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Abstract

Peter DeMarzo, Ilan Kremer and Andrzej Skrzypacz (2005, henceforth DKS) analyzed auc-

tions in which bidders compete in securities. They show that a steeper security leads to

a higher expected revenue for the seller, and also use this to establish the revenue ranking

between standard auctions. In this comment, we obtain the opposite results to DKS’s by as-

suming that a higher return requires a higher investment cost. Given this latter assumption,

steeper securities are more vulnerable to adverse selection, and may thus yield lower expected

revenue, than flatter ones.



Peter DeMarzo, Ilan Kremer and Andrzej Skrzypacz (2005, henceforth DKS) analyzed

auctions in which bidders compete in securities, i.e., the winning bidder’s payment includes

a share of cash flow or (ex-post) value generated from the auctioned object. With attention

restricted to “feasible” securities,1 their main finding concerns the role of the “steepness” of

securities in determining the seller’s revenue. They show that the steeper the payment to the

seller as a function of the realized value, the higher is the seller’s expected revenue. A shift

from a security, say a debt, to a steeper one, say equity or call option, “flattens” the surplus

accruing to a bidder as a function of his future realized value, and this levels the competitive

gaps between bidders. Hence, the competition becomes intensified.2

In this comment, we wish to add to DKS’ analysis a caveat — that the adverse selection

problem should be an important part of security and auction design consideration. Unlike

cash bids, security bids are difficult to evaluate when the seller does not know the buyer’s

exact type. For instance, a 40% share of an asset managed by a buyer may be less valuable

than a 30% share of the same asset managed by a different buyer, if the latter is much more

competent. Lacking such information, a seller may fall victim to adverse selection, choosing

a wrong bidder. This problem has been noted by several authors such as William Samuelson

(1987), Simon Board (2007) and Charles Zheng (2001) in the context of a fixed security design.

Our concern here is its relevance for security design: We show that the adverse selection

problem may lead to the rankings of alternative security designs and auction formats that

are quite different from, and in fact opposite to, those found in DKS. In particular, under a

reasonable circumstance, a steeper security is more vulnerable to adverse selection, and could

result in a poorer revenue performance, than a flatter security.

To illustrate, suppose there are two buyers, 1 and 2. Buyer i = 1, 2 has a project which

requires initial investment of xi and generates a (gross) return of xi + vi. Suppose v1 > v2 ≥ 0

and x1 > x2. That is, buyer 1’s project generates a higher return (so is efficient to select)

but requires a higher investment than buyer 2’s project. This assumption is reasonable.

A financially distressed or bankrupt firm will more likely turn profitable again under the

management willing to infuse more cash, for instance. Or a firm that can generate a greater

value from a under-performing target is more likely to have a higher opportunity cost (e.g., of

pursuing other target) or stand-alone values. The assumption is equally compelling in other

contexts, such as the government sale of oil leases.

1A security is feasible if the shares accruing to the payee and payer are both nondecreasing in the realized
gross return. As DKS observe, all standard financial claims satisfy this monotonicity condition.

2This insight originates from Robert Hansen (1985) and is further developed by Matthew Rhodes-Kropf
and S. Viswanathan (2000).
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Assume a second-price auction is used. Suppose first the buyers bid in standard debt.

Then, buyer i is willing to bid up to vi. Hence, buyer 1 will win and must pay v2. Deterministic

return means that the revenue for the seller is v2, the same as that under the cash auction.

Suppose next the buyers bid in the standard equity. Buyer i will then bid a share si that

will leave him with zero profit: (1− si)(vi + xi)− xi = 0, or

si =
vi

xi + vi

.

The efficient buyer is no longer assured of winning. Buyer 1 wins if v1

x1
> v2

x2
, but he loses if

v1

x1
< v2

x2
. In the former case, the seller’s revenue is x1+v1

x2+v2
v2 > v2, so it is higher than that under

the cash or debt auction. But in the latter case, the seller receives

x2 + v2

x1 + v1

v1 < v2,

which is less than what either cash or debt auction would bring.

Consider finally the steepest design, a call option. This is equivalent to the buyers com-

peting for a debt issued by the seller. Again the logic of the second-price auction implies that

buyer i will ask for repayment rate of xi, which will just pay for his investment cost. Since

the low bid wins in this case, bidder 2 wins always! As a result, the seller receives

max{v2 + x2 − x1, 0},

which is the least among all revenues from all other security auctions, regardless of who wins

in the equity auction.3

In what follows, we generalize this observation, establishing first the sense in which a

steeper security is more vulnerable to adverse selection than a flatter security and second how

the adverse selection problem affects the seller’s revenue.

