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Public school choice — the initiative for broadening families’ access to schools beyond their

residence area — has broad public support and has been increasingly adopted across the US

and abroad. Yet, how to operationalize school choice, i.e., what procedure should be used to

assign students to schools, remains hotly debated.

An important debate centers around the procedure known as the “Boston” mechanism,

which was used by Boston Public Schools (BPS) until the 2004-2005 school year to assign

K-12 pupils to the city schools. Beginning with the seminal article by Atila Abdulkadiroğlu

and Tayfun Sönmez (2003), authors recognized problems with the mechanism, and BPS ulti-

mately decided in 2005 to replace the mechanism with the student-proposing deferred accep-

tance (henceforth DA) mechanism, originally proposed by David E. Gale and Lloyd S. Shapley

(1962). While the switch has received some academic support, it was met with resistance from

some parents. Most important, the Boston mechanism still remains among the most popular

school choice programs. It is thus sensible to gain fuller understanding of the two mechanisms

before a similar switch is recommended more widely. In this context, the current paper provides

a new perspective on the debate and in so doing cautions against hasty rejection of the Boston

mechanism, say in favor of the DA.

The criticisms of the Boston mechanism are multi-faceted, but they are traced to its poor

incentive property. In the Boston mechanism, the seats of each school are assigned according

to the order students rank that school ; those who rank it first are accepted first, followed by

those who rank it second only when seats are available, and so forth. Those who ranked a

school the same are assigned in the order of their priorities at that school, ties being broken

randomly, but students who ranked it more highly have strict priority at that school ahead of

those who didn’t. This feature implies that students may not prefer to rank schools truthfully.

In particular, they may refrain from top-ranking a popular school: Top-ranking such a school

will not improve their odds with that school appreciably but may rather jeopardize their shot

at their second, or even less, preferred school, which could have been available to them had

they top-ranked it. That strategic ranking may be beneficial presents some difficulties. First, it

is not clear how families should strategize their rankings of schools. Second, there is a potential

issue of equity since participants who act naively or honestly may be disadvantaged by those

who are strategically sophisticated.

The DA mechanism avoids the incentive problem by making truthful ranking a dominant

strategy for the participants, a property known as “strategy-proofness” (Lester E. Dubins and

David A. Freedman 1981; Alvin E. Roth 1982). In the first round of the DA, students apply to

their top-ranked schools, and each school tentatively admits upto its capacity from its applicants

according to its rankings of students, ties being broken randomly, and reject the others. In

each subsequent round, those rejected in the previous round apply to their next highest-ranked

school, and each school reselects, again tentatively, up to its capacities from those held from
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the previous round and from new applicants, only based on its ranking of the students, and

reject the others. This process continues until no students are rejected, at which point the

tentative assignment becomes final. Since schools select the students based solely on schools’

own priorities, top-ranking a very popular school under the DA does not sacrifice a student’s

chances at her less preferred schools in the event she fails to get into her top school.

Strategy-proofness is an important property to have, but that property alone would not be

sufficient. For instance, a pure lottery assignment is also strategy-proof for a trivial reason but

would not be considered desirable. The DA scores well on the welfare ground as well, so long as

schools have strict rankings over all students (in addition to students having strict preferences

over schools). In that case, the DA produces the so-called student optimal stable matching

— a matching that is most preferred by every student among all stable matchings (Gale and

Shapley 1962).1 By contrast, the Boston mechanism may produce any stable matching in a

Nash equilibrium if all participants know all other participants’ preferences as well as their

priorities at all schools (Haluk Ergin and Sönmez 2006).

In reality, however, schools do not have strict priorities over all students. For instance, BPS

gives each student priorities based on whether she has a sibling enrolled at a school or whether

she lives within the walkzone of a school. This leaves many students in the same priority class.

In the DA, any tie among such students must be broken randomly. This makes the assumption

of full information particularly problematic. Not only is it unlikely for students to know others’

preferences, but it is simply impossible for them to know others’ and even their own priorities

at schools if they are determined randomly after students submit applications.

