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The notes consist of three sections. Section A presents the proof of Lemma 1 in the

paper. Section B and Section C provide formal analyses of “restricted applications” and

“information acquisition and evaluation costs,” respectively.

A Proof of Lemma 1

The proof consist of three steps.

Step 1. In equilibrium, mA(0) ≤ κ ≤ mA(1) and mB(1) ≤ κ ≤ mB(0).

Proof. Consider college A. The analysis for B is analogous. Suppose mA(1) < κ. Let A

admit a mass κ−mA(1) of students in addition to those it currently admits. The resulting

enrollment, denoted by m̃A(s), satisfies that for any s < 1,

mA(s) < mA(s) + µA(s)(κ−mA(1)) ≤ m̃A(s) ≤ mA(s) + (κ−mA(1)) < κ,

where the the last inequality holds since mA(s) < mA(1) for s < 1. Note that A benefits

from the deviation since it admits more students without exceeding its capacity. Similarly,

if mA(0) > κ, then A can benefit by rejecting mA(0) − κ of students. Thus, we must have

mA(0) ≤ κ ≤ mA(1) in equilibrium. �

Step 2. In equilibrium, there is a unique ŝi ∈ (0, 1), for i = A,B, such that mi(ŝi) = κ.

Proof. Suppose ŝA = 1. Then, mA(s) < mA(1) = κ for all s < 1, so college A does not

pay the capacity cost. Consider a deviating strategy such that A admits a small fraction of

students, say (v, eA) ∈ (c, c+ δ)× (e, e+ η) for some c, e < 1 and small δ, η > 0, who are not

admitted currently. The resulting enrollment is

m̃A(s) = mA(s) +

∫ c+δ

c

∫ e+η

e

(1− σB(v) + µA(s)σB(v))deA g(v)dv.
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Let s̃A be such that m̃A(s̃A) = κ. Note that s̃A < ŝA = 1 since m̃A(s) > mA(s). Next,

choose δ and η such that 1 − s̃A < ε for sufficiently small ε. From the deviation, A gains

from admitting more students but incurs capacity costs. Hence, its net payoff is∫ c+δ

c

∫ e+η

e

UA(v, eA)(1− σB(v) + µAσB(v))deA g(v)dv − λ
∫ 1

s̃A

(m̃A(s)− κ)ds

=

∫ c+δ

c

∫ e+η

e

UA(v, eA)(1− σB(v) + µAσB(v))deA g(v)dv

− λ
∫ 1

s̃A

(
mA(s) +

∫ c+δ

c

∫ e+η

e

(1− σB(v) + µA(s)σB(v))deA g(v)dv − κ
)
ds

=

∫ c+δ

c

∫ e+η

e

UA(v, eA)(1− σB(v) + µAσB(v))g(v)dv

− λ
∫ 1

s̃A

∫ c+δ

c

∫ e+η

e

(1− σB(v) + µA(s)σB(v))deA g(v)dv ds+ λ

∫ 1

s̃A

(κ−mA(s))ds

>

∫ s̃A

0

∫ c+δ

c

∫ e+η

e

UA(v, eA)(1− σB(v) + µA(s)σB(v))deA g(v)dv ds

−
∫ 1

s̃A

∫ c+δ

c

∫ e+η

e

(λ− UA(v, eA))(1− σB(v) + µA(s)σB(v))deA g(v)dv ds

> 0,

where µA = E[µA(s)], the penultimate inequality holds since mA(s) < κ for s ∈ [s̃A, 1), and

the last inequality holds for sufficiently small ε. Similarly, if ŝA = 0, then A can benefit

by rejecting a small fraction of students who are currently admitted. Hence, we must have

ŝA ∈ (0, 1) in equilibrium. The proof for B is analogous. �

Note that Step 1 and Step 2 imply that mA(0) < κ < mA(1) and mB(1) < κ < mB(0).

Step 3. In equilibrium, the measure of UA ∪ UB is less than 1.

Proof. Suppose to the contrary that almost all students are admitted by either college.

