variable as well), the optimality equality sim-

plifies to

rV (ℓ1, . . . , ℓJ) =
ℓ0

2(1 + ℓ0)
−
∑

j

max
xj

µjxj

{

1

2(1 + ℓ0)
+ ℓj

∂V (ℓ1, . . . , ℓJ)

∂ℓj

}

,

or letting W = 2(1 + ℓ0)V − ℓ0
r
,

rW (ℓ1, . . . , ℓJ) +
∑

j

µj max
xj

xj

{

1 + ℓj
∂W (ℓ1, . . . , ℓJ)

∂ℓj

}

= 0.

where (xj)j must be feasible, i.e., appropriate values for (α, γ) must exist. This is a tricky

restriction, and the resulting set of (xj) is convex, but not necessarily a polytope. In par-

ticular, it is not the product of the possible quantities of experimentation that would obtain

if the agents knew which path were followed, ×j

[

ℓj
1+ℓj

, ℓ0
1+ℓ0

]

. It is a strictly larger set: by

blurring recommendation policies, he can obtain pairs of amounts of experimentation outside

this set, although not more or less in all dimensions simultaneously.

Let us refer to this set as BJ . This set is of independent interest, as it is the relevant

set of possible experimentation schemes independently of the designer’s objective function.

This set is difficult to compute, as for a given J , we must determine what values of x can

be obtained for some number of recommendations. Even in the case J = 2, this requires

substantial effort, and it is not an obvious result that assuming without loss that ℓ1 ≥ ℓ2,

B2 is the convex hull of the three points

xP :=

(

∑

j µjℓj

1 +
∑

j µjℓj
,

∑

j µjℓj

1 +
∑

j µjℓj

)

, xS :=

(

ℓ1
1 + ℓ1

,
ℓ2

1 + ℓ2

)

, xA :=

(

ℓ0 − µ2ℓ2
1 + ℓ0 − µ2(1 + ℓ2)

,
ℓ2

1 + ℓ2

)

,

and the two curves

SU :=

(

x1, 1 +
µ2(1− x1)

µ1 − (1 + ℓ0)(1− x1)

)

,
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for x1 ∈
[

ℓ1
1+ℓ1

, ℓ0−µ2ℓ2
1+ℓ0−µ2(1+ℓ2)

]

, and

SL :=

(

x1, x1 +
(x1 − (1− x1)ℓ0)(x1 − (1− x1)(µ1ℓ1 + µ2ℓ2))

µ2(µ1ℓ1 + µ2ℓ2 + ℓ0ℓ2 − (1 + ℓ0)(1 + ℓ2)x1)

)

,

for x1 ∈
[ ∑

j µjℓj

1+
∑

j µjℓj
, ℓ1
1+ℓ1

]

, that intersect at the point

(

ℓ1
1 + ℓ1

,
ℓ0 − µ1ℓ1

1 + ℓ0 − µ1(1 + ℓ1)

)

.

It is worth noting that the point
(

ℓ0
1+ℓ0

, ℓ0
1+ℓ0

)

lies on the first (upper) curve, and that the slope

of the boundary at this point is −µ1/µ2: hence, this is the point within B2 that maximizes
∑

j µjxj . See Figure 1 below. To achieve all extreme points, more than two messages are

necessary (for instance, achieving xS requires three messages, corresponding to the three

possible posterior beliefs at time t), but it turns out that three suffice.

x2

0.70

0.75

0.80

0.90

0.85

0.70

0.65

0.75 0.85 0.900.750 x1

Figure 1: Region B2 of feasible (x1, x2) in the case J = 2 (here, for ℓ0 = 5, ℓ1 = 3, ℓ2 =
2, µ1 = 2/3.

In terms of our notation, the optimum value of a non-randomized strategy is

W S(ℓ) = −e
r
ℓE1+r

(r

ℓ

)

.
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We claim that the solution to the optimal control problem is given by the “separating”

strategy, given µ and l = (ℓ1, . . . , ℓK), for the case J = 2 to begin with. That is,

W (l) = W S(l) := −
∑

j

µjW
S(ℓj).