1 Model

Each bidder’s type is represented by his project, indexed by the net expected return, v ∈ [v, v].

The investment project with return v requires initial investment x(v), where x(v) ≥ 0 and

3When v1
x1

< v2
x2

, the seller’s revenue from equity auction is

x2 + v2

x1 + v1
v1 > max{v2 + x2 − x1, 0},

since v1
x1+v1

is increasing in v1 and since the LHS equals the middle term when v1 falls to v2 + x2 − x1.
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x′(·) ≥ 0. The project v generates gross return Z, which is distributed over [z, z], where

z ≤ x(v). Without loss, we can redefine v = E[Z|v] − x(v) to be the net expected return.

Clearly, it is efficient for the buyer with the highest project return to be selected. Adverse

selection arises when the seller fails to select the buyer efficiently.

The ensuing model is precisely the same as DKS, except that we allow the investment

cost x(v) to rise with the project type v. This feature is quite plausible, as motivated in the

introduction, and also serves to identify the different extents to which alternative security

designs and auction formats are vulnerable to adverse selection.

As with DKS, we consider an ordered set of feasible securities S = {S(s, Z) : s ∈ [0, 1]}:
For all v, ∂E[S(s,Z)|v]

∂s
> 0. For simplicity, we write E[S(s, Z)|v] as ES(s, v) and its derivatives

as ESv(s, v) and ESs(s, v). Also, as in DKS, we compare two ordered sets of securities, S1

and S2, in terms of steepness: S1 is steeper than S2 if for all S1 ∈ S1 and S2 ∈ S2, we have

ES1
v(s

1, v) > ES2
v(s

2, v) whenever ES1(s1, v) = ES2(s2, v). Note that S1 being steeper than

S2 implies that for all S1 ∈ S1 and S2 ∈ S2, ES1(s, v) and ES2(s, v) are single-crossing:

Whenever ES1(s, v) = ES2(s, v) for some v, we have ES1(s, v′) > (<)ES2(s, v′) if v′ > (<)v.

2 Ranking Security Designs

2.1 Second-Price Auctions

We first consider a second-price auction in which each bidder submits a security from an

ordered set S and the seller selects a bidder with highest security (highest s), who then

pays the second highest security. In a weakly dominant equilibrium, a type v submits a bid

s(v) ∈ [0, 1] such that

ES(s(v), v)− v = 0. (1)

Adverse selection manifests itself as the failure of monotonic equilibrium strategies. In

particular, we focus on the possibility of extreme adverse selection where bidders employ

decreasing bidding strategies. To this end, differentiate both sides of (1) with v to obtain

ESs(s, v)s′(v) + ESv(s, v)− 1 = 0

or

ESs(s, v)s′(v) = 1− ESv(s, v).
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Since ESs(s, v) > 0, s(·) will be decreasing if and only if

ESv(s, v) > 1 whenever ES(s, v) = v. (2)

It follows from this that a steeper security is more vulnerable to adverse selection than a

flatter design:

Proposition 1. Let s1(·) and s2(·) denote the equilibrium strategies under securities S1 and

S2, respectively. Suppose that S1 is steeper than S2. Then, if s2(·) is decreasing, s1(·) is

decreasing also. Also, if s1(·) is increasing, s2(·) too is increasing.

Proof. Since s1(·) and s2(·) constitute the equilibrium under S1 and S2, respectively, we

have ES1(s1(v), v) = v = ES2(s2(v), v) for all v. Then,

ES1
v(s

1(v), v) > ES2
v(s

2(v), v) > 1,

where the first inequality follows from S1 being steeper than S2 and the second from s2(·)
being decreasing. Thus, s1(·) is decreasing. A similar argument can be used to show that if

s1(·) is increasing, s2(·) is also increasing.

The next proposition establishes a convenient sufficient condition for adverse selection to

arise for some security design. It states that any security design as steep as, or steeper than,

standard equity will induce a decreasing equilibrium, if the investment cost x(v) increases at

a rate faster than the net return v.

Proposition 2. A second-price equity auction induces a decreasing (resp. increasing) equi-

librium bidding strategy if x(v)/v is increasing (resp. decreasing) in v.

