EE477 Project: 2-stage Pipelined CPU

1. Core Organization

stage break

PC > Shifer [~
RF ”
16 x 16bit
:I—> op1
O —
I - _
64K x 16bit i J >E _»{ 64K x 16Dit
opd wr_data
ar : b
AR L PR EERRET B Eemmmmeo- ;
Flag bits & result ‘TE
-ll
- .
- o

By the end of this course, you will build a complete simplified 16-bit ARM based CPU.
The 2-stage pipelined CPU will breakdown the stages between the instruction fetch and
instruction decode as shown with the red dotted line in the diagram.

To help you understand the core organization, below is the detail of each component:

1.1. MUX

Each blue colored bar line in the diagram represents a multi-input selector

(MUX), in which each selector operates based on the select control signals determined by
the Instruction Decoder.

1.2. Program Counter (PC)

This is a 16-bit program counter that keeps track of where the position of current
instruction is at. It updates its PC value at the rising edge of each clock cycle. The PC can
either increment by 1 or branch to a different PC value based on the MUX output.

> Inputs: next PC value
> OQutputs: current PC value
> Size: 16 bits

University of Washington, EE477 VLSI II Created By: Alexa Yao Jan, 2015

1.3. Instruction Memory (IM)

This memory stores all binary instruction sets. It provides 64K address lines, each
address line is 16 bits. The IM receives the current program count (corresponding to the
instruction address position) from the PC, then outputs a 16-bit instruction. This
operation is called “instruction fetch,” and this is the end of the st stage in the
pipelining.

** The IM will be modeled in Verilog to be integrated into the whole design.

> Inputs: 16-bit address value
> Outputs: 16-bit binary instruction
> Size: 64Kx16bit

1.4. Instruction Decoder (ID)

This is the key control module in the CPU, which interprets the binary instruction,
determines all control signals required in the datapath, and outputs appropriate operands
for further data processing. This operation is called “instruction decode,” and this is the
beginning of the 2nd stage in the pipelining.

> Inputs: 16-bit instruction, 16-bit PC value, 4-bit flags, 16-bit Link Register value,
16-bit Stack Pointer value
> Qutputs:
o regfile: read addr0, read addrl, write en, wr_addr
o shifter: operation control bits
o ALU: operandl, operand0, operation control bits
o data mem: read en, write_en
o all MUXs control bits
> Additional functions: Zero extend immediate value to 16-bit, sign extend
immediate value to 16-bit

1.5. Register File (RF)

Register file contains sixteen 16-bit registers (r0 ~ r15). r0 ~ r12 are general
purpose registers, r13 ~ r15 are reserved registers representing Link Register, Stack
Pointer Register and Program Status Register. To utilize your mini project design, since
the access to r13~r15 for read/write is not available from the regfile, please use two stand
alone 16-bit registers for LR and SP for this CPU project.

> Inputs: read_addr0, read_addrl, write en, write_addr, write data
> Outputs: read data0, read datal

University of Washington, EE477 VLSI II Created By: Alexa Yao Jan, 2015

1.6. Shifter

The shifter unit supports bit manipulation of logical shift in either direction,
arithmetic right shift and right rotate.

> Inputs: operation control such as shift, right and arith, 16-bit data, 5-bit shift
amount
> Outputs: 16-bit result, carry flag, negative flag

1.7. ALU

The arithmetic logic unit supports add, subtract, invert, and, or, xor operations
with the two 16-bit inputs. The two inputs are either received from the RF or from the ID.

> Inputs: 16-bit operand1, 16-bit operand0, operation control bits
> Outputs: 16-bit result, carry flag, negative flag, overflow flag

1.8. Zero Detector (ZD)

This component simply detects whether or not the final result is zero. It output a
“1” if the data is zero and outputs an “0” if the data is not zero.

> Inputs: 16-bit result
> Outputs: zero_flag

1.9. Data Memory (DM)

This is the main memory for your processor which offers a data storage capacity
of 16-bit entries and each entry is 2 bytes long. If read or write request is received, the
data memory will accept the 16-bit address value from the ALU.

** The DM will be modeled in Verilog to be integrated into the whole design.

> Inputs: input_addr (read or write address input shares the same port), read_en,
write_en, write data

> Outputs: read_data

> Size: 64K x 16bit

1.10. Stage Registers (not shown in the diagram)

Additional registers are needed in order to safely store necessary data from the Ist
stage and pass it onto the 2nd-stage. These important stage registers are listed below:

% Instruction Register (IR)

University of Washington, EE477 VLSI II Created By: Alexa Yao Jan, 2015

Stores the 16-bit instruction fetched from the Instruction Memory

% Flag Register (for N, Z, C, V flags)
The program status register is simplified down to a 4-bit register that uses 1 bit
per each flags. Please follow the bit index arrangement in the Flags section in your

design.
¢ Stack Pointer (SP, alias r13)

Stack Pointer acts as a pointer to the active stack in DM. It starts from the bottom
of the memory which is address 16 hffff, then moves up one by one as more subroutine
calls are made. The SP register will always store: the latest data memory address the
pointer is at - 1. The DM address[SPreg + 1] will stores the latest return link PC value if
any.

% Link Register (LR, alias r14)
Link Register stores the Return Link (return PC value). This is a value that relates
to the return address from a subroutine that is entered using a Branch with Link
instruction.

2. Control Logic
Control logic is implemented within the Instruction Decoder. This module takes in a fresh
instruction every cycle and generates signals to control the operation of the datapath. Prominent
examples are:

% RegFile: write_en

% ALU: select operand0 and operand] inputs from either the ID or from the RF

¢ Shifter: operation control bits such as shift, right, arith

% DataMem: read _en and write en

% PC: the MUX control bit which determines whether or not to branch

% Flags: update flags from the flag outputs of shifter, ALU or previous flags from ID
+ Select final results from RF, ALU, DM, shifter or ID

3. Supported Instructions’

As mentioned earlier, this 2-stage pipelined CPU is implemented based on the ARM ISA.
This section will provide the supported instructions in detail with reference to the arm vom
manual.