More importantly, coarse priorities alter the nature of welfare consideration itself. Families

tend to value similar qualities about schools (e.g., safety, academic reputation, etc.), which

causes them to have similar ordinal preferences. Indeed, the BPS data exhibits strong corre-

lation in students’ preferences over schools. In 2007-2008, only 8 out of 26 schools (at grade

level 9) are overdemanded — that is, top-ranked by more participants than the seats available

—, whereas an average of 22.21 (std 0.62) schools should have been overdemanded if their

preferences had been uncorrelated.2 Correlated ordinal preferences entail conflicts among par-

ticipants, and these conflicts cannot be resolved by the school priorities if they are coarse.

Standard welfare concepts such as Pareto efficiency and student optimal stable matching then

1A matching is stable if no student or school can do strictly better by breaking off the current matching
either unilaterally or by rematching with some other partner without making it worse off.

2This comparison is based on submitted preferences under the DA introduced in 2005. Since the DA is
strategy-proof and BPS paid significant attention in communicating that feature of the DA to the public, we
assume that those submitted preferences are a good approximation of the underlying true preferences. For
the counter-factual, we generated 100 different preference profiles by drawing a school as first choice for each
student uniformly randomly from the set of schools and compute the number of overdemanded schools given
school capacities.
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lose their relevance. For instance, if all students have the common ordinal preferences and

schools have no priorities, then any arbitrary assignment meets these efficiency standard, and

mechanisms become indistinguishable on these criteria. Yet this does not mean that all as-

signments or all mechanisms are equally desirable. Participants may still differ in their relative

preferences intensities over alternative schools, so it is sensible to resolve conflicts based on

these intensities (henceforth called cardinal utilities). For instance, if a seat is competed by

two students, it seems sensible to assign that seat to the one who would gain more from that

seat relative to her next alternative.

The Boston mechanism and the DA differ in the way they resolve conflicts. The DA makes

truthful ranking a dominant strategy and resolves any conflict purely by random lotteries re-

gardless of the underlying cardinal utilities. Therefore, the outcome of the DA is completely

insensitive to their cardinal preferences (although it is sensitive to students’ true ordinal prefer-

ence rankings). In contrast, the Boston mechanism allows participants to influence how ties are

broken, so it has the potential to resolve conflicts based on their cardinal utilities. In fact, the

feature of the Boston mechanism often vilified as engendering “gaming” or “strategizing” may

be useful for efficient resolution of conflicting interests. These subtleties didn’t go unnoticed by

the parents. In the wake of the BPS school redesign, parents noted:

... if I understand the impact of Gale Shapley, and I’ve tried to study it and I’ve met

with BPS staff... I understood that in fact the random number ... [has] preference

over your choices... (Recording from the BPS Public Hearing, 6-8-05).

I’m troubled that you’re considering a system that takes away the little power that

parents have to prioritize... what you call this strategizing as if strategizing is a

dirty word... (Recording from Public Hearing by the School Committee, 05-11-04).

We argue that the participants’ cardinal welfare can be captured well by ex ante Pareto

efficiency,3 — this is useful since the welfare evaluation need not involve interpersonal utility

comparison — and that, from that perspective, the DA entails a clear welfare loss relative to

the Boston mechanism, given common ordinal preferences and coarse priorities. To illustrate,

suppose three students, {1, 2, 3}, must be assigned to three schools, {s1, s2, s3}, each with one

seat. Schools have no intrinsic priorities over students, and student i has a von-Neumann

Morgenstern (henceforth, vNM) utility value of vi
j when she is assigned to school j:

3An assignment is ex ante Pareto efficient if it is Pareto efficient prior to the realization of any random
lotteries necessary to break ties, namely it is impossible to reallocate probability shares of different schools in a
Pareto improving fashion.
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v1
j v2

j v3
j

j = s1 0.8 0.8 0.6

j = s2 0.2 0.2 0.4

j = s3 0 0 0

Every feasible matching is stable due to schools’ indifferences. More importantly, any such

assignment is ex post Pareto efficient, hence student optimal stable, since students have the

same ordinal preferences. Yet, their ex ante welfare depends crucially on how the students’

conflicting interests are resolved.

To see this, first consider the DA mechanism with random tie breaking. All three students

submit true (ordinal) preferences, and they are assigned to the schools with equal probabilities.

Hence, they obtain expected utilities of EUDA
1 = EUDA

2 = EUDA
3 = 1

3
.