Without loss of generality, suppose [0, c] × [0, e] × [0, 1] ∩ UA 6= ∅ for some c, e < 1. Let ŝA

be the cutoff state. Now, let A reject a small fraction of students, say (v, eA) ∈ [0, δ)× [0, η)

for small δ < c and η < e, who are currently admitted. The resulting enrollment is

m̃A(s) = mA(s)−
∫ δ

0

∫ η

0

σA(v, eA)(1− σB(v) + µA(s)σB(v))deA g(v)dv, (A.1)

and let s̃A be such that m̃A(s̃A) = κ. Note that s̃A > ŝA since m̃A(s) < mA(s). Next, choose
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δ and η such that λ(1− s̃A) > UA(δ, η). From the deviation, A loses its revenue by

(∗) =

∫ δ

0

∫ η

0

UA(v, eA)σA(v, eA)(1− σB(v) + µAσB(v))deA g(v)dv

< UA(δ, η)

∫ 1

0

∫ δ

0

∫ η

0

σA(v, eA)(1− σB(v) + µA(s)σB(v))deA g(v)dv ds,

where the inequality holds since UA is strictly increasing in v and nondecreasing in eA, but

saves the capacity costs by

(∗∗) = λ

(∫ 1

ŝA

(
mA(s)− κ

)
ds−

∫ 1

s̃A

(
m̃A(s)− κ

)
ds

)
= λ

(∫ s̃A

ŝA

(
mA(s)− κ

)
ds+

∫ 1

s̃A

(
mA(s)− κ

)
ds−

∫ 1

s̃A

(
m̃A(s)− κ

)
ds

)
> λ

∫ 1

s̃A

∫ δ

0

∫ η

0

σA(v, eA)(1− σB(v) + µA(s)σB(v))deA g(v)dv

where the inequality follows from from (A.1) and the fact that mA(s) > κ for any s ∈ (ŝA, s̃).

Hence, A’s payoff increase from the deviation is

(∗∗)− (∗) > (λ− UA(δ, η))

∫ 1

s̃A

∫ δ

0

∫ η

0

σA(v, eA)(1− σB(v) + µA(s)σB(v))deA, g(v)dv ds

− UA(δ, η)

∫ s̃A

0

∫ δ

0

∫ η

0

σA(v, eA)(1− σB(v) + µA(s)σB(v))deA g(v)dv ds

> (λ− UA(δ, η))(1− s̃A)

∫ δ

0

∫ η

0

σA(v, eA)(1− σB(v) + µA(s̃A)σB(v))deA g(v)dv

− UA(δ, η) s̃A

∫ δ

0

∫ η

0

σA(v, eA)(1− σB(v) + µA(s̃A)σB(v))deA g(v)dv

=
(
λ(1− s̃A)− UA(δ, η)

) ∫ δ

0

∫ η

0

σA(v, eA)(1− σB(v) + µA(s̃A)σB(v))deA g(v)dv

> 0,

where the first inequality holds since λ > UA(δ, η) and the last equality holds since λ(1−s̃A) >

UA(δ, η) by construction. �

B Restricted Applications

A student’s taste y ∈ Y ≡ [0, 1] is drawn according to a distribution that depends on the

underlying state. For a given s, let K(y|s) be the distribution of y with density function
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k(y|s), which is continuous and obeys (strict) monotone likelihood ratio property: for any

y′ > y and s′ > s,
k(y′|s′)
k(y|s′)

>
k(y′|s)
k(y|s)

, (B.1)

meaning that a student’s value of A is likely to be high when s is high. We further assume

that there exists δ > 0 such that
∣∣∣ky(y|s)k(y|s)

∣∣∣ < δ for any y ∈ [0, 1] and s ∈ [0, 1], which indicates

that students’ tastes change moderately relative to the state. Each student with taste y

forms a posterior belief about the state s, given by the following conditional density:

l(s|y) :=
k(y|s)∫ 1

0
k(y|s)ds

.

Before proceeding, we make the following observations: First, for each student, applying

to a college dominates not applying at all. Second, since a student does not know the score

and the student’s preference is independent of the score, the student’s application depends

solely on the preference. Third, since each student’s preference depends on the state, the

mass of students applying to each college varies across states. Let ni(s) be the mass of

students who apply to college i = A,B in state s.

Next, consider colleges’ admission strategies. Since colleges face no enrollment uncer-

tainty, it is optimal to admit all students up to a cutoff: for i = A,B,

v̂i(s) := inf {v ∈ [0, 1] |ni(s)(1−G(v)) ≤ κ} .

