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Abstract. We develop a network-flow approach for characterizing interim-allocation rules

that can be implemented by ex post allocations. Our method can be used to character-

ize feasible interim allocations in general multi-unit auctions where agents face capacity

constraints, both ceilings and floors. Applications include a variety of settings of practi-

cal interest, ranging from individual and group-specific capacity constraints, set-aside sale,

partnership dissolution, and government license reallocation.

Keywords: Reduced-form auctions, network-flow approach, feasible circulation flow, paramod-

ular capacity constraints.

JEL-Code: D44.

1. Introduction

In the classical auction design problem, a bidder’s incentive constraint is used to express his

payments in terms of interim allocations—his expected winning probabilities given his types.

This allows one to express the seller’s objective function solely in terms of interim allocation

rules. Even though the standard approach due to Myerson (1981) has been to search point-

wise for an ex post allocation that is optimal, one could instead solve for optimality in terms

of an interim allocation rule.

Interim allocations rules are simpler objects than ex post allocations rules, because they

are lower-dimensional functions. This can make a difference in computational and analytical

tractability. Moreover, in some problems, the allocation rule cannot easily be optimized
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point-wise for each type profile. For instance, agents may face constraints in their payments

for a variety of reasons.1 Given the envelope condition, such payment constraints can be

readily checked for an interim allocation rule, but not for an ex post allocation rule. A

similar situation is encountered if agents have type-contingent outside options.2 Again, such

constraints can be checked for agents’ interim allocation rules (via the envelope expression),

but not for ex post allocation rules. For these reasons and others, the interim approach,

employed first by Maskin and Riley (1984), has become increasingly popular in mechanism

design research.3

For this approach to work, however, one must characterize the set of interim allocation

rules that are implementable in the sense that there exists an ex post allocation rule generating

the desired interim winning probabilities. Implementable interim allocation rules are also

called reduced form auctions. Proving a conjecture by Matthews (1984), Border (1991,

2007) characterized implementable interim allocation rules for the single-unit auction case.4

Because of its tractable structure, this characterization has has proven useful for mechanism

design analysis, but its scope has been limited to one-unit auctions, and so far it has remained

unclear whether a characterization can be obtained for a more general setting.

In this paper, we extend the characterization of reduced-form auctions to a general multi-

unit setting with bidder capacity constraints, while retaining the tractable structure for

Border’s original contribution. The novelty of our approach is to view implementation of

an interim allocation rule as a problem of assigning desired (fractional) units of the good to

different types of agents using the supply available at different ex post states (i.e., profiles

of bidders’ types). The solution to the assignment problem corresponds to a feasible flow

in an appropriately defined network. We thus convert the problem of whether an interim

allocation rule is implementable into the problem of whether there exists a feasible flow in

a certain network. To derive our characterization of implementable interim allocation rules,

1For instance, the agents may be financially constrained (Che and Gale, 1998, 2000; Laffont and Robert,
1996; Maskin, 2000; Pai and Vohra, 2011). In the context of collusion, members of a cartel may refrain from
using monetary transfers, for fear of detection (McAfee and McMillan, 1992; Che et al., 2012). Or monetary
transfers may be simply unavailable for other reasons (Miralles, 2012; Che et al., 2013).
2See Mierendorff (2009).
3See for example Armstrong (2000), Asker and Cantillon (2010), Parlane (2001), Brusco and Lopomo (2002),
Manelli and Vincent (2010), Hörner and Samuelson (2011), Miralles (2012), Pai and Vohra (2012), Pai (2012),
and Che et al. (2012).
4For the case of asymmetric agents, Mierendorff (2011) and Che et al. (2012) offer a tighter characterization
than Border (2007). Shi (2009) and Alaei et al. (2012) extend the characterization to allow for certain types
of capacity constraints, which are special cases of our framework. Gershkov et al. (2013) point out that
the analysis of reduced forms is related to the problem of finding a distribution with given marginals (see
references in Gershkov et al., 2013). This leads to a majorization condition that characterizes reduced forms
(see Gale, 1957). Gale’s construction, however, only works for two buyers. Also, his condition differs from
Border’s and seems less tractable. For a related characterization for symmetric allocation rules see Hart and
Reny (2011). Goeree and Kushnir (2011) characterize reduced forms in terms of support functions of the
feasible set.
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we construct such a network and invoke the conditions for existence of a feasible flow from

the network-flow literature (see Hassin, 1982).5

For a single-unit auction, our characterization reduces to the one obtained in the existing

literature. In this case, our method makes the insight of the feasibility condition transparent.

More importantly, we provide a characterization of interim allocations in a general multi-unit

environment in which subsets of agents face capacity constraints both in upper and lower

bounds. These constraints are required to be paramodular, meaning that upper bounds

are submodular, lower bounds are supermodular, and the two bounds are compliant—a

property that ensures that no constraints are redundant. We show that all of these properties

are necessary for a characterization that has a tractable structure. If capacity constraints

are only imposed on a hierarchical family of sets, we show that paramodularity is fulfilled

automatically. Under restrictions on the environment, such as stochastic independence of

type distributions, and/or symmetry among a set of agents, our characterization reduces

to a much smaller number of inequalities, which considerably enhances the tractability and

applicability of the reduced-form auction method.

Our domain includes a number of practically important settings. For an individual agent,

a capacity constraint may arise from his limited ability to utilize the units he obtains. For

instance, firms can profitably utilize at most a finite number of units (e.g., spectrum licenses).

Constraints on groups of agents may arise from the seller’s (e.g., the government’s) desire

to nurture minority participation or to preserve a competitive (post-assignment) industry.

For instance, the government may wish to limit the number of units accruing to large or

incumbent firms, making the remaining units available for small firms or new entrants.

Lower bounds arise if units are set aside for some designated (e.g., minority) group. Also,

partnership dissolution problems and the reallocation of government licenses can be modeled

using a lower bound on the total number of units to be allocated.

In Section 2, we present the general model with capacity constraints and provide the

conditions that characterize reduced form auctions. In Section 3, we show how the constraints

can be reduced if types are independent and if groups of bidders are ex-ante symmetric. In

Section 4, we provide applications where capacity constraints are imposed on partitioned

sets of agents. All proofs can be found in the Appendix and the Supplementary Material.

2. Reduced-Form Auctions with Capacity Constraints

2.1. Notation. Let I = {1, . . . , |I|} be the set of agents with typical elements i, j ∈ I. For

each agent i, there is a finite set of types Θi with typical element θi ∈ Θi. We show in Section

2.5 that our results generalize for general type spaces. As usual, we define Θ := ×i∈IΘi and

5Our use of network flow techniques differs from the analysis of incentive constraints using a network approach
(see Vohra, 2011). While we study an assignment problem for which the existence of a feasible flow is central,
the analysis of incentive constraints requires solving a shortest-path problem.
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Θ−i := ×j 6=iΘj. For a type profile θ ∈ Θ, p(θ) ∈ [0, 1] denotes the probability that this

profile, or “ex-post state,” is realized. The marginal distribution of types of any agent i is

denoted by pi(θi) and we assume that pi(θi) > 0 for all i ∈ I and θi ∈ Θi. The probability

of a type profile (θi, θ−i) conditional on θi is denoted by p−i(θ−i|θi) = p(θi, θ−i)/pi(θi).

It will be convenient to work with the disjoint union of the individual type-spaces D :=⊔
i∈I Θi. The disjoint union differs from the standard union in that the elements are indexed

by the set they come from. Formally, D =
⊔
i∈I Θi =

⋃
i∈I {(θi, i)|θi ∈ Θi}. To simplify

notation we write typical elements of D as θi instead of (θi, i). For example, if I = {1, 2}
and Θ1 = Θ2 = {θ, θ}, we have D = {θ1, θ1, θ2, θ2}. Any subset T ⊂ D can be written as

the disjoint union
⊔
i∈I Ti of subsets Ti ⊂ Θi. In the example, T = {θ1, θ1, θ2} = T1 t T2,

where T1 = {θ, θ} and T2 = {θ}.

2.2. Allocation rules and constraints. There are n units of a good to be allocated. We

assume that any subset G ⊂ I of agents can receive at most C(G) units and must receive

at least L(G) units of the good. Formally we define two mappings, C : 2I → R+ and

L : 2I → R+, with C(∅) = L(∅) = 0. Without loss of generality we can take C(I) = n.

We say that an (ex-post) allocation rule q : Θ→ [0, n]|I| respects (C,L), if

∀G ⊂ I, ∀θ ∈ Θ : L(G) ≤
∑
i∈G

qi(θ) ≤ C(G).6 (1)

A given ex post allocation rule q induces an interim allocation rule Q = (Q1, . . . , Q|I|),

where Qi : Θi → [0, n] represents i’s expected assignment given his type. For each i ∈ I and

θi ∈ Θi, we have

Qi(θi) :=
∑

θ−i∈Θ−i

qi(θi, θ−i)p(θ−i|θi). (2)

Conversely, one could begin with an arbitrary interim allocation rule and ask whether

it can be implemented by an ex post allocation rule. As motivated in the introduction,

such an approach is necessary in certain situations. Formally, an interim allocation rule

(Qi : Θi → [0, n])i∈I is implementable if it is the reduced form of an ex-post allocation

rule, i.e., if there exists an ex-post allocation rule q satisfying (1) and (2).

Throughout the paper, we make the assumption that the constraints (C,L) satisfy paramod-

ularity:7

(1) C is submodular: for any G,G′ ⊂ I, C(G) + C(G′) ≥ C(G ∪G′) + C(G ∩G′).
(2) L is supermodular: for any G,G′ ⊂ I, L(G) + L(G′) ≤ L(G ∪G′) + L(G ∩G′).
(3) C and L are compliant: for any G,G′ ⊂ I, C(G′)−L(G) ≥ C(G′ \G)−L(G \G′).

6The associated set is known as a generalized polymatroid (see Schrijver (2000)).
7Notice that supermodularity implies that L is non-decreasing and compliance implies that C is non-
decreasing.
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The assumption of submodularity makes the ceilings of larger groups of agents relevant.

For instance, the ceiling for I = {1, 2} is only relevant if it does not exceed the sum of the

individual quotas for agents 1 and 2, as required by submodularity.8 Likewise, supermodular-

ity of L makes the floors of larger groups relevant. Finally, the compliance property captures

consistency across alternative constraints, ensuring that the feasible set is non-empty,9 and

that the upper bound and lower bounds are effective.10

The allocation of a single object is a special case of paramodular constraints with C(G) = 1

for G 6= ∅ and L(G) ≡ 0. Another example is that the maximum capacity for a group simply

depends on the number of agents in the group C(G) = ψ(|G|). If there are no lower bounds

(L(G) ≡ 0), and ψ is weakly concave, the resulting constraints are paramodular.

But our framework encompasses a much broader range of scenarios. One important case

is that capacity constraints are imposed only on a hierarchical family of subsets. This struc-

ture is particularly useful since a hierarchical family gives rise to a paramodular constraint

structure, regardless of the exact values of the ceilings and floors imposed for this family. To

be specific, consider a family H ⊂ 2I \ ∅ of sets of agents which is hierarchical in that for

any G,G′ ∈ H either G ∩G′ = ∅, G ⊂ G′ or G ⊃ G′. Each subset G ∈ H faces a ceiling de-

noted by CG ∈ [0, n] and a floor denoted by LG ∈ [0, n] and there are no constraints imposed

directly on G /∈ H. Without loss, we assume that I is included in H. (If we add I, H remains

hierarchical and setting CI = n and LI = 0 does not affect any constraints.) A hierarchical

family H together with constraints (GG, LG)G∈H defines a feasible set of allocations

P :=

{
(x1, ..., x|I|) ∈ [0, n]|I|

∣∣∣∣∣LG ≤∑
i∈G

xi ≤ CG,∀G ∈ H

}
.

This allows us to derive effective ceilings and floors for all subsets G ⊂ I. We define

∀G ⊂ I : C(G) := max

{∑
i∈G

xi

∣∣∣∣∣(x1, ..., x|I|) ∈ P

}
, (3)

8This is not to claim that the condition is without loss of generality. For example, submodularity fails when
C({1, 2}) = C({2, 3}) = C({2}) = 1 and C({1, 2, 3}) = 2, although each of these ceilings can be binding.
9For instance, if G = G′, the condition simplifies to C(G) ≥ L(G), which is clearly necessary for a feasible
allocation to exist. Note that in contrast to Schrijver (2000), we require compliance also for sets G ⊂ G′ and
G′ ⊂ G. This rules out an unnecessary slack in the ceilings for certain sets.
10The effective upper bound for a set G ⊂ I is given by max

{∑
i∈G qi

∣∣ q respects (C,L)
}

. Similarly, the

effective lower bound for G is given by min
{∑

i∈G qi
∣∣ q respects (C,L)

}
. In general, lower bounds interact

with upper bounds in a way that may cause the effective bounds to differ from them. To illustrate, suppose
G′ ⊂ G. Then, the set G \ G′ cannot receive less than L(G) − C(G′), i.e., the difference between the
minimum G must receive and the maximum G′ can receive. Hence, for L(G′ \ G) to be effective, we must
have L(G \ G′) ≥ L(G) − C(G′), which is precisely what compliance requires. Compliance is a sufficient
condition for submodular upper bounds and supermodular lower bounds to be effective (Frank and Tardos,
1988), and there is a sense in which compliance constitutes a weakest sufficient condition or a maximal
domain for the bounds to be effective. For details, see Section B of the Supplementary Material.
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with C(∅) = 0, and

∀G ⊂ I : L(G) := min

{∑
i∈G

xi

∣∣∣∣∣(x1, ..., x|I|) ∈ P

}
, (4)

with L(∅) = 0. The following Lemma shows that the ceilings and floors (C(G), L(G))G⊂I

indeed describe the feasible set P , and moreover, the constraints are paramodular regardless

of the original constraints for the hierarchical family (GG, LG)G∈H.11

Lemma 1. Consider any hierarchical family H ⊂ 2I \ ∅ that contains I and arbitrary

capacities (CG, LG)G∈H ∈ [0, n]2|H|. If the feasible set P is non-empty, then it is described by

the effective constraints given by (3) and (4), that is,

P =

{
(x1, ..., x|I|) ∈ R|I|+

∣∣∣∣∣L(G) ≤
∑
i∈G

xi ≤ C(G),∀G ⊂ I

}
,

and (C(G), L(G))G∈I satisfy paramodularity.

