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ASYMPTOTIC EQUIVALENCE OF PROBABILISTIC SERIAL
AND RANDOM PRIORITY MECHANISMS

BY YEON-KOO CHE AND FUHITO KOJIMA1

The random priority (random serial dictatorship) mechanism is a common method
for assigning objects. The mechanism is easy to implement and strategy-proof. How-
ever, this mechanism is inefficient, because all agents may be made better off by another
mechanism that increases their chances of obtaining more preferred objects. This form
of inefficiency is eliminated by a mechanism called probabilistic serial, but this mecha-
nism is not strategy-proof. Thus, which mechanism to employ in practical applications is
an open question. We show that these mechanisms become equivalent when the market
becomes large. More specifically, given a set of object types, the random assignments in
these mechanisms converge to each other as the number of copies of each object type
approaches infinity. Thus, the inefficiency of the random priority mechanism becomes
small in large markets. Our result gives some rationale for the common use of the
random priority mechanism in practical problems such as student placement in public
schools.

KEYWORDS: Random assignment, random priority mechanism, probabilistic serial,
ordinal efficiency, asymptotic equivalence.

1. INTRODUCTION

CONSIDER A MECHANISM DESIGN PROBLEM of assigning indivisible objects to
agents who can consume at most one object each. University housing alloca-
tion, public housing allocation, office assignment, and student placement in
public schools are real-life examples.2 A typical goal of the mechanism de-
signer is to assign the objects efficiently and fairly. The mechanism often needs
to satisfy other constraints as well. For example, monetary transfers may be im-
possible or undesirable to use, as in the case of low income housing or student
placement in public schools. In such a case, random assignments are employed

1We are grateful to Susan Athey, Anna Bogomolnaia, Eric Budish, Eduardo Faingold, Dino
Gerardi, Johannes Hörner, Mihai Manea, Andy McLennan, Hervé Moulin, Muriel Niederle,
Michael Ostrovsky, Parag Pathak, Ben Polak, Al Roth, Kareen Rozen, Larry Samuelson, Michael
Schwarz, Tayfun Sönmez, Yuki Takagi, Utku Ünver, Rakesh Vohra and seminar participants at
Boston College, Chinese University of Hong Kong, Edinburgh, Harvard, Keio, Kobe, Maryland,
Melbourne, Michigan, NYU, Penn State, Queensland, Rice, Rochester, Tokyo, Toronto, Yale,
Western Ontario, VCASI, Korean Econometric Society Meeting, Fall 2008 Midwest Meetings,
and SITE Workshop on Market Design for helpful discussions. Detailed comments from a co-
editor and anonymous referees significantly improved the paper. Yeon-Koo Che is grateful to the
KSEF’s World Class University Grant (R32-2008-000-10056-0) for financial support.

2See Abdulkaḋıroğlu and Sönmez (1999) and Chen and Sönmez (2002) for application to
house allocation, and Balinski and Sönmez (1999) and Abdulkaḋıroğlu and Sönmez (2003b)
for student placement. For the latter application, Abdulkaḋıroğlu, Pathak, and Roth (2005) and
Abdulkaḋıroğlu, Pathak, Roth, and Sönmez (2005) discussed practical considerations in design-
ing student placement mechanisms in New York City and Boston.
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to achieve fairness. Furthermore, the assignment often depends on agents’ re-
ports of ordinal preferences over objects rather than full cardinal preferences,
as in student placement in public schools in many cities.3 Two mechanisms are
regarded as promising solutions: the random priority (RP) mechanism and the
probabilistic serial (PS) mechanism (Bogomolnaia and Moulin (2001)).4

In random priority, agents are ordered with equal probability and, for each
realization of the ordering, the first agent in the ordering receives her fa-
vorite (the most preferred) object, the next agent receives his favorite object
among the remaining ones, and so on. Random priority is strategy-proof, that
is, reporting ordinal preferences truthfully is a weakly dominant strategy for
every agent. Moreover, random priority is ex post efficient, that is, the lottery
over deterministic assignments produced by it puts positive probability only on
Pareto efficient deterministic assignments.5 The random priority mechanism
can also be easily tailored to accommodate other features, such as students
applying as roommates in college housing6 or respecting priorities of existing
tenants in house allocation (Abdulkaḋıroğlu and Sönmez (1999)) and nonstrict
priorities by schools in student placement (Abdulkaḋıroğlu, Pathak, and Roth
(2005), Abdulkaḋıroğlu, Pathak, Roth, and Sönmez (2005)).

Perhaps more importantly for practical purposes, the random priority mech-
anism is straightforward and transparent, with the lottery used for assignment
specified explicitly. Transparency of a mechanism can be crucial for ensuring
fairness in the eyes of participants, who may otherwise be concerned about pos-

3Why only ordinal preferences are used in many assignment rules seems unclear, and explain-
ing it is outside the scope of this paper. Following the literature, we take it as given instead. Still,
one reason may be that elicitation of cardinal preferences may be difficult (the pseudo-market
mechanism proposed by Hylland and Zeckhauser (1979) is one of the few existing mechanisms
incorporating cardinal preferences over objects). Another reason may be that efficiency based
on ordinal preferences is well justified regardless of agents’ preferences; many theories of pref-
erences over random outcomes (not just expected utility theory) agree that people prefer one
assignment over another if the former first-order stochastically dominates the latter.

4Priority mechanisms are studied for divisible object allocation by Satterthwaite and Sonnen-
schein (1981) and then for indivisible object allocation by Svensson (1994). Abdulkaḋıroğlu and
Sönmez (1998) studied the random priority mechanism as an explicitly random assignment mech-
anism.

5Abdulkaḋıroğlu and Sönmez (2003a) pointed out that random assignment that is induced by
an ex post efficient lottery may also be induced by an ex post inefficient lottery. On the other
hand, random priority as implemented in common practice produces an ex post efficient lottery
since, for any realization of agent ordering, the assignment is Pareto efficient.

6Applications by would-be roommates can be easily incorporated into the random priority
mechanism by requiring each group to receive the same random priority order. For instance,
nonfreshman undergraduate students at Columbia University can apply as a group, in which case
they draw the same lottery number. The lottery number, along with their seniority points, deter-
mines their priority. If no suite is available to accommodate the group or they do not like the
available suite options, they can split up and make choices as individuals. This sort of flexibility
between group and individual assignments seems difficult to achieve in other mechanisms such
as the probabilistic serial mechanism.
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TABLE I
RANDOM ASSIGNMENTS UNDER RP

Object a Object b Object ø

Agents 1 and 2 5/12 1/12 1/2
Agents 3 and 4 1/12 5/12 1/2

sible “covert selection.”7 These advantages explain the wide use of the random
priority mechanism in many settings, such as house allocation in universities
and student placement in public schools.

Despite its many advantages, the random priority mechanism may entail un-
ambiguous efficiency loss ex ante. Adapting an example by Bogomolnaia and
Moulin (2001), suppose that there are two types of objects a and b with one
copy each and the “null object” ø representing the outside option. There are
four agents 1!2!3, and 4, where agents 1 and 2 prefer a to b to ø while agents 3
and 4 prefer b to a to ø. One can compute the assignment for each of 4! = 24
possible agent orderings, and the resulting random assignments are given by
Table I.8 From the table it can be seen that each agent ends up with her less
preferred object with positive probability in this economy. This is because two
agents of the same preference type may get the first two positions in the order-
ing, in which case the second agent will take her nonfavorite object.9 Obviously,
any two agents of different preferences can benefit from trading off the prob-
ability share of the nonfavorite object with that of the favorite. In other words,
the random priority assignment has unambiguous efficiency loss. For instance,
every agent prefers an alternative random assignment in Table II.

TABLE II
RANDOM ASSIGNMENTS PREFERRED TO RP BY ALL AGENTS

Object a Object b Object ø

Agents 1 and 2 1/2 0 1/2
Agents 3 and 4 0 1/2 1/2

7The concern of covert selection was pronounced in U.K. schools, which led to adoption of a
new Mandatory Admission Code in 2007. The code, among other things, “makes the admissions
system more straightforward, transparent and easier to understand for parents” (“Schools Ad-
missions Code to End Covert Selection,” Education Guardian, January 9, 2007). There had been
numerous appeals by parents on schools assignments in the United Kingdom; there were 78,670
appeals in 2005–2006 and 56,610 appeals in 2006–2007.

8Each entry of the table specifies the allocation probability for an agent–object pair. For ex-
ample, the number 5

12 in the upper left entry means that each of agents 1 and 2 receives object a
with probability 5

12 "
9For instance, if agents are ordered by 1!2!3 and 4, then 1 gets a, 2 gets b, and 3 and 4 get ø.
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A random assignment is said to be ordinally efficient if it is not first-order
stochastically dominated for all agents by any other random assignment. Or-
dinal efficiency is perhaps the most relevant efficiency concept in the context
of assignment mechanisms based solely on ordinal preferences. The example
implies that random priority may result in an ordinally inefficient random as-
signment.

The probabilistic serial mechanism introduced by Bogomolnaia and Moulin
(2001) eliminates the inefficiency present in RP. Imagine that each indivisible
object is a divisible object of probability shares: If an agent receives fraction
p of an object, we interpret that she receives the object with probability p.
Given reported preferences, consider the following “eating algorithm.” Time
runs continuously from 0 to 1. At every point in time, each agent “eats” her
favorite object with speed one among those that have not been completely
eaten away. At time t = 1, each agent is endowed with probability shares of
objects. The PS assignment is defined as the resulting probability shares. In
the current example, agents 1 and 2 start eating a and agents 3 and 4 start
eating b at t = 0 in the eating algorithm. Since two agents are consuming one
unit of each object, both a and b are eaten away at time t = 1

2 . As no (proper)
object remains, agents consume the null object between t = 1

2 and t = 1. Thus
the resulting PS assignment is given by Table II. In particular, the probabilistic
serial mechanism eliminates the inefficiency that was present under RP. More
generally, the probabilistic serial random assignment is ordinally efficient if all
the agents report their ordinal preferences truthfully.

The probabilistic serial mechanism is not strategy-proof, however. In other
words, an agent may receive a more desirable random assignment (with respect
to her true expected utility function) by misreporting her ordinal preferences.
The mechanism is also less straightforward and less transparent for the partic-
ipants than random priority, since the lottery used for implementing the ran-
dom assignment can be complicated and is not explicitly specified. The trade-
offs between the two mechanisms—random priority and probabilistic serial—
are not easy to evaluate; hence the choice between the two remains an impor-
tant outstanding question in practical applications. Indeed, Bogomolnaia and
Moulin (2001) showed that no mechanism satisfies ordinal efficiency, strategy-
proofness, and symmetry (equal treatment of equals) in all finite economies
with at least four objects and agents. Thus one cannot hope to resolve the
trade-offs by finding a mechanism with these three desiderata. Naturally, the
previous studies have focused only on the choice between random priority and
probabilistic serial.

The contribution of this paper is to offer a new perspective on the trade-
offs between the random priority and probabilistic serial mechanisms. We do
so by showing that the two mechanisms become virtually equivalent in large
markets. Specifically, we demonstrate that, given a set of arbitrary object types,
the random assignments in these mechanisms converge to each other, as the
number of copies of each object type approaches infinity.
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FIGURE 1.—Relationship between the market size and the random assignment in RP. The hor-
izontal axis measures market size q while the vertical axis measures the misallocation probability.

To see our result in a concrete example, consider replicas of the above econ-
omy, where, in the q-fold replica economy, there are q copies of a and b and
there are 2q agents who prefer a to b to ø and 2q who prefer b to a to ø. Clearly,
agents receive the same random assignment in PS for all replica economies. By
contrast, the market size makes a difference in RP. Figure 1 plots the misal-
location probability in RP, that is, the probability that an agent of each type
receives the nonfavorite proper object, as a function of the market size q.10

The misallocation probability accounts for the only difference in random as-
signment between RP and PS in this example. As can be seen from the figure,
the misallocation probability is positive for all q but declines and approaches
zero as q becomes large.

Hence the difference between RP and PS becomes small in this specific ex-
ample. The main contribution of this paper is to demonstrate the asymptotic
equivalence more generally (beyond the simple cases of replica economies)
and understand its economics.

Our result has several implications. First, it implies that the inefficiency of
the random priority mechanism becomes small and disappears in the limit, as
the economy becomes large. Second, the result implies that the incentive prob-
lem of the probabilistic serial mechanism disappears in large economies. Taken
together, these implications mean that we do not have as strong a theoretical
basis for distinguishing the two mechanisms in large markets as in small mar-
kets; indeed, both will be good candidates in large markets since they have

10The misallocation probability is, for example, the probability that agents who prefer a to b
receive b.



1630 Y.-K. CHE AND F. KOJIMA

good incentive, efficiency, and fairness properties.11 Given its practical merit,
though, our result lends some support for the common use of the random pri-
ority mechanism in practical applications, such as student placement in public
schools.

In our model, the large market assumption means that there exist a large
number of copies of each object type. This model includes several interesting
cases. For instance, a special case is the replica economies model wherein the
copies of object types and of agent types are replicated repeatedly. Consider-
ing large economies as formalized in this paper is useful for many practical
applications. In student placement in public schools, there are typically a large
number of identical seats at each school. In the context of university housing
allocation, the set of rooms may be partitioned into a number of categories by
building and size, and all rooms of the same type may be treated to be identi-
cal.12 Our model may be applicable to these markets.

Our equivalence result is obtained in the limit of finite economies. As it
turns out, this result is tight in the sense that we cannot generally expect the
two mechanisms to be equivalent in any finite economies (Proposition 3 in
Section 6). What it implies is that their difference becomes arbitrarily small as
the economy becomes sufficiently large.

We obtain several further results. First, we present a model with a contin-
uum of agents and continuum of copies of (finite) object types. We show that
the random priority and probabilistic serial assignments in finite economies
converge to the corresponding assignments in the continuum economy. In that
sense, the limit behavior of these mechanisms in finite economies is captured
by the continuum economy. This result provides a foundation for modeling ap-
proaches that study economies with a continuum of objects and agents directly.

Second, we consider a situation in which individual participants are uncer-
tain about the population distribution of preferences, so they do not necessarily
know the popularity of each object even in the large market. It turns out that the
random priority and probabilistic serial mechanisms are asymptotically equiv-
alent even in the presence of such aggregate uncertainty, but the resulting as-
signments are not generally ordinally efficient even in the large market. This
inefficiency is not unique to these mechanisms, however. We show a general
impossibility result that there exists no (symmetric) mechanism that is strategy-
proof and ordinally efficient (even) in the continuum economy.

11As mentioned above, Bogomolnaia and Moulin (2001) present three desirable properties,
namely ordinal efficiency, strategy-proofness, and equal treatment of equals, and show that no
mechanism satisfies all these three desiderata in finite economies. Random priority satisfies all
but ordinal efficiency while probabilistic serial satisfies all but strategy-proofness. Our equiva-
lence result implies that both mechanisms satisfy all these desiderata in the limit economy, thus
overcoming impossibility in general finite economies.