If ni(s) ≥ κ in state s, then college i will set its cutoff so as to admit students up to its

capacity. Otherwise, it will admit all applicants.

Consider students’ application decisions. Fix any strategy σ : Y → [0, 1] which specifies

a probability of applying to A for each y ∈ Y . The mass of applicants to each college is

nA(s|σ) :=

∫ 1

0

σ(y)k(y|s) dy

and nB(s|σ) = 1−nA(s|σ). A student with taste y expects to be admitted by college i = A,B

with probability

Pi(y|σ) ≡ E[1−G(v̂i(s)) | y, σ] =

∫ 1

0

qi(s|σ)l(s|y)ds,

where qi(s|σ) := min
{
κ/ni(s|σ), 1

}
. This probability depends on the student’s preference y

since it is correlated with the underlying state. Note that a student with taste y will apply

to A if and only if yPA(y|σ) ≥ (1− y)PB(y|σ).
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We now provide characterizations of students’ application behavior. Lemma B1 shows

that students follow a cutoff strategy in any equilibrium, given a moderate value of δ, and

Theorem B1 shows that equilibrium involves strategic application by students if one school

is more popular than the other.

Lemma B1. Suppose δ ≤ 1
2
. In any equilibrium, there exists a cutoff ŷ such that students

with y ≥ ŷ apply to A and those with y < ŷ apply to B. And such an equilibrium exists.

Proof. Define T (y|σ) := y PA(y|σ)− (1− y)PB(y|σ) and fix any σ. To prove the optimality

of the cutoff strategy, we show that T ′(y|σ) > 0 for any y. Note that

T ′(y|σ) = PA(y|σ) + PB(y|σ) + yP ′A(y|σ)− (1− y)P ′B(y|σ)

≥ y
(
PA(y|σ) + P ′A(y|σ)

)
+ (1− y)

(
PB(y|σ)− P ′B(y|σ)

)
= y

∫ 1

0

qA(s|σ)
(
l(s|y) + ly(s|y)

)
ds+ (1− y)

∫ 1

0

qB(s|σ)
(
l(s|y)− ly(s|y)

)
ds.

Observe that

l(s|y) + ly(s|y) =
k(y|s)∫ 1

0
k(y|s)ds

(
1 +

ky(y|s)
k(y|s)

−
∫ 1

0
ky(y|s)ds∫ 1

0
k(y|s)ds

)
>

k(y|s)∫ 1

0
k(y|s)ds

(1− 2δ),

where the inequality holds since

ky(y|s)
k(y|s)

> −δ and

∫ 1

0
ky(y|s)ds∫ 1

0
k(y|s)ds

=

∫ 1

0

ky(y|s)
k(y|s) k(y|s)ds∫ 1

0
k(y|s)ds

< δ

because
∣∣∣ky(y|s)k(y|s)

∣∣∣ < δ. Similarly,

l(s|y)− ly(s|y) =
k(y|s)∫ 1

0
k(y|s)ds

(
1− ky(y|s)

k(y|s)
+

∫ 1

0
ky(y|s)ds∫ 1

0
k(y|s)ds

)
>

k(y|s)∫ 1

0
k(y|s)ds

(1− 2δ),

where the inequality holds since
∣∣∣ky(y|s)k(y|s)

∣∣∣ < δ. We thus have T ′(y|σ) > 0 whenever δ ≥ 1
2
.

It remains to show that there exists an equilibrium in cutoff strategy. Let ŷ be a cutoff.

Then, nA(s|ŷ) =
∫ 1

ŷ
k(y|s)dy = 1−K(ŷ|s). Hence,

PA(y|ŷ) =

∫ 1

0

min
{ κ

1−K(ŷ|s)
, 1
}
l(s|y)ds and PB(y|ŷ) =

∫ 1

0

min
{ κ

K(ŷ|s)
, 1
}
l(s|y)ds.
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Now, let T (y|ŷ) := yPA(y|ŷ)− (1− y)PB(y|ŷ). Note that

T (0|ŷ) = −PB(0|ŷ) = −
∫ 1

0

min
{ κ

K(ŷ|s)
, 1
}
l(s|0)ds < 0,

where the inequality holds since min
{

κ
K(ŷ|s) , 1

}
> 0 and l(s|0) ≥ 0, with strict inequality for

a positive measure of states. Similarly, T (1|ŷ) > 0. By the continuity of T (·|ŷ), there is a ỹ

such that T (ỹ|ŷ) = 0. Moreover, such a ỹ is unique since T ′(y|ŷ)
∣∣
y=ỹ

> 0.