Capacity constraints for hierarchical sets of agents are relevant in auctions in which the

government imposes a cap on the number of units allocated to each of non-overlapping groups

of bidders, such as incumbents and entrants, or domestic and foreign firms.12 Consider for

example the case that I = {1, 2, 3}, where buyer 1 and 2 are incumbents and buyer 3 is an

entrant. If the seller wishes to limit the total number of units allocated to the incumbents and

also to prevent each individual firm from obtaining too many units, constraints may be placed

on the following groups: H = {I, {1, 2}, {1}, {2}, {3}}. Suppose the seller has n = CI = 7

units available, limits the number of units allocated to each buyer i at C{i} = 3 and to the

incumbents at C{1,2} = 5, respectively. With these constraints, we have C(G) = CG for all

G ∈ H. For the remaining sets {1, 3} and {2, 3}, the individual constraints are binding and

we have C({1, 3}) = C({2, 3}) = 2C{i} = 6. Submodularity is easily checked in this example.

Lower bounds on the allocation are present, for instance, if some agents may be suppliers,

instead of buyers, of the good. Lower bounds are also relevant in the partnership dissolution

problem. Since all shares of the partnership are initially owned by the agents, we must

have L(I) = C(I) = 1. Similarly, the FCC’s proposed spectrum repurposing program

seeks to reallocate the frequencies held by TV broadcasting licensees to firms who can make

a more productive use of them (e.g., mobile telephone companies), which again leads to

11Our observation that for hierarchical constraint structures, effective constraints are always paramodular
is related to the universal implementation results for random assignments with bi-hierarchical constraints in
Budish et al. (2013). See Section C of the Supplementary Material.
12See Kim et al. (2012) for a procurement auction for school meals run by the Chilean government in which
there are upper bounds on the number of units allocated to each participants. We thank an anonymous
referee for pointing us to this paper.
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Figure 2.1. Illustration of the network.

L(I) = n = C(I).13 Of course, our model can also handle more general environments in which

both new units and existing units are assigned. For instance, if m units are currently owned

by some agents and n −m units are newly allocated, then we have L(I) = m < n = C(I).

Finally, lower bound constraints are also relevant when a government sets aside some units for

a certain group of buyers, such as small business and minority. If the government guarantees

the group to receive at least k units, then L(G) = k.14 In Section 4, we show how our

characterization simplifies in these cases.

2.3. Network Flow Formulation. Before describing our network-flow framework formally,

we explain its usefulness in a simple 2× 2 example with i.i.d. types.

Example 1. There are two buyers I = {1, 2}. Each buyer has two possible types, Θi = {θ, θ}.
Types are independently and identically distributed and both types are equally likely. �

Figure 2.1 depicts the resulting network. The middle part of the network (without node

t) consists of four nodes on the left representing the alternative type profiles or “ex post

states” Θ = {(θ1, θ2), (θ1, θ2), (θ1, θ2), (θ1, θ2)}, and four nodes on the right representing

agents’ types, or “interim states”D =
⊔
i∈I Θi = {θ1, θ1, θ2, θ2}. Our main insight is that the

implementation of a given interim allocation rule can be seen as a problem of assigning scarce

capacities available in each ex post state to “compatible” interim states. To be concrete,

consider the interim allocation rule (Q1(θ1), Q1(θ1), Q2(θ2), Q2(θ2)) = (1.5, 2, 2, 1). This

interim allocation rule requires, for instance, that agent 1 must receive on average 1.5 units

13See Notice of Proposed Rulemaking by FCC 12-118 (October 2, 2012), which spells out the plan to purchase
licenses of 600MHz frequencies from TV broadcast stations through a reverse auction and reallocate them
to mobile companies through a forward auction, and use the sale proceeds from the latter to finance the
purchase in the former auction.
14This policy differs from capping the complementary group I \ G to at most n − k units. With a cap on
I \G some of the units set aside for G may remain unassigned.
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when his type is θ1. But an assignment to θ1 is only possible in “compatible” states—namely

those states (θ1, θ2) where agent 1 has type θ1 = θ1. Hence, the average assignment in states

(θ1, θ2) and (θ1, θ2) to θ1 must be 1.5 units.

The problem of assigning scarce resources on one side of the market to meet the demands

of the other side is known as Hall’s marriage problem. In the marriage problem, there are

men on one side and women on the other, and each man is compatible with a subset of

women. The question is then whether all of the agents on one side, say men, can be fully

matched with compatible agents, women, on the other side. Our problem can be seen as a

marriage problem: the (ex ante) quantity to be implemented for interim state θi, Qi(θi)pi(θi)

can be interpreted as the number of “men” with type θi, and the (ex ante) capacity available

at ex post state (θ̃1, θ̃2), C(I)p(θ̃1, θ̃2), can be interpreted as the number of women with

type (θ̃1, θ̃2). Men with type θi are only compatible with women whose type (θ̃1, θ̃2) satisfies

θ̃i = θi. Described in this way, the implementability question can simply be recast as

the question whether all men can be matched with compatible women. Hall’s marriage

theorem provides necessary and sufficient conditions for the existence of an integer matching

under very simple capacity constraints.15 The network flow approach we adopt generalizes

Hall’s characterization in a fractional assignment setting with a much more general class of

constraints.

In order to characterize the set of implementable interim allocation rules for a given con-

straint structure (C,L), we define a circulation network (N,E, k, d) which consists of nodes

N , edges E, and a pair of functions (k, d) that specify ceilings and floors for the flow on all

subsets of outgoing edges for each node.

Nodes: The node set N = D ∪Θ ∪ {t} consists of demand nodes D, supply nodes Θ

and a circulation node t.

Edges: Directed edges E ⊂ N ×N specify the pairs of nodes which can carry flows. There

are three different kinds edges:

• Edges from supply nodes to demand nodes: We specify a directed edge from an ex

post state θ̃ = (θ̃1, ..., θ̃|I|) ∈ Θ to an interim state θi ∈ D if and only if they are

“compatible” in the sense that θi = θ̃i. In the example, agent one with type θ̄1 can

only receive supply in ex-post states (θ̄1, θ̄2) and (θ̄1, θ2).

• Edges from demand nodes to the circulation node t: We specify an edge (θi, t) from

each demand node θi ∈ D to t.

• Edges from the circulation node to the supply nodes: We specify an edge (t, θ) from

t to each supply node θ ∈ Θ.

15Hall’s characterization states that all men can matched with compatible women if and only if, for any
subset of men, the number of women compatible with at least one of them is no less than the number of men
in that subset. This has the flavor of Border’s characterization, as will become clearer.
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Flow capacities: We specify upper and lower bounds on outgoing flows for each node in

the network. Formally, for each node n ∈ N and each subset N ′ ⊂ N\{n} of the remaining

nodes, we let d(n,N ′) and k(n,N ′) denote a lower and upper bound for the (total) flow

from n to N ′, respectively. If there are no edges from n to N ′, we will of course define

k(n,N ′) = d(n,N ′) = 0.

To define the capacities, we introduce the following notation. For any ex post state

θ = (θ1, . . . , θ|I|) ∈ Θ and a set D′ ⊂ D of interim states, let I(θ,D′) := {i ∈ I | θi ∈ D′}
denote the set of agents who have types in D′ that are compatible with θ. In other words,

the set I(θ,D′) consists of the agents who can receive the good at state θ, if allocations are

restricted to interim types in D′.16

• Flow capacities from supply nodes: These constraints reflect the constraints on the

ex-post assignment as defined by (C,L). For each supply node θ ∈ Θ, we define

k(θ,N ′) = p(θ)C(I(θ,N ′ ∩D)) and d(θ,N ′) = p(θ)L(I(θ,N ′ ∩D)). (5)

Note that k(θ,N ′) = d(θ,N ′) = 0 if there is no directed edge (θ, n′) ∈ E for some

node n′ ∈ N ′. If there are directed edges from θ to some nodes in N ′, these edges

point to demand nodes in D′ = N ′ ∩ D. We cap the flow from θ to demand nodes

D′ by the maximal number of units that the set I(θ,D′) of agents can receive and

floor it by the minimal number of units that the same set of agents must receive, in

ex ante terms (i.e., multiplied by the probability p(θ)).17

• Flow capacities from demand nodes: These constraints reflect the quantities that

each interim type must be assigned in order to implement a given interim allocation

rule Q. For each demand node θi ∈ D, we let k(θi, N
′) = d(θi, N

′) = pi(θi)Qi(θi)

if t ∈ N ′, or else k(θi, N
′) = d(θi, N

′) = 0. In words, we are “forcing” the outgoing

flow at each demand node θi to match exactly the desired level of interim quantity

pi(θi)Qi(θi) in ex ante terms (i.e., multiplied by the marginal probability pi(θi)).

• Flow capacities from t: Finally, we set d(t, N ′) = 0 and k(t, N ′) = K, where K > 0 is

a sufficiently large number. This is to ensure that constraints on the edges emanating

from t never bind.

Feasible circulation flow. A feasible circulation flow on (N,E, k, d) is a function f :

E → R+ that satisfies the capacity constraints,

d(n,N ′) ≤
∑

n′∈N ′: (n,n′)∈E

f(n, n′) ≤ k(n,N ′), ∀n ∈ N,∀N ′ ⊂ N \ {n},

16For instance, consider state (θ̄1, θ2) in the example and let D′ = {θ̄1, θ̄2}. Only agent 1’s type in the state
(θ̄1, θ2) is contained in D′ so I((θ̄1, θ2), {θ̄1, θ̄2}) = {1}.
17In our example, k((θ1, θ2), {θ1}) = p(θ1, θ2)C({1}) is the capacity of the single edge from (θ1, θ2) to θ1.
k((θ1, θ2), {θ1, θ2}) = p(θ1, θ2)C({1, 2}) is the maximal flow that the edges ((θ1, θ2), θ1) and ((θ1, θ2), θ2) are
allowed to carry in total.
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and the flow conservation law:∑
n′∈N :(n,n′)∈E

f(n, n′) =
∑

n′∈N : (n′,n)∈E

f(n′, n), ∀n ∈ N.

In words, a circulation flow is feasible if the outgoing flows obey the capacity constraints

given by (k, d) and the total flow entering each node equals the total flow exiting it.

It is easy to see the implication of a feasible circulation flow on the implementability of

an interim allocation rule. We can recover an ex-post allocation rule from a feasible flow on

the network defined for a given interim allocation rule Q:

qi(θ) =
f(θ, θi)

p(θ)
.

Given our construction, any feasible flow must have

f(θi, t) = pi(θi)Qi(θi).

Using these identities and flow conservation at n = θi, we observe that

pi(θi)Qi(θi) = f(θi, t) =
∑

θ−i∈Θ−i

f((θi, θ−i), θi) =
∑

θ−i∈Θ−i

p(θi, θ−i)qi(θi, θ−i).

This shows that the allocation rule q satisfies (2) and implements the reduced form Q.

Conversely, implementability of a given reduced form implies the existence of a feasible flow:

Theorem 1. An interim allocation Q is implementable if and only if there exists a feasible

circulation flow for the network (N,E, k, d) defined above.

We are now ready to invoke the following result from Hassin (1982):18

Theorem 2 (Hassin, 1982). For every n ∈ N , let k(n, ·) and d(n, ·) (defined on subsets of

N\{n}) be paramodular. Then, a feasible circulation flow f : E → R+ exists if and only if∑
n∈N\M

d(n,M) ≤
∑
n∈M

k(n,N\M), ∀M ⊂ N. (6)

Since (C,L) are paramodular, it is straightforward to verify that the functions k(n, .) and

d(n, .) in our network are paramodular for all nodes n ∈ N . Condition (6) requires that the

sum of lower bounds on the flows entering M does not exceed the sum of upper bounds on

the flows exiting M . Intuitively, this is necessary for the existence of a feasible circulation

flow. Theorem 2 says that (6) is also sufficient.

2.4. Characterization of reduced form allocation rules. We now establish our char-

acterization result by applying Theorem 2 to the network defined above. To this end, we

18Without floor constraints, we could employ a characterization of polymatroidal network flows due to
Federgruen and Groenevelt (1988). We thank Rakesh Vohra and an anonymous referee for pointing us to
that article.
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introduce the following notation. For any subset of demand nodes T =
⊔
i∈I Ti ⊂ D, we

define Y (T ) := {θ ∈ Θ|I(θ, T ) 6= ∅} to be the set of supply nodes that are “compatible” with

T . These are the states at which at least one agent i with type in Ti can receive the good,

i.e., Y (T ) =
⋃
i∈I(Ti ×Θ−i).

19

Theorem 3. Let Q = (Qi)i∈I be an interim allocation rule. Then, Q is the reduced form of

an allocation rule that respects (C,L) if and only if for all T ⊂ D,∑
θ∈Y (T )

p(θ)L(I(θ, T )) ≤
∑
i∈I

∑
θi∈Ti

pi(θi)Qi(θi) ≤
∑

θ∈Y (T )

p(θ)C(I(θ, T )). (B′)

To understand the main argument of the proof, consider our 2 × 2 example and set T =

{θ1, θ2}. If we set M = T , (6) yields

L(I)p(θ1, θ2) + L({1})p(θ1, θ2) + L({2})p(θ1, θ2) ≤ p1(θ1)Q1(θ1) + p2(θ1)Q2(θ2) (7)

This is the left inequality in (B′) for T = {θ1, θ2}. Similarly, if we set M = N \ T , (6) yields

the right inequality in (B′) for T = {θ1, θ2}:

p1(θ1)Q1(θ1) + p2(θ1)Q2(θ2) ≤ C(I)p(θ1, θ2) + C({1})p(θ1, θ2) + C({2})p(θ1, θ2). (8)

The proof is completed by showing that if (6) holds for M = T and M = N \ T for each

T ⊂ D, then (6) is satisfied for all M , not just those corresponding to some T ⊂ D.