3.1. Flags

' Source: DDI0419C arm_architecture vém_reference manual

University of Washington, EE477 VLSI II Created By: Alexa Yao Jan, 2015

The required four flags in the CPU architecture are N, Z, C, V. Please see the table
below for detail.

Flag Fla
Register S ml()gol Flag Name Detail (from ARM Manual)
bitindex
Negative condition code flag. Set to bit [31] of the result of the instruction. If the
3 N Negative result is regarded as a two's complement signed integer, then N is set to 1 if the
result is negative and set to 0 if it is positive or zero.
Zero condition code flag. Set to 1 if the result of the instruction is zero, and to 0
2 Z Zero . o .
otherwise. A result of zero often indicates an equal result from a comparison.
1 C C Carry condition code flag. Set to 1 if the instruction results in a carry condition, for
a . .
my example an unsigned overflow on an addition.
Overflow condition code flag.Set to 1 if the instruction results in an overflow
0 \Y% Overflow .. . i
condition, for example a signed overflow on an addition.

3.2. Additional Branch Conditions

B<cc> Condition bits Flag Condition Detail

EQ 0000 z== equal

NE 0001 7== not equal

CS 0010 c== carry set

CcC 0011 c==0 carry clear

MI 0100 n== minus, negative

PL 0101 ==0 plus, positive or zero

A 0110 v== overflow

VC 0111 V== no overflow

HI 1000 c==1 and z==0 unsigned higher

LS 1001 c==0 or z== unsigned lower or same

GE 1010 ==V signed greater than or equal

LT 1011 nl=v signed less than

GT 1100 z==0 and n==v signed greater than

LE 1101 z==1 orn!=v signed less than or equal

AL 1110 Any Always (unconditional)
3.3. Instructions

Attached in the next page is a table of all assembly instructions expected to support in the
CPU design.

University of Washington, EE477 VLSI II Created By: Alexa Yao Jan, 2015

16-bit Instruction

1514 13[12[11]10] 9 [8]7]6] 5 |4]3[2]10 Assembler Operation | S updates Action
0O 0 110 0 Rd imm8 MOVS Rd, #<imm> Move N Z Rd := imm8, ZeroExt(<imm8>, 16)
of[r]olo]Jo[r]r]olo] Rm | Rd [MOVRd, Rm Rd = Rm
0O 0 0|1 1]1[0]imm3| Rn Rd |ADDS Rd, Rn, #<imm3> NZCV |Rd:=Rn+ ZeroExt(<imm3>, 16)
O 0 0|1 1[0]|0] Rm Rn Rd |ADDS Rd, Rn, Rm Add NZCV |Rd:=Rn+Rm
1 01 1[0 0 0 0[0] imm7 ADD SP, SP, #<imm7> SP := SP + ZeroExt(<imm7>, 16)
O 0 0|1 1[0]1] Rm Rn Rd |SUBS Rd, Rn, Rm NZCV |Rd:=Rn+~(Rm)+1
0 0 0|1 1|1 [1]imm3] Rn | Rd [SUBS Rd, Rn, #<imm3>| suptract NZCV |Rd:=Rn+~(imm3) + 1
10 1 110 0 0 O]t immY7 SUB SP, SP, #<imm7> 185))::+S1P + ~{zerobxi{<immy>,
01000 0|101o0|Rm/| R [CMP RN, RM Compare | Nz cvy [Result :=fn+~(Rm) + 1 Resul
O 100 0 0|0 0O0O0| Rm | Rdn |ANDS Rdn, Rm N Z Rd := Rn AND Rm
O 1 00 0 0|0 0O 1| Rm | Rdn |EORS Rdn, Rm Logical N Z Rd := Rd XOR Rm
O 100 0 0|1 100| Rm | Rdn |ORRS Rdn, Rm N Z Rd := Rd OR Rm
0 1000 0|1 111 Bm | Rdn [MVNS Rdn, Rm N Z Rd := ~(Rm)
0O 1 000 0|0 O0T1TO0| BRm | Rdn |LSLS Rd, Rd, Rm NZC Rd := Rd << Rm
O 1 00 0 0|0 01T 1] Bm | Rdn |LSRS Rd, Rd, Rm Shift NZC Rd := Rd >> Bm
0O 1 00 0 0|0 10O0| Rm | Rdn |ASRS Rd, Rd, Rm NZC Rd := Rd >>> Rm

Right shift Rm amount of bits, the
O 1000 O[O0 1T 11 BRm | Rdn |RORS Rd, Rd, Rm Rotate NZC shifted out bits are inserted into

the vacated bits on the 'Ieft
ol1]1]o|o| imms Rn | Rd [STRRd. [Rn. #<imm5>]| Store g/']erj[%” + Zerokxtend(immb, 16),
o 1 1|o|1] imms Rn | Rd [LDRRd, [Rn, #<imm5>]| Load B e N 8. 2]
1 10 f cond imm8 B<cc> <label> gcthf g%nndéga%fng?t{%f)'ed’ PC =
1 110 0] imm11 B <label> PC = PC + SignExt(imm11, 16)

. Branch LR = PC+;

01 0001|0100 imm6 BL <label> FC = PC + SignExt(imm6. 16)
01000 1][11]0] Bm [0 00[BXRm PC = Rm
T 01 1 1 1 11000000 0O0|INOOP No Operation Execution stalls for one cycles