Next, let τ : [0, 1] → [0, 1] be the map from ŷ to ỹ, which is implicitly defined by

T (τ(ŷ)|ŷ) = 0 according to the implicit function theorem (since T ′(y|ŷ)
∣∣
y=ỹ

> 0). Since

PA(y|·) is nondecreasing and PB(y|·) is nonincreasing ŷ, τ(·) is decreasing. Hence, there is a

fixed point such that τ(ŷ) = ŷ, and so there is ŷ such that T (ŷ|ŷ) = 0. �

Theorem B1. Suppose µA(s) > 1
2

(
µA(s) = 1

2

)
for almost all s. Then, ŷ ∈ (1

2
, 1)

(
ŷ = 1

2

)
,

where ŷ is the equilibrium cutoff.

Proof. We first show ŷ < 1. If ŷ = 1, then nA(s|1) = 1−K(1|s) = 0 and so PA(y|ŷ) = 1 for

any y. Hence, T (1|1) = PA(1|1) = 1, which contradicts the fact that T (ŷ|ŷ) = 0. Next, we

show that ŷ > 1
2

whenever µA(s) > 1
2
. Suppose to the contrary ŷ ≤ 1

2
. Then, it holds that

1
2
< µA(s) = 1−K(1

2
|s) ≤ 1−K(ŷ|s), so K(ŷ|s) < 1−K(ŷ|s). Therefore,

PA(y|ŷ)− PB(y|ŷ) =

∫ 1

0

min
{ κ

1−K(ŷ|s)
, 1
}
l(s|y)ds−

∫ 1

0

min
{ κ

K(ŷ|s)
, 1
}
l(s|y)ds ≤ 0.

(B.2)

Hence, if ŷ < 1
2
, then

T (ŷ|ŷ) = ŷPA(ŷ|ŷ)− (1− ŷ)PB(ŷ|ŷ) < 1
2

(
PA(ŷ|ŷ)− PB(ŷ|ŷ)

)
≤ 0, (B.3)

where the first inequality holds since ŷ < 1
2
. Thus, T (ŷ|ŷ) < 0, a contradiction. Suppose now

ŷ = 1
2
. Notice that since K(ŷ|s) < 1−K(ŷ|s), we have K(1

2
|s) < 1

2
< 1− κ, where the the

second inequality holds since κ < 1
2
. So, κ/(1−K(1

2
|s)) < 1. Therefore, the last inequality of

(B.2) becomes strict, and hence T (ŷ|ŷ) = 1
2

(
PA(1

2
|1
2
)− PB(1

2
|1
2
)
)
< 0, a contradiction again.

Lastly, ŷ = 1
2

whenever µA(s) = 1
2
. If ŷ < 1

2
, then 1

2
= µA(s) = 1−K(1

2
|s) < 1−K(ŷ|s),

so we have K(ŷ|s) < 1 − K(ŷ|s). By (B.2) and (B.3), we reach a contradiction. If ŷ > 1
2
,

then 1
2

= µA(s) = 1 − K(1
2
|s) > 1 − K(ŷ|s) and so K(ŷ|s) > 1 − K(ŷ|s). We then have

PA(y|ŷ)− PB(y|ŷ) ≥ 0 and

T (ŷ|ŷ) = ŷPA(ŷ|ŷ)− (1− ŷ)PB(ŷ|ŷ) > 1
2

(
PA(ŷ|ŷ)− PB(ŷ|ŷ)

)
≥ 0,

where the first inequality holds since ŷ > 1
2
. Thus, T (ŷ|ŷ) > 0, a contradiction. �
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The intuition behind Theorem B1 is clear. If A is more popular than B, then A becomes

more difficult to get in than B, all else equal. Hence, students who prefer B (y ≤ 1
2
) will

definitely apply to B. But, even students who mildly prefer A (i.e., y is greater than but

close to 1
2
) will apply to B instead of A.

