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Agenda 
•  Promises and myths: 

–  Proof-of-concept study (Piclozotan) 
–  Outcome adaptive allocation (ECMO) 
–  Phase 1 dose finding (Lovastatin) 

•  Challenges (complexity) and benchmark 
–  Phase 1/2 dose finding of a thrombolytic agent 

•  Discussion 
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FDA Guidance February 2010 
“An adaptive design clinical study is defined as a 

study that includes a prospectively planned 
opportunity for modification … of the study 
design … based on analysis of data from 
subjects in the study” 
–  More efficient (i.e., smaller N) 
–  Increase likelihood of success on study objective 
–  Yield improved understanding of the treatment 

effect (e.g., dose-response) 
 
 



PROOF-OF-CONCEPT STUDY 
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Case Study: Piclozotan I 
•  Single-arm proof-of-concept (Phase 2) 
•  Enroll and treat n acute stroke patients with a new treatment 
•  Primary endpoint: MRI response = Indicator of no growth 

in infarct size by DWI. 
•  Research Questions: 

–  Is the treatment good? 
–  What is the response rate? 

•  Observe Sn = #MRI responses 
•  Design Question: 

–  What is n? 
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Case Study: Piclozotan I 
•  Inputs for sample size calculation: 

1.  A bad (“null”) response rate, 25% 
2.  Type I error rate α ≤ 5% under null  
3.  A good (“alternative”) response rate, 40% 
4.  Power ≥ 80% under alternative 

•  A fixed (non-adaptive) design 
–  n = 62 
–  Decision rule: conclude the treatment is good 

if Sn ≥ 22 
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Case Study: Piclozotan I 
•  A two-stage adaptive design with the same error 

constraint: 5% type I error, 80% power 
•  Stage 1: Enroll n1 = 20 subjects 
•  Futility interim:  

–  Stop the trial and conclude futility if S20 < 6 

•  Stage 2 (if S20 ≥ 6): 
–  Enroll another n2 = 51 subjects (i.e. total n = 71) 
–  Conclude the treatment is good if S71 ≥ 24; conclude 

futility otherwise 
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Adaptive design: Efficiency myth 
•  When the response rate is 25% (“null”), the expected 

sample size of the two-stage design is  
20 × 0.62 + 71 × (1 – 0.62) ≈ 40 

where 0.62 = Pr (Stop at stage 1 | response rate = 25%)  
 

•  Thought exercise: Suppose 100 drug trials use this design 

       ………  Total sample size approx 40 × 100 = 4,000 

71 20 20 20 20 20 20 20 

20 71 20 

20 

20 20 20 71 
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Adaptive design: Efficiency myth 

•  Using the fixed design in 100 similar drug trials 
will need 6,200 subjects. 

•  Comparison 1 (portfolio management): 
–  4,000 < 6,200 ! Two-stage design is more efficient than the fixed 

design in terms of expected sample size under the null hypothesis. 

•  Comparison 2 (investigator’s perspective) 
–  Maximum sample size of two-stage design is 71 > 62 
–  Two-stage design makes sense if you believe the drug doesn’t 

work 
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Adaptive design: Efficiency myth 

•  This numeric comparison demonstrates a potential tension 
between the perspectives of the individual investigator and 
the broader community…The individual investigator’s 
interest resides in keeping the sample size of a single trial 
small. Given limited resources and finite numbers of stroke 
patients, the community’s interest resides in keeping the 
average sample size small so that more trials can be 
performed. 
     -Cheung and Kaufmann, Stroke, 2011 
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Adaptive design: Efficiency myth 

A Statistical theory (Neyman-Pearson) says  

–  For the same error constraints, the maximum 
sample size of any two-stage adaptive design is 
always at least as large as that of the single-stage 
fixed design 
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OUTCOME ADAPTIVE 
ALLOCATION 
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Case Study: Michigan ECMO 
•  Extracorporeal membrane 

oxygenation 
•  Indication: Persistent pulmonary 

hypertension of the newborn 
•  Bartlett et al. Pediatrics (1985) 

–  U of Michigan 
–  Historical survival rate 

•  Infants with EMCO: 80% 
•  Untreated: 20% 

–  Play-the-winner design (Wei 
& Durham, JASA, 1978) 
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Case Study: Michigan ECMO 

Randomized play-the-winner (PTW) 
•  Adaptive randomization 
•  Use outcome data obtained during trial to 

influence randomization probabilities of 
treatments 

•  Goal: allocate as few patients as possible to 
a seemingly inferior treatments 
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Case Study: Michigan ECMO 
Modified play-the-winner (Urn model) 

 A ball → ECMO 
 B ball → Standard control 
 If success on A, add another A ball .… 

Randomized Consent Design 
Results 
•  First infant: Randomization probability ECMO:Placebo = 1:1 à ECMO and 

survived 
•  Second infant: Randomization probability = 2:1 à Placebo and died 
•  Third infant: Randomization probability = 3:1 à ECMO and survived 
•  Fourth infant: Randomization probability = 4:1 à ECMO and survived … 

  
 *sickest patient 

 

1 2* 3 4 5 6 7 8 9 10
ECMO S S S S S S S S S
CONTROL F



Case Study: Michigan ECMO 

•  2 additional infants treated with ECMO, both survived. 