To prove this claim, we invoke a verification theorem (see, for instance, Theorem 5.1 in

Fleming and Soner, 2005). Clearly, this function is continuously differentiable and satisfies

the desired transversality conditions on the boundaries (when ℓj = 0). We must prove that

it achieves the maximum. Given the structure of B2, we have to ensure that for every state

ℓ and feasible variation (∂x1, ∂x2), starting from the policy x = xS , the cost increases. That

is, we must show that
∑

j

µj

(

1 + ℓj
dW S(ℓj)

dℓj

)

∂xj ≥ 0,

for every ∂x such that (i) ∂x2 ≥ 0, (ii) ∂x2 ≥ −µ1

µ2

1+ℓ1
1+ℓ2

∂x1. (The first requirement comes

from the fact that xS minimizes x2 over B2; the second comes from the other boundary line

of B2 at xS .) Given that the result is already known for J = 1, we already know that this

is true for the special cases ∂xj = 0, ∂x−j ≥ 0. It remains to verify that this holds when

∂x2 = −
µ1

µ2

1 + ℓ1
1 + ℓ2

∂x1,

i.e., we must verify that, for all ℓ1 ≥ ℓ2,

(1 + ℓ1)ℓ2
dW S(ℓj)

dℓ2
− (1 + ℓ2)ℓ1

dW S(ℓj)

dℓ1
≥ ℓ2 − ℓ1,

or rearranging,

ℓ2
1 + ℓ2

(

dW S(ℓj)

dℓ2
− 1

)

−
ℓ1

1 + ℓ1

(

dW S(ℓj)

dℓ1
− 1

)

≥ 0,

which follows from the fact that the function ℓ 7→ ℓ
1+ℓ

(

d
[

re
r
ℓ E1+r( r

ℓ )
]

dℓ
− 1

)

is decreasing.

To conclude, starting from ℓ1 = ℓ2 = ℓ0, the value of µ is irrelevant: the optimal strategy

ensures that the posterior beliefs satisfy ℓ1 = ℓ2. Hence, the principal does not randomize.

The argument for a general J is similar. Fix ℓ0 ≥ ℓ1 ≥ · · · ≥ ℓJ . We argue below below

that, at xS, all possible variations must satisfy, for all j′ = 1, . . . , J ,

J
∑

j=j′

µj(1 + ℓj)∂xj ≥ 0,

33



It follows that we have

∑

j

µj

(

1 + ℓj
dW S(ℓj)

dℓj

)

∂xj =
ℓ1

1 + ℓ1

(

dW S(ℓ1)

dℓ1
− 1

) J
∑

j′=1

µj′(1 + ℓj′)∂xj′ +

J−1
∑

j=1

(

ℓj+1

1 + ℓj+1

(

dW S(ℓj+1)

dℓj+1
− 1

)

−
ℓj

1 + ℓj

(

dW S(ℓj)

dℓj
− 1

)) J
∑

j′=j+1

µj′(1 + ℓj′)∂xj′ ≥ 0,

by monotonicity of the map ℓ
ℓ+1

(

∂WS(ℓ)
∂ℓ

− 1
)

, as in the case J = 2.

To conclude, we argue that, from xS, all variations in BJ must satisfy, for all j′,

J
∑

j=j′

µj(1 + ℓj)∂xj ≥ 0.

In fact, we show that all elements of B satisfy

J
∑

j=j′

µk ((1 + ℓj)xj − ℓj) ≥ 0,

and the result will follow from the fact that all these inequalities trivially bind at xS. Consider

the case j′ = 1, the modification for the general case is indicated below. To minimize

J
∑

j=1

µj(1 + ℓj)xj,

over BJ , it is best, from the formula for xj (or rather, γ
R that are involved), to set γR

′

= 1

for some R′ for which αR′

j = 0, all j. (To put it differently, to minimize the amount of

experimentation conditional on the low posterior, it is best to disclose when the posterior

belief is one.) It follows that

∑

j

µj [(1 + ℓj)xj − ℓj]

=
∑

j

µj

[

(1 + ℓj)
∑

R

αR
j

∑

k′ µj′ℓj′α
R
j′

∑

j′ µk′(1 + ℓj′)α
R
j′

− ℓj

]

=
∑

R

µj(1 + ℓj)α
R
j

∑

j′ µj′ℓj′α
R
j′

∑

j′ µj′(1 + ℓj′)αR
j′

−
∑

j

µjℓj

=
∑

R

∑

j′

µj′ℓj′α
R
j′ −

∑

j

µjℓj =
∑

j′

µj′ℓj′
∑

R

αR
j′ −

∑

j

µjℓj = 0.
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The same argument generalizes to other values of j′. To minimize the corresponding sum,

it is best to disclose the posterior beliefs that are above (i.e., reveal if the movie is good, or

if the chosen j is below j′), and the same argument applies, with the sum running over the

relevant subset of states. �
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