This assignment is ex ante Pareto-dominated by the following assignment: Assign student

3 to s2, and students 1 and 2 randomly between s1 and s3, which yields expected utilities of

EUB
1 = EUB

2 = EUB
3 = 0.4 > 1

3
. Surprisingly, this latter, Pareto-dominating, assignment

arises as the unique equilibrium of the Boston mechanism.4 Students 1 and 2 have a dominant

strategy of ranking the schools truthfully, and student 3 has a best response of (strategically)

ranking s2 as her first choice.

This example has assumed, for ease of illustration, that participants have complete infor-

mation about their preferences, but as will be seen, the underlying insight holds much more

generally. In our baseline model, we consider a general school choice setting in which par-

ticipants have common ordinal preferences and schools have no priorities. These latter two

assumptions are needed to generate a clear result for the Boston mechanism; it is difficult to

analyze the strategic interaction of players in a fully general setting. However these two as-

sumptions also reflect the salient features of school choice — correlated preferences and coarse

school priorities — and serve to isolate their effects in the most transparent form. Some real

world problems in fact involve no priorities on the school side. The Supplementary round of

the New York City high school match and the choice procedure of Seoul set to begin in 2010

are two such examples.

Other than these two features, we make no further assumptions. Importantly, we consider

a realistic setting in which participants have incomplete information about others’ preferences.

We then focus on Bayesian Nash equilibrium in symmetric strategies — those that specify the

same (possibly mixed) action for students with the same von-Neumann Morgenstern (vNM)

utilities. The symmetry restriction seems well justified especially when no particular pattern

of asymmetry is known a priori. Our results are summarized as follows:

First, in keeping with the example, every participant is at least weakly better off in any

4This does not contradict Ergin and Sönmez (2006) since they assume strict school priorities.
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symmetric equilibrium of the Boston mechanism than in the dominant strategy equilibrium of

the DA. This result rests on the intuition that the Boston mechanism allows the participants

to communicate their cardinal utilities and resolve their conflicting interests in a more efficient

way than does the DA.

We next address an important concern that the Boston mechanism may harm those partici-

pants who are not strategically sophisticated. While strategically sophisticated players generally

do better than naive ones with the same vNM values (almost by definition), naive players may

also benefit from the presence of strategic players. The latter participants avoid ranking pop-

ular schools highly, and this raises the naive participants’ odds of getting into those schools.

We show that naive participants have a higher chance of attending a popular school under

the Boston mechanism than under the DA, and some of them are better off under the Boston

mechanism.

Finally, we study how the alternative mechanisms interact with a neighborhood priority

policy. An important goal of school choice is to provide students in poor neighborhoods with

opportunities to attend good schools. This goal is served best by guaranteeing equal access

to all schools regardless of where a child lives. Since neighborhood priorities favor children

living in proximate neighborhoods of schools, they may interfere with the equal access goal.

The extent to which this interference occurs differs between the two mechanisms. In the DA, a

student need not give up her neighborhood priority to be considered for other (good) schools,

whereas the Boston mechanism forces the participants to give up their neighborhood priority

when ranking other schools highly. In other words, the inhibitive power of the neighborhood

priority is diminished in the Boston mechanism, and this increases access to good schools by

those who do not have priority at those schools.

One may take away several broad implications from the current paper. First, we offer a new

welfare perspective on school choice — the importance of resolving conflicting interests based

on participants’ cardinal utilities. This perspective has been missing in the prior school choice

debate because authors have largely focused on “ordinal” notions of welfare such as ex post

Pareto efficiency and student optimal stable matching. However, we believe the current “cardi-

nal welfare” perspective is very important in settings such as school choice where participants

have similar ordinal preferences.

Second, from this new welfare perspective, there is a clear welfare loss associated with

the DA relative to the Boston mechanism. Although the past literature has recognized the

possibility that some students may be better off (while others are worse off) under the Boston

mechanism relative to the DA in the Bayesian setting, it does not point to a clear welfare loss

associated with the DA.5 By contrast, the welfare loss identified here is systematic in nature

5Ergin and Sönmez (2006) provide an example with an ambiguous welfare comparison between the two
mechanisms. However, truthtelling is the unique equilibrium in their example, so they are silent on the issue
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and occurs in plausible school choice scenarios.

Third, this welfare loss can be seen as the “price” paid for achieving strategy-proofness.