•  Can superiority be proven with 1 placebo subject? 

•  P-Values, depending on method, ranged .001 < .05 < .28 

•  Consequence: Harvard ECMO, not without ethical 
difficulties due to equipoise; O’Rourke, et al. Pediatrics 
(1989) 
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Adaptive design: efficiency myth 
•  Motivation for adaptive randomization is ethics, 

not economics 
 

•  Tradeoff for better ethics: 
–  Issues of proper analyses can be quite complicated 
–  Require proper planning (e.g., PTW with bigger urn) 

•  Not all adaptive randomization are Bayesian 
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PHASE 1 DOSE FINDING 

AD1 19 



Phase 1 Dose Finding 
•  Primary objectives 

–  Safety 
–  Maximum tolerated dose (MTD) 

•  Design issues: 
–  Trade-off between safety and efficacy 
–  Sequential accrual 
–  Oncology convention: 3+3 design 

•  Exceed MTD if a dose has ≥2 toxicities in 6 patients 
•  Dose is considered safe with 0/3 or 1/6  
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Phase 1 Dose Finding 

•  Some difficulties with 3+3 
–  What if 2 toxicities in 7 patients? 
–  Lack a quantitative definition of the MTD 
–  Toxicity tolerance is lower in non-cancer population 

•  Continual reassessment method (CRM) 
–  MTD = a dose associated with p percent toxicity 
–  Model-based: use a dose-toxicity model to decide dose 

assignments of study subjects 
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Continual Reassessment Method 
(CRM) 

Some operational details 
1.  Treat the first group of subjects 

at the prior MTD 
2.  Observe toxicity outcomes 
3.  Estimate the dose-toxicity curve 
4.  Treat a new group of subjects at 

the estimated MTD. 
5.  Go back to Step 2, until the 

sample size is reached. 
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Case Study: NeuSTART 
•  5 dose levels of lovastatin in acute stroke 

patients 
•  Allow p=10% toxicity: liver, muscle  
•  Use a CRM variant for dose escalation in N=33 
•  Results: MTD estimate = 8 mg/kg/day for 3 days 
•  The 3+3 method allows 1 toxicity out of 6 
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Case Study: NeuSTART 

•  Why adaptive: Efficiency 
•  Target rate: 10% 
 
•  Toxicity odds increases 2.5 

times per dose level 

•  Logistic regression was used 
to estimate the MTD at 
trial’s end 
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A. CRM (n=33)
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B. Randomization (n=33)
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C. Randomization (n=45)
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Cheung and Kaufmann, Stroke, 2011 
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Case Study: NeuSTART 
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Design characteristics CRM Randomization 

(a) Probability of correctly selecting the MTDa 0.54 0.47 

(b) Probability of selecting an overdosea 0.17 0.26 

(c) Average number of subjects treated at  13 7 

(d) Average number of subjects treated at an overdose 6 13 

(e) Median of toxicity odds ratio estimatea 5.2 2.6 

aThe MTD and the odds ratio are estimated using logistic regression at the end of each simulated trial for both the CRM and 
the randomization design 
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Adaptive design: efficiency myth 

•  Why adaptive: 
– Ethics: Treat more patients on average at the 

right dose 
– Higher likelihood of finding the right dose 

•  Learn less on dose-response 
– Odds ratio: Can’t answer how fast the toxicity 

or response increases beyond the MTD 
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CHALLENGE: COMPLEXITY 
(IN CONTEXT OF DOSE FINDING) 
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•  Classification 
–  Model-based vs algorithm-based 
–  Long memory vs short memory 

•  “Standard case”  
–  MTD = pth percentile of a tolerance 

distribution 
–  Binary outcome (Y = 0 or 1) 
–  Exchangeable patients; dose (X) is 

the only covariate Y ~ X  

–  Up-and-down designs (Storer, 1989) 
–  Continual reassessment method (O’Quigley 

et al, 1990) 
–  Biased coin design (Durham et al, 1997) 
–  EWOC (Babb et al, 1998) 
–  Curve-free method (Gasparini and Eisele, 