Let us now consider fairness and welfare properties of the equilibrium outcome. First, the

equilibrium is unfair. Justified envy arises in that (i) students who happen to have applied

to a more popular college for a given state may be unassigned even though their scores are

good enough for the other college; and (ii) students who prefer but avoid an ex ante more

popular college get into an ex ante less popular college, but they could have gotten into the

former when it becomes ex post less popular. Second, a college may be undersubscribed in

equilibrium so that its capacity is not filled even though there are unassigned, acceptable

students. By assigning those students to unfilled seats of that college, students and the

college will be both better off. Thus, the equilibrium outcome is inefficient.

Theorem B2. The outcome of the restricted applications is unfair. Suppose K(ŷ|s) < κ

for a positive measure of states. Then, college B suffers from under-subscription, and the

outcome is Pareto inefficient.

Proof. For the first part of the theorem, observe that for a given s, justified envy arises

whenever v̂A(s) 6= v̂B(s). Suppose to the contrary v̂A(s) = v̂B(s) for almost all s. Recall

that equilibrium admission cutoffs satisfy

G(v̂A(s)) = max

{
1− κ

1−K(ŷ|s)
, 0

}
and G(v̂B(s)) = max

{
1− κ

K(ŷ|s)
, 0

}
.

Since G(·) is strictly increasing, if v̂A(s) = v̂B(s), then we must have either ni(s) < κ for

all i = A,B (so that v̂A(s) = v̂B(s) = 0) or nA(s) = nB(s) ≥ κ. Note, however, that

we cannot have ni(s) < κ for all i in equilibrium, since this means that all applicants

are admitted by either college, which contradicts the fact that 2κ < 1. Next, suppose

nA(s) = nB(s) ≥ κ. This implies that K(ŷ|s) = 1
2

for all s (recall that nA(s) = 1 −K(ŷ|s)
and nB(s) = K(ŷ|s)). However, by (B.1), we have K(ŷ|s′) < K(ŷ|s) for all s′ > s. Therefore,

we reach a contradiction again.

For the second part of the theorem, recall that for given ŷ in equilibrium, the mass of

students applying to B is K(ŷ|s). Thus, if there is a positive measure of states in which

K(ŷ|s) < κ, then college B faces under-subscription in such states, implying that the equi-

librium outcome is inefficient. �
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C DA with Costly Learning of Preferences by Students

Consider DA with only common measure. In order to study the information acquisition

behavior of students, we need to introduce cardinal utilities of the students: in state s, a

fraction µi(s) of students gets utility u from college i and u′(< u) from j, where i, j = A,B

and i 6= j. Students do not know their preferences but can learn about them at small cost

c > 0. We assume that the cost is sufficiently small so that if a student is certain of gaining

admissions from both colleges, then he will incur the cost. (As in the paper, students know

their own v).

Assume E[µA(s)] > 1
2

without loss of generality (the case in which E[µA(s)] = 1
2

is similar

but requires separate analysis). We look for an equilibrium in which students with v incur

the cost to learn their preferences if and only if v ≥ v̂ for some cutoff v̂; we later show such

an equilibrium exists. In this equilibrium with cutoff v̂, the strategyproofness of DA means

that those who incur the cost rank the colleges according to their actual realized preferences

and those who do not incur the cost rank them according to their prior, which means they

rank A ahead of B. It then follows that a fraction µA(s)(1−G(v̂)) +G(v̂) of students ranks

A above B, and the remaining fraction (1− µA(s))(1−G(v̂)) of students ranks B above A.

Following Azevedo and Leshno (2012), a DA allocation in each state s is characterized

by the cutoffs (v̂A(s; v̂), v̂B(s; v̂)) for the colleges such that each student is assigned the

most preferred college (according to his ranking, described above) among the colleges whose

cutoff is below his score. Clearly, the outcome maintains the feature that only top 2κ in v

are assigned either college, which implies that min{v̂A(s; v̂), v̂B(s; v̂)} = v, where v satisfies

1−G(v) = 2κ. Obviously, students with v < v will not be assigned anywhere. This in turn

implies that no student with v ≤ v has any incentive to incur the learning cost. Hence, from

now on, we restrict attention to v̂ > v.