Conditions (7) and (8) bear resemblance to the reduced-form characterization familiar

from the literature (see Border (1991, 2007)), but there are notable differences. First of all,

(7) has no analogue in the classical setting without lower bounds.

The second inequality deals with the upper bound, as in the existing literature, and sim-

plifies to the familiar characterization if the agents face no capacity constraints. In that case,

C(I) = C({1}) = C({2}) = n. The right-hand side of (8) reduces to n(p(θ1, θ2) + p(θ1, θ2) +

p(θ1, θ2)) = n(1 − p(θ1, θ2)), i.e., the number of units multiplied by the probability that at

least one agent has a type in T . Indeed, for the standard one-unit auction, where C(G) = 1

for all non-empty G ⊂ I, and L(G) = 0 for all G ⊂ I, our characterization simplifies to the

familiar condition from Border (1991, 2007):

Corollary 1 (Border (1991, 2007)). In the standard one-unit auction model, an interim

allocation rule q is the reduced form of an allocation rule if and only if for all T ⊂ D,∑
i∈I

∑
θi∈Ti

Qi(θi)pi(θi) ≤
∑

θ∈Y (T )

p(θ). (9)

Our characterization departs from the familiar condition when there are nontrivial capacity

constraints on subsets G 6= I. For instance, suppose each agent faces a binding individual

19Recall that I(θ, T ) = {i ∈ I | θi ∈ Ti} is the set of all agents with types in T who can receive the good at
state θ.
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ψ(1) ψ(2) ψ(3) φ(2) φ(3) violates max subject to value

3 4 6 0 0 subm.
∑3

i=1

{
Qi(θ) + 2Qi(θ)

} (B′) 18.375
(1) & (2) 18

2 4 6 2 3 superm. −
∑3

i=1

{
Qi(θ) + 2Qi(θ)

} (B′) −8.625
(1) & (2) −9

2 3 4 6/5 3 compl. Q1(θ)−Q2(θ)
(B′) 2

(1) & (2) 1.9

Table I. Examples of effective constraints that violate paramodularity.
(φ(1) = 0 in all examples.)

capacity constraint, i.e., C({i}) < C(I) = n, i = 1, 2. In that case, the set I(θ, T ) of agents

who can receive the good at a given state θ when types are in T matters. In particular,

the characterization gives rise to a tighter condition than the standard one, and a failure to

recognize this could lead to an interim allocation rule that is not implementable.20

Remark 1. Paramodularity of the capacity constraints is necessary for our characterization.

To see this, suppose that there are three bidders I = {1, 2, 3}, each independently and equally

likely to be of type θ or θ. Each set of k bidders faces an upper bound of ψ(k) and a lower

bound of φ(k). We give three examples (see Table I). For each example, the constraints are

effective and exactly one of the conditions of paramodularity is violated while the others are

satisfied. To demonstrate that the characterization is not valid in these examples, we first

maximize a linear function in Q subject to (B′). We compare the result to the maximum

of the same objective function subject to the constraints (1) and (2).21 As the last column

of Table I shows, the value is always strictly higher for maximization subject to (B′) in

these examples. Therefore (B′) does not describe the set of reduced forms in any of these

examples.22

20To illustrate, suppose p1(θ̄1) = p2(θ̄2) = p > 2/3, C(I) = n = 3, and C({1}) = C({2}) = 2. Consider the
interim allocations given by Q1(θ̄1) = Q2(θ̄2) =: Q̄ = 3− (3/2)p and Q1(θ1) = Q2(θ2) = Q = (3/2)(1− p)2.
It is straightforward to check that these interim allocations satisfy the standard Border constraints (e.g.,
Border (1991)). Yet, there is no allocation rule that implements these allocations and satisfies the additional
constraint qi(θ) ≤ 2. To see this, note that qi(θ̄1, θ̄2) ≤ 3/2 for at least one i, which follows from q1(θ̄1, θ̄2) +
q2(θ̄1, θ̄2) ≤ 3. Using this, and qi(θ̄i, θ−i) ≤ 2, we have

Q̄ = pqi(θ̄i, θ̄−i) + (1− p)qi(θ̄i, θ−i) ≤
3

2
p+ 2(1− p) = 2− 1

2
p < 3− 3

2
p,

which is a contradiction.
21Details and a Mathematica file are available on request.
22For a model without lower bounds, but with general, possibly non-submodular, upper bounds, Cai et al.
(2011) derive a characterization that involves a continuum of constraints. Instead of imposing a constraint for
each subset of interim types T ⊂ D, i.e., a finite number of constraints as in our characterization, Cai et al.
(2011) attach a weight Wi(θi) ∈ [0, 1] to each interim type and impose a constraint for each profile of weights
(Wi(θi))i∈I,θi∈Θi

. In Section D of the Supplementary Material, we show that, given submodular upper
bounds, only constraints for integer weights have to be imposed, which implies that the characterization
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Remark 2. Linear programming problems subject to submodular upper bound constraints

are known to be particularly tractable since a greedy algorithm can find an optimal solution

(see Edmonds (1970)). An interesting observation by Vohra (2011) is that the optimal

auction design problem has this special structure when formulated in reduced form and if the

monotonicity constraint is neglected, since the Border characterization involves submodular

upper bound constraints (i.e., the RHS of (9) is submodular in T ⊂ D). This observation can

be extended to our more general multi-unit auctions with paramodular constraints: defining

the RHS and LHS of (B′),respectively, as

Ψ(T ) :=
∑

θ∈Y (T )

C(I(θ, T )) p(θ) and Φ(T ) :=
∑

θ∈Y (T )

L(I(θ, T )) p(θ), (10)

we can establish the following result, whose proof is provided in Section A.1 of the Supple-

mentary Material.

Theorem 4. Ψ and Φ are paramodular.

Theorem 5 of Hassin (1982) shows that a “greedy-generous” algorithm can be used to solve

linear optimization problems with paramodular constraints (i.e., including both upper and

lower bounds). Given the above theorem, this means that an optimal auction design problem

in our more general environment can be solved as tractably in reduced form as in the simple

single-unit auction problem.

2.5. General Type Spaces. The characterization results in this and the following sections

generalize to the case of general type distributions. Suppose that for each buyer i ∈ I,

we have a probability space (Θi,Ai, µi), where Θi is the type-space, Ai is the σ-algebra of

measurable sets, and µi is the marginal probability measure. The space of type profiles is

given by (Θ,A, µ), where Θ = Θ1×. . .×Θ|I|, A is the product σ-algebra and µ is a probability

measure on the product space with marginals µi. The product spaces (Θ−i,A−i, µ−i) are

defined analogously.

An ex-post allocation rule that respects (C,L) is a measurable function q : Θ→ [0, C(I)]|I|

that satisfies (2.1). An interim allocation rule is a measurable function Q : Θ → [0, C(I)]|I|

such that Qi only depends on θi. An interim allocation rule is implementable for given (C,L)

if there exists an ex-post allocation rule q, that respects (C,L), such that Q is the reduced

form of q, i.e., Qi(θi) =
∫

Θ−i
qi(θi, θ−i)dµ−i(θ−i).

Theorem 5. Let Q : Θ → [0, C(I)]|I| be measurable and Qi(θ) = Qi(θi). Q is the reduced

form of an ex-post allocation rule that respects (C,L) if and only if for all T =
⊔
i∈I Ti ⊂ D,

with Ti ∈ Ai for all i ∈ I,

of Cai et al. (2011) reduces to our characterization. Moreover, we demonstrate that for the first example
in Table I, the maximizer subject to (B′) violates a constraint that corresponds to non-integer weights.
Therefore, a tractable characterization that retains Border’s original structure cannot be obtained without
the assumption of paramodularity.
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∫
Y (T )

L(I(θ, T ))dµ(θ) ≤
∑
i∈I

∫
Ti

Qi(θi)dµi(θi) ≤
∫
Y (T )

C(I(θ, T ))dµ(θ). (BC)

The formal proof can be found in Section A.2 of the Supplementary Material.

3. Reduction of Constraints

The characterization in the previous section involves 2
∏

i∈I |2Θi | inequalities. Since this

number grows very quickly with the cardinalities of the type spaces, the condition is not

very tractable. In this section, we derive two reductions that lead to more tractable char-

acterizations.23 First, we show that if types are independently distributed, it is sufficient to

check (B′) for the upper and lower contour sets of the interim allocation functions, i.e., sets

of types whose interim allocations are no smaller and no larger, respectively, than certain

thresholds. With this reduction, the number of inequalities that we need to check becomes

much smaller, 2
∏

i∈I |Θi| at most. Second, we show that when some group(s) of agents are

symmetric, and if we restrict attention to group-symmetric reduced forms, it suffices to check

(B′) only for those T for which the Ti’s are identical for agents in the same group.

3.1. Independent Type Distribution. Consider the situation where agents’ types are

independently distributed, i.e., p(θ) =
∏

i∈I pi(θi), ∀θ ∈ Θ. The following result shows that

it is sufficient to check (B′) for upper and lower contour sets.24

Theorem 6. Suppose that the agents’ types are independently distributed. Then, Q is the

reduced form of an allocation rule that respects (C,L), if and only if∑
i∈I

∑
θi∈Ti

pi(θi)Qi(θi) ≤
∑

θ∈Y (T )

p(θ)C(I(θ, T )) (BU)

23To our knowledge, all existing applications of reduced-form auctions mentioned in the introduction rely
on the kind of “reduced” characterizations we provide in this section. When optimizing a linear objective,
the greedy-generous algorithm discussed in Remark 2 can deal with the intractability by checking only one
constraint in (B′) at each step. This, however, requires linearity and does not provide a characterization
of implementable interim allocation rules. The reductions derived in this section, on the other hand, can
be used when maximizing non-linear objective functions, or when other constraints are imposed in the
maximization problem that invalidate a greedy-generous approach. The reductions are also useful to check
the implementability of arbitrary interim allocation rules that are not necessarily extreme points of the
feasible set.
24For correlated types, the constraints for upper and lower contour sets are generally not sufficient, as the
following example demonstrates. Consider the standard one-unit auction without additional constraints
for our 2 × 2 example with two buyers and two types, i.e., let C(G) ≡ 1 and L(G) ≡ 0. Let the type
distribution be given by p(θ1, θ2) = 1

10 , p(θ1, θ̄2) = 1
2 , p(θ̄1, θ2) = 1

5 , p(θ̄1, θ̄2) = 1
5 . The interim allocation rule

Q1(θ1) = Q1(θ̄1) = 0.27, Q2(θ2) = 0.1, Q2(θ̄2) = 1 satisfies the upper contour set constraints. Nevertheless,
the constraint for T = ({θ1}, {θ̄2}) is violated:

3

5
Q1(θ1) +

7

10
Q2(θ̄2) =

3

5
0.27 +

7

10
= .862 >

4

5
= 1− p(θ̄1, θ2).
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for each T =
⊔
i∈I Ti with Ti = {θi ∈ Θi |Qi(θi) ≥ ei} for some ei ≥ 0, and∑

θ∈Y (T ′)

p(θ)L(I(θ, T ′)) ≤
∑
i∈I

∑
θi∈T ′i

pi(θi)Qi(θi) (BL)

for each T ′ =
⊔
i∈I T

′
i with T ′i = {θi ∈ Θi |Qi(θi) ≤ e′i} for some e′i ≥ 0.

Bayesian incentive compatibility requires that interim allocations are monotonic, in which

case the theorem entails even simpler conditions. With monotonicity, an upper contour set

boils down to an interval of types above a threshold and a lower contour set reduces to an

interval of types below a threshold. Hence, we obtain the following familiar characterization

for single-unit auctions.

Corollary 2. Consider the standard single-unit setup (i.e., C(G) = 1 for all nonempty

G ⊂ I and L(G) = 0 for all G), and suppose that each Θi is linearly ordered and qi is

nondecreasing. Then, Q is the reduced form of an allocation rule if and only if for all

(θ1, · · · , θ|I|) ∈ Θ, ∑
i∈N

∑
θ′i≥θi

Qi(θ
′
i)pi(θ

′
i) ≤ 1−

∏
i∈I

Pi(θi),

where Pi(·) is the c.d.f. of pi(·), i.e., Pi(θi) =
∑

θ′i<θi
pi(θ

′
i).

3.2. Generalized Symmetric Environments. In many environments, there are sets of

agents that share similar characteristics. For instance, in procurement auctions, the incum-

bents and entrants form two groups, and those within the same group have more in common

in terms of technologies and other factors than those outside that group. In such a circum-

stance, it makes sense to view the agents within the same group as symmetric, and it often

suffices to search for an optimal mechanism in the class of group-symmetric mechanisms,

namely those that treat ex-ante identical buyers identically. As will be seen, with such

mechanisms, the task of identifying reduced-forms can be reduced even further to checking

(B′) only for group-symmetric sets T .

To be more specific, suppose that I can be partitioned into subsets, G1, . . . , GL. All agents

in each non-singleton set (or group) G` are symmetric in the following sense:25 First, for all

i, j ∈ G`, Θi = Θj =: Θ̂`. Second, p is invariant to permutations of types for any pair of

agents i, j ∈ G`, i.e., p(θi, θj, θ−ij) = p(θj, θi, θ−ij) for all θi, θj ∈ Θ̂` and all θ−ij ∈ Θ−ij. This

implies that for each group, there exists a marginal distribution p̂` : Θ̂` → [0, 1], satisfying

pi(θ`) = p̂`(θ`) for all θ` ∈ Θ̂` and all i ∈ G`. Note that we do not require the type distribution

to be independent. Third, while we allow for general paramodular capacity constraints, the

capacity constraints involving any two agents from the same group must be identical, i.e.,

for any i, j ∈ G`, C(I ′∪{i}) = C(I ′∪{j}) and L(I ′∪{i}) = L(I ′∪{j}) for all I ′ ⊂ I \{i, j}.

25We do not exclude the possibility of singletons but symmetry does not impose any conditions on these sets.
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We call the environment described so far a generalized symmetric environment and

establish a reduction of our characterization that applies to group-symmetric reduced forms.