12For example, the assignment of graduate housing at Harvard University is based on the pref-
erences of each student over eight types of rooms: two possible sizes (large and small) and four
buildings.
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Finally, we show that both mechanisms can be usefully applied to, and their
large-market equivalence holds in, cases where different groups of agents are
treated differently, where different types of objects have different numbers of
copies, and where agents demand multiple objects.

The rest of the paper proceeds as follows. Section 2 discusses related liter-
ature. Section 3 introduces the model. Section 4 defines the random priority
mechanism and the probabilistic serial mechanism. Sections 5 and 6 present
the main results. Section 7 investigates further topics. Section 8 concludes.
Proofs are provided in the Appendix unless stated otherwise.

2. RELATED LITERATURE

Pathak (2006) compared random priority and probabilistic serial using data
on the assignment of about 8000 students in the public school system of New
York City. He found that many students obtain a better random assignment in
the probabilistic serial mechanism, but that the difference is small. The current
paper complements his study by explaining why the two mechanisms are not
expected to differ much in some school choice settings.

Kojima and Manea (2008) found that reporting true preferences becomes a
dominant strategy for each agent under probabilistic serial when there are a
large number of copies of each object type. Their paper and ours complement
each other both substantively and methodologically. Substantively, Kojima and
Manea (2008) suggested that probabilistic serial may be more useful than ran-
dom priority in applications, but they did not analyze how random priority
behaves in large economies. The current paper addresses that question and
provides a clear large-market comparison of the two mechanisms, showing
that the main deficiency of random priority—inefficiency—is reduced in large
economies. Furthermore, our analysis provides intuition for their result.13 To
see this point, first recall that truthtelling is a dominant strategy in random pri-
ority. Since our result shows that probabilistic serial is close to random priority
in a large economy, this observation suggests that it is difficult to profitably
manipulate the probabilistic serial mechanism. Methodologically, we note that
our asymptotic equivalence is based on the assumption that agents report pref-
erences truthfully in both random priority and probabilistic serial. The result of
Kojima and Manea (2008) justifies this assumption by showing that truthtelling
is a dominant strategy under probabilistic serial in large finite economies.

Manea (2009) considered environments in which preferences are randomly
generated and showed that the probability that the random priority assignment
is ordinally inefficient approaches 1 as the market becomes large under a num-
ber of assumptions. He obtained the results in two environments, one of which

13However, the result of Kojima and Manea (2008) cannot be derived from the current paper
since they establish a dominant strategy result in large but finite economies, while our equivalence
result holds only in the limit as the market size approaches infinity.
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is comparable to ours and one of which differs from ours in that the number of
object types grows to infinity as the economy becomes large. In either case, his
result does not contradict ours because of a number of differences. Most im-
portantly, Manea (2009) focused on whether there is any ordinal inefficiency
in the random priority assignment, while the current paper investigates how
much difference there is between the random priority and the probabilistic se-
rial mechanisms, and hence (indirectly) how much ordinal inefficiency the ran-
dom priority mechanism entails. As we show in Proposition 3, this distinction
is important, particularly for the welfare assessment of RP.

While the analysis of large markets is relatively new in matching and re-
source allocation problems, it has a long tradition in many areas of eco-
nomics. For example, Roberts and Postlewaite (1976) showed that, under some
conditions, the Walrasian mechanism is difficult to manipulate in large ex-
change economies.14 Similarly, incentive properties of a large class of dou-
ble auction mechanisms were studied by, among others, Gresik and Satterth-
waite (1989), Rustichini, Satterthwaite, and Williams (1994), and Cripps and
Swinkels (2006). Two-sided matching is an area closely related to our model.
In that context, Roth and Peranson (1999), Immorlica and Mahdian (2005),
and Kojima and Pathak (2008) showed that the deferred acceptance algorithm
proposed by Gale and Shapley (1962) becomes increasingly hard to manipu-
late as the number of participants becomes large. Many of these papers show
particular properties of given mechanisms, such as incentive compatibility and
efficiency. One of the notable features of the current paper is that we show the
equivalence of apparently dissimilar mechanisms, beyond specific properties
of each mechanism.

Finally, our paper is part of a growing literature on random assignment
mechanisms.15 The probabilistic serial mechanism was generalized to allow for
weak preferences, existing property rights, and multi-unit demand by Katta and
Sethuraman (2006), Yilmaz (2006), and Kojima (2009), respectively. Kesten
(2008) introduced two mechanisms, one of which is motivated by the random
priority mechanism, and showed that these mechanisms are equivalent to the
probabilistic serial mechanism. In the scheduling problem (a special case of
the current environment), Crès and Moulin (2001) showed that the probabilis-
tic serial mechanism is group strategy-proof and ordinally dominates the ran-
dom priority mechanism but the two mechanisms converge to each other as
the market size approaches infinity; Bogomolnaia and Moulin (2002) gave two
characterizations of the probabilistic serial mechanism.

14See also Jackson (1992) and Jackson and Manelli (1997).
15Characterizations of ordinal efficiency were given by Abdulkaḋıroğlu and Sönmez (2003a)

and McLennan (2002).
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3. MODEL

For each q ∈ N, consider a q-economy, Γ q = (Nq! (πi)i∈Nq!O), where Nq

represents the set of agents and O represents the set of proper object types (we
assume that O is identical for all q). There are |O| = n ∈ N object types and
each object type a ∈O has quota q, that is, q copies of a are available.16 There
exist an infinite number of copies of a null object ø, which is not included in
O. Let Õ := O ∪ {ø}. Each agent i ∈Nq has a strict preference πi ∈Π over Õ.
More specifically, πi(a) ∈ {1! " " " ! n+ 1} is the ranking of a according to agent
i’s preference πi ∈Π, that is, agent i prefers a to b if and only if πi(a) < πi(b).
For any O′ ⊂ Õ,

Chπ(O
′) := {a ∈O′ | π(a)≤ π(b)∀b ∈O′}

is the favorite object among O′ for type-π agents (agents whose preference
type is π).

The set Nq of agents is partitioned into different preference types {Nq
π}π∈Π!

where Nq
π is the set of the agents with preference π ∈ Π in the q-economy.

Let mq
π := |Nq

π |
q

be the per-unit number of agents of type π in the q-economy.
We assume, for each π ∈Π, there exists m∞

π ∈ R+ such that mq
π →m∞

π as q→
∞. For q ∈ N ∪ {∞}, let mq := {mq

π}π∈Π . Throughout, we do not impose any
restriction on the way in which the q-economy, Γ q, grows with q (except for
the existence of the limit m∞

π = limq→∞mq
π for each π ∈Π).

A special case of interest is when the economy grows at a constant rate with
q. We say that the family {Γ q}q∈N is a sequence of replica economies if mq

π = m∞
π

(or equivalently, |Nq
π | = q|N1

π |) for all q ∈ N and all π ∈Π, and we call Γ 1 a
base economy and Γ q its q-fold replica.

Fix any q ∈ N. Throughout the paper, we focus on random assignments that
are symmetric in the sense that the agents with the same preference type π
receive the same lottery over the objects.17 Formally, a random assignment in
the q-economy is a mapping φq :Π→ ∆Õ, where ∆Õ is the set of probability
distributions over Õ, that satisfies the feasibility constraint

∑
π∈Π φ

q
a(π) · |Nq

π | ≤
q for each a ∈ O, where φq

a(π) represents the probability that a type-π agent
receives the object a.

3.1. Ordinal Efficiency

Consider a q-economy where q ∈ N. A random assignmentφq ordinally dom-
inates another random assignment φ̂q at mq if, for each preference type π

16Given a set X , we denote the cardinality of X by |X| or #X .
17This property is often called the equal treatment of equals axiom.
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with mq
π > 0, the lottery φq(π) first-order stochastically dominates the lottery

φ̂q(π),
∑

π(b)≤π(a)
φq

b(π)≥
∑

π(b)≤π(a)
φ̂q

b(π) ∀π!mq
π > 0!∀a ∈ Õ!(3.1)

with strict inequality for some (π!a). Random assignment φq is ordinally effi-
cient at mq if it is not ordinally dominated at mq by any other random assign-
ment.18 If φq ordinally dominates φ̂q at mq, then every agent of every pref-
erence type prefers her assignment under φq to the one under φ̂q according
to any expected utility function with utility index consistent with their ordinal
preferences.

We say that φq is individually rational at mq if there exists no preference type
π ∈ Π with mq

π > 0 and object a ∈ O such that φq
a(π) > 0 and π(ø) < π(a).

That is, individual rationality requires that no agent be assigned an unaccept-
able object with positive probability. A random assignment is ordinally inef-
ficient unless it is individually rational, since an agent receiving unacceptable
objects can be assigned the null object instead without hurting any other agent.

We say that φq is nonwasteful at mq if there exists no preference type π ∈Π
with mq

π > 0 and objects a ∈ O!b ∈ Õ such that π(a) < π(b), φq
b(π) > 0, and∑

π′∈Π φ
q
a(π

′)mq
π′ < 1. That is, nonwastefulness requires that there be no object

which some agent prefers to what she consumes but that is not fully consumed.
If there were such an object, the allocation would be ordinally inefficient.

Consider the binary relation !(φq!mq) on O defined by

a!(φq!mq)b(3.2)

⇐⇒ ∃π ∈Π! mq
π > 0! π(a) < π(b)! and φq

b(π) > 0"

That is, a!(φq!mq)b if there are some agents who prefer a to b but are as-
signed to b with positive probability. If a relation !(φq!mq) admits a cycle,
then the relevant agents can trade off shares of nonfavorite objects along the
cycle and all do better, so the allocation would be ordinally inefficient.

One can show that ordinal efficiency is equivalent to acyclicity of this bi-
nary relation, individual rationality, and nonwastefulness. This was shown by
Bogomolnaia and Moulin in a setting in which each object has quota 1, there
exist an equal number of agents and objects, and all objects are acceptable to

18As noted before, this paper focuses on symmetric random assignments. We note that an ordi-
nally efficient random assignment is not ordinally dominated by any possibly asymmetric random
assignment (this property is defined as ordinal efficiency by Bogomolnaia and Moulin (2001)). To
show this claim by contraposition, assume a symmetric random assignment φ is ordinally dom-
inated by some asymmetric random assignment φ′. Define another random assignment φ′′ by
giving each agent the average of assignments for agents of the same type as hers in φ′. Assign-
ment φ′′ is symmetric by definition and ordinally dominates φ since φ′ does, showing the claim.
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all agents.19 Their characterization extends straightforwardly to our setting as
follows (so the proof is omitted).

PROPOSITION 1: The random assignment φq is ordinally efficient at mq if and
only if the relation !(φq!mq) is acyclic and φq is individually rational and non-
wasteful at mq.

4. TWO COMPETING MECHANISMS: RANDOM PRIORITY
AND PROBABILISTIC SERIAL

4.1. Probabilistic Serial Mechanism

We first describe the probabilistic serial mechanism, which is an adaptation of
the mechanism proposed by Bogomolnaia and Moulin to our setting. The idea
is to regard each object as a divisible object of “probability shares.” Each agent
“eats” a probability share of the best available object with speed 1 at every time
t ∈ [0!1] (object a is available at time t if not all q shares of a have been eaten
by time t).20 The resulting profile of object shares eaten by agents by time 1
obviously induces a random assignment, which we call the probabilistic serial
random assignment.

To formally describe the assignment under the probabilistic serial mecha-
nism, for any q ∈ N∪ {∞}, O′ ⊂ Õ, and a ∈O′ \ {ø}, let

mq
a(O

′) :=
∑

π∈Π:a∈Chπ(O′)

mq
π

be the per-unit number of agents whose favorite (most preferred) object in O′

is a in the q-economy, and let mq
ø(O

′) := 0 for all q ∈ N ∪ {∞} and O′ ⊂ Õ.
Now fix a q-economy Γ q. The PS assignment is then defined by the following
sequence of steps. For step v = 0, let Oq(0) = Õ, tq(0) = 0, and xq

a(0) = 0 for
every a ∈ Õ. Given Oq(0)! tq(0)! {xq

a(0)}a∈Õ! " " " !Oq(v− 1)! tq(v− 1)! {xq
a(v −

1)}a∈Õ , for each a ∈ Õ, define, for step v,

tqa (v)= sup
{
t ∈ [0!1] |(4.1)

xq
a(v− 1)+mq

a(O
q(v− 1))(t − tq(v− 1)) < 1

}
!

tq(v)= min
a∈O(v−1)

tqa (v)!(4.2)

Oq(v) =Oq(v− 1) \ {a ∈Oq(v− 1) | tqa (v) = tq(v)}!(4.3)

xq
a(v)= xq

a(v− 1)+mq
a(O

q(v− 1))(tq(v)− tq(v− 1))!(4.4)

19This restriction implies that individual rationality and nonwastefulness are trivially satisfied
by every feasible random assignment.

20Bogomolnaia and Moulin (2001) considered a broader class of simultaneous eating algo-
rithms, where eating speeds may vary across agents and time.
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with the terminal step defined as v̄q := min{v′ | tq(v′)= 1}.
These recursive equations are explained as follows. Step v = 1! " " " begins

at time tq(v − 1) with the share xq
a(v − 1) of object a ∈ O having been eaten

already, and a set Oq(v− 1) of object types remaining to be eaten. Object a ∈
Oq(v− 1) will be the favorite among the remaining objects to q ·mq

a(O
q(v− 1))

agents, so they will start eating a until its entire remaining quota q(1 − xq
a(v−

1)) is gone. The eating of a will go on, unless step v ends, until time tqa (v), at
which point the entire share of object a is consumed away or time runs out (see
(4.1)). Step v ends at tq(v) when the first of the remaining objects disappears
or time runs out (see (4.2)). Step v + 1 begins at that time, with the remaining
set Oq(v) of objects adjusted for the expiration of some object(s) (see (4.3))
and the remaining share xq

a(v) adjusted to reflect the amount of a consumed
during step v (see (4.4)). This process is complete when time t = 1 is reached
and it involves at most |Õ| steps.

For each a ∈ Õ, we define its expiration date Tq
a := {tq(v) | tq(v) = tqa (v)

for some v} to be the time at which the eating of a is complete.21 Note that
the expiration dates are all deterministic. The expiration dates completely pin
down the random assignment for the agents. Let τqa(π) := min{Tq

a !max{Tq
b |

π(b) < π(a)!b ∈ O}} be the expiration date of the last object that a type-π
agent prefers to a (if it is smaller than Tq

a , and Tq
a otherwise). Each type-π

agent starts eating a at time τqa(π) and consumes the object until it expires at
time Tq

a . Hence, a type-π agent’s probability of getting assigned to a ∈ Õ is
simply its duration of consumption; that is, PSq

a(π)= Tq
a − τqa(π).

Following Bogomolnaia and Moulin (2001), we can show that PSq is ordi-
nally efficient. First, individual rationality follows since no agent ever consumes
an object less preferred than the null object. Next, nonwastefulness follows
since, if an object say a is not completely consumed, then Tq

a = 1, so no agent
type will ever consume any object she prefers less than a. Finally, if an agent
type prefers a to b but consumes b with positive probability, then it must be
that Tq

a < Tq
b or else she will never consume b. This means that !(PSq!mq)

is acyclic since the expiration dates are linearly ordered. That the expiration
dates are deterministic (so their orders are not random) is therefore a key fea-
ture that makes PS ordinally efficient.