To be precise, (v̂A(s; v̂), v̂B(s; v̂)) satisfies Di(v̂i(s; v̂); v̂j(s; v̂)) = κ, for i, j = A,B and

i 6= j, where Di is the “demand” for college i:

DA(ṽ; v̂B) :=

µA(s)(1−G(ṽ)) if ṽ ≥ v̂,

µA(s)(1−G(v̂)) + max {µB(s)(G(v̂B(s))−G(v̂)), 0}+G(v̂)−G(ṽ) if ṽ < v̂,

and

DB(ṽ; v̂A) :=


µB(s)(1−G(ṽ)) if ṽ ≥ v̂,

µB(s)(1−G(v̂)) + max {µA(s)(G(v̂A(s)−G(v̂)), 0}

+ min {G(v̂A(s; v̂)), G(v̂)} −G(ṽ) if ṽ < v̂.

To see this, consider DA. (DB can be understood similarly.) The mass of students with v ≥ v̂
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and ranking A above B is µA(s)(1 − G(v̂)). If µA(s)(1 − G(v̂)) ≥ κ, then only the top κ

students among them are assigned toA, so µA(s)(1−G(v̂A(s; v̂))) = κ. If µA(s)(1−G(v̂)) < κ,

then all of such students are assigned to A, and the students with v ≥ v̂ and ranking B above

A are also assigned to A whenever they are rejected by B (if exist). And then, the remaining

seats are filled by the top students below v̂. Hence, v̂A(s; v̂) satisfies

µA(s)(1−G(v̂)) + max {µB(s)(G(v̂B(s))−G(v̂)), 0}+G(v̂)−G(v̂A(s; v̂)) = κ.

Consider now a student with v. Suppose the student incurs the cost and finds himself

preferring i. Then, he will be assigned to i and get u if v ≥ v̂i(s; v̂) or will be assigned to j

and get u′ if v̂i(s; v̂) > v ≥ v. Denote the student’s payoff by û(v; v̂)− c, where

û(v; v̂) :=

∫ 1

0

(
µA(s)

(
11{v≥v̂A(s;v̂)}u+ 11{v̂A(s)>v≥v}u

′)+ µB(s)
(
11{v≥v̂B(s;v̂)}u+ 11{v̂B(s)>v≥v}u

′))ds.
Suppose the student does not incur the cost. Since the student ranks A above B, he will

be assigned to A and get µA(s)u + µB(s)u′ if v ≥ v̂A(s), or will be assigned to B and get

µA(s)u′ + µB(s)u if v̂A(s) > v ≥ v. Thus, the student’s payoff is

ũ(v; v̂) :=

∫ 1

0

(
11{v≥v̂A(s;v̂)}(µA(s)u+ µB(s)u′) + 11{v̂A(s)>v≥v}(µA(s)u′ + µB(s)u)

)
ds

Next, let ∆u(v; v̂) := û(v; v̂)− ũ(v; v̂) and observe that

∆u(v; v̂) =

∫ 1

0

µB(s)
(
u
(
11{v≥v̂B(s;v̂)} − 11{v̂A(s;v̂)>v≥v}

)
− u′

(
11{v≥v̂A(s;v̂)} − 11{v̂B(s;v̂)>v≥v}

))
ds

=

∫ 1

0

µB(s) (u− u′)
(
11{v≥(v̂A(s;v̂)∨v̂B(s;v̂))} − 11{(v̂A(s;v̂)∧v̂B(s;v̂))>v≥v}

)
ds

=

∫ 1

0

µB(s) (u− u′) 11{v≥(v̂A(s;v̂)∨v̂B(s;v̂))} ds

where the last equality holds since v̂A(s; v̂) ∧ v̂B(s; v̂) = v. Note that

∆u(v̂; v̂) =

∫ 1

0

µB(s) (u− u′) 11{v̂≥(v̂A(s;v̂)∨v̂B(s;v̂))} ds

=

∫ 1

0

µB(s) (u− u′) 11{1− κ
1−G(v̂)

<µA(s)<
κ

1−G(v̂)} ds,

where the last equality holds since µi(s)(1−G(v̂)) < κ for i = A,B if and only if v̂ ≥ v̂i(s; v̂)

for i = A,B. Note that ∆u(v, v̂) = 0 and ∆u(v̂; v̂) is strictly increasing in v̂. Hence, there

exists v̂∗(> v) such that ∆u(v̂
∗; v̂∗) = c. We observe that v̂∗ < maxs v̂A(s; v̂∗), or else
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11{1− κ
1−G(v̂∗)<µA(s)<

κ
1−G(v̂∗)} = 0 for almost all s, violating the equilibrium condition.