Formally, a reduced form is group-symmetric if for each group G`, there exists an interim

allocation rule Q̂` : Θ̂` → R+ such that Qi(θ`) = Q̂`(θ`) for all i ∈ G` and all θ` ∈ Θ̂`.

Theorem 7. In the generalized symmetric environment, a group-symmetric interim alloca-

tion rule Q is a reduced form of an allocation rule that respects (C,L) if and only if (B′)

holds for all T =
⊔
i∈I Ti satisfying Ti = Tj for all i, j ∈ G` and all ` = 1, . . . , L.

If types are independently distributed, the reductions in Theorems 6 and 7 can be com-

bined:

Corollary 3. Suppose the agents’ types are independently distributed. Then, in the gener-

alized symmetric environment, Q is a reduced form of an allocation rule that respects (C,L)

if and only if (BU) holds for all group-symmetric T =
⊔
i∈I Ti where each Ti is an upper

contour set of qi and (BL) holds for all group-symmetric T =
⊔
i∈I Ti where each Ti is a

lower contour set of qi.

The original characterization by Border (1991) and its extension by Mierendorff (2011) with-

out capacity constraints (i.e. C(G) ≡ 1 and L(G) ≡ 0) are special cases of this corollary.

Remark 3. A group-symmetric interim allocation rule Q satisfying the conditions of Theorem

4 may be implemented by an allocation rule q that is not group-symmetric. Note, however,

that we can uniformly randomize the identities of buyers that belong to the same group G`

before applying the allocation rule q. We thereby construct a new allocation rule q̂ that is

group-symmetric and has the same reduced form, i.e., it also implements q.

4. Applications: A Partitional Constraint Structure

We now illustrate how our characterization can be applied to a variety of settings that are

of interest to mechanism design. We do so by considering a partitional constraint structure.

Suppose n units of a good (“licenses”) are allocated to a set I of agents. A bidder i values

a unit of the good at θi distributed on a set Θi ⊂ R+, with θi := inf Θi and θi := sup Θi,

according to a cumulative distribution function Fi. (The type distribution is either discrete

or continuous.) Suppose the bidders are partitioned into different groups H̃ ⊂ 2I , i.e.,

∪G∈H̃G = I and for all G,G′ ∈ H̃, G ∩G′ = ∅. Each group G ∈ H̃ faces an upper bound of

CG and a lower bound of LG, where 0 ≤ LG ≤ CG ≤ n for all G ∈ H̃. If we set H = H̃∪{I},
we obtain a special case of the hierarchical structure introduced in Section 2.2. To make the

constraints for G = I effective, we assume that
∑

G∈H̃CG ≥ CI ≥ LI ≥
∑

G∈H̃ LG.

We now describe the effective constraints for any setG =
⋃
G′∈H′ G

′ for someH′ ⊂ H̃.26 Let

us denote such H′ as HG. The effective lower bound for G =
⋃
G′∈HG G

′ is L(G) = φ(HG) :=

26See the proof of Proposition 8 for the derivation of C(G) and L(G) for arbitrary G.



GENERALIZED REDUCED-FORM AUCTIONS 17

max{
∑

G′∈HG LG′ , LI −
∑

G′∈H̃\HG CG′}. Obviously, L(G) cannot be lower than the direct

lower bound
∑

G′∈HG LG′ , but it can be strictly larger. If the maximal capacity allowed for

groups in H̃\HG is smaller than LI , the indirect lower bound LI−
∑

G′∈H̃\HG CG′ may exceed

the direct lower bound. Similarly, the effective upper bound for G is clearly no greater than∑
G′∈HG C

′
G, but it can be strictly less. The agents in G cannot get more than what is

left after accommodating the lower bound for agents in I \ G =
⋃
G′∈(H̃\HG) G

′. Hence, the

effective upper bound is given by C(G) = ψ(HG) := min{
∑

G′∈HG CG′ , CI −
∑

G′∈H̃\HG LG′}.
We will show how our characterization of reduced-form auctions simplifies in this envi-

ronment. Specifically, we shall characterize the interim allocation rules Q = (Qi)i∈I , where

Qi : Θi → [0, n] that are reduced forms of ex-post allocation rules that respect (CG, LG)G∈H.

By a standard argument, incentive compatibility implies that we can without loss restrict

attention to a monotonic Q where Qi is nondecreasing. For each θ ∈ Θ and G ∈ H,

let FG(θ) :=
∏

i∈G Fi(θi) denote the probability that every agent i ∈ G has a type less

than or equal to θi. Further, when the environment is group-symmetric in the sense that

Fi = Fj =: FG, θi = θj =: θG, θi = θj =: θG, for all i, j ∈ G for each G ∈ H̃, then it is

useful (and often without loss) to consider a group-symmetric Q, where Qi = Qj =: QG for

all i, j ∈ G for each G ∈ H̃.

Given independence of types, we invoke the upper contour set characterization (Theorem

6 and Corollary 3). Our characterization is then simplified as follows:

Theorem 8. (i) A monotonic interim allocation Q is implementable if and only if, for each

θ = (θi)i∈I ∈ Θ,

∑
i∈I

∫ θi

θi

Qi(si)dFi(si) ≤
∑
H′⊂H̃

ψ(H′) ·
∏
G∈H′

(1−FG(θ)) ·
∏

G∈H̃\H′

FG(θ)

 , (BU ′)

where ψ(H′) := min{
∑

G∈H′ CG, CI −
∑

G∈H̃\H′ LG} and,

∑
i∈I

∫ θi

θi

Qi(si)dFi(si) ≥
∑
H′⊂H̃

φ(H′) ·
∏
G∈H′

FG(θ) ·
∏

G∈H̃\H′

(1−FG(θ))

 , (BL′)

where φ(H′) := max{
∑

G∈H′ LG, LI −
∑

G∈H̃\H′ CG}.
(ii) In a group-symmetric environment, a group-symmetric Q = (QG)G∈H̃ is a reduced

form if and only if for each (θG)G∈H̃ ∈ ×G∈H̃[θG, θG],

∑
G∈H̃

|G|
∫ θG

θG

QG(s)dFG(s) ≤
∑
H′⊂H̃

ψ(H′) ·
∏
G∈H′

(
1− (FG(θG))|G|

)
·
∏

G∈H̃\H′

(FG(θG))|G|

 ,

(SBU)
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and∑
G∈H̃

|G|
∫ θG

θG

QG(s)dFG(s) ≥
∑
H′⊂H̃

φ(H′) ·
∏
G∈H′

(FG(θG))|G| ·
∏

G∈H̃\H′

(
1− (FG(θG))|G|

) .

(SBL)

The proof of this result can be found in Section A.3 in the Supplementary Material. The

conditions for feasibility are explained as follows. The condition (BU ′) requires that the

total quantity allocated to the agents with types in upper contour sets T =
⊔
i∈I [θi, θi],

for each θ = (θi), should not exceed the expected upper bounds for those agents who have

types in T—more precisely, the upper bound for each possible family H′ of groups of agents

multiplied by the probability that for each group in the family at least one agent has a type

from T and for all other groups, no agent has a type in T . Meanwhile, (BL′) requires that

the total quantity allocated to the agents with types in lower contour sets T =
⊔
i∈I [θi, θi],

for each θ = (θi), cannot be less than the expected lower bounds for those agents who have

types in T .

We now derive characterization of reduced-form auctions for a variety of situations.

4.1. Individual Constraints. One simple case of interest is individual capacity constraints.

An individual constraint may arise from a firm’s preferences or technologies. For instance,

a firm targeting a regional market with limited demand is unlikely to demand more than

a certain number of licenses. Similarly, the individual constraint may come from a firm’s

limited technological capacity to utilize licenses. To be specific, suppose each firm i ∈ I

demands or can obtain at most Ci units of the good, and these are the only type of constraints

present. (In particular, lower bounds equal zero.) This case is a special case of a partitional

constraint structure where each G ∈ H̃ is a singleton set. Theorem 8 yields the following

results as corollary.

Corollary 4. (i) A monotonic interim allocation Q is a reduced form of an allocation sat-

isfying individual constraints (Ci)i∈G, if and only if, for each θ = (θi)i∈I ∈ Θ,∑
i∈I

∫ θi

θi

Qi(si)dFi(si) ≤
∑
I′⊂I

(
min

{∑
i∈I′

Ci, n

}
·
∏
i∈I′

(1− Fi(θi)) ·
∏
i 6∈I′

Fi(θi)

)
.

(ii) If the agents are symmetric with Fi =: F and Ci =: m, then a symmetric interim

allocation rule (Q, .., Q) is a reduced form satisfying an individual constraint of m, if and

only if, for each θ ∈ [θ, θ],

|I|
∫ θ

θ

Q(si)dFi(si) ≤
|I|∑
k=0

min{k ·m,n}
(
|I|
k

)
(1− F (θ))kF (θ)|I|−k.
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The latter condition is particularly intuitive. It says the total quantity accruing to the

agents with types above θ must not exceed the probability that exactly k agents have types

above θ multiplied by the upper bound min{k ·m,n} these agents will face.

4.2. Group-Specific Quotas. An auction designer often wishes to limit the number of

units allocated to a group of agents. An important motivation for doing so may come from

an anti-trust consideration. If important rights such as licenses are concentrated to dominant

firms, then it may be in the social interest to keep them from accumulating more. A group

specific quota may also be used to protect domestic firms from competition by foreign firms,

or to protect minority participants in auctions.

These scenarios are modeled as a special case of a partitional structure. The bidders I are

partitioned into two groups, A and B, such that bidders in A (e.g., incumbent, foreign, or

non-minority firms) are subject to a cap m < n, while no such restriction applies to group

B of bidders. Again the reduced form characterization in these cases follows easily from

Theorem 8.

Corollary 5. (i) A monotonic interim allocation Q is a reduced form of an allocation sat-

isfying group-specific quotas (m,n), if and only if, for each θ = (θi)i∈I ∈ Θ,∑
i∈I

∫ θi

θi

Qi(si)dFi(si) ≤ m

(
1−

∏
i∈A

Fi(θi)

)∏
j∈B

Fj(θj) + n

(
1−

∏
j∈B

Fj(θj)

)
.

(ii) If the agents in each group are symmetric with Fi =: FA for i ∈ A and Fj =: FB for

j ∈ B, then a symmetric interim allocation rule (QA, .., QA, QB, ..., QB) is a reduced form

satisfying the quotas (m,n), if and only if, for each θA ∈ [θA, θA] and θB ∈ [θB, θB],

|A|
∫ θ

θA

QA(s)dFA(s) + |B|
∫ θ

θB

QB(s)dFB(s) ≤ m
(
1− FA(θA)|A|

)
FB(θB)|B| + n

(
1− FB(θB)|B|

)
.

Intuitively, the conditions state that, for any profile of upper-tail type intervals, the ex-

pected number units allocated to bidders in these type sets cannot exceed m multiplied by

the probability that no bidders in B have types in these sets and some bidders in A have

types in these sets, plus n multiplied by the probability that bidders in B have types in these

sets.

4.3. Partnership Dissolution, Spectrum Reallocation, and Set-Asides. The appli-

cations so far do not involve lower bound constraints. Lower bound constraints are relevant

in a number of settings. For instance, in a partnership dissolution problem, an object in ques-

tion — a physical asset or a corporation as a going concern — is allocated among partners,

so unlike in the standard auction problem the object is always allocated to some partner

(Cramton et al., 1987). A similar feature exists in designing a mechanism that reallocates
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licenses from existing (inefficient) users to new (more productive) users, as mentioned in Sec-

tion 2.2. This problem introduces a lower bound constraint on the number of licenses to be

allocated to the whole set of players. A similar constraint is present in a government auction

in which the government is committed to allocate a predetermined number of licenses.

Formally, the problem has a partitional constraint structure with the coarsest partition:

H = H̃ = {I}, and CI = LI = n. That is, all n units must be allocated to some bidders.

The following characterization then follows from Theorem 8.

Corollary 6. A monotonic interim allocation Q is a reduced form of an allocation satisfying

(CI , LI) = (n, n), if and only if, for each θ = (θi)i∈I ∈ Θ,∑
i∈I

∫ θi

θi

Qi(si)dFi(si) ≤ n

(
1−

∏
j∈I

Fj(θj)

)
,

and ∑
i∈I

∫ θi

θi

Qi(si)dFi(si) = n.

The first part is the condition familiar from Border (1991). The second part states an

obvious necessary condition that the entire units must be allocated to all agents. Remark-

ably, this latter condition, together with the first part, is also sufficient for the lower bound

constraints. As proven in Theorem 8, the lower bound condition requires that for each

θ = (θi)i∈I ∈ Θ, ∑
i∈I

∫ θi

θi

Qi(si)dFi(si) ≥ n
∏
j∈I

Fj(θj).

Clearly, this condition is implied by the pair of conditions required by Corollary 6.

A lower bound constraint is also relevant in some government auctions where some units

of licenses are set aside for some designated group of buyers (see Pai and Vohra, 2012; Athey

et al., 2013). Protecting/promoting minority interests can take the form of capping the

maximum number of units allocated to the bidders “outside” the designated group. This

can be handled simply by upper bound constraints, as seen above. A more “active” form of

set-aside sale would involve a lower bound on the units allocated to the designated group.

Recall the scenario discussed in Section 4.2. Suppose instead of limiting the amount of the

good allocated for group A, the target group B is now protected by the minimum amount

k = n−m of the good. In that case, the reduced form is characterized as follows.

Corollary 7. A monotonic interim allocation Q is a reduced form of an allocation satisfying

LB = k, if and only if, for each θ = (θi)i∈I ∈ Θ,∑
i∈I

∫ θi

θi

Qi(si)dFi(si) ≤ (n− k)

(
1−

∏
i∈A

Fi(θi)

)∏
j∈B

Fj(θj) + n

(
1−

∏
j∈B

Fj(θj)

)
.
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and ∑
i∈B

∫ θi

θi

Qi(si)dFi(si) ≥ k
∏
j∈B

Fj(θj).