PROPOSITION 2: For any q ∈ N, PSq is ordinally efficient.

One main drawback of the probabilistic serial mechanism, as identified by
Bogomolnaia and Moulin (2001), is that it is not strategy-proof. In other words,
an agent may be better off by reporting a false ordinal preference.

21Expiration date Tq
a for each a ∈ Õ is well defined. If a good a runs out for some step v < v̄q ,

then Tq
a = tq(v)= tqa (v). If a good a never runs out, then Tq

a = tq(v̄q)= tqa (v̄q) = 1.
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4.2. Random Priority Mechanism

In the random priority mechanism (Bogomolnaia and Moulin (2001)) (known
also as the random serial dictatorship (Abdulkaḋıroğlu and Sönmez (1998))),
the agents are randomly ordered, and each agent successively claims (or more
precisely is assigned to) her favorite object among the remaining ones, follow-
ing that order. Our key methodological innovation is to develop a “temporal”
reinterpretation of RP so as to facilitate its comparison with PS. Imagine first
each agent i draws a lottery number fi from [0!1] independently and uniformly.
Imagine next that time runs from 0 to 1 just as in PS, and agent i “arrives”
at time fi and claims her favorite object among those available at that time.
It is straightforward to see that this alternative definition is equivalent to the
original one. (The agents are assigned sequentially almost always since no two
lottery draws coincide with positive probability.)

Let RPq denote the random assignment resulting from the random priority
mechanism in Γ q. Our temporal reinterpretation of RP allows us to formulate
RPq via recursive equations much like (4.1)–(4.4). To begin, fix any agent i (of
any type π) and ask whether any particular object a is available to her given
any possible lottery number she may draw. This can be answered by studying
how long that object would last in our time frame [0!1] if agent i were absent.
This can be done by characterizing the “expiration date” of each object in the
hypothetical economy with |Nq|−1 agents with preferences π−i ∈Π(|Nq|−1) and
lottery numbers f−i = (fj)j∈N\{i} ∈ [0!1](|Nq|−1). It will be later explained how
studying this economy allows us to compute i’s random assignment in the (real)
q-economy.

First, define

m̂q
π′(t! t ′) := #{j ∈Nq

π′ \ {i} | fj ∈ (t! t ′]}
q

to be the per-unit number of agents of type π ′ (except i if π ′ = π) whose lottery
draws lie in (t! t ′]. For any O′ ⊂ Õ and a ∈O′ \ {ø}, let

m̂q
a(O

′; t! t ′) :=
∑

π′∈Π:a∈Chπ′ (O′)

m̂q
π′(t! t ′)

be the per-unit number of agents in Nq \ {i} whose favorite object in O′ is a
and whose lottery draws are in (t! t ′]. Let mq

ø(O
′; t! t ′) := 0 for all q ∈ N ∪ {∞}

and O′ ⊂ Õ.
Then the expiration dates of the objects in this hypothetical economy are de-

scribed as follows, given (π−i! f−i). Let Ôq(0)= Õ, t̂q(0)= 0, and x̂q
a(0)= 0 for

every a ∈ Õ. Given Ôq(0)! t̂q(0)! {x̂q
a(0)}a∈Õ! " " " ! Ôq(v− 1)! t̂q(v− 1)! {x̂q

a(v−
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1)}a∈Õ for each a ∈ Õ, define

t̂qa (v)= sup
{
t ∈ [0!1] | x̂q

a(v− 1)+ m̂q
a(Ô

q(v− 1); t̂q(v− 1)! t) < 1
}
!(4.5)

t̂q(v)= min
a∈Ô(v−1)

t̂qa (v)!(4.6)

Ôq(v) = Ôq(v− 1) \ {a ∈ Ôq(v− 1) | t̂qa (v) = t̂q(v)}!(4.7)

x̂q
a(v)= x̂q

a(v− 1)+ m̂q
a(Ô

q(v− 1); t̂q(v− 1)! t̂q(v))!(4.8)

with the terminal step defined as ṽq := min{v′ | t̂q(v′)= 1}.
These equations are explained in much the same way as (4.1)–(4.4). Step

v = 1! " " " begins at time t̂q(v − 1) with the share x̂q
a(v − 1) of object a ∈ O

having been claimed already and a set Ôq(v− 1) of objects remaining to be
claimed. There are q · m̂q

a(Ô
q(v− 1); t̂q(v− 1)! t) agents whose favorite object

is a and who arrive during the time span [t̂qa (v − 1)! t], so object a lasts until
t̂qa (v) defined by (4.5), unless step v ends beforehand. Step v ends at t̂q(v) when
the first of the remaining object types disappears or time runs out, as defined
by (4.6). Step v + 1 begins at that time, with the remaining set Ôq(v) of object
types adjusted for the expiration of an object (see (4.7)) and the remaining
share x̂q

a(v) adjusted to reflect the amount of a claimed during step v (see
(4.8)). This process is complete when time t = 1 is reached and it involves at
most |Õ| steps.

Now reenter agent i with type π and consider any object a ∈ Õ. The object
a is available to her if and only if she arrives before a cutoff time T̂ q

a := {t̂q(v) |
t̂q(v) = t̂qa (v) for some v} at which the last copy of a would be claimed. At the
same time, she will wish to claim a if and only if it becomes her favorite—
namely, she arrives after the last object she prefers to a runs out. In sum, a
type-π agent obtains a if and only if her lottery draw fi lands in an interval
[τ̂qa(π)! T̂ q

a ]! where τ̂qa(π) := min{T̂ q
a !max{T̂ q

b | π(b) < π(a)!b ∈ O}}, an event
depicted in Figure 2, in case τ̂qa(π) = T̂ q

b for some b .= a.
Note the cutoff time T̂ q

a of each object a is a random variable since the arrival
times f−i of the other agents are random. Therefore, the random priority ran-
dom assignment is defined, for i ∈Nq

π and a ∈ Õ, as RPq
a(π) := E[T̂ q

a − τ̂qa(π)],

FIGURE 2.—Cutoffs of objects under RP.
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where the expectation E is taken with respect to f−i = (fj)j .=i which are distrib-
uted i.i.d. uniformly on [0!1].

The random priority mechanism is widely used in practice, as mentioned in
the Introduction. Moreover, the mechanism is strategy-proof, that is, reporting
true ordinal preferences is a dominant strategy for each agent. Furthermore,
it is ex post efficient, that is, the assignment after random draws are realized
is Pareto efficient. As illustrated in the Introduction, however, the mechanism
may entail ordinal inefficiency. Ordinal inefficiency of RP can be traced to
the fact that the cutoff times of the objects are random and personalized. In
the example in the Introduction, an agent who prefers a to b may face T̂ 1

a <

T̂ 1
b and the agent who prefers b to a may face T̂ 1

a > T̂ 1
b . In these cases, the

agents receive their nonfavorite objects with positive probability. Hence both
a!(RP1!m1)b and b!(RP1!m1)a occur, resulting in cyclicity of the relation
!(RP1!m1). As will be seen, as q→∞, the cutoff times of the random priority
mechanism converge in probability to deterministic limits that are common to
all agents, and this feature ensures acyclicity of the binary relation ! in the
limit.

5. EQUIVALENCE OF TWO MECHANISMS IN THE CONTINUUM ECONOMY

Our ultimate goal is to show that RPq and PSq converge to each other as q→
∞. Toward this goal, we first introduce a continuum economy in which there
exists a unit mass of each object in O and mass m∞

π of agent type π for each π ∈
Π. One should think of this continuum economy as a heuristic representation
of a large economy which possesses the same demographic profiles (i.e., the
limit measures {m∞

π }π∈Π) as the limit of our finite economies, but otherwise
bears no direct relationship with them. The relevance of this model will be
seen in the next section where we show that it captures the limit behavior of
the finite economies. Specifically, we shall show that the random assignment of
the PS and RP defined in this continuum economy coincides with the random
assignments arising from these mechanisms in the limit of the q-economies as
q→∞. In this sense, the continuum economy serves as an instrument of our
analysis. As will be clear, however, it also brings out the main intuition behind
our equivalence result and its implications.

One issue in analyzing a continuum economy is to describe aggregate con-
sequences of randomness at the individual level for a continuum of agents.
This issue arises with our RP model given the use of individual lottery draw-
ings, but possibly with other mechanisms as well. The laws of large numbers—a
natural tool for dealing with such an issue—can be problematic in this environ-
ment.22 However, a weak law of large numbers developed by Uhlig (1996) turns

22See Judd (1985) for a classic reference for the associated conceptual problems.
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out to be sufficient for our purpose.23 Alternatively, one can simply view our
constructs as mathematical definitions that conform to plausible large market
heuristics.

A Random Assignment in the Continuum Economy is defined as a mapping
φ∗ = (φ∗

a)a∈O :Π → ∆Õ such that
∑

π∈Π φ
∗
a(π) · m∞

π ≤ 1 for each a ∈ O. As
before, φ∗

a(π) is interpreted as the probability that each (atomless) agent of
type π receives object a, and feasibility requires that the total mass of each
object consumed not exceed its total quota (unit mass). We now consider the
two mechanisms in this economy.

5.1. Probabilistic Serial Mechanism

The PS can be defined in this economy with little modification. The (masses
of) agents eat probability shares of the objects simultaneously at speed 1 over
time interval [0!1] in the order of their stated preferences. The random assign-
ments are then determined by the duration of eating each object by a given type
of agent. As with the finite economy, the random assignment PS∗ of probabilis-
tic serial in the continuum economy is determined by the expiration dates of the
objects, that is, the times at which the objects are all consumed.

Naturally, these expiration dates are defined recursively much as in the PS
of finite economies. Let O∗(0) = Õ, t∗(0) = 0, and x∗

a(0) = 0 for every a ∈
Õ. Given O∗(0)! t∗(0)! {x∗

a(0)}a∈Õ! " " " !O∗(v− 1)! t∗(v− 1)! {x∗
a(v − 1)}a∈Õ for

each a ∈ Õ, define

t∗a(v) = sup
{
t ∈ [0!1] |(5.1)

x∗
a(v− 1)+m∞

a (O
∗(v− 1))(t − t∗(v− 1)) < 1

}
!

t∗(v) = min
a∈O∗(v−1)

t∗a(v)!(5.2)

O∗(v)= O∗(v− 1) \ {a ∈O∗(v− 1) | t∗a(v) = t∗(v)}!(5.3)

x∗
a(v)= x∗

a(v− 1)+m∞
a (O

∗(v− 1))(t∗(v)− t∗(v− 1))!(5.4)

with the terminal step defined as v̄∗ := min{v′ | t∗(v′)= 1}.
These equations are precisely the same as the corresponding ones to (4.1)–

(4.4) for the PS of the finite economies, except for the fact that m∞
a (·)’s replace

mq
a(·)’s. The explanations following (4.1)–(4.4) apply here verbatim. The expi-

ration date of each object a defined by T ∗
a = {t∗a(v) | t∗a(v) = t∗(v) for some v}

23This version of the law of large numbers ensures that, for a function X mapping i ∈ [a!b]
into an L2 probability space of random variables with a common mean µ and finite variance
σ2, Riemann integral

∫ b

a X(i)di = µ with probability 1 (see Theorem 2 of Uhlig (1996)). For
convenience, we shall suppress the qualifier “with probability 1” in our discussion here.
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determines the random assignment PS∗ of probabilistic serial in the continuum
economy in the same manner as in finite economies.

5.2. Random Priority Mechanism

Defining the random priority mechanism in the continuum economy re-
quires some care. One issue is describing the aggregate behavior of the in-
dividual drawings of lotteries, as required in our version of RP. Recall in our
RP, each agent draws a lottery number f from [0!1] according to the uniform
distribution. The aggregate distribution of the agents in terms of their lottery
numbers then matches the uniform distribution according to the weak law of
large numbers; namely, the measure of agents with lottery numbers f or less
among mass m agents will be precisely mf with probability 1.24 The second is-
sue is to define the procedure itself. The finite RP procedure of successively
executing individual choice according to lottery numbers cannot work in the
continuum economy. We thus define the continuum economy RP as follows:

• Step v = 1. For each object a ∈O, determine a value t̂∗a(1) ∈ [0!1] such
that the measure of agents whose favorite object is a and whose lottery num-
bers are less than t̂∗a(1) equals 1; if no such value exists, let t̂∗a(1) = 1. Assign
the agents with lottery numbers less than t̂∗(1) := mina t̂∗a(1) to their favorite
objects. If the entire masses of agents are assigned, stop; else, remove the as-
signed objects along with the agents who received them, and iterate to step
v = 2.

"""
• Step v = 2! " " " " For each object a ∈ O, determine a value t̂∗a(v) ∈ [0!1]

such that the measure of agents whose favorite object among those remaining
is a and whose lottery numbers are less than t̂∗a(v) equal to the measure of the
remaining quota of that object; if no such value exists, let t̂∗a(v) = 1. Assign the
agents with lottery numbers less than t̂∗(v) := mina t̂∗a(v) their favorite remain-
ing objects. If the entire masses of agents are assigned, stop; else, remove the
assigned objects along with the agents who received them, and iterate to step
v+ 1.

Since there are finite object types, this procedure ends in finite steps. As
noted in the previous section, the cutoff time T̂ ∗

a of each object a, defined
by T̂ ∗

a = {t̂∗a(v) | t̂∗a(v) = t̂∗(v) for some v}, determines the random assignment
RP∗. Clearly, the above procedure entails recursive equations much like those
defined for PS. These equations determine t̂∗[·](v)! t̂

∗(v)! Ô∗(v)! x̂∗(v) in place
of t∗[·](v)! t∗(v)!O∗(v)!x∗(v) in each step just as before.

24Letting FU(k) = k denote the cumulative distribution function (c.d.f.) of the uniform distri-
bution, the weak law of large numbers in Theorem 2 of Uhlig (1996) implies that

∫ 1
0 1{f≤h} df =

FU(h)= h with probability 1. Rather than appealing to a law of large numbers, one could instead
imbed lottery f as the agent’s “hidden” type as in Abdulkaḋıroğlu, Che, and Yasuda (2008).
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Most importantly, they are precisely the same as (5.1)–(5.4) if we let Ô∗(0)=
Õ, t̂∗(0)= 0, and x̂∗

a(0)= 0 for every a ∈ Õ. This can be shown inductively. Sup-
pose that Ô∗(v−1) =O∗(v−1), t̂∗(v−1)= t∗(v−1), and x̂∗

a(v−1) = x∗
a(v−1)

∀a ∈ Õ. Consider step v now. With mass x∗
a(v − 1) of each object a al-

ready claimed, a will be claimed by those agents whose favorite object among
O∗(v− 1) is a and whose lottery numbers are less than t̂∗a(v). There is a mass
m∞

a (O
∗(v−1))[t̂∗a(v)− t∗(v−1)] of such agents. Hence, (5.1) determines t̂∗a(v)

at step v. This means t̂∗a(v) = t∗a(v) for all a ∈O, which in turn implies (5.2), so
t̂∗(v)= t∗(v). At the end of step v, object a such that t∗a(v)= t∗(v) is completely
claimed, so (5.3) holds and a new set Ô∗(v) = O∗(v) of objects remains. Mass
m∞

a (O
∗(v− 1))(t∗(v)− t∗(v− 1)) of each object a is claimed at step v, so the

cumulative measure of a claimed by that step will be given by (5.4), implying
x̂∗
a(v) = x∗

a(v). The equivalence of the recursive equations of the two mecha-
nisms implies that T̂ ∗

a = T ∗
a ; namely, the cutoff time of each object under RP

matches precisely the expiration date of the same object under PS. As noted
above, this means that RP∗ = PS∗; that is, the random assignments of the two
mechanisms are the same.