Proof. Letting s denote the equity share, (1) becomes

ES(s(v), v) = s(v)E[Z|v] = s(v)(v + x(v)) = v

or

s(v) =
v

v + x(v)
=

1

1 + x(v)/v
,

which is increasing (resp. decreasing) if x(v)/v is decreasing (resp. increasing).

We now explore the revenue consequence of adverse selection.

Proposition 3. Suppose that S1 is steeper than S2. Letting s1(·) denote the equilibrium

bidding strategy under S1, if s1(·) is decreasing, then the seller’s revenue is lower with S2 than

with S1.
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Proof. We show that the desired revenue ranking holds in the ex-post sense. Fix a value

profile at v1, · · · , vn and let v(r) denote the r-th highest value. Since s1(·) is decreasing, a

winner under S1 pays ES1(s1(v(n−1)), v(n)) < ES1(s1(v(n)), v(n)) = v(n). First, we consider the

case in which under S2, a winner’s value is v > v(n) and the second highest bidder’s value is ṽ.

Then, the winner pays ES2(s2(ṽ), v), which is higher than what is paid by the winner under

S1 since

ES2(s2(ṽ), v) > ES2(s2(ṽ), v(n)) ≥ ES2(s2(v(n)), v(n)) = v(n) > ES1(s1(v(n−1)), v(n)).

Second, consider the case in which, under S2, a winner’s value is v(n) and the second highest

bidder’s value is ṽ. In this case, the winner under S2 pays ES2(s2(ṽ), v(n)) ≥ ES2(s2(v(n−1)), v(n)) >

ES1(s1(v(n−1)), v(n)), where the second inequality follows from the facts that S1 is steeper than

S2, ES1(s1(v(n−1)), v(n−1)) = ES2(s2(v(n−1)), v(n−1)) = v(n−1), and that v(n) < v(n−1).

Not only is a steeper security design more vulnerable to adverse selection than a flatter one,

but the former entails lower expected revenue than the latter, even when the latter too suffers

adverse selection. The reason is that the steeper design magnifies the competitive differences

of the bidders than a flatter design when decreasing equilibrium strategies are employed under

both designs.

As noted by DKS, a call option is the steepest, and standard debt is the flattest, among all

feasible securities. Further, a cash payment is even flatter than a standard debt. Combining

Propositions 2 and 3, we then arrive at rather surprising implications much in contrast with

DKS:

Corollary 1. Suppose x(v)/v is increasing in v. Then, for a second-price auction,

(i) cash or debt yields higher expected revenue than equity or any securities steeper than

standard equity.

(ii) a call option yields the lowest expected revenue among all feasible securities.

While the condition involves a restriction, part (ii) may likely hold under a weaker con-

dition. For instance, the result will hold whenever a call option auction induces a decreasing

equilibrium.

2.2 First-Price Auctions

We now establish analogous results about security designs under a first-price auction. To this

end, we assume that v is symmetrically distributed across bidders, following a distribution
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F : [v, v] → [0, 1] with a density f(v) > 0 for all v ∈ (v, v). We focus on a symmetric

equilibrium bidding strategy sF (·) that is differentiable.

As before, we first establish the sense in which a steeper security design is more vulnerable

than a flatter one to adverse selection. All proofs not provided here appear in Appendix.

Proposition 4. Suppose that S1 is steeper than S2. Suppose also that the first-price auction

with S2 induces a decreasing equilibrium bidding strategy. Then, the equilibrium of the first-

price auction with S1, if exists, must also be decreasing.

As before, adverse selection affects revenue more adversely for a steeper security design

than a flatter one, which stands in contrast with the finding of DKS.

Proposition 5. Suppose that S1 is steeper than S2 and the first-price auction with S2 induces

a decreasing equilibrium strategy. Then, the seller revenue is lower with S2 than with S1

whenever the latter admits an equilibrium.

3 Ranking Auction Formats

In this section, we study how adverse selection can affect the ranking of standard auction

formats. We first show that there is a sense in which the first-price auction is more prone to

adverse selection than a second-price auction:

Proposition 6. Suppose the equilibrium bidding strategy of the second-price auction is de-

creasing. Then, any equilibrium bidding strategy of the first-price auction, if exists, must also

be decreasing.