Appendix: Omitted Proofs

Proof of Lemma 1. Assume P is nonempty. To prove paramodularity of (C,L), we first

prove that its restriction (C,L)|H to sets in H is paramodular. To begin, we prove that C|H
is submodular. To this end, fix any G,G′ ∈ H. Since H is a hierarchy, G ⊂ G′ or G′ ⊂ G or

G ∩ G′ = ∅. If G ⊂ G′ or G′ ⊂ G, then the submodularity condition is vacuous, so assume

G∩G′ = ∅. Let x∗ = (x∗1, ..., x
∗
|I|) be a maximizer that solves max{

∑
i∈G∪G′ xi|x ∈ P}. Then,

since x∗ ∈ P , we must have

C(G) = max{
∑
i∈G

xi|x ∈ P} ≥
∑
i∈G

x∗i and C(G′) = max{
∑
i∈G′

xi|x ∈ P} ≥
∑
i∈G′

x∗i .

Hence, since G ∩G′ = ∅,

C(G) + C(G′) ≥
∑
i∈G

x∗i +
∑
i∈G′

x∗i =
∑

i∈G∪G′
x∗i = C(G ∪G′) + C(∅),

proving the submodularity of C|H. The argument for the supermodularity of L|H is com-

pletely symmetric. To prove that (C,L)|H is compliant, suppose not. Then, there exist G′, G

such that

C(G′)− L(G) < C(G′ \G)− L(G \G′). (11)

This cannot happen if G ∩G′ = ∅. So suppose first G′ ⊃ G, then (11) reduces to

C(G′)− L(G) < C(G′ \G). (12)

Let x∗ ∈ P be a maximizer that solves max{
∑

i∈G′\G xi|x ∈ P} = C(G′ \G). Since x∗ ∈ P ,

C(G′)− L(G) ≥
∑

i∈G′\G

x∗i = C(G′ \G), (13)

which contradicts (12). A symmetric argument yields a contradiction if G′ ⊂ G. Combining

the observations, we conclude that (C,L)|H is paramodular.

The paramodularity of (C,L) as well as the claim that the feasible set defined by (C,L)

coincides with P then follows from Theorem 49.13 of Schrijver (2000). �

Proof of Theorem 1. (“If” part). Suppose the network (N,E, k, d) admits a feasible cir-

culation flow f . Then, define qi(θ) = f(θ,θi)
p(θ)

for each θ ∈ Θ and i ∈ I. Note first that q

respects (C,L) since, for any G ⊂ I,∑
i∈G

qi(θ) =
∑
i∈G

f(θ, θi)

p(θ)
∈
[
d(θ, {θi}i∈G)

p(θ)
,
k(θ, {θi}i∈G)

p(θ)

]
= [L(G), C(G)],
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where the inclusion relationship holds since f satisfies the lower/upper bound constraints

while the last equality holds since I(θ, {θi}i∈G) = G. Also, the flow conservation law implies

that for each θi ∈ D,

pi(θi)Qi(θi) = f(θi, N\{θi}) = f(N\{θi}, θi) =
∑

θ̃∈Θ:θ̃i=θi

f(θ̃, θi) =
∑

θ̃−i∈Θ−i

p(θi, θ̃−i)qi(θi, θ̃−i),

meaning that Q is the reduced form of q.

(“Only if” part) Suppose that the interim allocation rule Q is the reduced form of an

allocation rule q that respects (C,L). We can then construct a feasible circulation flow for

the above network as follows: for each θ̃ ∈ Θ and θi ∈ D with θ̃i = θi, f(θ̃, θi) = p(θ̃)qi(θ̃),

for each θi ∈ D, f(θi, t) = pi(θi)Qi(θi), and for each θ ∈ Θ, f(t, θ) =
∑

i∈I p(θ)qi(θ). We

prove that this flow satisfies the flow conservation law and lower/upper bound constraints.

First, for each supply node θ ∈ Θ, we have f(θ,N\{θ}) = f(N\{θ}, θ) =
∑

i∈I p(θ)qi(θ).

Also, for any N ′ ⊂ N\{θ},

f(θ,N ′) =
∑

i∈I(θ,N ′∩D)

p(θ)qi(θ) ∈ [p(θ)L(I(θ,N ′∩D)), p(θ)C(I(θ,N ′∩D))] = [d(θ,N ′), k(θ,N ′)]

since q respects (C,L), which means that f(θ, ·) satisfies the lower/upper bound constraints.

Second, for each demand node θi, we have f(θi, N\{θi}) = pi(θi)Qi(θi) and f(N\{θi}, θi) =∑
θ̃∈Θ:θ̃i=θi

f(θ̃, θi) =
∑

θ̃−i∈Θ−i
p(θi, θ̃−i)qi(θi, θ̃−i). Then, the flow conservation law is satisfied

since Q is the reduced form of q. Also, the lower/upper bound constraints for the flows f(θi, ·)
are satisfied since, for any N ′ ⊂ N\{θi} with t ∈ N ′, f(θi, N

′) = pi(θi)Qi(θi) = k(θi, N
′) =

d(θi, N
′).

Lastly, for the circulation node n = t, we have

f(t, N\{t}) =
∑
θ∈Θ

∑
i∈I

p(θ)qi(θ) =
∑
θi∈D

pi(θi)Qi(θi) = f(t, N\{t}),

where the second equality again follows from Q being the reduced form of q. The lower/upper

bound constraints are trivially satisfied for the flows f(t, ·) sinceK is sufficiently large. Hence,

f is a feasible circulation flow. �

Proof of Theorem 3. Necessity: Suppose that the interim allocation rule Q is the re-

duced form of an allocation rule q that respects (C,L). Then, by Theorem 1, the network

(N,E, k, d) admits a feasible circulation flow f . Hence, f must satisfy (6) for any M ⊂ N ,

by Theorem 2. Consider any T ⊂ D, let M = T . The RHS of (6) becomes∑
n∈M

k(n,N\M) =
∑
θi∈T

k(θi, t) =
∑
θi∈T

pi(θi)Qi(θi) =
∑
i∈I

∑
θi∈Ti

pi(θi)Qi(θi) (14)
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and the LHS of (6) becomes∑
n∈N\M

d(n,M) =
∑

n∈N\T

d(n, T ) =
∑

θ∈Y (T )

d(θ, T ) =
∑

θ∈Y (T )

p(θ)L(I(θ, T )), (15)

which gives us the first inequality in (B′). Now let M = N\T . The RHS of (6) becomes∑
n∈M

k(n,N\M) =
∑

n∈N\T

k(n, T ) =
∑

θ∈Y (T )

k(θ, T ) =
∑

θ∈Y (T )

p(θ)C(I(θ, T )) (16)

and the LHS of (6) becomes∑
n∈N\M

d(n,M) =
∑
θi∈T

d(θi, N\T ) =
∑
θi∈T

d(θi, t) =
∑
i∈I

∑
θi∈Ti

pi(θi)Qi(θi), (17)

which gives us the second inequality in (B′). This completes the proof of necessity of (B′).

Sufficiency: We now show that (B′) implies (6). We consider two cases depending on

whether t ∈M or not.

Suppose first that t /∈M . In this case,∑
n∈N\M

d(n,M) = d(t,M ∩Θ) +
∑

n∈N\(M∪{t})

d(n,M)

=
∑

n∈Θ\M

d(n,M ∩D) ≤
∑

θ∈Y (M∩D)

d(n,M ∩D)

=
∑

θ∈Y (M∩D)

p(θ)L(I(θ,M ∩D)) ≤
∑

θi∈M∩D

pi(θi)Qi(θi)

≤
∑

θ∈M∩Θ

C(I(θ,D \M))p(θ) +
∑

θi∈D∩M

k(θi, t) =
∑
n∈M

k(n,N\M).

Suppose next that t ∈ M . Then, if Θ * M , then we have
∑

n∈M k(n,N \M) ≥ k(t,Θ \
M) = K >

∑
n∈N\M d(n,M) for K sufficiently large. Otherwise, if Θ ⊂M ,∑

n∈M

k(n,N\M) =
∑
θ∈Θ

k(θ,D \M) =
∑

θ∈Y (D\M)

p(θ)C(I(θ,D \M))

≥
∑

θi∈D\M

pi(θi)Qi(θi) =
∑

θi∈D\M

d(θi, t) =
∑

n∈N\M

d(n,M)

To sum up, if (B′) holds, then (6) also holds, so there exists a feasible circulation flow f .

The conclusion then follows by Theorem 1. �

Proof of Theorem 6. Necessity is obvious. To establish sufficiency, we only consider

(BU). The argument for (BL) is completely symmetric and is omitted. To begin, fix any

agent i and arbitrary type sets Tj ⊂ Θj. j 6= i. Then, for any Ti ⊂ Θi, (B′) becomes∑
j∈I

∑
θj∈Tj

qj(θj)pj(θ) ≤
∑

θ∈Y (T )

C(I(θ, T ))p(θ),
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=
∑

θ∈
⋃
j 6=i(Tj×Θ−j)

C(I(θ, T ))p(θ)

︸ ︷︷ ︸
=αi(T )

+
∑

θ∈(Ti×Θ−i)\
⋃
j 6=i(Tj×Θ−j)

C(I(θ, T ))p(θ)

= αi(T ) +
∑
θi∈Ti

βi(T−i)C({i})pi(θi),

where βi(T−i) =
∏

j 6=i(1− pj(Tj)). The second equality holds because in the second sum in

the second line, we have θi ∈ Ti and θj /∈ Tj for all j 6= i. But this implies that I(θ, T ) = {i},
independent of θ−i. Using independence of the type distributions, we get∑

θ∈(Ti×Θ−i)\
⋃
j 6=i(Tj×Θ−j)

C({i})p(θ) =
∑
θi∈Ti

βi(T−i)C({i}) pi(θi).

We now rewrite (B′) as

Υ(Ti, T−i) :=
∑
θi∈Ti

(
qi(θi)− βi(T−i)C({i})

)
pi(θi)− αi(T ) ≤ −

∑
j 6=i

∑
θj∈Tj

qj(θj)pj(θj). (18)

For the proof, it will then suffice to show that for given T−i, Υ(Ti, T−i) is maximized by a

set Ti that is an upper contour set of qi.
27

To begin, we establish the following property of αi(·).

Claim 1. For any set Ti and any θ̃i ∈ Ti, let T̃i = Ti\{θ̃i} and T̃ = (T̃i, T−i). Then, there is

some γi(T−i) ≥ 0 such that

αi(T )− αi(T̃ ) = γi(T−i) pi(θ̃i).

Proof. Using the definition of αi(·), we have

αi(T )− αi(T̃ ) =
∑

θ∈
⋃
j 6=i(Tj×Θ−j)

[
C(I(θ, T ))− C(I(θ, T̃ ))

]
p(θ).

If θ is such that θi 6= θ̃i, I(θ, T ) = I(θ, T̃ ). Hence

αi(T )− αi(T̃ ) =
∑

θ∈
⋃
j 6=i(Tj×{θ̃i}×Θ−ij)

[
C(I(θ, T ))− C(I(θ, T̃ ))

]
p(θ)

=

( ∑
θ−i∈

⋃
j 6=i(Tj×Θ−ij)

[C(I((θ̃i, θ−i), T ))− C(I((θ̃i, θ−i), T̃ ))]p−i(θ−i)︸ ︷︷ ︸
=:γi(T−i)

)
pi(θ̃i),

(19)

We now argue that the expression in the large parentheses is independent of Ti and θ̃i.

For any choice of Ti and θ̃i, I((θ̃i, θ−i), T ) = {j 6= i | θj ∈ Tj} ∪ {i} because θ̃i ∈ Ti, and

27The original idea of this proof is from Theorem 4 in Gutmann et al. (1991).
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I((θ̃i, θ−i), T̃ ) = I((θ̃i, θ−i), T )\{i}. This implies that C(I((θ̃i, θ−i), T )) and C(I((θ̃i, θ−i), T̃ ))

are independent of Ti and θ̃i. �

The claim implies that

Υ(Ti, T−i) =
∑
θi∈Ti

[qi(θi)− βi(T−i)C({i})− γi(T−i)] pi(θi)− αi(∅, T−i).

Obviously, this expression is maximized by the upper contour set Ti = {θi ∈ Θi|qi(θi) ≥
βi(T−i)C({i}) + γi(T−i)}. �

Proof of Theorem 7. For the proof we introduce the following notation. For T ⊂ D,

T =
⊔
i∈I Ti, we rewrite the definitions in Remark 2 as Ψ̃(T1, ...TI) = Ψ(T ) and Φ̃(T1, ...TI) =

Φ(T ).

Claim 2. Due to the group-symmetry, both Ψ̃(T1, . . . , T|I|) and Φ̃(T1, . . . , T|I|) are invariant

to permutations of the sets (Ti)i∈G`.

Proof. Let us focus on Ψ̃. It suffices to consider a binary permutation π : I → I de-

fined as π(i) = j and π(j) = i for some i, j ∈ G` with π(k) = k for all k 6= i, j. Let

T π := (Tπ(k))k∈I and θπ := (θπ(k))k∈I . Note first that p(θ) = p(θπ). We next argue that

C(I(θ, T )) = C(I(θπ, T π)). This is trivial in case either i, j ∈ I(θ, T ) or i, j /∈ I(θ, T ), since

then I(θπ, T π) = I(θ, T ). In case i ∈ I(θ, T ) and j /∈ I(θ, T ), letting I ′ = I(θ, T ) \ {i}, we

have C(I(θπ, T π)) = C(I ′ ∪ {j}) = C(I ′ ∪ {i}) = C(I(θ, T )) by the group-symmetry. The

argument is analogous in case i /∈ I(θ, T ) and j ∈ I(θ, T ). Then,

Ψ̃(T π) =
∑

θ′∈Y (Tπ)

C(I(θ′, T π))p(θ′) =
∑

θ∈Y (T )

C(I(θπ, T π))p(θπ) =
∑

θ∈Y (T )

C(I(θ, T ))p(θ) = Ψ̃(T ),

where the second equality follows from the fact that θ′ ∈ Y (T π) if and only if there is some

θ ∈ Y (T ) such that θ′ = θπ. �

Note now that for T, T ′ ⊂ D, we have T ∪ T ′ =
⊔
i∈I(Ti ∪ T ′i ) and T ∩ T ′ =

⊔
i∈I(Ti ∩

T ′i ).
28 Therefore, submodularity of Ψ and supermodularity of Φ (see Theorem 4), imply,

respectively, that for all T, T ′ ⊂ D :

Ψ̃(T1, . . . , T|I|) + Ψ̃(T ′1, . . . , T
′
|I|) ≥ Ψ̃(T1∪T ′1, . . . , T|I|∪T ′|I|) + Ψ̃(T1∩T ′1, . . . , T|I|∩T ′|I|), (20)

and

Φ̃(T1, . . . , T|I|) + Φ̃(T ′1, . . . , T
′
|I|) ≤ Φ̃(T1 ∪T ′1, . . . , T|I| ∪T ′|I|) + Φ̃(T1 ∩T ′1, . . . , T|I| ∩T ′|I|). (21)

Now suppose that there is some T ⊂ D for which the right inequality in (B′) is violated.