The intuition for the equivalence can be obtained by invoking our tempo-
ral interpretation of RP wherein time runs continuously from 0 to 1 and each
agent must claim an object at the time equal to her lottery draw f . From the in-
dividual agent’s perspective, the mechanisms are still not comparable; an agent
consumes a given object for an interval of time in PS, whereas the same agent
picks his object outright at a given point of time in RP. Yet the mechanisms
can be compared easily when one looks from the perspective of each object.
Each object is consumed over a period of time up to a certain point in both
cases. That point is called the expiration date under PS and the cutoff time
under RP. Our equivalence argument boils down to the observation that the
supply of each object disappears at precisely the same point of time under
the two mechanisms. This happens because, for any given interval, the rate at
which an object is consumed is the same under both mechanisms. To be con-
crete, fix an object a ∈ O and consider the span of time from t to t + δ, for
some δ > 0. Suppose the consumption rates of all objects have been the same
up to time t under both mechanisms. Say a is the favorite among the remaining
objects for mass m of agents. Then, under PS, these agents will eat at speed 1
during that time span, so the total consumption of that object during that time
span will be m · δ. Under RP, the same mass m will favor the object among the
remaining objects (given the assumption of the same past consumption rates).
During that time span, only those with lottery number f ∈ [t! t + δ) can arrive
to consume. By the weak law of large numbers, a fraction δ of any positive
mass arrive during this time span to claim their objects. Hence, mass m · δ of
agents will consume object a during the time span. Our main argument for the
proof in the next section is much more complex, yet the same insight will be
seen to drive the equivalence result.
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Before turning to the main analysis, we point out a few relatively obvious
implications of the equivalence obtained for the continuum economy.

• It is straightforward to show that the strategy-proofness of RP ex-
tends to this continuum economy. The equivalence established above then
means that an agent’s assignment probabilities from RP are the same as those
from PS, for any ordinal preferences he may report, holding fixed all others’
reports. It follows that PS is strategy-proof in the continuum economy.25

• It is also straightforward to show the ordinal efficiency of PS in this
economy. The equivalence then implies that RP is ordinally efficient.

• The above two observations mean that the impossibility theorem
of Bogomolnaia and Moulin (2001) does not extend to the continuum econ-
omy: There exists a symmetric mechanism (RP or, equivalently, PS) that is
strategy-proof and ordinally efficient.

6. ASYMPTOTIC EQUIVALENCE OF TWO MECHANISMS

While the last section demonstrates that RP and PS produce the same ran-
dom assignment in the continuum economy, it is not clear whether the as-
signments in large but finite economies are approximated well by the contin-
uum economy. This section will establish that RP and PS assignments in finite
economies in fact converge to that in the continuum economy. Not only will
this establish asymptotic equivalence of the two mechanisms, but the result
will provide a limit justification for the continuum economy studied above.

We first show that PSq converges to PS∗ as q→∞. The convergence occurs
in all standard metrics; for concreteness, we define the metric by ‖φ− φ̂‖ :=
supπ∈Π!a∈O |φa(π)− φ̂a(π)| for any pair of random assignments φ and φ̂. The
convergence of PSq to PS∗ is immediate if {Γ q}q∈N are replica economies. In
this case, mq

a(O
′) = m∞

a (O
′) for all q and a, so the recursive definitions, (4.1),

(4.2), (4.3), and (4.4), of the PS procedure for each q-economy all coincide
with those of the continuum economy, namely (5.1), (5.2), (5.3), and (5.4). The
other cases are established as well.

THEOREM 1: ‖PSq − PS∗‖ → 0 as q → ∞. Furthermore, PSq = PS∗ for all
q ∈ N if {Γ q}q∈N are replica economies.

This theorem assumes implicitly that agents report their true preferences
under PS in large but finite economies. This assumption can be justified based
on Kojima and Manea (2008). Their result implies that, given any finite set
of possible cardinal utility types of agents, truthtelling is a dominant strategy

25Here, by strategy-proofness we mean that the random assignment under truthtelling is equal
to or first-order stochastically dominates the assignment under false preferences. This property
is even stronger than the property shown for PS in large finite economies by Kojima and Manea
(2008).
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under probabilistic serial for any q-economy with sufficiently large (but finite)
q. Although we chose not to specify the cardinal utilities of agents in our model
for simplicity, their result is directly applicable.26

We next show that RPq converges to RP∗ = PS∗ as q→∞.

THEOREM 2: ‖RPq − RP∗‖→ 0 as q→∞.

These theorems show that the random assignment of the two mechanisms
in the continuum economy capture their limiting behavior in a large but finite
economy. In this sense, they provides a limit justification for an approach that
models the mechanisms directly in the continuum economy. More importantly,
the asymptotic equivalence follows immediately from these two theorems upon
noting that PS∗ = RP∗.

COROLLARY 1: ‖RPq − PSq‖→ 0 as q→∞.

The intuition behind the asymptotic equivalence (Corollary 1) is that the ex-
piration dates of the objects under PS and the cutoff times of the correspond-
ing objects under RP converge to each other as the economy grows large. As
we argued in the previous section, this follows from the fact that the rates at
which the objects are consumed under both mechanisms become identical in
the limit. To see this again, fix any time t ∈ [t∗(v)! t∗(v + 1)) for some v and
fix any object a ∈ O. Under RP∗, assuming that objects O∗(v) are available at
time t, the fraction of a consumed during time interval [t! t + δ] for small δ
is δ · m∞

a (O
∗(v)), namely the measure of those whose favoribe object among

O∗(v) is a times the duration of their consumption of a.
In RPq, assuming again that the same set O∗(v) of objects is available at t, the

measure mq
a(O

∗(v); t! t+δ) of agents (whose favorite among O∗(v) is a) arrive
during the (same) time interval [t! t + δ] and will consume a, so the fraction of
a consumed during that interval is mq

a(O
∗(v); t! t +δ). As q→∞, this fraction

converges to δ ·m∞
a (O

∗(v)), since by a law of large numbers, the arrival rate of
these agents approaches m∞

a (O
∗(v)).

The main challenge of the proof is to make this intuition precise when there
are intertemporal linkages in the consumption of objects—namely, a change
in consumption at one point of time alters the set of available objects, and
thus the consumption rates of all objects, at later time. Our proof employs an
inductive method to handle these linkages.

26If cardinal utilities of agents are drawn from an infinite types, then for any q, some agents may
have incentives to misreport preferences. However, even in such a setting, the result of Kojima
and Manea (2008) implies that the fraction of agents for whom truthtelling is not a dominant
strategy converges to zero as q→∞. Thus the truthtelling assumption in Theorem 1 is justified
in this case as well.
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Is our asymptotic equivalence tight? In other words, can we generally expect
the random assignments of the two mechanisms to coincide in a finite econ-
omy? Figure 1 appears to suggest otherwise, showing that the RP and the PS
assignments remain different for all finite values of q. In fact, this observation
can be made quite general in the following sense.

PROPOSITION 3: Consider a family {Γ q}q∈N of replica economies. Then RPq is
ordinally efficient for some q ∈ N if and only if RPq′ is ordinally efficient for every
q′ ∈ N. That is, for any given base economy, the random priority assignment is
ordinally efficient for all replica economies or ordinally inefficient for all of them.

In particular, Proposition 3 implies that the ordinal inefficiency of RP does
not disappear completely in any finitely replicated economy if the random pri-
ority assignment is ordinally inefficient in the base economy. More importantly,
it may be misleading to simply examine whether a mechanism suffers ordinal
inefficiencies; even if a mechanism is ordinally inefficient, the magnitude of the
inefficiency may be very small, as is the case with RP in large economies.

7. EXTENSIONS

7.1. Group-Specific Priorities

In some applications, the social planner may need to give higher priorities
to some agents over others. For example, when allocating graduate dormitory
rooms, the housing office at Harvard University assigns rooms to first year stu-
dents first and then assigns remaining rooms to existing students. Other schools
prioritize housing assignments based on students’ seniority and/or their acad-
emic performance.27

To model such a situation, assume that each student belongs to one of the
classes C and, for each class c ∈C, consider any density function gc over [0!1].
The asymmetric random priority mechanism associated with g = (gc)c∈C lets
each agent i in class c draw fi according to the density function gc indepen-
dently from others, and the agent with the smallest draw among all agents re-
ceives her favorite object, the agent with the second-smallest draw receives his
favorite object from the remaining ones, and so forth. The random priority
mechanism is a special case in which gc is a uniform distribution on [0!1] for
each c ∈ C. The asymmetric probabilistic serial mechanism associated with g
is defined by simply letting agents in class c eat with speed gc(t) at each time

27For instance, Columbia University gives advantage in lottery draw based on seniority in its
undergraduate housing assignment. The Technion gives assignment priorities to students based
on both seniority and academic performance (Perach, Polak, and Rothblum (2007)). Claremont
McKenna College and Pitzer College give students assignment priority based on the number of
credits they have earned.
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t ∈ [0!1]. The probabilistic serial mechanism is a special case in which gc is a
uniform distribution on [0!1] for each c ∈ C .

For each q ∈ N, π ∈Π, and c ∈ C, let mq
π!c be per-unit number of agents in

class c of preference type π in the q-economy. If m∞
π!c := limq→∞mq

π!c exists for
all π and c, then the asymptotic equivalence generalizes to a general profile
of distributions g. In particular, given any g, the asymmetric random priority
mechanism associated with g and the asymmetric probabilistic serial mecha-
nism associated with g converge to the same limit as q→∞. In Appendix D,
we provide formal definitions for asymmetric RP and PS in the continuum
economy and show their equivalence.

7.2. Aggregate Uncertainty

The environment of our model is deterministic in the sense that the supply
of objects and preferences of agents are fixed. By contrast, uncertainty in pref-
erences is a prevalent feature in real-life applications. In the context of student
placement, for instance, popularity of schools may vary, and students and their
parents may know their own preferences but not those of others. Aggregate un-
certainty can be incorporated into our model.28 It turns out that the asymptotic
equivalence of RP and PS continues to hold even with aggregate uncertainty.
We also point out that a new issue of efficiency arises in this model.

Define Ω to be a finite state space. For any q ∈ N and ω ∈Ω, let ρq(ω) be
the probability of state ω and let mq

π(ω) be the per-unit number of agents of
preference type π in state ω. Assume (in the same spirit as in the basic model)
that there exist well defined limits ρ∞(ω) := limq→∞ ρq(ω) for all ω ∈ Ω and
m∞
π (ω) := limq→∞mq

π(ω) for all π ∈Π and for all ω ∈Ω. Then the asymptotic
equivalence of RP and PS holds state by state by Corollary 1. Therefore, the ex
ante random assignments in RP and PS converge to each other as well. Note
that this last conclusion follows because Ω is finite and the ex ante random as-
signment is simply a weighted average of random assignments across different
states. We also note that an exact equivalence holds in the continuum economy
for a more general (possibly infinite) state space since the equivalence holds at
each state (see Section 5).

Aggregate uncertainty introduces a new issue of efficiency, however, as seen
below.

EXAMPLE 1: Let φq
a(π!ω) be the probability that an agent with preference

type π obtains a under stateω in random assignmentφq in the q-economy. Let
O = {a!b},Ω= {ωa!ωb}, ρq(ωa)= ρq(ωb)= 1

2 , and agents with preference πab

prefer a to b to ø and those with πba prefer b to a to ø. There is measure 4 of

28We are grateful to an anonymous referee for inspiring us to study the issues presented in this
section.
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agents; 60% of them are of type πab at state ωa and 60% of them are of type
πba at state ωb. More formally, mq

πab(ωa) = 12
5 !m

q

πba(ωa) = 8
5 !m

q

πab(ωb) = 8
5 ,

and mq

πba(ωb) = 12
5 .29 For each state ω and each agent, the probability that she

is of type π is

P(π|ω) := mq
π(ω)

mq

πab(ω)+mq

πba(ω)
"

Random assignments under probabilistic serial PSq can be computed to be

PSq(πab!ωa)=
(

5
12
!

1
12
!

1
2

)
! PSq(πba!ωa)=

(
0!

1
2
!

1
2

)
!

PSq(πab!ωb)=
(

1
2
!0!

1
2

)
! PSq(πba!ωb)=

(
1
12
!

5
12
!

1
2

)
"

Now consider an agent who knows her preference is πab (but not the state).
From this interim perspective, she forms her posterior belief about the state
according to Bayes’ law. Specifically, a type πab agent believes that the state is
ω=ωa!ωb with probability

P̄(ω|πab) := ρq(ω)P(πab|ω)
ρq(ωa)P(πab|ωa)+ ρq(ωb)P(πab|ωb)

"

Hence, she expects to receive object a with probability

P̄(ωa|πab)PSq
a(π

ab!ωa)+ P̄(ωb|πab)PSq
a(π

ab!ωb)= 9
20
"

Similarly, she obtains b with probability 1
20 . By symmetry, a type-πba agent ob-

tains b and a with probabilities 9
20 and 1

20 , respectively, in PSq.
Consider now a random assignment φq,

φq(πab!ωa)=
(

5
12
!0!

7
12

)
! φq(πba!ωa)=

(
0!

5
8
!

3
8

)
!

φq(πab!ωb)=
(

5
8
!0!

3
8

)
! φq(πba!ωb)=

(
0!

5
12
!

7
12

)
!

whose feasibility can be shown by calculation. Under φq, each type of agent
receives her favorite object with probability 1

2 and the null object with proba-
bility 1

2 (i.e., a type-πab agent obtains a with probability 1
2 and a type-πba agent

29The current example can be seen as generalizing the one discussed in the Introduction. In
that example, there is a unique state of the world in which 50% of agents are of type πab and the
remaining 50% of agents are of type πba.
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obtains b with probability 1
2 ). Therefore, for every agent, her lottery at φq first-

order stochastically dominates the one at PSq, that is, φq ordinally dominates
PSq. Notice that the inefficiency does not vanish even as the market size ap-
proaches infinity (q →∞); PSq does not depend on q in this example. Since
RP and PS are asymptotically equivalent, RP remains ordinally inefficient even
as q→∞ as well.

One may conclude from this example that when there is aggregate uncer-
tainty, RP and PS are deficient and an alternative mechanism should replace
them. However, there is a sense in which some inefficiencies are not limited to
these specific mechanisms but rather are inherent in the environment. More
specifically, no mechanism is both ordinally efficient and strategy-proof, even
in the continuum economy.