This difference in the two standard auction formats has consequences for the seller’s ex-

pected revenue. We now show that, much in contrast to DKS’s finding, whenever the adverse

selection plagues both formats under a given feasible security, a second-price auction yields a

higher expected revenue than a first-price auction.

To this end, following DKS, we call an ordered set, S, of securities super-convex if every S ∈
S is steeper than any security obtained from a (nontrivial) convex combination of securities

in S, and they are convex if it is equal to its convex hull.

Proposition 7. Suppose that S is super-convex (resp. convex) and the second-price auction

induces a decreasing equilibrium bidding strategy. Then, the first-price auction generates a

lower (resp. the same) expected revenue than the second-price auction whenever the former

admits an equilibrium.
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As noted in DKS, call options are super-convex, and equity is convex. Combining the

results established thus far yields the following implications.

Corollary 2. Suppose x(v)/v is increasing in v.

(i) A standard (i.e., first- or second-price) cash or debt auction yields higher expected revenue

than does any standard auction with equity or any securities steeper than equity.

(ii) A first-price auction with call options yields lower expected revenue than does any stan-

dard auction with any securities.

Proof. Given the condition, a second-price equity auction induces a decreasing equilib-

rium (Proposition 2). Since equity is convex, by Proposition 7, first- and second-price auctions

are revenue equivalent under equity. Part (i) then follows from Propositions 3 and 7.

We next prove part (ii). Note first that Propositions 1 and 2 and imply that a second-price

auction in call options induces a decreasing equilibrium. Then, by Proposition 6, a first-price

auction with call options induces a decreasing equilibrium. It then follows from Proposition 5

that a first-price auction with call options yields lower revenue than does a first-price auction

with any regular securities. Next, since call options are super-convex (as noted by DKS),

Proposition 7 implies that a first-price auction with call options yields lower revenue than a

second-price auction with call options, which, by Corollary 1, in turn yields lower revenue

than a second-price auction with any securities.

4 Concluding Remarks

We conclude our comment with two remarks. First, we have focused on the extreme form

of adverse selection in which the bidders adopt decreasing bidding strategies. This implicitly

assumes that the seller commits to a given auction rule. If she makes no such commitment but

rather selects the winner ex post optimally based on her inference from equilibrium strategies,

then a separating equilibrium will unravel, so a decreasing equilibrium will not arise. While it

is difficult to describe the resulting equilibrium precisely, our analysis seems relevant even in

this latter case, for a couple of reasons. First, whenever the equilibrium involves a decreasing

strategy in our model, the worst type can profitably mimic the equilibrium strategy of any

type. This means that the bidder will not be selected efficiently, so adverse selection is un-

avoidable, in equilibrium. In this sense, focusing on the circumstance entailing a decreasing

equilibrium (under our exogenous rule) serves as a useful proxy for the severity of adverse
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selection even in this case. Second, adverse selection appears to have a serious revenue con-

sequence for the seller even when she behaves ex post optimally. No matter how the seller

chooses the winner, given adverse selection (under our exogenous rule), the seller’s revenue

must be low enough to leave the worst type with positive rents.4 For this reason, adverse

selection should be taken seriously in auction/security design.

Second, the precise implications of adverse selection for security and auction design de-

pend on the underlying model. Nevertheless, the particular model we have considered seems

plausible. Further, its main feature – that a higher return corresponds to a higher investment

cost – lends itself to a standard moral hazard interpretation. That is, an insight similar to

those developed here will apply if the winning bidder’s return depends on his costly effort. A

steep security design could suppress the incentive for the efforts and thus could reduce the

surplus accruing to the seller.

Appendix

Proof of Proposition 4. Let si
F (·) denote the equilibrium strategy of the first-price

auction with S i and si(·) that of the second-price auction so that si(·) is a solution of (1) with

S i. As assumed, s2
F (·) is decreasing. The standard argument can be used to show that there

is no atom in the support of si
F (·), i = 1, 2.

Step 1. v is the unique minimizer of s1
F (·).