Suppose that T is minimal in the sense that for all proper subsets T ′ ( T , the right inequality

28The two equalities here hold since T and T ′ are the disjoint unions of Ti’s and T ′i ’s, respectively.
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in (B′) is fulfilled. We will show that if T is not group-symmetric, then there is a group-

symmetric set T̂ for which (B′) is also violated. Specifically, for each ` ∈ {1, . . . , L}, we define

T̄` :=
⋃
i∈G` Ti where T̄` is the usual (not disjoint) union of the sets Ti, i.e., T̄` ⊂ Θ̂`. Using

this, we define the group-symmetric set T̂ :=
⊔
i∈I T̂i by setting T̂i := T̄` for all ` ∈ {1, . . . , L}

and all i ∈ G`.

To show that the right inequality in (B′) is violated for T̂ , we show that starting from T

we can successively add types to the sets Ti to obtain a sequence of sets T = S1 ( S2 ( . . . (
SM = T̂ such that the right inequality in (B′) remains violated for all Sm, m = 1, . . . ,M .

The sequence is constructed inductively:

Step 1: Set S1 := T .

Step m: If Sm−1 = T̂ , STOP. Otherwise there must be a group ` ∈ {1, . . . , L} and

k, j ∈ G` such that at least one of the sets A := Tj \Sm−1
k and B := Tk \Sm−1

j is non-empty.

Define Sm := (Sm−1
j ∪B, Sm−1

k ∪ A, Sm−1
−jk ) and iterate to Step m+ 1.

Since I is finite the construction stops after a finite number of steps. It remains to show

Claim 3. If the right inequality in (B′) is violated for Sm, then it is also violated for Sm+1.

Proof. By construction, least one of the sets A,B is non-empty. By assumption, (B′) is

violated for T , ∑
i∈I

∑
θi∈Ti

Qi(θi)pi(θi) > Ψ̃(T1, . . . , T|I|),

and as T is chosen minimally, we have∑
i∈I

∑
θi∈Ti

Qi(θi)pi(θi)−
∑
θj∈A

Qj(θj)pj(θj)−
∑
θk∈B

Qk(θk)pk(θk) ≤ Ψ̃(Tj \ A, Tk \B, T−jk).

Hence∑
θj∈A

Qj(θj)pj(θj) +
∑
θk∈B

Qk(θk)pk(θk) > Ψ̃(Tj, Tk, T−jk)− Ψ̃(Tj \ A, Tk \B, T−jk). (22)

For the right inequality in (B′) for Sm+1 = (Smj ∪B, Smk ∪ A, Sm−jk), we have∑
i∈I

∑
θi∈Smi

Qi(θi)pi(θi) +
∑
θj∈B

Qj(θj)pj(θj) +
∑
θk∈A

Qk(θk)pk(θk)

=
∑
i∈I

∑
θi∈Smi

Qi(θi)pi(θi) +
∑
θj∈A

Qj(θj)pj(θj) +
∑
θk∈B

Qk(θk)pk(θk)

>Ψ̃(Sm) + Ψ̃(Tj, Tk, T−jk)− Ψ̃(Tj \ A, Tk \B, T−jk)

=Ψ̃(Sm) + Ψ̃(Tk, Tj, T−jk)− Ψ̃(Tk \B, Tj \ A, T−jk)

≥Ψ̃(Sm) + Ψ̃(Smj ∪B, Smk ∪ A, Sm−jk)− Ψ̃(Smj , S
m
k , S

m
−jk)

=Ψ̃(Sm+1
j , Sm+1

k , Sm+1
−jk )
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The first equality follows from group-symmetry since k, j ∈ G` for some `. The strict

inequality follows from (22) and the assumption that the right-hand side of (B′) is violated

for Sm. The second equality holds by symmetry. The weak inequality follows from (20) since

Smj ∪ Tk = Smj ∪B, Smj ∩ Tk = Tk \B, Smk ∪ Tj = Smk ∪ A, and Smk ∩ Tj = Tj \ A. �

Virtually the same argument can be applied to the left inequality of (B′) using (21). �

Proof of Corollary 3. Let TU := {T ⊂ D | ∀i : Ti is an upper contour subset of Qi} and

TL := {T ⊂ D | ∀i : Ti is a lower contour subset of Qi}. Then, from Theorem 6, we know

that (B′) holds for all T if and only if (BU) and (BL) hold for all T ∈ TU and all T ′ ∈ TL,

respectively. As in the proof of Theorem 7, if (BU) is violated for a minimal set T ∈ TU ,

then it is also violated for the group-symmetric set T̂ .29 Since each T̂i is the union of upper

contour sets, (BU) is violated for a group-symmetric set T̂ ∈ TU . A similar argument applies

to (BL). �
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Appendix A. Omitted Proofs

A.1. Structure of the Set of Reduced Form Auctions. We provide the proof of Theo-

rem 4 in Remark 2 which shows that the two functions, Ψ and Φ, which set an upper bound

and lower bound for the set of reduced form auctions, respectively, form a paramodular pair.

Proof of Theorem 4. We first observe that the operation I(θ, ·) as a function of T preserves

the union, intersection, and complement of sets: that is, for any θ ∈ Θ and T, T ′ ⊂ D,

I(θ, T ∩ T ′) = I(θ, T )∩ I(θ, T ′), I(θ, T ∪ T ′) = I(θ, T )∪ I(θ, T ′), and I(θ, T \ T ′) = I(θ, T ) \
I(θ, T ′). To see that the complement is preserved, for instance, note that i ∈ I(θ, T \ T ′) if

and only if θi ∈ T \ T ′, i.e., θi ∈ T and θi /∈ T ′, which is equivalent to having i ∈ I(θ, T ) and

i /∈ I(θ, T ′), i.e., i ∈ I(θ, T ) \ I(θ, T ′). The other equalities can be checked similarly.

Given this, paramodularity of Ψ and Φ holds due to the fact that the paramodularity of C

and L is not affected by the expectation operator. For instance, the compliance holds since

for any T, T ′ ⊂ D,

Ψ(T ′)− Φ(T ) =
∑
θ∈Θ

[
C(I(θ, T ′))− L(I(θ, T ))

]
p(θ)

≥
∑
θ∈Θ

[
C(I(θ, T ′) \ I(θ, T ))− L(I(θ, T ) \ I(θ, T ′))

]
p(θ)

=
∑
θ∈Θ

[
C(I(θ, T ′ \ T ))− L(I(θ, T \ T ′))

]
p(θ)

=Ψ(T ′ \ T )− Φ(T \ T ′).

The first and last equalities follow from the fact that Ψ(T ) =
∑

θ∈Y (T ) C(I(θ, T )) p(θ) =∑
θ∈ΘC(I(θ, T )) p(θ) and Φ(T ) =

∑
θ∈Y (T ) L(I(θ, T )) p(θ) =

∑
θ∈Θ L(I(θ, T )) p(θ) since, for

any θ ∈ Θ \ Y (T ), I(θ, T ) = ∅ so C(I(θ, T )) = L(I(θ, T )) = 0. The next to last equality

follows from the observation in the previous paragraph while the inequality from the compli-

ance of C and L. An analogous argument can be used to show the sub- and supermodularity

of Ψ and Φ, respectively. �

A.2. General Type Distributions. For the proof of Theorem 5 we denote the set of ex-

post allocation rules that respect (C,L) by Q0(C,L) and the set of implementable interim

allocation rules for given (C,L) by Q(C,L).
1
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Proof of Theorem 5. Let Λ : Q0(C,L) → Q(C,L) be the function that maps an ex-post

allocation rule to its reduced form. Note that since q ∈ Q0(C,L) is bounded and µ is a

probability measure, Q0(C,L) and Q(C,L) are subsets of the Hilbert space L2(Θ, µ,R|I|).
Along the lines of Lemma 5.4 in Border (1991), one can show that Q0(C,L) and Q(C,L) are

weakly compact and the linear mapping Λ is weakly continuous.

If Q : Θ → [0, C(I)]|I| satisfies (BC) it is bounded and hence there exists a sequence of

simple functions (Qn : Θ → [0, C(I)]|I|)n∈N with Qn
i (θ) = Qn

i (θi), such that for n → ∞, Qn

converges uniformly to Q, and Q1 ≤ Q2 ≤ Q3 ≤ . . . ≤ Q. Since convergence is uniform,

there is a sequence (εn)n∈N, εn > 0, such that εn → 0 for n → ∞, such for all T = (Ti)i∈I ,

Ti ∈ Ai, ∫
Y (T )

Lεn(I(θ, T ))dµ(θ) ≤
∑
i∈I

∫
Ti

Qn
i (θi)dµi(θi) ≤

∫
Y (T )

C(I(θ, T ))dµ(θ), (Cn)

where Lεn(I(θ, T )) = max {L(I(θ, T ))− εn, 0}.
As Qn is a simple function we can write Qn

i as

Qn
i (θ) =

Kn
i∑

k=1

αnikχAnik(θ),

where αnik ∈ [0, C(I)], {Anik}k is a partition of Θi such that each Anik ∈ Ai, and χA is the

indicator function of A.

Next, for given n and each i ∈ I, we define a discretized type space Θ̃n
i := {Anik}k=1,...,Kn

i
.

The distribution over type profiles is given by

p̃(An1k1 , . . . , A
n
|I|k|I|) := µ(An1k1 × . . .× A

n
|I|k|I|).

Let Q̃n be the interim allocation rule for the discrete type-space Θn defined by

Q̃n
i (Anik) := αnik.

We have chosen Qn such that Q̃n is implementable for the relaxed constraints (C,L− εn).

Hence, for each n there exists an allocation rule q̃n, for the discrete type-space that respects

(C,L − εn) and has reduced form Q̃n. Hence we can define an allocation rule qn for the

continuous type space that respects (C,L−εn) and has reduced form Qn: If θ ∈ An1k1× . . .×
An|I|k|I| , we define

qni (θ) := q̃ni (An1k1 , . . . , A
n
|I|k|I|).

So we have shown that Qn ∈ Q(C,L− εn)

Next, we take the limit n → ∞ to show that Q ∈ Q(C,L). Since qn ∈ Q0(C, 0) for

all n and Q0(C,L) is weakly compact, there is a weakly convergent subsequence with limit

q ∈ Q0(C,L). Moreover, since qn respects (C,L − εn) and εn → 0, q respects (C,L), i.e.,

q ∈ Q0(C,L). By continuity of Λ, there exists Q′ such that Q(θ) = Q′(θ) for almost every θ.
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Since Q(C,L) is a compact set, Q′ ∈ Q(C,L). As in the proof of Proposition 3.1 in Border

(1991), one can show that also Q ∈ Q(C,L). �

A.3. Border Characterization in the Partitional Constraint Structure.

Proof of Theorem 8. We first derive the effective constraints for arbitrary sets G ⊂ I. For

any G ⊂ I, define

HL
G :=

{
G′ ∈ H̃

∣∣∣G′ ⊂ G
}

and HC
G :=

{
G′ ∈ H̃

∣∣∣G′ ∩G 6= ∅} .
First, we show that C(G) = φ(HC

G) = min{
∑

G′∈HCG
CG′ , CI −

∑
G′∈H̃\HCG

LG′}. To begin,

observe that C(G) ≤ φ(HC
G). This follows from the fact that for any q ∈ P ,∑

i∈G

qi ≤
∑
G′∈HCG

∑
i∈G′

qi ≤
∑

G′∈HCG

CG′ , (A.1)

∑
i∈G

qi ≤ CI −
∑
i∈I\G

qi ≤ CI −
∑

G′∈H̃\HCG

∑
i∈G′

qi ≤ CI −
∑

G′∈H̃\HCG

LG′ , (A.2)

where the first inequality in (A.1) and the second inequality in (A.2) hold since G ⊂⋃
G′∈HCG

G′ and qi ≥ 0,∀i. We construct an allocation q ∈ P to show that φ(HC
G) can

be attained as a maximum of (3), so C(G) = φ(HC
G). To this end, note that∑

G′∈HCG

LG′ ≤ φ(HC
G) ≤

∑
G′∈HCG

CG′ , (A.3)

φ(HC
G) +

∑
G′∈H̃\HCG

LG′ ≤ CI ≤ φ(HC
G) +

∑
G′∈H̃\HCG

CG′ , (A.4)

which follows from the definition of φ and the assumption that CG′ ≥ LG′ ,∀G′ ∈ H̃ and∑
G′∈H̃ LG′ ≤ LI ≤ CI ≤

∑
G′∈H̃ CG′ . These two inequalities imply that there are λ1, λ2 ∈

[0, 1] such that

φ(HC
G) =

∑
G′∈HCG

[λ1LG′ + (1− λ1)CG′ ], (A.5)

CI = φ(HC
G) +

∑
G′∈H̃\HCG

[λ2LG′ + (1− λ2)CG′ ]. (A.6)

Now define q as follows: for each G′ ∈ HC
G, qi =

λ1LG′+(1−λ1)CG′
|G∩G′| if i ∈ G′ ∩G while qi = 0 if

i ∈ G′ \G; for each G′ ∈ H̃ \ HC
G and all i ∈ G′, let qi =

λ2LG′+(1−λ2)CG′
|G′| . Given this,∑

i∈G

qi =
∑

G′∈HCG

∑
i∈G∩G′

qi =
∑

G′∈HCG

∑
i∈G∩G′

(
λ1LG′+(1−λ1)CG′

|G∩G′|

)
=
∑
G′∈HCG

[λ1LG′ + (1− λ1)CG′ ],

∑
i∈I\G

qi =
∑

G′∈HCG

∑
i∈G′\G

qi +
∑

G′∈H̃\HCG

∑
i∈G′

qi =
∑

G′∈H̃\HCG

∑
i∈G′

qi =
∑

G′∈H̃\HCG

[λ2LG′ + (1− λ2)CG′ ].