To analyze this issue, we formally introduce some concepts. A mechanism is
a mapping from an environment to a random assignment. To avoid notational
clutter, we simply associate a mechanism with the random assignment φ∗ it in-
duces for a given environment (although the dependence on the environment
will be suppressed). Let φ∗

a(π!ω) be the probability that a type-π agent re-
ceives object a at state ω in the continuum economy. Given φ∗! a ∈ Õ, and
π!π ′ ∈Π, let

Φ∗
a(π

′|π) :=

∑

ω∈Ω
ρ∞(ω)P(π|ω)φ∗

a(π
′!ω)

∑

ω∈Ω
ρ∞(ω)P(π|ω)

be the conditional probability that a type-π agent receives a from mechanism
φ∗ when she reports type π ′ instead. LetΦ∗

a(π) :=Φ∗
a(π|π) be the conditional

probability that a type-π agent receives a when telling the truth. A mecha-
nism φ∗ is ordinally efficient if, for any m∞, there is no random assignment
φ̂∗ such that, for each preference type π with m∞

π (ω) > 0 for some ω ∈ Ω,
the lottery (Φ̂∗

a(π))a∈Õ first-order stochastically dominates (Φ∗
a(π))a∈Õ at m∞

with respect to π. Mechanism φ∗ is strategy-proof if, for any m∞ and any
π!π ′ ∈Π, (Φ∗

a(π))a∈Õ at m∞ is equal to or first-order stochastically dominates
(Φ∗

a(π
′|π))a∈Õ at m∞ with respect to preference π.30

PROPOSITION 4: In the continuum economy with aggregate uncertainty, there
exists no mechanism that is strategy-proof and ordinally efficient.31

30The notion of strategy-proofness here is ordinal, just as in Bogomolnaia and Moulin (2001).
Note, however, that if a mechanism fails to be strategy-proof in the ordinal sense, it fails to be
strategy-proof for some profile of cardinal values.

31Note that we presuppose symmetry throughout the paper in the sense that agents with the
same preferences receive the same lottery. Without symmetry, a deterministic priority mechanism
with a fixed agent ordering across states is both strategy-proof and ordinally efficient.
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Note that the preceding statement focuses on the continuum economy. This
is without loss of generality since, in finite economies, the impossibility result
holds even without aggregate uncertainty (Bogomolnaia and Moulin (2001)).
Note also that aggregate uncertainty is essential for Proposition 4, since RP
(or equivalently PS) satisfies strategy-proofness and ordinal efficiency in the
continuum economy if there is no aggregate uncertainty (see Section 5).

7.3. Unequal Number of Copies

We focused on a setting in which there are q copies of each object type in
the q-economy. It is straightforward to extend our results to settings in which
there are an unequal number of copies, as long as quotas of object types grow
proportionately. More specifically, if there exist positive integers (qa)a∈O such
that the quota of object type a is qaq in the q-economy, then our results extend
with little modification of the proof.

On the other hand, we need some assumption about the growth rate of quo-
tas, as the following example shows.

EXAMPLE 2: Consider an economy Γ q with four types of proper objects,
a!b! c, and d, where quotas of a and b stay at 1 while those of c and d are q.
Let Nq = Nq

πab∪Nq

πba∪Nq

πcd ∪Nq

πdc be the set of agents, with |Nq

πab | = |Nq

πba | = 2,
and |Nq

πcd | = |Nq

πdc | = 2q. Assume that agents with preference type πab prefer
a to b to ø to c to d, those with preference type πba prefer b to a to ø to c
to d, those with preference type πcd prefer c to d to ø to a to b, and those with
preference type πdc prefer d to c to ø to a to b.

For any q, the random assignments under RPq for types πab and πba are

RPq(πab) =
(
RPq

a(π
ab)!RPq

b(π
ab)!RPq

c (π
ab)!RPq

d(π
ab)!RPq

ø(π
ab)

)

=
(

5
12
!

1
12
!0!0!

1
2

)
!

RPq(πba) =
(
RPq

a(π
ba)!RPq

b(π
ba)!RPq

c (π
ba)!RPq

d(π
ba)!RPq

ø(π
ba)

)

=
(

1
12
!

5
12
!0!0!

1
2

)
!

while the random assignments under PSq are

PSq(πab) =
(
PSq

a(π
ab)!PSq

b(π
ab)!PSq

c (π
ab)!PSq

d(π
ab)!PSq

ø(π
ab)

)

=
(

1
2
!0!0!0!

1
2

)
!

PSq(πba) =
(
PSq

a(π
ba)!PSq

b(π
ba)!PSq

c (π
ba)!PSq

d(π
ba)!PSq

ø(π
ba)

)

=
(

0!
1
2
!0!0!

1
2

)
"
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Therefore random priority mechanisms and probabilistic serial do not con-
verge to each other.

The above example shows that the two mechanisms do not necessarily con-
verge to each other when the growth rates of different types of objects differ.
However, the non-convergence seems to pose only a minor problem and have
only limited influences on overall welfare. In Example 2, for instance, alloca-
tions for preference types πcd and πdc under RP and PS converge to each other
as q →∞. Given that the proportions of agents of preference types πab and
πba go to zero in this example, the inefficiency of RP still seems small in large
economies.

7.4. Multi-Unit Demands

Consider a generalization of our basic setting in which each agent can obtain
multiple units of objects. More specifically, we assume that there is a fixed
integer k such that each agent can receive k objects. When k = 1, the model
reduces to the model of the current paper. Assignment of popular courses in
schools is one example of such a multiple unit assignment problem. See, for
example, Kojima (2009) for a formal definition of the model.

We consider two generalizations of the random priority mechanism to the
current setting. In the once-and-for-all random priority mechanism, each agent i
randomly draws a number fi independently from a uniform distribution on
[0!1] and, given the ordering, the agent with the lowest draw receives her fa-
vorite k objects, the agent with the second-lowest draw receives his favorite k
objects from the remaining ones, and so forth. In the draft random priority
mechanism, each agent i randomly draws a number fi independently from a
uniform distribution on [0!1]. Second, the agent with the smallest draw re-
ceives her favorite object, the agent with the second-smallest draw receives his
favorite object from the remaining ones, and so forth. Then agents obtain a
random draw again and repeat the procedure k times.

We introduce two generalizations of the probabilistic serial mechanism. In
the multi-unit-eating probabilistic serial mechanism, each agent eats her k fa-
vorite available objects with speed 1 at every time t ∈ [0!1]. In the one-at-a-
time probabilistic serial mechanism, each agent eats the best available object
with speed 1 at every time t ∈ [0!k].

Our analysis can be adapted to this situation to show that the once-and-
for-all random priority mechanism is asymptotically equivalent to the multi-
unit-eating probabilistic serial mechanism, whereas the draft random priority
mechanism is asymptotically equivalent to the one-at-a-time probabilistic serial
mechanism.

It is easy to see that the multi-unit-eating probabilistic serial mechanism may
not be ordinally efficient, while the one-at-a-time probabilistic serial mecha-
nism is ordinally efficient. This may shed light on some issues in multiple unit
assignment. It is well known that the once-and-for-all random priority mecha-
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nism is ex post efficient, but the mechanism is rarely used in practice. Rather,
the draft mechanism is often used in applications, for instance, in sports draft-
ing and allocations of courses in business schools. One of the reasons may be
that the once-and-for-all random priority mechanism is ordinally inefficient
even in the limit economy, whereas the draft random priority mechanism con-
verges to an ordinally efficient mechanism as the economy becomes large—a
reasonable assumption with course allocation in schools. Indeed, Budish and
Cantillon (2010) show in their study of HBS course allocation that the mag-
nitude of the difference between the two mechanisms is very large on some
simple measures of ex-ante welfare.

8. CONCLUDING REMARKS

Although the random priority (random serial dictatorship) mechanism is
widely used for assigning objects to individuals, there has been increasing inter-
est in the probabilistic serial mechanism as a potentially superior alternative.
The trade-offs associated with these mechanisms are multifaceted and difficult
to evaluate in a finite economy. Yet, we have shown that the trade-offs disap-
pear, as the two mechanisms become effectively identical, in the large econ-
omy. More specifically, given a set of object types, the random assignments
in these mechanisms converge to each other as the number of copies of each
object type approaches infinity. This equivalence implies that the well known
concerns about the two mechanisms—the inefficiency of RP and the incentive
issue of PS—abate in large markets.

Our result shares the recurring theme in economics that large economies can
make things “right” in many settings. The benefits of large markets have been
proven in many different circumstances, but no single insight appears to ex-
plain all of them, and one should not expect them to arise for all circumstances
and for all mechanisms.

First, it is often the case that the large economy limits individuals’ abilities
and incentives to manipulate the mechanism. This is clearly the case for the
Walrasian mechanism in exchange economy, as has been shown by Roberts and
Postlewaite (1976). It is also the case for the deferred acceptance algorithm
in two-sided matching (Kojima and Pathak (2008)) and for the probabilistic
serial mechanism in one-sided matching (Kojima and Manea (2008)). Even
this property is not to be taken for granted, however. The so-called Boston
mechanism (Abdulkaḋıroğlu and Sönmez (2003b)), which has been used to
place students in public schools, provides an example. In that mechanism, a
school first admits the students who rank it first, and if and only if there are
seats left, admits those who rank it second, and so forth. It is well known that
the students have incentives to misreport preferences in such a mechanism,
and such manipulation incentives do not disappear as the economy becomes
large.32

32See Kojima and Pathak (2008) for a concrete example on this point.



1652 Y.-K. CHE AND F. KOJIMA

Second, one may expect that, with the diminished manipulation incentives,
efficiency would be easier to obtain in a large economy. The asymptotic ordi-
nal efficiency we find for the RP supports this impression. However, even some
reasonable mechanisms fail to achieve asymptotic ordinal efficiency. Take the
case of the deferred acceptance algorithm with multiple tie-breaking (DA-MTB),
an adaptation of the celebrated algorithm proposed by Gale and Shapley
(1962) to the problem of assigning objects to agents, such as student assign-
ment in public schools (see Abdulkaḋıroğlu, Pathak, and Roth (2005)). In DA-
MTB, each object type randomly and independently orders agents and, given
the ordering, the assignment is decided by conducting the agent-proposing de-
ferred acceptance algorithm with respect to the submitted preferences and the
randomly decided priority profile. It turns out that DA-MTB fails even ex post
efficiency, let alone ordinal efficiency. Moreover, these inefficiencies do not
disappear even in the continuum economy, as shown by Abdulkaḋıroğlu, Che,
and Yasuda (2008).

Third, one plausible conjecture may be that the asymptotic ordinal efficiency
is a necessary consequence of a mechanism that produces an ex post effi-
cient assignment in every finite economy. This conjecture turns out to be false.
Consider a family {Γ q}q∈N of replica economies and the following replication-
invariant random priority mechanism RIRPq. First, in the given q-economy,
define a correspondence γ :N1 " Nq such that |γ(i)| = q for each i ∈ N1,
γ(i)∩γ(j)= ∅ if i .= j, and all agents in γ(i) have the same preference as i. Call
γ(i) i’s clones in the q-fold replica. Let each set γ(i) of clones of agent i ran-
domly draw a number fi independently from a uniform distribution on [0!1].
Second, all the clones with the smallest draw receive their favorite object,
the clones with the second-smallest draw receive their most preferred object
from the remaining ones, and so forth. This procedure induces a random as-
signment. It is clear that RIRPq = RP1 for any q-fold replica Γ q. Therefore,
‖RIRPq −RP1‖→ 0 as q→∞. Since RP1 can be ordinally inefficient, the limit
random assignment of RIRPq as q→∞ is not ordinally efficient in general.

Most importantly, our analysis shows the equivalence of two different mech-
anisms beyond showing certain asymptotic properties of given mechanisms.
Such an equivalence is not expected even for a large economy, and has few
analogues in the literature.

We conclude with possible directions of future research. First, little is known
about matching and resource allocation in the face of aggregate uncertainty.
This paper has made a first step in this direction, but a further study in de-
signing mechanisms in such environments seems interesting. Second, we have
studied a continuum economy model and provided its limit foundation. Con-
tinuum economy models are not yet common in the matching literature, so
this methodology may prove useful more generally beyond the context of this
paper. Finally, the random priority and the probabilistic serial mechanisms
are equivalent only in the limit and do not exactly coincide in large but finite
economies. How these competing mechanisms perform in finite economies re-
mains an interesting open question.
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APPENDIX A: PROOF OF THEOREM 1

It suffices to show that supa∈O |Tq
a − T ∗

a | → 0 as q→∞. To this end, let

L> 2 max
{

max
{

1
m∗

a(O
′)
!m∗

a(O
′)

} ∣∣∣O′ ⊂O!a ∈O′!m∗
a(O

′) > 0
}

(A.1)

and let K := min{1 − x∗
a(v) | a ∈ O∗(v)! v < v̄∗} > 0, where v̄∗ := min{v′ |

t∗(v′) = 1} is the last step of the recursive equations. Note that (A.1) implies
L> 2.

Fix any ε > 0 such that

2L4v̄∗ε < min
{
K! min

v∈{1!"""!v̄∗}
|t∗(v)− t∗(v− 1)|

}
"(A.2)

By assumption there exists Q such that, for each q >Q,

|mq
a(O

′)−m∞
a (O

′)|< ε! ∀O′ ⊂ Õ!∀a ∈O′"(A.3)

Fix any such q. For each v ∈ {1! " " " ! v̄∗}, consider the set A∗(v) := {a ∈ O |
T ∗
a = t∗(v)} of objects that expire at step v of PS∗. We show that Tq

a ∈ (t∗(v)−
L4vε! t∗(v)+L4vε) if and only if a ∈A∗(v). Let

Jv := {i | tq(i)= tqa (i) for some a ∈A∗(v)}

be the steps at which the objects in A∗(v) expire in PSq. Clearly, it suffices to
show that tq(i) ∈ (t∗(v)−L4vε! t∗(v)+L4vε) if and only if i ∈ Jv. We prove this
recursively.

Suppose for each v′ ≤ v− 1, tq(i′) ∈ (t∗(v′)−L4v′ε! t∗(v′)+L4v′ε) if and only
if i′ ∈ Jv′ , and furthermore that, for each a ∈ O∗(v − 1), xq

a(k) ∈ (x∗
a(v − 1)−

L4(v−1)ε!x∗
a(v− 1)+L4(v−1)ε), where k is the largest element of Jv−1. We shall

then prove that tq(i) ∈ (t∗(v)−L4vε! t∗(v)+L4vε) if and only if i ∈ Jv and that
for each a ∈O∗(v), xq

a(l) ∈ (x∗
a(v)−L4vε!x∗

a(v)+L4vε), where l is the largest
element of Jv.

Observe first Oq(k)= O∗(v− 1), since k is the largest element of Jv−1.

CLAIM 1: For any i > k, tq(i) > t∗(v)−L4v−2ε.