Proof. Suppose for a contradiction that s1
F (·) is minimized at some v′ < v so that v′ has

to obtain zero payoff at equilibrium under S1 since there is no atom. Since s2
F (·) is decreasing

and thus v obtains zero equilibrium payoff with S2, it must be that ES2(s2
F (v), v) = v =

ES1(s1(v), v). (Recall si(·) denotes the equilibrium strategy of the second-price auction with

security S i, satisfying (1).) Given this, S1 being steeper than S2 implies that

ES2(s2
F (v), v) > ES1(s1(v), v) for all v < v. (3)

4This again follows from the observation that if our exogenous auction rule induces a decreasing equilibrium,
the worst type can profitably mimic the equilibrium strategy of any type under the endogenous selection rule.
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So, we have

v′ − ES1(s1
F (v), v′) ≥ v′ − ES1(s1(v), v′)

> v′ − ES2(s2
F (v), v′)

> v′ − ES2(s2
F (v′), v′)

≥ 0 = v′ − ES1(s1
F (v′), v′),

where the first inequality follows from s1
F (v) ≤ s1(v), the second from (3), the third from

s2
F (·) decreasing, the fourth from s2

F (v′) being the equilibrium bid for v′ with S2, and the

last equality from v′ earning zero equilibrium payoff with S1. The above inequality results in

ES1(s1
F (v), v′) < ES1(s1

F (v′), v′) or s1
F (v) < s1

F (v′), contradicting that s1
F (·) is minimized at

v′. ‖

To simplify notation, s1
F (·) is denoted as sF (·) from now on. Then, Step 1 implies sF (v) <

sF (v), so the proof will be complete if it can be shown that s′F (v) 6= 0 for all v ∈ (v, v), which

is established in the next two steps.

Step 2. Let V0 = {v ∈ (v, v) : s′F (v) = 0 and v is a local minimum}. Then, V0 = ∅.

Proof. Suppose that V0 is not empty. One can then find v0 ∈ V0 such that sF (v0) ≤ sF (v′)

for all v′ ∈ V0. One can also find some v1 ∈ (v0, v) such that sF (v1) = sF (v0) and s′F (v1) < 0.5

Consider a downward deviation by v1 to slightly lower s and mimic v1 + ε with small ε > 0. It

is straightforward that as ε → 0, the marginal cost from decrease in the winning probability

is

d− := (n− 1)f(v1)F
n−2(v1)[v1 − E(sF (v1), v1)]

while the marginal benefit from decrease in the expected payment is

d+ := −(1− F (v1))
n−1s′F (v1)ESs(sF (v1), v1).

For this deviation to be unprofitable, we must have d− ≥ d+. Consider now an upward

deviation by v1 to slightly raise s and mimic v1 − ε for small ε > 0. We will then be able to

find some ε1(ε), ε2(ε) > 0 such that sF (v0 − ε1(ε)) = sF (v0 + ε2(ε)) = sF (v1 − ε). With this

deviation, the winning probability is equal to

w(ε) :=
n−1∑
k=0

(
n− 1

k

)
(F (v0 + ε2(ε))− F (v0 − ε1(ε)))

k(1− F (v1 − ε))n−1−k.

5This is possible since v is a unique minimizer of sF (·)
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Thus,

lim
ε→0

w(ε)− w(0)

ε
≥ lim

ε→0

(1− F (v1 − ε))n−1 − (1− F (v1))
n−1

ε

+ lim
ε→0

(n− 1)(F (v0 + ε2(ε))− F (v0 − ε1(ε)))(1− F (v1 − ε))n−2

ε

>(n− 1)f(v1)F
n−2(v1). (4)

Here, the strict inequality holds true since

lim
ε→0

(n− 1)(F (v0 + ε2(ε))− F (v0 − ε1(ε)))(1− F (v1 − ε))n−2

ε

=(n− 1)f(v0)(ε
′
1(0) + ε′2(0))(1− F (v1))

n−2 > 0,

which is in turn due to the fact that ε′1(0) and ε′2(0) are positive since v0 is a local minimizer

of sF (·).6 By (4), the marginal increase in the winning probability from the upward deviation

is greater than (n − 1)f(v1)F
n−2(v1), which means that the associated marginal benefit is

greater than d−. Clearly, the marginal cost from increase in the expected payment is equal to

d+. Considering d− ≥ d+, however, this implies that the upward deviation is profitable. ‖

Given Step 2, that s′F (v) 6= 0 for all v ∈ (v, v) can be established if we rule out the case in

which sF (·) is hump-shaped, which leads to Step 3.

Step 3. There is no v ∈ (v, v) at which sF (·) achieves a (global) maximum.