GENERALIZED REDUCED-FORM AUCTIONS 4

Given (A.5) and (A.6), these equalities mean
∑

i∈G qi = φ(HC
G) and

∑
i∈I qi = CI . Thus, it

only remains to verify that q ∈ P . The fact that
∑

i∈I qi = CI ≥ LI means that the capacity

constraints for G = I is satisfied. For each G′ ∈ HC
G, we have

∑
i∈G′ qi = λ1LG′+(1−λ1)CG′ ∈

[LG′ , CG′ ], so the capacity constraint is satisfied. Analogously, the capacity constraint is

satisfied for each G′ ∈ H̃ \ HC
G.

Since establishing L(G) = ψ(HL
G) is analogous, we only provide a sketch of proof. First, it

is easy to see that L(G) ≥ ψ(HL
G), following a similar derivation as in (A.1) and (A.2). Also,

(A.3) through (A.6) hold with φ, HC
G, and CI being replaced by ψ, HL

G, and LI , respectively,

and with some λ1, λ2 ∈ [0, 1]. Construct an allocation q ∈ P which achieves ψ(HL
G), as

follows: for each G′ ∈ HL
G and all i ∈ G′, qi =

λ1LG′+(1−λ1)CG′
|G′| ; for each G′ ∈ H̃ \ HL

G, qi =
λ2LG′+(1−λ2)CG′

|G′\G| if i ∈ G′ \G while qi = 0 if i ∈ G′ ∩G. Given this, it is straightforward to see

that
∑

i∈G qi =
∑

G′∈HLG
[λ1LG′+(1−λ1)CG′ ] and

∑
i∈I\G qi =

∑
G′∈H̃\HLG

[λ2LG′+(1−λ2)CG′ ].

The rest of the proof is parallel to that in the previous paragraph.

To summarize, we have shown that for any G ⊂ I, the effective constraints are given by

L(G) = ψ(HL
G) and C(G) = φ(HC

G). Lemma 1 implies that the effective constraints (C,L)

are paramodular. Now we are ready to prove the Theorem.

(i) Fix any θ = (θi)i∈I , and define T =
⊔
i∈I Ti where Ti = [θi, θi]. For any profile we

have C(I(θ̃, T )) = φ(HC
I(θ̃,T )

). Inserting this into (the general type-space version) of (BU) in

Theorem 6 and noting that C(I(θ̃, T )) = 0 if θ̃ /∈ Y (T ), we get∑
i∈I

∫ θi

θi

Qi(si)dFi(si) ≤
∫

Θ1

. . .

∫
Θ|I|

C(I(θ̃, T ))dF1(θ̃1) . . . dF|I|(θ̃|I|)

=
∑
H′⊂H

φ(H′) Pr{HC
I(θ̃,T )

= H′}

=
∑
H′⊂H

φ(H′) ·
∏
G∈H′

(1−FG(θ)) ·
∏

G∈H̃\H′

FG(θ).

Meanwhile, consider T =
⊔
i Ti where Ti = [θi, θi]. We have L(I(θ̃, T )) = ψ(HL

I(θ̃,T )
). Insert-

ing this into (the general type-space version) of (BL) in Theorem 6 we have∑
i∈I

∫ θi

θi

Qi(si)dFi(si) ≥
∫

Θ1

. . .

∫
Θ|I|

L(I(θ̃, T ))dF1(θ1) . . . dF|I|(θ|I|)

=
∑
H′⊂H

ψ(H′) Pr{HL
I(θ̃,T )

= H′}

=
∑
H′⊂H

ψ(H′) ·
∏
G∈H′

FG(θ) ·
∏

G∈H̃\H′

(1−FG(θ)).

(ii) Last, the proof of (ii) follows from application of Corollary 3 to (i). �
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Appendix B. The Role of the Compliance Property

The compliance condition ensures that the submodular upper bounds and supermodular

lower bounds constitute effective bounds in the following sense:

Lemma 2 (Frank and Tardos, 1988, p. 502, Proposition 2.3). If (C,L) is paramodular,

then C(G) = max{
∑

i∈G qi | q = (qi)i∈I respects (C,L)} and L(G) = min{
∑

i∈G qi | q =

(qi)i∈I respects (C,L)} for each G ⊂ I.

Furthermore, there is a sense in which compliance constitutes a weakest sufficient condition

or a maximal domain for submodular upper bounds and supermodular lower bounds to be

effective. Note first that a violation of compliance can only occur for sets G,G′ ⊂ I such

that G ∩ G′ 6= ∅, because otherwise C(G′ \ G) − L(G \ G′) = C(G′) − L(G). Suppose that

the four constraints C(G′), C(G′ \ G), L(G), and L(G \ G′) are given for sets G,G′ ⊂ I

with G ∩ G′ 6= ∅, and compliance is violated for these sets. The following Lemma shows

that if it is possible to extend the constraints to all subsets such that C is submodular, L

is supermodular, and such that the set of feasible allocations is non-empty, then there exists

such an extension for which at least one constraint is not effective.

Lemma 3. Let G,G′ ∈ I with G ∩G′ 6= ∅ and let C(G′), C(G′ \G), L(G), L(G \G′) ∈ R+

such that C(G′)−L(G) < C(G′\G)−L(G\G′). If there exists an extension (C(G̃), L(G̃))G̃⊂I
of these constraints to 2I , such that C is submodular, L is supermodular, and P := {x ∈
R|I|+ |L(G̃) ≤

∑
i∈G̃ xi ≤ C(G̃),∀G̃ ⊂ I} 6= ∅, then there also exists an extension with these

properties for which C(G′\G) > max{
∑

i∈G′\G xi|x ∈ P} or L(G\G′) < min{
∑

i∈G\G′ xi|x ∈
P}.

Proof. Note first that (a) if C(G′) < C(G′ \G), then C(G′ \G) is not effective; (b) if G ⊂ G′,

the violation of compliance implies C(G′ \ G) > C(G′) − L(G) so that C(G′ \ G) is not

effective; and (c) if G′ ⊂ G, L(G \ G′) is ineffective because L(G \ G′) < L(G) − C(G′).

Hence the statement of the Lemma follows in all three cases.

Second, supermodularity of L implies that L is monotonic. Therefore, we can assume that

L(G) ≥ L(G \G′) because otherwise no supermodular extension exists.

After these preliminary considerations, we only have to consider the case that G 6⊂ G′,

G′ 6⊂ G, C(G′) ≥ C(G′ \ G), and L(G) ≥ L(G \ G′). For this case we define C(G ∩ G′) =

L(G∩G′) = C(G′)−C(G′ \G). Then the violation of compliance implies that C(G∩G′) =

C(G′) − C(G′ \ G) < L(G) − L(G \ G′) and hence L(G \ G′) < L(G) − C(G ∩ G′), which

means that L(G \G′) is not effective.

The proof will be complete once we define (C,L) for the remaining sets. We simplify

notation by denoting G1 = G′ \G, G2 = G \G′, and G3 = G∩G′. We fix a large number K

that is greater than the sum of all upper and lower bounds imposed on these sets and define



GENERALIZED REDUCED-FORM AUCTIONS 6

for any H ⊂ I,

C(H) :=


∑

k∈{1,3}:Gk∩H 6=∅C(Gk), if H ⊂ G′,

K otherwise.

and

L(H) :=


L(Gk) if ∅ 6= Gk ⊂ H for some k ∈ {2, 3} and G * H

L(G) if G ⊂ H

0 if Gk * H for all k ∈ {2, 3}.
It is easy to check that the upper and lower bounds defined here are consistent with those

given above. It is also easy to check that C(H) ≥ L(H) for any H ⊂ I while both C and

L are monotonic, i.e., C(H) ≤ C(H ′) for any H ⊂ H ′ ⊂ I, and similarly for L. To see

that P is nonempty, choose an element ik ∈ Gk for each k = 1, 2, 3, and define x ∈ R|I|+

by assigning xi1 = C(G′) − C(G ∩ G′) = C(G′ \ G), xi2 = K = C(G \ G′) ≥ L(G \ G′),
xi3 = L(G∩G′) = C(G∩G′), and xi = 0 for each i ∈ I \{i1, i2, i3}. It is then straightforward

to verify that x satisfies (C,L) so x ∈ P .

We next show that C is submodular: for any two sets H and H ′ ⊃ H, and any i ∈
I \ H ′, C(H ′ ∪ {i}) − C(H ′) ≤ C(H ∪ {i}) − C(H). This is immediate if H ′ * G′ or

i /∈ G′ since in the former case, C(H ′ ∪ {i}) = C(H ′) = K and C(H ∪ {i}) ≥ C(H)

while in the latter case, C(H ′ ∪ {i}) = C(H ∪ {i}) = K and C(H ′) ≥ C(H). Thus we

assume from now that H ⊂ H ′ ⊂ G′ and i ∈ G′. Then, i ∈ Gk for some k = 1, 3. If

H ′ ∩ Gk = ∅, then C(H ′ ∪ {i}) − C(H ′) = C(Gk) = C(H ∪ {i}) − C(H). If H ′ ∩ Gk 6= ∅,
then C(H ′ ∪ {i})− C(H ′) = 0 ≤ C(H ∪ {i})− C(H).

Lastly, we show that L is supermodular: for any two sets H and H ′ ⊃ H, and any

i ∈ I \H ′, L(H ′ ∪{i})−L(H ′) ≥ L(H ∪{i})−L(H). Observe first that for any such H ⊂ I

and i ∈ I, we have L(H ∪ {i}) − L(H) = 0 unless Gk * H and Gk ⊂ (H ∪ {i}) for some

k = 2, 3, in which case we have either (i) i ∈ Gk and Gk \ {i} ⊂ H ∩G and H ∩G 6= G \ {i}
or (ii) i ∈ Gk and H ∩ G = G \ {i}. This implies that to show the supermodularity, it

suffices to consider the two cases (i) and (ii). If (i) holds and H ′ ∩ G 6= G \ {i}, then

L(H∪{i})−L(H) = L(Gk) = L(H ′∪{i})−L(H ′), as desired. If (i) holds andH ′∩G = G\{i},
then we have Gk * H ′, Gk′ ⊂ H ′ for k′ ∈ {2, 3} \ {k}, and G = Gk ∪Gk′ ⊂ H ′ ∪ {i}, which

implies L(H ∪ {i}) − L(H) = L(Gk) < L(G) − L(Gk′) = L(H ′ ∪ {i}) − L(H ′). Here the

strict inequality follows from the fact that L(G) > L(G \G′) +L(G∩G′) = L(Gk) +L(Gk′).

Finally, in case (ii) holds, we have L(H∪{i})−L(H) = L(G)−L(Gk′) = L(H ′∪{i})−L(H ′),

as desired. �

Appendix C. The Connection with Budish et al. (2013)

The characterization of feasible interim allocation rules we study has a connection with

the characterization of the implementable expected allocations studied by Budish et al.
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(2013) (hereafter BCKM). BCKM study the constraint structure—the set of agent-object

pairs whose assignment probability must obey some arbitrary integer-valued ceiling and

floor constraints—that permits any expected assignment satisfying these constraints to be

implemented by a lottery of deterministic assignments, each of which satisfies the same

constraints. As mentioned in that paper, that requirement boils down to requiring that

the set of feasible fractional assignments, which forms a bounded polytope, have integer-

valued extreme points. While both characterizations deal with implementability of some

marginals via some joint distribution, there are several differences: (1) The integrality of the

feasible set is the main issue in BCKM’s characterization but it is not an issue in the current

characterization, (2) our main challenge arises from the fact that there are different types of

each agent, whereas no such problem arises in BCKM, and (3) BCKM adopt the notion of

“universal implementation” which requires implementation to hold for all arbitrary quotas

for the identified constraint structures. In contrast to this, we allow for arbitrary constraint

structures but require the effective constraints to be paramodular. For the specific case of a

hierarchical constraints structure, our Lemma 1 shows that paramodularity of the effective

constraints is universal, i.e., it holds for arbitrary constraints on the hierarchical family. This

is similar to BCKM, except their the corresponding condition is that the constraint sets form

a pair of hierarchies.

Despite these differences, these two results have a common mathematical foundation, pro-

vided by the Edmonds’ Polymatroid Intersection Theorem. This connection will also explain

why the universal implementation in BCKM can be attained by bi-hierarchical constraint

sets whereas it can be attained only by hierarchical constraint sets in the current context.

For simplicity, we shall focus on the case in which the constraints are only in the upper

bounds. This assumption can be dropped in most of the discussion, except for Section D.

To begin, let us define a polymatroid. Let Ω be a finite set, called the ground set, and

consider a weight function x : Ω→ R+. Let X denote all such functions. A bounded convex

set

P = {x ∈ X |
∑
ω∈U

x(ω) ≤ f(U), ∀U ∈ 2Ω}

is said to be a polymatroid if f : 2Ω → R+ is submodular.

Edmonds’ Polymatroid Intersection Theorem30 has the following two results:

Theorem 9. Let P and P ′ be two polymatroids defined by f and f ′.

(1) (Primal Integrality or PI): All extreme points of P ∩ P ′ are integer-valued whenever

f and f ′ are integer-valued.