Since ∆u(v; v̂) is nondecreasing in v, students with v ≥ v̂∗ will incur the cost. For students

with v < v̂∗,

∆u(v; v̂∗) =

∫ 1

0

µB(s) (u− u′) 11{v̂∗>v≥(v̂A(s;v̂∗)∨v̂B(s;v̂∗))} ds

=

∫ 1

0

µB(s) (u− u′) 11{1− κ
1−G(v̂∗)<µA(s)<

κ−(G(v̂∗)−G(v))
1−G(v̂∗) } ds

< c,

showing that those students do not incur the cost. Hence, the students’ cutoff strategy with

cutoff v̂∗ forms an equilibrium indeed.

We highlight several properties of DA allocation in this case:

1. As with the baseline case, neither college over-enrolls or under-enrolls, and the outcome

is jointly optimal for the colleges in the sense that the top 2κ students are assigned a

colleges.

2. The fact that v̂∗ ∈ (v,maxs v̂A(s; v̂∗)) means that there are states in which v̂∗ <

max{v̂A(s; v̂∗), v̂B(s; v̂∗)} (depicted in Case 1 and 2-2 below) so that students with

v ∈ (v̂∗, v̂A(s; v̂∗)) have no choice between the two colleges and should not have in-

curred the learning cost but they do; and there may arise states in which v̂∗ >

max{v̂A(s; v̂∗), v̂B(s; v̂∗)} (depicted in Case 2-2 below) so that students with v ∈
(max{v̂A(s; v̂∗), v̂B(s; v̂∗)}, v̂∗) do have a choice between the two colleges yet do not

incur the learning cost. In short, the information acquisition behavior of students is

inefficient.

3. The informational inefficiency in turn implies that justified envy and allocational in-

efficiency may arise. It remains true, however, that no student who is unassigned has

justified envy.
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� Allocations.

1. Suppose µA(s)(1−G(v̂∗)) ≥ κ in equilibrium.

v̂A(s; v̂
∗)

v̂B(s; v̂
∗)

v̂∗

0

1
v

v

A � BB � A

College A admits the top κ students among those with v ≥ v̂∗ and ranking it above B,

so v̂A(s; v̂∗) satisfies µA(s)(1−G(v̂A(s; v̂∗))) = κ. College B admits students from the

top except those who are admitted by A, so v̂B(s; v̂∗) = v satisfies

(1− µA(s))(1−G(v̂∗)) + µA(s)(G(v̂A(s; v̂∗))−G(v̂∗)) +G(v̂∗)−G(v) = κ.

2. Suppose µA(s)(1−G(v̂∗)) < κ in equilibrium. There are two cases as follows:

2-1. (1− µA(s))(1−G(v̂∗)) < κ.

v̂A(s; v̂
∗)

v̂B(s; v̂
∗)

v̂∗

0

1
v

v

A � BB � A

College A admits all students with v ≥ v̂∗ and raking it above B, and it also

admits those with v < v̂∗ to fill the remaining seats. Hence, v̂A(s; v̂∗) satisfies

µA(s)(1−G(v̂∗)) +G(v̂∗)−G(v̂A(s; v̂∗)) = κ.

College B admits all students with v ≥ v̂∗ and raking it above A. It fills the

remaining seats with students scoring below v̂∗ except those who are admitted
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by A. Hence, v̂B(s; v̂∗) = v satisfies

(1− µA(s))(1−G(v̂∗)) +G(v̂A(s; v̂∗))−G(v) = κ.

2-2. (1− µA(s))(1−G(v̂∗)) ≥ κ.

v̂A(s; v̂
∗)

v̂B(s; v̂
∗)

v̂∗

0

1
v

v

A � BB � A

College B fills its capacity with the students scoring above v̂∗ and raking it above

A, so its cutoff v̂B(s; v̂∗) satisfies (1 − µA(s))(1 − G(v̂B(s; v̂∗))) = κ. College

A admits students from the top except those who are admitted by B. Hence,

v̂A(s; v̂∗) = v satisfies

µA(s)(1−G(v̂∗)) + (1− µA(s))(G(v̂B(s; v̂∗))−G(v̂∗)) +G(v̂∗)−G(v) = κ.
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