Proof. Suppose to the contrary that there is a global maximizer vm ∈ (v, v). One must

be then able to find some v1 ∈ (vm, v) such that sF (v1) = sF (v) and s′F (v1) < 0. Considering

a downward deviation by v1, one can obtain the expressions for associated marginal benefit

and cost that are the same as d+ and d− defined in Step 2. Also, it must be that d− ≥ d+.

Then, a similar argument to the one that resulted in (4) above, can be used to show that an

upward deviation will lead to the marginal increase in winning probability, which is greater

than (n − 1)f(v1)F
n−2(v1). So, the marginal benefit from the upward deviation is greater

than d− while the marginal cost is equal to d+, which implies that the upward deviation is

profitable. ‖

Proof of Proposition 5. According to Proposition 4, given the condition, the equilibrium

bidding strategy under S1, whenever it exists, must be decreasing. We then mimic the proof

of Proposition 1 in DKS. To that end, let si
F (v) and U i(v) denote the type v’s equilibrium bid

and equilibrium payoff, respectively, in the first-price auction with S i.

6More precisely, ε1(ε) = v0 − s−1
F (sF (v1 − ε)) and thus ε′1(0) = −s′

F (v1)
s′

F (v0)
= ∞, and similarly for ε′2(0).
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Claim 1. If U2(v) < U1(v) for some v < v, then U2(v′) < U1(v′) for all v′ < v.

Proof. Suppose not. Then, there must be some v̂ < v such that U1(v̂) = U2(v̂) and
dU1(v̂)

dv
≥ dU2(v̂)

dv
. This implies that ES1(s1

F (v̂), v̂) = ES2(s2
F (v̂), v̂) and, by the envelope theo-

rem,

dU1(v̂)

dv
= (1− F (v̂))n[1− ∂ES1(s1

F (v̂), v̂)

∂v
] ≥ (1− F (v̂))n[1− ∂ES2(s2

F (v̂), v̂)

∂v
] =

dU2(v̂)

dv

or
∂ES1(s1

F (v̂),v̂)

∂v
≤ ∂ES2(s2

F (v̂),v̂)

∂v
, which is a contradiction since S1 is steeper than S2. ‖

Now consider the equilibrium of the first-price auction under S2 with a modified distri-

bution which is the same as F (·) except that the support is truncated at v − ε for small ε

and there is a mass equal to 1 − F (v − ε) at v − ε. Letting U2
ε (·) denote the payoff for this

equilibrium, we have U2
ε (v− ε) = 0 < U1(v− ε). Note that the above claim still holds between

U2
ε (·) and U1(·) with v being replaced by v− ε. Thus, we have U2

ε (v) < U1(v) for all v ≤ v− ε.

By making ε converge to zero, we conclude that the buyers’ payoffs are higher with S1, which

implies that the seller’s revenue is higher with S2, as desired.

Proof of Proposition 6. Recall s(·) denote the solution of (1). Clearly, sF (v) ≤ s(v) for

all v.

As in Step 1 of Proposition 4, we first prove that the highest type v must be the unique

minimizer of sF (·). Suppose to the contrary that there is some v′ < v at which sF (·) is

minimized and that the interim equilibrium payoff is zero or v′ = ES(sF (v′), v′) so sF (v′) =

s(v′). However, the fact that s(·) is decreasing and sF (v′) = s(v′) implies by (2) that v −
ES(sF (v′), v) < 0 for some v in the neighborhood of v′, which leads to a contradiction that

v − ES(s(v), v) ≤ v − ES(sF (v), v) ≤ v − ES(sF (v′), v) < 0,

since s(v) ≥ sF (v) ≥ sF (v′). Thus, we conclude that v is the unique minimizer of sF (·). The

rest of proof then follows the same line of argument as that in Step 2 and Step 3 of the proof

of Proposition 4 and is thus omitted.

Proof of Proposition 7. Note that according to Proposition 6, any equilibrium bidding

strategy of the first-price auction must be decreasing. Then, the proof follows the same line

of argument as the proof of Proposition 5, for the super-convexity of S implies that

∂ES(sF (v), v)

∂v
>

∂E[ES(s(v′), v)|v′ > v]

∂v
(5)

if ES(sF (v), v) = E[ES(s(v′), v)|v′ > v].
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The proof of revenue equivalence between the first- and second-price auctions with convex

securities follows from the observation that if S is convex, then the inequality in (5) becomes

an equality, which makes all the inequalities in the proof of Proposition 5 into equalities.
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