For instance, in the above example, the very feature of the Boston mechanism responsible for

strategic behavior (i.e., student 3 lying about her preference) leads to efficient resolution of

conflicts in that case. More formally, it is not possible for (symmetric) mechanisms to have

both strategy-proofness and ex ante Pareto efficiency in general circumstances (Lin Zhou, 1990).

Fourth, the tradeoff between incentive and cardinal welfare (or ex ante Pareto efficiency) has

a policy implication on the design of desirable school choice procedure. As is much emphasized

in the prior literature, strategy-proofness is an important property. Somewhat less appreci-

ated, however, is what we highlight: strategy-proofness has its own cost that seems important

particularly in school choice.6 This is not to argue that the DA should be rejected in favor of

say the Boston mechanism (or “the clock should be turned back” in the case of BPS).7 Such

a conclusion is unwarranted, just as it would be unwarranted to reject the Boston mechanism

on account of what we know so far. What is crucial however is that the school choice debate

must be informed on both sides of the tradeoff. More importantly, further work is needed to

quantify the benefits and costs associated with strategy-proofness, particularly on the empirical

and experimental fronts.

1 DA vs. Boston in the Baseline Model

We first consider the Bayesian model in which each student (family) knows her own cardinal

preferences about the schools but does not know about the others’ except for the underlying

probability distribution. Such a model is realistic, more so than the complete information

model in which agents are assumed to know all other players’ preferences.8 We show that if the

students share the same ordinal preferences but may differ in their preference intensities and

the schools have no priorties, the Boston mechanism Pareto dominates the DA.9

we raise here.
6Exceptions are Erdil and Ergin (2008) and Abdulkadiroğlu, Pathak and Roth (Forthcoming), who focus on

ex post inefficiencies and do not deal with the Boston mechanism.
7Incidentally, the clock did turn back in the case of Seattle Public Schools (SPS), which

has recently switched from a version of the DA to a version of the Boston mechanism. See
http://www.seattleschools.org/area/newassign/current assignplan.html for a more detailed description.

8For instance, it is conceivable to find a geographical area with several schools with a clear quality ranking,
which coincides with parents’ preference ordering of schools. Yet it is impossible to find a case in which parents
have heterogeneous preference orderings and every parent knows every other parent’s ordinal preference relation
and every other parent’s random number so that she knows schools’ strict priority rankings of students.

9The result that the Boston mechanism may Pareto dominate the DA from an ex ante efficiency standpoint
was first brought to the debate by Authors (2008). Subsequently, Antonio Miralles (2008) and Clayton Feath-
erstone and Muriel Niederlee (2008) revisited the Boston mechanism. Miralles (2008) adopts the framework
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There are m ≥ 2 schools, S = {s1, ..., sm} with the index set A := {1, ...,m}. School

sa ∈ S has capacity qa. There are n ≥ 2 students each of whom draws vNM utility values

v = (v1, ..., vm) about the schools from a finite set V = {(v1, ..., vm) ∈ [0, 1]m|v1 > v2... > vm}
with probability f(v).10 The students all have the same ordinal preferences preferring school sa

to school sb if a < b. Importantly, though, the students may differ in their relative preference

intensities. For convenience, we assume that
∑

a∈A qa = n.11

Gale-Shapley’s Deferred Acceptance Algorithm: It is a dominant strategy for each

student to report truthfully, so we focus on such an equilibrium. Each student is then assigned

to school sa, whenever she fails to win a seat at schools that are preferred to sa but wins a

seat at sa. Since ties are broken in ex ante symmetric way for students, the probability of that

event is given by

P̂a := (
n− q1
n

)(
n− q1 − q2
n− q1

) · · · ( qa
n− q1 − ...− qa−1

) =
qa
n
. (1)

The Boston Mechanism: Let Π be the set of all rank-order lists of S, and ∆(Π) the set

of probability distributions over Π. A Bayesian strategy is a mapping σ : V → ∆(Π). We focus

on a symmetric strategy where every agent follows the same Bayesian strategy, meaning that

they play the same mixed strategy for each realized v ∈ V . Such an equilibrium can be shown

to exist by the standard Nash existence argument. Fix any such equilibrium (σ∗, ..., σ∗).