PROOF: Suppose object a ∈O∗(v− 1) = Oq(k) expires at step k+ 1 of PSq.
It suffices to show tqa (k+ 1) > t∗(v)−L4v−2ε. Suppose to the contrary that

tqa (k+ 1)≤ t∗(v)−L4v−2ε"(A.4)

Recall, by the inductive assumption, that

xq
a(k) < x∗

a(v− 1)+L4(v−1)ε"(A.5)
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Thus,

xq
a(k+ 1) = xq

a(k)+mq
a(O

q(k))(tqa (k+ 1)− tq(k))(A.6)

≤ xq
a(k)

+mq
a(O

q(k))
(
t∗(v)−L4v−2ε− t∗(v− 1)+L4(v−1)ε

)

≤ xq
a(k)+mq

a(O
q(k))[t∗(v)− t∗(v− 1)−L4v−3ε]

< x∗
a(v− 1)+L4(v−1)ε

+m∞
a (O

∗(v− 1))[t∗(v)− t∗(v− 1)−L4v−3ε] + ε!

where the first equality follows from the definition (4.4) of PSq and the fact
that tqa (k + 1) = tq(k + 1), the first inequality follows from the inductive as-
sumption and (A.4), the second inequality holds since L4v−2ε − L4(v−1)ε =
L4v−3(L− 1

L
)ε > L4v−3ε since L > 2, which follows from (A.1), and the third

inequality follows from (A.2), (A.3), and (A.5).33

There are two cases. Suppose first m∞
a (O

∗(v− 1)) = 0. Then the last line of
(A.6) becomes

x∗
a(v− 1)+L4(v−1)ε+ ε!

which is strictly less than 1, by a ∈ O∗(v − 1) and (A.2). Suppose next
m∞

a (O
∗(v− 1)) > 0. Then the last line of (A.6) equals

x∗
a(v− 1)+L4(v−1)ε+m∞

a (O
∗(v− 1))[t∗(v)− t∗(v− 1)−L4v−3ε] + ε

< x∗
a(v− 1)+m∞

a (O
∗(v− 1))[t∗(v)− t∗(v− 1)]

≤ 1!

where the first inequality holds since, by (A.1), m∞
a (O

∗(v − 1))L4v−3ε >
2L4(v−1)ε≥L4(v−1)ε+ ε, and the second inequality follows since a ∈O∗(v− 1).
In either case, we have a contradiction to the fact that a expires at step
k+ 1. Q.E.D.

CLAIM 2: For any i ∈ Jv, tq(i)≤ t∗(v)+L4v−2ε"

33By (A.2), t∗(v)− t∗(v− 1)−L4v−3ε ∈ (0!1), so

m∞
a (O∗(v− 1))[t∗(v)− t∗(v− 1)−L4v−3ε] −mq

a(O
q(k))[t∗(v)− t∗(v− 1)−L4v−3ε]

=
(
m∞

a (O∗(v− 1))−mq
a(O

q(k))
)
[t∗(v)− t∗(v− 1)−L4v−3ε]

<m∞
a (O∗(v− 1))−mq

a(O
q(k)) < ε!

where the last inequality follows from (A.3).
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PROOF: Suppose a expires at step l ≡ maxJv of PSq. It suffices to show
tq(l) = tqa (l) ≤ t∗(v) + L4v−2ε. If t∗(v) = 1! then this is trivially true. Thus, let
us assume t∗a(v) < 1. This implies m∞

a (O
∗(v − 1)) > 0" For that case, suppose

for contradiction that

tqa (l) > t∗(v)+L4v−2ε"(A.7)

Then

xq
a(l) = xq

a(k)+
l∑

j=k+1

mq
a(O

q(j − 1))[tq(j)− tq(j − 1)]

≥ xq
a(k)+

l∑

j=k+1

mq
a(O

q(k))[tq(j)− tq(j − 1)]

= xq
a(k)+mq

a(O
∗(v− 1))[tq(l)− tq(k)]

> x∗
a(v− 1)−L4(v−1)ε

+mq
a(O

∗(v− 1))
[
t∗(v)+L4v−2ε− t∗(v− 1)−L4(v−1)ε

]

≥ x∗
a(v− 1)−L4(v−1)ε

+m∞
a (O

∗(v− 1))[t∗(v)− t∗(v− 1)+L4v−3ε]
> x∗

a(v− 1)+m∞
a (O

∗(v− 1))[t∗(v)− t∗(v− 1)]
= x∗

a(v)= 1!

where the first equality follows from (4.4), the first inequality follows since
mq

a(O
q(j − 1)) ≥ mq

a(O
q(k)) for each j ≥ k + 1 by Oq(j − 1) ⊆ Oq(k),

the second equality from Oq(k) = O∗(v − 1), the second inequality fol-
lows from the inductive assumption and (A.7), the third inequality follows
from the assumption (A.1), and the fourth inequality follows from (A.1)
and m∞

a (O
∗(v− 1)) > 0. Thus xq

a(l) > 1, which contradicts the definition of
xq
a(l). Q.E.D.

CLAIM 3: If i ∈ Jv′ for some v′ > v, then tq(i) > t∗(v)+L4vε.

PROOF: Suppose otherwise. Let c be the object that expires the first among
O∗(v) in PSq. Let j be the step at which it expires. We must have

tq(j)≤ t∗(v)+L4vε"(A.8)

In particular, tqc (j) < 1 and xq
c (j) = 1. Since c is the first object to expire in

O∗(v), at each of steps k + 1! " " " ! j − 1, some object in A∗(v) expires. (If j =
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k + 1, then no other object expires in between step k and step j.) Also, by
Claim 1,

tq(k+ 1) > t∗(v)−L4v−2ε"(A.9)

Therefore,

xq
c (j) = xq

c (k)+
j∑

i=k+1

mq
c(O

q(i− 1))(tq(i)− tq(i− 1))

≤ xq
c (k)+mq

c(O
q(k))(tq(k+ 1)− tq(k))

+mq
c(O

q(j − 1))(tq(j)− tq(k+ 1))

≤ x∗
c(v− 1)+L4(v−1)ε+

(
m∗

c(O
q(k))+ ε

)

×
(
(t∗(v)+L4v−2ε)−

(
t∗(v− 1)−L4(v−1)ε

))

+
(
m∗

a(O
q(j))+ ε

)
(L4vε−L4v−2ε)

≤ x∗
c(v)+L4v+1ε

≤ 1 −K +L4v̄∗ε

< 1!

where the first equality follows from (4.4), the first inequality follows since
mq

c(O
q(i − 1)) ≤ mq

c(O
q(j − 1)) for any i ≤ j by Oq(i − 1) ⊂ Oq(j − 1),

the second inequality follows from the inductive assumption, (A.3), (A.9),
and (A.8), the third inequality follows from (A.1), and the last inequality fol-
lows from (A.2) and the definition of K. This contradicts the assumption that
c expires at step j. Q.E.D.

Claims 1–3 prove that tq(i) ∈ (t∗(v) − L4v−2ε! t∗(v) + L4v−2ε) ⊂ (t∗(v) −
L4vε! t∗(v) + L4vε) if and only if i ∈ Jv, which in turn implies that Tq

a ∈
(t∗(v)− L4vε! t∗(v) + L4vε) if and only if a ∈A∗(v). It now remains to prove
the following claim.

CLAIM 4: For each a ∈O∗(v), xq
a(l) ∈ (x∗

a(v)−L4vε!x∗
a(v)+L4vε), where l is

the largest element of Jv.

PROOF: Fix any a ∈O∗(v). Then

xq
a(l) = xq

a(k)+
l∑

j=k+1

mq
a(O

q(j − 1))(tq(j)− tq(j − 1))

≤ xq
a(k)+mq

a(O
q(k))(tq(k+ 1)− tq(k))
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+mq
a(O

q(l− 1))(tq(l)− tq(k+ 1))

≤ x∗
a(v− 1)+L4(v−1)ε

+
(
m∗

a(O
q(k))+ ε

)
(t∗(v)− t∗(v− 1)+ 2L4v−2ε)

+
(
m∗

a(O
q(l− 1))+ ε

)
(2L4v−2ε)

< x∗
a(v− 1)+m∗

a(O
∗(v− 1))(t∗(v)− t∗(v− 1))+L4vε

= x∗
a(v)+L4vε!

where the first equality follows from (4.4), the first inequality follows since
mq

c(O
q(i − 1)) ≤ mq

c(O
q(l − 1)) for any i ≤ l by Oq(i − 1) ⊂ Oq(l − 1), the

second inequality follows from the inductive assumption, (A.3), Claims 1 and 2,
the third inequality follows from (A.1), and the last equality follows from (5.4).

A symmetric argument yields xq
a(l)≥ x∗

a(v)−L4vε. Q.E.D.

We have thus completed the recursive argument, which taken together
proves that Tq

a ∈ (t∗(v) − L4vε! t∗(v) + L4vε) if and only if t∗a(v) = t∗(v) for
any q > Q for some Q ∈ N. Since ε > 0 can be arbitrarily small, Tq

a → T ∗
a as

q→∞. Since there are only a finite number of objects and a finite number of
preference types, ‖PSq − PS∗‖→ 0 as q→∞. Q.E.D.

APPENDIX B: PROOF OF THEOREM 2

As with the proof of Theorem 1, let L be a real number satisfying condition
(A.1) and let K := min{1 − x∗

a(v) | a ∈O∗(v)! v < v̄∗} > 0, where v̄∗ := min{v′ |
t∗(v′)= 1} is the last step of the recursive equations.

Fix an agent i0 of preference type π0 ∈Π and consider the random assign-
ment for agents of type π0. Consider the events

Eq
1 (π) : m̂q

π(t
∗(v− 1)−L4(v−1)ε! t∗(v)−L4v−2ε)

<m∞
π [t∗(v)− t∗(v− 1)−L4v−3ε] for all v!

Eq
2 (π) : m̂q

π(t
∗(v− 1)+L4(v−1)ε! t∗(v)+L4v−2ε)

≥m∞
π [t∗(v)− t∗(v− 1)+L4v−3ε] for all v .= v̄∗!

Eq
3 (π) : m̂q

π(t
∗(v− 1)−L4(v−1)ε! t∗(v)+L4v−2ε)

<m∞
π [t∗(v)− t∗(v− 1)+ 2L4v−2ε] for all v!

Eq
4 (π) : m̂q

π(t
∗(v)−L4v−2ε! t∗(v)+L4vε)

<m∞
π × 2L4vε for all v!

Eq
5 (π) : m̂q

π(t
∗(v)−L4v−2ε! t∗(v)+L4v−2ε)

<m∞
π × 3L4v−2ε for all v!
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Eq
6 (π) : m̂q

π(t
∗(v− 1)+L4(v−1)ε! t∗(v)−L4v−2ε)

≥m∞
π [t∗(v)− t∗(v− 1)− 2L4v−2ε] for all v"

Before presenting a formal proof of Theorem 2, we present an outline. First,
Lemma 1 below shows that all the cutoff times of RPq become arbitrarily close
to the corresponding expiration dates of PS∗ as q → ∞ when event Eq

i (π)
holds for every π and i ∈ {1! " " " !6}. Then, in the proof of Theorem 2, (i) we
use Lemma 1 to show that the conditional probability of obtaining an object
under RPq is close to the probability of receiving that object under PS∗, given
all the events of the form Eq

i (π), and (ii) we show that the probability that all
the events of the form Eq

i (π) hold approaches 1 as q goes to infinity, so the
overall, unconditional probability of obtaining each object in RPq is close to
the conditional probability of receiving that object, given all the events of the
form Eq

i (π). We finally complete the proof of the theorem by combining items
(i) and (ii) above.

LEMMA 1: For any ε > 0 such that

2L4v̄∗ε < min
{

min
v∈{1!"""!v̄∗}

{t∗(v)− t∗(v− 1)}!K
}
!(B.1)

there exists Q such that the following statement is true for any q >Q: If the realiza-
tion of f−i0 ∈ [0!1]|Nq|−1 is such that events Eq

1 (π), E
q
2 (π), E

q
3 (π), E

q
4 (π), E

q
5 (π),

and Eq
6 (π) hold for allπ ∈Π with m∞

π > 0, then T̂ q
a ∈ (t∗(v)−L4vε! t∗(v)+L4vε)

if and only if t∗a(v)= t∗(v).

Before presenting a complete proof of Lemma 1, we note that the proof
closely follows the proof of Theorem 1. More specifically, the proof of Theo-
rem 1 shows inductively that the expiration date of each object type in PSq is
close to that of PS∗ when q is large enough, while the proof of Lemma 1 shows
inductively that the cutoff time of each object type in RPq is close to that of
PS∗ when all the events of the form Eq

i (π) hold. Indeed, Claims 1, 2, 3, and 4
in the proof of Theorem 1 correspond to Claims 5, 6, 7, and 8 in the proof of
Lemma 1, respectively. Both arguments utilize the fact that the average rates
of consumption of each object type in PSq and RPq are close to those under
PS∗ during relevant time intervals. The main difference between the proofs of
Theorem 1 and Lemma 1 is that consumption rates of PSq are close to PS∗ be-
cause mq

π is close to m∞
π for all a and π when q is large, whereas consumption

rates of RPq are assumed to be close by all the events of the form Eq
i (π), and

Lemma 1 shows that these events in fact make the cutoff times in RPq close
to expiration dates in PS∗. As mentioned above, the proof of Theorem 2 then
shows that assuming all the events of the form Eq

i (π) is not problematic, since
the probability of these events converges to 1 as q approaches infinity.
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PROOF OF LEMMA 1: There exists Q such that
∑

π∈Π:m∞
π =0

mq
π < ε(B.2)

for any q > Q. Fix any such q and suppose that the realization of f−i0 is such
that Eq

1 (π), E
q
2 (π), E

q
3 (π), E

q
4 (π), E

q
5 (π), and Eq

6 (π) hold for all π with m∞
π >

0 as described in the statement of the lemma. We first define the steps

Ĵv := {i | t̂qa (i)= t̂q(i) for some a ∈A∗(v)}

at which the objects in A∗(v) expire in RPq. The lemma shall be proven by
showing that t̂q(i) ∈ (t∗(v)−L4vε! t∗(v) + L4vε) if and only if i ∈ Ĵv. We show
this inductively.

Suppose for any v′ ≤ v − 1, t̂q(i′) ∈ (t∗(v′) − L4v′ε! t∗(v′) + L4v′ε) if and
only if i′ ∈ Ĵv′ , and further that, for each a ∈ O∗(v − 1), x̂q

a(k) ∈ (x∗
a(v − 1)−

L4(v−1)ε!x∗
a(v− 1)+L4(v−1)ε), where k is the largest element of Ĵv−1. We shall

then prove that t̂q(i) ∈ (t∗(v)−L4vε! t∗(v)+L4vε) if and only if i ∈ Ĵv, and that,
for each a ∈O∗(v), x̂q

a(l) ∈ (x∗
a(v)−L4vε!x∗

a(v)+L4vε), where l is the largest
element of Ĵv.

Let k be the largest element of Ĵv−1. It then follows that Ôq(k)= O∗(v− 1).

CLAIM 5: For any i > k, t̂q(i) > t∗(v)−L4v−2ε.