30See, for instance, Theorem 46.1 and Corollary 46.1a of Schrijver (2000)
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(2) (Total Dual Integrality or TDI): For any integer-valued n-vector c, the dual of max-

imizing cTx over x ∈ P ∩ P ′, where f and f ′ are rationals, has an integer optimal

solution.

We now show how the characterizations given by these two papers relate to the two distinct

parts of this theorem: BCKM relates to part 1 and our characterization relates to part 2 of

Theorem 9.

C.1. BCKM. It is easy to see how Theorem 9-1 implies the universal implementation char-

acterization result of BCKM. In their model, the set Ω = N×O is simply a set of agent-object

pairs, with N representing the set of agents and O representing the set of objects, and for

each (i, o) ∈ Ω, the weight function x(i, o) describes a (fractional) assignment of the object

to agent i. BCKM then consider an arbitrary family F ⊂ 2Ω of subsets of Ω, and require

the fractional assignment to be in the set

Q := {x ∈ X |
∑
ω∈U

x(ω) ≤ f(U), ∀U ∈ F}.

Their universal implementation result then boils down to the statement that every extreme

point of Q is integer-valued for any integer-valued f , if F comprises a pair of disjoint hier-

archies, i.e., F = H∪H′, where H and H′ are hierarchies. To see how Theorem 9-1 implies

this statement, observe first that given the hypothesis

Q = P ∩ P ′,

where P := {x ∈ X |
∑

ω∈U x(ω) ≤ f(U),∀U ∈ H}, and P ′ := {x ∈ X |
∑

ω∈U x(ω) ≤
f(U),∀U ∈ H′}. To see now that the desired universal implementation characterization

holds, it suffices to recall Lemma 1, which asserts that P and P ′ (each set generated by

quotas defined on hierarchical sets) are polymatroids. Hence, BCKM’s main result follows

from Theorem 9-1.

This perspective provides a new mathematical insight on BCKM. More interestingly, it

suggests a way to extend BCKM. Suppose the assignment must satisfy upper bounds f :

2Ω → Z+ and lower bounds g : 2Ω → Z+. We say that (f, g) is bi-paramodular if there

exist (f1, g1) and (f2, g2) such that (fi, gi)i=1,2 is paramodular and f = min{f1, f2} and

g = max{g1, g2}. Then, we get the following result:

Theorem 10. Any fractional assignment x is implementable with respect to (f, g) if (f, g)

is bi-paramodular.

C.2. The current paper. The connection of Theorem 9 with the current paper is much

more difficult to see, and so far, we have been able to establish it only for the upper bound

case. The upshot is that at least in the case of upper bound only, we can see why Theorem

9-2 implies that the type of characterization like that in Theorem 3 should obtain.
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To begin, let q̃i(θ) = qi(θ)p(θ) and q̃ = (q̃i(θ))i∈I,θ∈Θ. For any interim allocation rule Q,

consider the following linear programming problem:

max
q̃≥0

∑
i∈I,θ∈Θ

q̃i(θ) (P1)

subject to ∑
i∈G

q̃i(θ) ≤ C(G)p(θ), ∀G ⊂ I,∀θ ∈ Θ, [x(G, θ)] (C.1)

and
∑

θ−i∈Θ−i

q̃i(θi, θ−i) ≤ Qi(θi)pi(θi),∀θi ∈ Θi,∀i ∈ I, [z(i, θi)] (C.2)

where each variable in the square brackets is the dual variable for the corresponding con-

straint. The constraints (C.1) correspond to the capacity constraints we have in our model

for subsets of agents. The constraints (C.2) correspond to the requirement that Q is a

reduced form (or implementable).

Note that given the last constraint, the optimal value of this problem cannot exceed the

aggregate interim allocation probability, i.e.,
∑

i∈I
∑

θi∈Θi
pi(θi)Qi(θi). Note also that the

interim allocation rule (Qi(θi))θi∈Θi,i∈I is a reduced form if and only if the optimal value

equals
∑

i∈I
∑

θi∈Θi
pi(θi)Qi(θi).

To see how this program is related to our characterization, observe that the coefficients in

the primal objective function are all 1’s. Hence, if the feasible set associated with constraints

(C.1) and (C.2) are TDI, then the dual of (P1) has an optimal integer solution, as implied by

Theorem 9-2. It turns out that this implication gives rise to a Border type characterization,

which will be established in the next section, Section D.

Hence, the important question, regarding our characterization, boils down to whether the

feasible set associated with constraints (C.1) and (C.2) are TDI. The answer to this question

is given by observing that each constraint gives rise to a polymatroid.

Lemma 4. Each of the constraints (C.1) and (C.2) gives rise to a polymatroid with Ω = I×Θ

as a ground set.

Proof. Given the ground set Ω = I ×Θ, for each ω = (i, θ) ∈ Ω and U ⊂ Ω, let x(ω) = q̃i(θ)

and x(U) =
∑

ω∈U x(ω).

We first show that the set of q̃’s satisfying (C.1) is a polymatroid. To do so, define a

weight function f1 : 2Ω → R+ as follow: For each U ⊂ Ω, let α(θ, U) := {i ∈ I|(i, θ) ∈ U}
and

f1(U) =
∑
θ∈Θ

C(α(θ, U))p(θ).

Letting P1 := {x ∈ R|Ω|+ : x(U) ≤ f1(U)}, it is straightforward to check that P1 is equivalent

to the set of allocations satisfying (C.1), which is thus a polymatroid if f1 is submodular.
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To show it, consider any subsets U,U ′ ⊂ Ω with U ⊂ U ′ and any ω = (i, θ) /∈ U ′. Then,

we have f1(U ∪ {ω})− f1(U) =
[
C(α(θ, U) ∪ {i})−C(α(θ, U))

]
p(θ) ≥

[
C(α(θ, U ′) ∪ {i})−

C(α(θ, U ′))
]
p(θ) = f1(U ′ ∪ {ω}) − f1(U ′), where the inequality holds due to the fact that

α(θ, U) ⊂ α(θ, U ′) and C is submodular.

We next show that the set of q̃’s satisfying (C.2) is a polymatroid. To do so, define another

weight function f2 : 2Ω → R+ as follow: For each U ⊂ Ω, let (i, θi,Θ−i) = {(i, θi, θ−i) : θ−i ∈
Θ−i} (by some abuse of notation) and

f2(U) =
∑

(i,θi):(i,θi,Θ−i)∩U 6=∅

pi(θi)Qi(θi).

Letting P2 := {x ∈ R|Ω|+ : x(U) ≤ f2(U)}, it is again straightforward to check that P2

is equivalent to the set of allocations satisfying (C.2), which is thus a polymatroid if f2

is submodular. To show it, consider any subsets U,U ′ ⊂ Ω with U ⊂ U ′ and any ω =

(i, θi, θ−i) /∈ U ′. If (i, θi,Θ−i) ∩ U 6= ∅, then we have f2(U ∪ {ω}) − f2(U) = 0 = f2(U ′ ∪
{ω})− f2(U ′). If (i, θi,Θ−i) ∩ U = ∅ and (i, θi,Θ−i) ∩ U ′ 6= ∅, then f2(U ′ ∪ {ω})− f2(U ′) =

0 ≤ pi(θi)Qi(θi) = f2(U ∪ {ω})− f2(U). If (i, θi,Θ−i) ∩ U ′ = ∅, then f2(U ∪ {ω})− f2(U) =

pi(θi)Qi(θi) = f2(U ′ ∪ {ω})− f2(U ′). �

Remark 4. (Universal Implementation). When the sets of agents facing quota constraints

form a hierarchy, we have an universal implementation in the sense that regardless of the

specific values of the quotas, the Border type characterization, specifically Theorem 3, holds.

The reason for this is that by Lemma 1, the quota constraints (C.1) form a polymatroid

regardless of the specific values of the quotas. The reason that we cannot accommodate

more (e.g., bihierarchy), as also proven by Remark 1, is because we have already used up

another polymatroid in our reduced-form requirement (C.2). This is precisely the reason

why bihierarchy is possible under BCKM but not in our case; they do not face additional

constraints such as (C.2) that we have to deal with.

Appendix D. Polymatroid Method for the Border Characterization

In this subsection, we show that the polymatroid optimization problem stated in (P1)

provides an alternative way to obtain the Border characterization. As mentioned earlier,

this result is established by using the fact that the constraints of (P1) are TDI so the dual

problem has an integer solution. For this argument, we need to assume that p and Q are all

rational numbers. We note that the argument below is not readily adaptable to the general

case with both upper and lower bound constraints. This illustrates the advantage of using

our network flow approach to obtain the generalized characterization as in Theorem 3.
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To begin, let us write the dual problem to (P1) as follows:

min
x(·),z(·)

∑
G⊂I,θ∈Θ

p(θ)C(G)x(G, θ) +
∑
i∈I

∑
θi∈Θi

[Qi(θi)pi(θi)z(i, θi)] (Dual-1)

subject to ∑
G:i∈G

x(G, θ) + z(i, θi) ≥ 1,∀i ∈ I,∀θ ∈ Θ (D.1)

and x(G, θ), z(i, θi) ≥ 0,∀G, θ, i, θi. To show the sufficiency of the Border condition for

implementability of Q,31 suppose that Q is not a reduced form, which means that the optimal

value of the primal, and thus the dual, problem is smaller than
∑

i∈I
∑

θi∈Θi
pi(θi)Qi(θi). We

show that this leads to the violation of upper bound condition in (B′) for some T ⊂ D.32

To this end, recall first that the constraints of (P1) are TDI, so its dual (Dual-1) has an

integer solution, which then implies z(i, θi) = 0 or 1 for all (i, θi), since otherwise one could

reduce z(i, θi), and thereby the value of the objective function, without violating (D.1).

Given any such optimal z(·), the dual problem (Dual-1) can be decomposed into the

following sub-problems: for each θ ∈ Θ,

min
x(·,θ),y(·,θ)

p(θ)
∑
G⊂I

C(G)x(G, θ) (Dual-2)

subject to ∑
G:i∈G

p(θ)x(G, θ) ≥ p(θ) [1− z(i, θi)] ,∀i ∈ I. (D.2)

With γ(i, θ) denoting the dual variable for the constraint (D.2), the dual problem to (Dual-2)

can be written as

max
γ(·,θ)

∑
i∈I

p(θ)[1− z(i, θi)]γ(i, θ) (P2)

subject to ∑
i∈G

γ(i, θ) ≤ C(G),∀G ⊂ I (D.3)

To solve (P2), let Ti = {θi ∈ Θi|z(i, θi) = 0} for each i ∈ I, so z(i, θi) = 1 for any

θi ∈ Θi\Ti. Recall that with T =
⊔
i∈I Ti, I(θ, T ) = {i ∈ I|θi ∈ Ti}. Then, the objective

function of (P2) becomes ∑
i:z(i,θi)=0

p(θ)γ(i, θ) = p(θ)
∑

i∈I(θ,T )

γ(i, θ),

31The proof of necessity is straightforward and thus omitted.
32The duality argument we use below is similar to that in Cai et al. (2011). Unlike Cai et al. (2011), however,
our argument exploits the TDI property to yield the Border characterization, which is much tighter than the
characterization in Cai et al. (2011).
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which clearly attains its maximum when
∑

i∈I(θ,T ) γ(i, θ) = C(I(θ, T )), given the constraint

(D.3). Plug this into the objective function of (Dual-1) to obtain∑
θ∈Θ

p(θ)C(I(θ, T )) +
∑
i∈I

∑
θi∈Θi

pi(θi)Qi(θi)z(i, θi).

Now that this expression must be smaller than
∑

i∈I
∑

θi∈Θi
pi(θi)Qi(θi) by assumption, we

get

0 >
∑
θ∈Θ

p(θ)C(I(θ, T )) +
∑
i∈I

∑
θi∈Θi

pi(θi)Qi(θi) [z(i, θi)− 1]

=
∑

θ∈Y (T )

p(θ)C(I(θ, T ))−
∑
i∈I

∑
θi∈Ti

pi(θi)Qi(θi),

which means that (B′) is violated for T , as desired.

D.1. A characterization for general constraints. Without assuming supermodularity

of the upper bounds, Cai et al. (2011) derive a characterization the involves a continuum of

constraints. To state their result we define

A(C) :=

{
x ∈ [0, 1]|I|

∣∣∣∣∣∑
i∈G

xi ≤ C(G), ∀G ⊂ I

}
as the set of allocations that is feasible for given upper bounds C : 2I → [0, n]. In the

following theorem, C need not be submodular.

Theorem 11 (Cai et al., 2011). Let Q be an interim allocation rule. Q is the reduced form

of an allocation rule that respects (C, 0) if and only if for all weights (Wi(θi))i∈I,θi∈Θi ∈
[0, 1]

∑
i |Θi|, ∑

i∈I

∑
θi∈Θi

Wi(θi) [pi(θi)Qi(θi)] ≤
∑
θ∈Θ

max
x∈A(C)

{∑
i∈I

Wi(θi)xi

}
(D.4)

This characterization is obtained from the dual linear program (Dual-1) and the weights

W are the dual variables z. Therefore, submodularity implies that (D.4) has to be checked

only for integer-valued weights. But for (Wi(θi))i∈I,θi∈Θi ∈ {0, 1}
∑
i |Θi| (D.4) is equivalent to

(B′) with T = {θi ∈ D | Wi(θi) = 1}.
Conversely, if submodularity is violated, some of the constraints in (D.4) induced by non-

integer weights are binding. To see this, consider the first example in Table I in Remark 1. If

we maximize the objective function subject to (B′), a maximizer is given by Q∗i (θi) = 13/8

and Q∗i (θi) = 9/4 for all i ∈ I. For this interim allocation rule, (D.4) is for example violated

for weights Wi(θi) = 1/2 and Wi(θi) = 1 for all i ∈ I. Indeed, a straightforward calculation

shows that for these weights and the interim allocation rule Q∗, the LHS of (D.4) is 147/32

whereas the RHS is 9/2, which is strictly smaller. This demonstrates that the additional
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constraints can in general not be neglected and the characterization obtained in the absence

of submodularity is much less tractable than our characterization in Theorem 3.
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