For any mixed strategy σ ∈ {σ∗(v)}v∈V used in equilibrium, let Pa(σ) be the probability

that a student is assigned to school sa if that student employs the strategy σ and all other

students play the symmetric equilibrium strategy σ∗. For each a ∈ A, we must have∑
v∈V

nPa(σ∗(v))f(v) = qa. (2)

To see this, note first that the LHS is the total expected number of students that are assigned

to school sa. Each of n students realizes preference v with probability f(v), and plays σ∗(v).

She then gets assigned to school sa with probability Pa(σ∗(v)) under the Boston mechanism

equilibrium. Summing over possible types gives the expected number of students assigned to

school sa. The RHS represents the total number of seats at school sa that are assigned in

equilibrium. Clearly, equation (2) must hold for each a ∈ A.

and efficiency notions of Authors (2008) and studies a variant of the Boston mechanism with round-wise tie
breakers. Featherstone and Niederlee (2008) introduce incomplete information to a model with completely sym-
metric students and schools and show that the Boston mechanism induces truth-telling in equilibrium, therefore
it assigns more students to their first choices.

10The finiteness is assumed to simplify the existence of the Bayesian equilibrium of the Boston mechanism.
The argument for the comparison works for any arbitrary distribution.

11Every student is entitled public education by law so that
∑

a∈A qa ≥ n. The results hold for that more
general case, see Authors (2009).
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Fix any type ṽ ∈ V of student. Suppose that student ṽ picks the following strategy:

σ̃ :=
∑

v∈V σ
∗(v)f(v). That is, σ̃ involves playing σ∗(v) with probability f(v), i.e., according

to the probability distribution of types that play that strategy. Then, that student will be

assigned to school sa ∈ S with probability

Pa(σ̃) ≡
∑
v∈V

Pa(σ∗(v))f(v) =
qa
n

= P̂a, (3)

where the first equality follows from (2) and the second follows from (1).

Since σ̃ need not be an equilibrium strategy, we must have∑
a∈A

ṽaPa(σ∗(ṽ)) ≥
∑
a∈A

ṽaPa(σ̃) =
∑
a∈A

ṽaP̂a.

In other words, the following is true:

Theorem 1. In any symmetric equilibrium of the Boston mechanism, each type of student is

weakly better off than she is under the DA with any symmetric tie-breaking.

2 Does the Boston Mechanism Harm Naive Players?

The appeal of the strategy-proof mechanisms such as the DA and others (e.g., the top trading

cycles mechanism) is that participants’ strategic sophistication becomes irrelevant since ranking

schools according to their true preferences is their dominant strategy. By contrast, the Boston

mechanism may expose strategically naive participants, who always submit their true rankings.

Indeed, Abdulkadiroğlu et al. (2006) provide a potential evidence that some players may have

behaved naively and suffered as a consequence under the Boston mechanism. They find that

as much as 20% of the applicants ranked two overdemanded schools as their first and second

choices. These applicants could never get admitted by their second choice schools, so they

would have done better by using their second rank for some other school. Of course, their

ex post suboptimal behavior does not mean that their behavior was necessarily suboptimal

ex ante. Their behavior may as well have been optimal if they put sufficiently high chance,

quite possibly rationally, to the event that these schools are not overdemanded. Nevertheless,

the concern about the potential strategic exploitation of strategically naive participants was an

important consideration in the redesign of the BPS program.12

Consistent with this concern, Parag Pathak and Sönmez (2008) argue that strategically

sophisticated participants exploit naive ones in the Boston mechanism, to such an extent that

the sophisticated effectively enjoys a higher priority over the naive at every school except for the

12BPS Superintendent Payzant noted: “A strategy-proof algorithm levels the playing field by diminishing the
harm done to parents who do not strategize or do not strategize well.” (Memorandum, May 25, 2005)

8



latter’s most preferred. While naive players are generally expected to do worse, the particular

sense and extent to which they are exploited is striking. A closer look reveals, however, that

this characterization rests crucially on the two modeling features: strict school priorities and

complete information by strategic players. Given these assumptions, each strategic player knows

exactly who her competitors are and what their priorities are at each school. So, if a strategic

player stands no chance at getting admitted to her favorite school, but her competitor at the

next best school is a naive player and that school is the naive player’s second most preferred, say,

then the former will exploit the latter by top-ranking that school under the Boston mechanism.