PROOF: Suppose object a ∈O∗(v− 1)=Oq(k) expires at step k+ 1 of RPq.
It suffices to show t̂qa (k+ 1) > t∗(v)−L4v−2ε. Suppose to the contrary that

t̂qa (k+ 1)≤ t∗(v)−L4v−2ε"(B.3)

Recall, by inductive assumption, that

x̂q
a(k) < x∗

a(v− 1)+L4(v−1)ε"(B.4)

Thus,

x̂q
a(k+ 1) = x̂q

a(k)+ m̂q
a(Ô

q(k); t̂q(k)! t̂qa (k+ 1))(B.5)

≤ x̂q
a(k)+ m̂q

a

(
Ôq(k); t∗(v− 1)−L4(v−1)ε! t∗(v)−L4v−2ε

)

< x∗
a(v− 1)+L4(v−1)ε

+m∞
a (O

∗(v− 1))[t∗(v)− t∗(v− 1)−L4v−3ε] + ε!

where the first equality follows from (4.8) in the definition of RPq, the first
inequality follows from the inductive assumption and (B.3), and the second
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inequality follows from the assumption that Eq
1 (π) holds for all π ∈ Π and

conditions (B.2) and (B.4).
There are two cases. Suppose first m∞

a (O
∗(v − 1)) = 0. Then the last line

of (B.5) becomes

x∗
a(v− 1)+L4(v−1)ε+ ε!

which is strictly less than 1, since a ∈O∗(v− 1) and since (B.1) holds. Suppose
next that m∞

a (O
∗(v− 1)) > 0. Then the last line of (B.5) equals

x∗
a(v− 1)+L4(v−1)ε

+m∞
a (O

∗(v− 1))[t∗(v)− t∗(v− 1)−L4v−3ε] + ε
< x∗

a(v− 1)+m∞
a (O

∗(v− 1))[t∗(v)− t∗(v− 1)]
≤ 1!

where the first inequality follows from (A.1) and the second inequality follows
since a ∈ O∗(v − 1). In either case, we have a contradiction to the fact that a
expires at step k+ 1. Q.E.D.

CLAIM 6: For any i ∈ Ĵv, t̂q(i)≤ t∗(v)+L4v−2ε"

PROOF: Suppose a expires at step l ≡ max Ĵv of RPq. It suffices to show
t̂q(l)= t̂qa (l)≤ t∗(v)+L4v−2ε. If t∗(v)= 1! then the claim is trivially true. Thus,
let us assume t∗(v) < 1. This implies m∞

a (O
∗(v−1)) > 0" For that case suppose,

for contradiction, that

t̂q(l) > t∗(v)+L4v−2ε"(B.6)

Then,

x̂q
a(l) = x̂q

a(k)+
l∑

j=k+1

m̂q
a(Ô

q(j − 1); t̂q(j − 1)! t̂q(j))

≥ x̂q
a(k)+

l∑

j=k+1

m̂q
a(Ô

q(k); t̂q(j − 1)! t̂q(j))

= x̂q
a(k)+ m̂q

a(O
∗(v− 1); t̂q(k)! t̂q(l))

> x∗
a(v− 1)−L4(v−1)ε

+ m̂q
a

(
O∗(v− 1); t∗(v− 1)+L4(v−1)ε! t∗(v)+L4v−2ε

)

≥ x∗
a(v− 1)−L4(v−1)ε

+m∞
a (O

∗(v− 1))[t∗(v)− t∗(v− 1)+L4v−3ε]
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> x∗
a(v− 1)+m∞

a (O
∗(v− 1))[t∗(v)− t∗(v− 1)]

= x∗
a(v)= 1!

where the first equality follows from (4.8), the first inequality follows since
m̂q

a(Ô
q(j−1); t! t ′)≥mq

a(Ô
q(k); t! t ′) for any j ≥ k+1 and t ≤ t ′ by Ôq(j−1)⊆

Ôq(k), the second equality follows from Ôq(k) = O∗(v− 1) and the definition
of m̂q

a, the second inequality follows from the inductive assumption and (B.6),
the third inequality follows from the assumption that Eq

2 (π) holds, and the
fourth inequality follows from (A.1) and the assumption m∞

a (O
∗(v − 1)) > 0.

Thus x̂q
a(l) > 1, which contradicts the definition of xq

a(l). Q.E.D.

CLAIM 7: If i ∈ Ĵv′ for some v′ > v, then t̂q(i) > t∗(v)+L4vε.

PROOF: Suppose otherwise. Let c be the object that expires the first among
O∗(v) in RPq. Let j be the step at which it expires. Then we must have

t̂qc (j)≤ t∗(v)+L4vε(B.7)

and x̂q
c (j) = 1. Since c is the first object to expire in O∗(v), at each of steps

k + 1! " " " ! j − 1, some object in A∗(v) expires. (If j = k + 1, then no other
object expires between step k and step j.) By Claim 5, this implies t̂q(k+ 1) >
t∗(v)−L4v−2ε. Therefore,

x̂q
c (j) = x̂q

c (k)+
j∑

i=k+1

m̂q
c (Ô

q(i− 1); t̂q(i− 1)! t̂q(i))

≤ x̂q
c (k)+ m̂q

c (Ô
q(k); t̂q(k)! t̂q(k+ 1))

+ m̂q
c (Ô

q(j − 1); t̂q(k+ 1)! t̂q(j))

≤ x̂q
c (k)+ m̂q

c

(
Ôq(k); t∗(v− 1)−L4(v−1)ε! t∗(v)+L4v−2ε

)

+ m̂q
c (Ô

q(j − 1); t∗(v)−L4v−2ε! t∗(v)+L4vε)

≤ x∗
c(v− 1)+L4(v−1)ε

+m∗
c(O

∗(v− 1))[t∗(v)− t∗(v− 1)+ 2L4v−2ε]
+m∞

c (Ô
q(j − 1))× 2L4vε+ ε

≤ x∗
c(v)+L4v+1ε

≤ 1 −K +L4v̄∗ε

< 1!

where the first equality follows from (4.8), the first inequality follows since
m̂q

c (Ô
q(j−1); t! t ′)≥mq

c(Ô
q(i−1); t! t ′) for any j ≥ i by Ôq(j−1)⊆ Ôq(i−1),
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the second inequality follows from the inductive assumption, and Claims 5
and 6, the third inequality follows from the inductive assumption, Eq

3 (π),
Eq

4 (π), and (B.2), the fourth inequality follows from (5.4) and (A.1), the fifth
inequality follows from the definition of K, and the last inequality follows from
the assumption that 2L4v̄∗ε <K . Thus we obtain x̂q

c (j) < 1, which contradicts
the assumption that c expires at step j. Q.E.D.

Claims 5, 6, and 7 prove that t̂q(i) ∈ (t∗(v) − L4v−2ε! t∗(v) + L4v−2ε) ⊂
(t∗(v)−L4vε! t∗(v)+L4vε) if and only if i ∈ Ĵv. This implies that T̂ q

a ∈ (t∗(v)−
L4vε! t∗(v)+L4vε) if and only if a ∈A∗(v). It now remains to show the follow-
ing claim.

CLAIM 8: For each a ∈O∗(v), xq
a(l) ∈ (x∗

a(v)−L4vε!x∗
a(v)+L4vε), where l is

the largest element of Ĵv.

PROOF: Fix any a ∈O∗(v). Then

x̂q
a(l) = x̂q

a(k)+
l∑

j=k+1

m̂q
a(Ô

q(j − 1); t̂q(j − 1)! t̂q(j))

≤ x̂q
a(k)+ m̂q

a(Ô
q(k); t̂q(k)! t̂q(k+ 1))

+ m̂q
a(Ô

q(l); t̂q(k+ 1)! t̂q(l))

≤ x̂q
a(k)+ m̂q

a

(
Ôq(k); t∗(v− 1)−L4(v−1)ε! t∗(v)+L4v−2ε

)

+ m̂q
a(Ô

q(l); t∗(v)−L4v−2ε! t∗(v)+L4v−2ε)

< x∗
a(v− 1)+L4(v−1)ε

+m∗
a(Ô

q(k))(t∗(v)− t∗(v− 1)+ 2L4v−2ε)

+m∗
a(Ô

q(l))× 3L4v−2ε+ 2ε

< x∗
a(v− 1)+

(
m∗

a(O
∗(v− 1))

)
(t∗(v)− t∗(v− 1))+L4vε

= x∗
a(v)+L4vε!

where the first equality follows from (4.8), the first inequality follows from
mq

a(Ô
q(l); t! t ′) ≥ mq

a(Ô
q(j); t! t ′) for all l ≥ j, the second inequality follows

from the inductive assumption and Claims 5 and 6, the third inequality fol-
lows from the inductive assumption, (B.2), and Eq

3 (π) and Eq
5 (π), the fourth

inequality follows from Ôq(k) = O∗(v − 1) and (A.1), and the last inequality
follows from (5.4).
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Next we obtain

x̂q
a(l) = x̂q

a(k)+
l∑

j=k+1

m̂q
a(Ô

q(j − 1); t̂q(j − 1)! t̂q(j))

≥ x̂q
a(k)+ m̂q

a(Ô
q(k); t̂q(k)! t̂q(l))

≥ x̂q
a(k)+ m̂q

a

(
Ôq(k); t∗(v− 1)+L4(v−1)ε! t∗(v)−L4v−2ε

)

≥ x∗
a(v− 1)−L4(v−1)ε

+m∗
a(O

∗(v− 1))[t∗(v)− t∗(v− 1)− 2L4v−2ε]
> x∗

a(v)−L4vε!

where the first inequality follows from Ôq(j − 1) ⊆ Ôq(k) for any j ≥ k + 1,
the second inequality follows from the inductive assumption and Claim 5, the
third inequality follows from the inductive assumption and Eq

6 (π), and the
last inequality follows from (5.4) and (A.1). These inequalities complete the
proof. Q.E.D.

We have thus completed the recursive argument, which taken together
proves that T̂ q

a ∈ (t∗(v) − L4vε! t∗(v) + L4vε) if and only if a ∈A∗(v) for any
q >Q for some Q ∈ N. Q.E.D.

PROOF OF THEOREM 2: We shall show that for any ε > 0, there exists Q
such that, for any q >Q, for any π0 ∈Π and a ∈O,

|PS∗
a(π0)− RPq

a(π0)|<
(
2L4(n+1) + 6(n+ 1)!

)
ε"(B.8)

Since n is a finite constant, relation (B.8) implies the theorem.
To show this, first assume without loss of generality that ε satisfies (B.1) and

Q is so large that (B.2) holds for any q >Q. We have

RPq
a(π0) = E[T̂ q

a − τ̂qa(π0)](B.9)

= E
[

T̂ q
a − τ̂qa(π0)

∣∣∣
6⋂

i=1

⋂

π∈Π:m∞
π >0

Eq
i (π)

]

× Pr

[
6⋂

i=1

⋂

π∈Π:m∞
π >0

Eq
i (π)

]

+ E
[

T̂ q
a − τ̂qa(π0)

∣∣∣
6⋂

i=1

⋂

π∈Π:m∞
π >0

Eq
i (π)

]
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× Pr

[
6⋂

i=1

⋂

π∈Π:m∞
π >0

Eq
i (π)

]

= E
[

T̂ q
a − τ̂qa(π0)

∣∣∣
6⋂

i=1

⋂

π∈Π:m∞
π >0

Eq
i (π)

]

×
(

1 − Pr

[
6⋃

i=1

⋃

π∈Π:m∞
π >0

Eq
i (π)

])

+ E
[

T̂ q
a − τ̂qa(π0)

∣∣∣
6⋂

i=1

⋂

π∈Π:m∞
π >0

Eq
i (π)

]

× Pr

[
6⋃

i=1

⋃

π∈Π:m∞
π >0

Eq
i (π)

]

= E
[

T̂ q
a − τ̂qa(π0)

∣∣∣
6⋂

i=1

⋂

π∈Π:m∞
π >0

Eq
i (π)

]

+
{

E
[

T̂ q
a − τ̂qa(π0)

∣∣∣
6⋂

i=1

⋂

π∈Π:m∞
π >0

Eq
i (π)

]

−E
[

T̂ q
a − τ̂qa(π0)

∣∣∣
6⋂

i=1

⋂

π∈Π:m∞
π >0

Eq
i (π)

]}

× Pr

[
6⋃

i=1

⋃

π∈Π:m∞
π >0

Eq
i (π)

]

!

where for any event E, E[·|E] denotes the conditional expectation given E, and
E is the complement event of E.

First, we bound the first term of expression (B.9). Since v̄∗ ≤ n+1, Lemma 1
implies that

E
[

T̂ q
a − τ̂qa(π0)

∣∣∣
6⋂

i=1

⋂

π∈Π:m∞
π >0

Eq
i (π)

]

∈
[
T∞
a − τ∗a(π0)− 2L4(n+1)ε!T∞

a − τ∗a(π0)+ 2L4(n+1)ε
]
"

Second, we bound the second term of expression (B.9). By the weak law of
large numbers, for any ε > 0, there exists Q such that Pr[Eq

i (π)] < ε for any
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i ∈ {1!2!3!4!5!6}, q > Q, and π ∈ Π with m∞
π > 0. Since there are at most

6(n + 1)! such events and, in general, the sum of probabilities of a number of
events is weakly larger than the probability of the union of the events (Boole’s
inequality), we obtain

Pr

[
6⋃

i=1

⋃

π∈Π:m∞
π >0

Eq
i (π)

]

≤
6∑

i=1

∑

π∈Π:m∞
π >0

Pr[Eq
i (π)]

≤ 6(n+ 1)!ε"

Since T̂ q
a − τ̂qa(π0) ∈ [0!1] for any a!q, and π0, the second term of equa-

tion (B.9) is in [−6(n+ 1)!ε!6(n+ 1)!ε].
From the above arguments and the definition PS∗

a(π0) = T∞
a − τ∗a(π0) for

every a and π0, we have that

|PS∗
a(π0)− RPq

a(π0)|<
(
2L4(n+1) + 6(n+ 1)!

)
ε!

completing the proof. Q.E.D.

APPENDIX C: PROOF OF PROPOSITION 3

The proposition uses the following two lemmas. Let {Γ q} be a family of
replica economies. Given any q, define a correspondence γ :N1 " Nq such
that |γ(i)| = q for each i ∈ N1, γ(i) ∩ γ(j) = ∅ if i .= j, and all agents in γ(i)
have the same preference as i. Call γ(i) i’s clones in the q-fold replica.

LEMMA 2: For all q ∈ N and a!b ∈ Õ, a!(RP1!m1)b⇐⇒ a!(RPq!mq)b.

PROOF: We proceed in two steps.
(i) a!(RP1!m1)b 6⇒ a!(RPq!mq)b: Suppose first a!(RP1!m1)b. There

exists an individual i∗ ∈N1 and an ordering (i1
(1)! " " " ! i

1
(|N1|)) (implied by some

draw f 1 ∈ [0!1]|N1|) such that the agents in front of i∗ in that ordering consume
all the objects that i∗ prefers to b but not b, and i∗ consumes b.

Now consider the q-fold replica. With positive probability, we have an or-
dering (γ̄(i1

(1))! " " " ! γ̄(i
1
(|N1|))), where γ̄(i) is an arbitrary permutation of γ(i).

Under this ordering, each agent in γ(i1
(j)) will consume a copy of the object

agent i1
(j) will consume in the base economy, and hence all the agents in γ(i∗)

will consume b (despite preferring a to b). This proves that a!(RPq!mq)b.
(ii) a!(RPq!mq)b6⇒ a!(RP1!m1)b: Suppose a!(RPq!mq)b. Then, with

positive probability, a draw f q ∈ [0!1]|Nq| entails an ordering in which the
agents ahead of i∗ ∈ Nq consume all of the objects that i∗ prefers to b, but
not all of the copies of b have been consumed by them. List these objects in
the order that their last copies are consumed, and let the set of these objects
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be Ô := {o1! " " " ! om} ⊂O, where ol is completely consumed before ol+1 for all
l = 1! " " " !m− 1. (Note that a ∈ Ô.) Let i∗∗ be such that i∗ ∈ γ(i∗∗).

We first construct a correspondence ξ : Ô→N1 \ {i∗∗} defined by

ξ(o) := {i ∈N1 \ {i∗∗} | ∃j ∈ γ(i) who consumes o under f q}"

CLAIM 9: Any agent in Nq who consumes ol prefers ol to all objects in Õ \
{o1! " " " ! ol−1} under f q. Hence, any agent in ξ(ol) prefers ol to all objects in Õ \
{o1! " " " ! ol−1}.

CLAIM 10: For each O′ ⊂ Ô, |⋃o∈O′ ξ(o)| ≥|O′|.

PROOF: Suppose otherwise. Then there exists O′ ⊂ Ô such that k :=
|⋃o∈O′ ξ(o)| < |O′| =: l. Reindex the sets so that

⋃
o∈O′ ξ(o) = {a1! " " " ! ak} and

O′ = {o1! " " " ! ol}. Let xij denote the number of clones of agent aj ∈ ξ(oi) who
consume oi in the q-fold replica under f q.

Since
∑l

i=1 xij ≤ |γ(aj)| = q,

k∑

j=1

l∑

i=1

xij ≤ kq"

At the same time, all q copies of each object in O′ are consumed, and at most
q− 1 clones of i∗∗ could be those contributing to that consumption. Therefore,

l∑

i=1

k∑

j=1

xij ≥ lq− (q− 1)= (l− 1)q+ 1 > kq"

We thus have a contradiction. Q.E.D.

By Hall’s theorem, Claim 10 implies that there exists a mapping η : Ô →
N1 \ {i∗∗} such that η(o) ∈ ξ(o) for each o ∈ Ô and η(o) .= η(o′) for o .= o′.

Now consider the base economy. With positive probability, f 1 has a priority
ordering (η(o1)! " " " !η(om)! i∗∗) followed by an arbitrary permutation of the
remaining agents. Given such a priority ordering, the objects in Ô will all be
consumed before i∗∗ gets her turn but b will not be consumed before i∗∗ gets
her turn, so she will consume b. This proves that a!(RP1!m1)b. Q.E.D.

LEMMA 3: RP1 is wasteful if and only if RPq is wasteful for any q ∈ N.

PROOF: We proceed in two steps.
(i) The “only if” part: Suppose that RP1 is wasteful. Then there are objects

a!b ∈ Õ and an agent i∗ ∈ N1 who prefers a to b such that she consumes b
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under some ordering (ĩ1
(1)! " " " ! ĩ

1
(|N1|)) (implied by some f̃ 1) and that a is not

consumed by any agent under (î1
(1)! " " " ! î

1
(|N1|)) (implied by some f̂ 1). (This is

the necessary implication of the “wastefulness” under RP1.)
Now consider its q-fold replica, RPq. With positive probability, an ordering

(γ̄(ĩ1
(1))! " " " ! γ̄(ĩ

1
(|N1|))) arises, where γ̄(i) is an arbitrary permutation of γ(i).

Clearly, each agent in γ(i∗) must consume b even though she prefers a over b
(since all copies of all objects the agents in γ(i∗) prefer to b are all consumed
by the agents ahead of them). Likewise, with positive probability, an ordering
(γ̄(î1

(1))! " " " ! γ̄(î
1
(|N1|))) arises. Clearly, under this ordering, no copies of object

a are consumed. It follows that RPq is wasteful.
(ii) The “if” part: Suppose next that RPq is wasteful. Then there are objects

a!b ∈ Õ and an agent i∗∗ ∈ Nq who prefers a over b such that she consumes
b under some ordering (ĩq(1)! " " " ! ĩ

q
(|Nq|)) (implied by some f̃ q) and that not all

copies of object a are consumed under (îq(1)! " " " ! î
q
(|Nq|)) (implied by some f̂ q).

Now consider the corresponding base economy and associated RP1. The
argument of part (ii) of Lemma 2 implies that there exists an ordering
(ĩ1

(1)! " " " ! ĩ
1
(|N1|)) under which agent ĩ∗ = γ−1(i∗∗) ∈N1 consumes b even though

she prefers a over b.
Next, we prove that RP1 admits a positive-probability ordering under which

object a is not consumed. Let N ′′ := {r ∈N1 | ∃j ∈ γ(r) who consumes the null
object under f̂ q}. For each r ∈N ′′, we let ør denote the null object some clone
of r ∈ N1 consumes. In other words, we use different notations for the null
object consumed by the clones of different agents in N ′′. Given this convention,
there can be at most q copies of each ør .

Let Ō := O ∪ (
⋃

r∈N ′′ ør) \ {a} and define a correspondence ψ :N1 → Ō by

ψ(r) := {b ∈ Ō | ∃j ∈ γ(r) who consumes b under f̂ q}"

CLAIM 11: For each N ′ ⊂N1, |⋃r∈N ′ ψ(r)| ≥|N ′|.

PROOF: Suppose not. Then k := |⋃r∈N ′ ψ(r)| < |N ′| =: l. Reindex the sets
so that

⋃
r∈N ′ ψ(r) =: {o1! " " " ! ok} and N ′ = {r1! " " " ! rl}. Let xij denote the num-

ber of copies of object oj ∈ ψ(ri) consumed by the clones of ri in the q-fold
replica under f̂ q.

Since there are at most q copies of each object, we must have

k∑

j=1

l∑

i=1

xij ≤ kq"
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At the same time, all q clones of each agent in N ′, excluding q − 1 agents
(who may be consuming a), are consuming some objects in O′ under f̂ q, so we
must have

l∑

i=1

k∑

j=1

xij ≥ lq+ q− 1 = (l− 1)q+ 1 > kq"

We thus have a contradiction. Q.E.D.

Claim 11 then implies, via Hall’s theorem, that there exists a mapping
ι :N1 → Ō such that ι(r) ∈ψ(r) for each r ∈N1 and ι(r) .= ι(r ′) if r .= r ′.

Let O′ ⊂ Ō be the subset of all object types in Ō whose entire q copies are
consumed under f̂ q. Order O′ in the order that the last copy of each object
is consumed; that is, label O′ = {o1! " " " ! om} such that the last copy of object
oi is consumed prior to the last copy of oj if i < j. Let N̂ be any permuta-
tion of the agents in ι−1(Ō \ O′). Now consider the ordering in RP1, that is,
(î1

(1)! " " " ! î
1
(|N1|)) = (ι−1(o1)! " " " ! ι−1(om)! N̂)! where the notational convention

is as follows: for any l ∈ {1! " " " !m}, if ι−1(ol) is empty, then no agent is or-
dered.

CLAIM 12: Under the ordering (î1
(1)! " " " ! î

1
(|N1|))= (ι−1(o1)! " " " ! ι−1(om)! N̂), a

is not consumed.

PROOF: For any l = 0! " " " !m, let Ol be the set of objects that are consumed
by agents ι−1(o1)! " " " ! ι−1(ol) under the current ordering (note that some of
ι−1(o1)! " " " ! ι−1(ol) may be nonexistent). We shall show Ol ⊆ {o1! " " " ! ol} by
an inductive argument. First note that the claim is obvious for l = 0. As-
sume that the claim holds for 0!1! " " " ! l − 1. If ι−1(ol) = ∅, then no agent
exists to consume an object at this step and hence the claim is obvious.
Suppose ι−1(ol) .= ∅. By definition of ι, agent ι−1(ol) weakly prefers ol to
any object in Õ \ {o1! " " " ! ol−1}. Therefore, ι−1(ol) consumes an object in
{ol} ∪ ({o1! " " " ! ol−1} \ Ol−1)⊆ {o1! " " " ! ol}" This and the inductive assumption
imply Ol ⊆ {o1! " " " ! ol}.

Next, consider agents who appear in the ordered set N̂ . By an argument
similar to the previous paragraph, each agent i in N̂ consumes an object in
ι(i)∪ ({o1! " " " ! om} \Om)" In particular, no agent in N̂ consumes a. Q.E.D.

Since the ordering (î1
(1)! " " " ! î

1
(|N1|)) = (ι−1(o1)! " " " ! ι−1(om)! N̂) is realized

with positive probability under RP1, Claim 12 completes the proof of Lem-
ma 3. Q.E.D.

PROOF OF PROPOSITION 3: If RPq is ordinally inefficient for some q ∈ N,
then either it is wasteful or there must be a cycle of binary relation !(RPq!mq).
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Lemmas 2 and 3 then imply that RP1 is wasteful or there exists a cycle of
!(RP1!m1) and that RPq′ is wasteful or there exists a cycle of !(RPq′!mq′)
for each q′ ∈ N. Hence, for each q′ ∈ N, RPq′ is ordinally inefficient. Q.E.D.

APPENDIX D: EQUIVALENCE OF ASYMMETRIC RP AND PS IN
CONTINUUM ECONOMIES

For π ∈Π and c ∈ C, let m∞
π!c be the measure of agents in class c of prefer-

ence type π in the continuum economy.
We define asymmetric PS recursively as follows. Let O∗(0) = Õ, t∗(0) = 0

and x∗
a(0) = 0 for every a ∈ Õ. Given O∗(0)! t∗(0)! {x∗

a(0)}a∈Õ! " " " ! O∗(v− 1)!
t∗(v− 1)! {x∗

a(v− 1)}a∈Õ , we let t∗ø := 1 and for each a ∈O, define

t∗a(v) = sup
{
t ∈ [0!1]

∣∣∣(D.1)

x∗
a(v− 1)+

∑

c∈C

∑

π:a∈Chπ(O∗(v−1))

∫ t

t∗(v−1)
m∞
π!cgc(s)ds < 1

}
!

t∗(v) = min
a∈O∗(v−1)

t∗a(v)!(D.2)

O∗(v)= O∗(v− 1) \ {a ∈O∗(v− 1) | t∗a(v)= t∗(v)}!(D.3)

x∗
a(v) = x∗

a(v− 1)+
∑

c∈C

∑

π:a∈Chπ(O∗(v−1))

∫ t∗(v)

t∗(v−1)
m∞
π!cgc(t)dt!(D.4)

with the terminal step defined as v̄∗ := min{v′ | t∗(v′)= 1}.
Consider the associated expiration dates: For each a ∈ Õ, T ∗

a := {t∗(v) |
t∗(v) = t∗a(v)! for some v} if the set is nonempty or else T ∗

a := 1. Let τ∗a(π) :=
min{T ∗

a !max{T ∗
b | π(b) < π(a)!b ∈ O}} be the expiration date of last object

that a type-π agent prefers to a (if it is smaller than T ∗
a , and T ∗

a otherwise).
The asymmetric PS random assignment in the continuum economy is defined,
for each object a ∈ Õ, a type-π agent in class c, by PS∗

a(π! c) :=
∫ T ∗

a

τ∗a(π)
gc(t)dt.

In the RP, an agent in class c draws a lottery number f ∈ [0!1] according to
the density function gc . Again by the weak law of large numbers, the measure
of type-π agents in class c who have drawn lottery numbers less than f is m∞

π!c×∫ f

0 gc(f ′)df ′ (with probability 1).
As in the baseline case, the random assignment of RP is described by the

cutoff times for the lottery numbers for alternative objects, and they are de-
scribed precisely by the same set (D.1)–(D.4) of equations. In other words, the
random priority random assignment in the continuum economy is defined, for
a type π-agent in class c and a ∈ Õ, as RP∗

a(π) := T ∗
a − τ∗a(π), just as in PS∗.
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It thus immediately follows that RP∗ = PS∗, showing that the equivalence ex-
tends to the continuum economy with group-specific priorities. The asymptotic
equivalence can also be established as explained in the main text, although we
omit the proof.

APPENDIX E: PROOF OF PROPOSITION 4

Let O = {a!b}, Ω = {ωa!ωb}, ρ∞(ωa) = ρ∞(ωb) = 1
2 , and agents with πab

prefer a to b to ø and those with πba prefer b to a to ø, m∞
πab(ωa) =

12
5 !m

∞
πba(ωa) = 8

5 !m
∞
πab(ωb) = 8

5 , and m∞
πba(ωb) = 12

5 . Assume for contradiction
that mechanism φ∗ is ordinally efficient and strategy-proof. Since φ∗ is ordi-
nally efficient, both types of agents prefer both a and b to ø, and the measure
of all objects (two) is smaller than the measure of all agents (four), then at
each state the whole measure of both a and b is assigned to agents, that is,
m∞
πab(ω)φ

∗
o(π

ab!ω)+m∞
πba(ω)φ

∗
o(π

ba!ω)= 1 for every o ∈O and ω ∈Ω.
Ordinal efficiency of φ∗ implies that at most one type of agents receive their

nonfavorite proper object with positive probability, since otherwise a profitable
exchange of probability shares exists either at the same state or across different
states. Thus suppose, without loss of generality, that type-πba agents receive
their nonfavorite object a with probability 0. Then type-πab agents obtain the
entire share of their favorite object a at both states. Thus,

φ∗
a(π

ab!ωa)= 1
m∞
πab(ωa)

= 5
12
! φ∗

a(π
ab!ωb)= 1

m∞
πab(ωb)

= 5
8
!(E.1)

and

φ∗
a(π

ba!ωa)=φ∗
a(π

ba!ωb)= 0"(E.2)

Moreover, since there is mass 1 of object b,

φ∗
b(π

ba!ωa)≤
1

m∞
πba(ωa)

= 5
8
! φ∗

b(π
ba!ωb)≤

1
m∞
πba(ωb)

= 5
12
"(E.3)

If a type πba-agent reports true preferences πba, then by (E.2) and (E.3),

Φ∗
a(π

ba)+Φ∗
b(π

ba)

= 0 + P̄(ωa|πba)φ∗
b(π

ba!ωa)+ P̄(ωb|πba)φ∗
b(π

ba!ωb)≤
1
2
!

where P̄(ω|π) denotes the posterior belief of an agent that the state isω given
that her preference type is π.
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On the other hand, if she lies and reports πab, then by (E.1) she expects to
obtain object a with probability

P̄(ωa|πba)φ∗
a(π

ab!ωa)+ P̄(ωb|πba)φ∗
a(π

ab!ωb)

= 4
10

· 5
12

+ 6
10

· 5
8

= 13
24

>
1
2
≥Φ∗

a(π
ba)+Φ∗

b(π
ba)!

violating strategy-proofness of φ∗. Q.E.D.
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