Indeed, one can show that a naive player is (at least weakly) worse off from the presence of a

strategic player in such an environment.13

Clearly, the preceeding argument relies crucially on complete information. Absent complete

information, a strategic player cannot be sure who she will face as competitors, so she cannot

target naive players for manipulation. Hence, a naive player need not be the victim of the

strategic behavior. On the contrary, a naive player may actually benefit from a strategic

play. Given non-strict school priorities, ties are broken randomly, so it is impossible for the

strategic player to know the priorities of her competitors. Hence, a strategic player may end

up forgoing a spot at her favorite school even though she would have gotten it had she ranked

it truthfully. That spot will then go to another participant; and a naive player may as well be

the beneficiary. In fact, there is a clear sense in which naive players benefit from the presence

of strategic behavior when schools have coarse priorities and participants have similar ordinal

preferences. In that case, strategic players tend to avoid popular schools, and this increases

the chance for naive players to get admitted by their favorite schools (likely to be the popular

schools given correlated ordinal preferences), which they will rank truthfully as first choice.

To illustrate, consider our example in Introduction, except now each school has quota of two,

and there are two students of each type, one naive and one strategically sophisticated. That

is, there are total of six seats and six students. Just as before, under the DA, every student

ranks truthfully, and each student has one third chance of getting admitted to each school. In

the Boston mechanism, naive students (there are three, one for each type) and type 1 and 2

strategic students rank schools truthfully, namely s1− s2− s3 in that order. Just as before, the

strategic type 3 student submits the ranking of s2− s1− s3. Consequently, the type 3 strategic

student gets assigned to school s2. All others, strategic and naive, are assigned to the schools

with probabilities (Ps1 , Ps2 , Ps3) = (0.4, 0.2, 0.4). Naive students lose priority at school s2 to the

strategic type 3 student. Yet, they enjoy a higher probability of getting assigned to school s1

due to that strategic player. In this example, the two naive type 1 and 2 players are better off

whereas the naive type 3 student is worse off. The next proposition formalizes this observation

13This result holds under common ordinal preferences, complete information and strict priorities by schools.
See Proposition A of our online Appendix.
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in our Bayesian model where each type v ∈ V of student is naive with probability x ∈ (0, 1).

Theorem 2. Consider a symmetric Bayesian equilibrium with naive players. (i) If a strategic

player manipulates with positive probability, then every naive player is assigned to each of top

j schools, {s1, ..., sj}, for some j ∈ A, with weakly higher probability and to some school in

that set with strictly higher probability under the Boston mechanism than under the DA. (ii)

If strategic students with type v rank the schools truthfully in equilibrium, then naive students

with the same v are (at least weakly) better off under the Boston mechanism than under the

DA.

Proof. To prove (i), let j be the smallest index in A such that there exists some type of a

strategic player that does not rank school sj as j-th. (Call the type “manipulating” type.)

By definition, the manipulation involves ranking j lower than j-th position (i.e., ranking it

l-th for some l > j). Since each player, both strategic and naive, ranks school sj′ at the j′-th

position for j′ < j, she is assigned to sj′ , for j′ < j, with the same probability under the Boston

mechanism as under the DA. When the manipulating type player is rejected by all schools

s1, ..., sj′ (which occurs with positive probability), a naive player will have a higher priority at

sj than such a player and the same priority as the other strategic player. Hence, a naive player

will have higher probability of assignment to school sj under the Boston mechanism than under

the DA. The second statement holds since a strategic player with v ranks the schools truthfully

in equilibrium and is weakly better off from Boston than from the DA (by Theorem 1), the

naive students with the same v must be also weakly better off from the Boston.

Remark 1. One can also show as in Theorem 1 that all strategic participants are at least weakly

better off under the Boston mechanism than under the DA. Pathak and Sönmez (2008) obtain

a similar result with complete information under general preferences.

3 Neighborhood Priority and Access to Good Schools

Neighborhood priority is a common feature of many school choice programs. For instance, BPS

gives priority to students who live within 1 mile from an elementary school, within 1.5 miles

from a middle school, and within 2 miles from a high school in attending those schools. At the

same time, one of the major goals of public school choice is to provide equal access to good

schools for every student, especially for those in poor neighborhoods with failing schools. This

goal is compromised by neighborhood priority.

The extent to which the neighborhood priority inhibits the access to good schools by students

in failing schools districts differs between the two mechanisms. Under the DA, one does not

need to give up her neighborhood priority when applying for other (better) schools. This is
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in sharp contrast to what happens under the Boston mechanism. When a student does not

rank her neighborhood school as first choice under the Boston, she loses her neighborhood

priority at that school to those who rank it higher in their choice list. Similarly, if she ranks her

neighborhood school as first choice, then she gives up priority at the other schools. In either

case, another student would be able to improve her odds at that school or some other school.

This feature of the Boston mechanism provides a greater access to good schools for students

without neighborhood priority at those schools.

To formalize this insight, consider our general Bayesian model in which each of n students

draws her vNM values from V according to probability distribution f . We further assume

n > q1 + q2, that is, the two most popular schools have excess demand. Suppose that na ≥ 0

students are given neighborhood priority at school sa ∈ {s1, ..., sm}. We assume na < qa for

each a, i.e., the number students who receive the neighborhood priority is less than the quota

at each school.14 A symmetric Bayesian strategy in this case specifies the same (mixed) action

for students with the same vNM value v ∈ V and same priority standing. Then, the following

characterizations hold.

Theorem 3. Consider any symmetric Bayesian equilibrium of the Boston mechanism. Every

student with priority at sa, a ≥ 3, or no priority at any school has a strategy that guarantees a

strictly higher probability of being assigned to sã for some ã = 1, 2 in comparison with the DA.

Proof. If every student ranks s1 as first choice with probability 1 in equilibrium, then a student

with priority at sa, a ≥ 3, or no priority at any school can guarantee assignment at s2 by

ranking it as first choice. That probability is smaller than 1 under the DA since n > q1 + q2. If

some type of student ranks s1 below top with positive probability, then by ranking s1 as first

choice, a student with priority at sa, a ≥ 3, or no priority at any school can get assigned to s1

with a higher probability than under the DA. That follows since every student ranks s1 as first

choice under the DA.

When school priorities are strict and students have the same ordinal preferences, the Nash

equilibrium outcome of the Boston mechanism is unique and it coincides with the unique stable

matching of the economy, which in turn implies that there is no randomness or uncertainty

in equilibrium. Strategic opportunities characterized in Theorem 3 arise under coarse school

priorities and incomplete information. Such opportunities are not present under the DA since

submitting true ordinal ranking is a dominant strategy regardless of the priority and information

structure.

14A similar characterization holds without the assumption (see Authors 2009).
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4 Conclusion

The Boston mechanism is widely used in school choice programs in the US and elsewhere.

Meanwhile, the matching literature on school choice seems to reject the Boston mechanism.

The standard view is that the Boston mechanism has a serious deficiency in both incentives

and welfare. Although the incentive problem of the Boston mechanism is well understood, its

welfare assessment is not as clear-cut. The existing welfare assessment has been shaped largely

by models that make unrealistic assumptions such as complete strict priorities on the part of

schools and complete information on the part of students. Such evaluation could serve as a

reasonable, if not perfect, approximation of truth, either if schools have near-complete priorities

over students or if students have divergent preferences. The real-life school choice environment

seems far from either stylization, however. In practice, families tend to have similar preferences

about schools, and schools have at best coarse priorities. In such an environment, the issue of

how a mechanism resolves conflicts based on cardinal welfare — captured by ex ante Pareto

efficiency — becomes important. We have shown that, from this perspective, the Boston

mechanism possesses several desirable features that other alternatives such as the DA do not.

At the same time, our results should not be seen as an unqualified endorsement of the

Boston mechanism. The lack of strategy-proofness remains a significant drawback of the Boston

mechanism that may ultimately make it unacceptable. Nevertheless, the current paper has

shown a clear sense of tradeoff in the choice between the DA and the Boston mechanism.

Informing the school choice debate of this tradeoff is the most important purpose of this paper.

Resolving this tradeoff ultimately necessitates quantifying both sides of the tradeoff, which will

require much more work on the theoretical, computational, empirical as well as experimental

front. Also needed are attempts to explore mechanisms that balance the tradeoffs better than

the existing mechanisms. They remain ongoing and future research.
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