2000) 
–  ... [apology for omission] 
–  A+B and stepwise designs (Lin and Shih, 

2001; Cheung 2007) 
–  Stochastic approximation (Cheung, 2010) 
–  Stochastic optimization (Bartroff and Lai, 

2010) 
–  … 

Statistical world of dose finding 
(is long) 
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Statistical world of dose finding 
(is complex) 

•  “Nonstandard cases” 
•  Use non-binary endpoints (“Y”) 

–  Delayed toxicity; time to event (Cheung and Chappell, 2000) 
–  Eff-tox trade-off (O’Quigley et al, 2001; Thall and Cook, 2004) 
–  Ordinal outcome (TBS; Lee et al., 2010) 
–  Continuous outcome (Cheung and Elkind, 2010; Hu and 

Cheung, 2012) 
•  Incorporate complex design (“X”) 

–  Drug combination (Thall; Ying and Yuan; etc.) 
•  Y ~ XA + XB 

–  Patient heterogeneity Y ~ X + Z 



AD1 30 

Clinical world of dose finding 
(is often much simpler) 

3+3 
Despite  
•  The abundance of statistical principles 
•  The willingness of clinical investigators 



Why the gap? 
•  Adaptive (dose finding) 

designs are often too 
complex to be 
– Well specified 
– Accessible (N?) 
– Well understood 
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Filling the gap 

•  Automated algorithms to specify the CRM model 
–  Lee and Cheung (2009, 2011, Clinical Trials) 
–  Jia, Lee, and Cheung (2014, Biometrika) 

•  A sample size formula for the CRM 
–  Cheung (2013, Clinical Trials) 

•  For general dose finding methods: 
–  Cheung (2014, Biometrics): A Cramer-Rao type 

benchmark for diagnostics and gauging plausibility 
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Thrombolytic agent for stroke 
•  Dose finding of a thrombolytic agent for acute stroke 
•  Phase 1/2 study 
•  Trinary outcome: 

–  Intracranial hemorrhage (Toxicity) 
–  Reperfusion without hemorrhage (Response) 
–  Neither 

•  Thall and Cook (2004):   
•  Define desirability δ(pE,pT) as a function of response rate pE 

and toxicity rate pT 

•  Aim to find a dose that maximizes δ(pE,pT) 
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Thrombolytic agent for stroke 
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Thrombolytic agent for stroke 

Thall and Cook (2004): 
•  Outcome-adaptive 
•  Bayesian, model-based dose finding method 

–  N = 72 
–  Assign patients at dose with maximum desirability 

based on interim data (CRM-like) 
–  Consider two dose-response-toxicity models: 

Proportional odds (PO) and Continuation ratio (CR) 
–  Number of model parameters: 6 
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Simulation results 
Model Dose 1 Dose 2 Dose 3 Dose 4 Dose 5 
Desirability -0.48 -0.13 0.22 0.32 -0.26 
PO✔ 0 0 20 72 7 
CR 0 2 32 49 16 
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Model Dose 1 Dose 2 Dose 3 Dose 4 Dose 5 
Desirability 0.12 0.29 0.45 0.58 0.69 
PO 0 2 10 34 54 
CR✔ 0 0 1 5 94 

Scenario 3 

Scenario 4 



Dose Finding Benchmark 

•  A theoretical dose finding design that provides an 
upper limit of accuracy for any dose finding 
methods for a given design objective under a 
given scenario. 
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Dose Finding Benchmark 

•  Let d(π) denote the design objective,  e.g., 
 NeuSTART: d(π) = arg mink | π(k) – 0.10 | 
 Thall and Cook: d(π) = arg maxk δk 

•  π denotes the true dose-response curve 
•  Benchmark: d(π*) where π* is a nonparametric 

optimal estimate of π based on complete outcome 
profile 
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Dose Finding Benchmark 

•  In an actual trial, we observe a partial outcome 
profile, e.g., a patient at dose 3 with toxicity 

•  In a computer simulation, we can observe a 
complete profile by generating a uniform tolerance 
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Dose 1 Dose 2 Dose 3 Dose 4 Dose 5 
? ? Toxicity Toxicity Toxicity 

Dose 1 Dose 2 Dose 3 Dose 4 Dose 5 
No toxicity Toxicity Toxicity Toxicity Toxicity 



Dose Finding Benchmark 

•  Ordinal outcome Y: Takes values on L+1 possible values 
{w0, w1, …, wL} with tail distribution π(k) at dose k 

•  Yi(k) = Outcome for patient i at dose level k 
•  In simulation, randomly draw a tolerance profile: Ui1, Ui2, 

… UiL iid Uniform(0,1) 
•  Generate complete outcome profile Yi(k) for patient i at 

dose level k as follows: 
–  Yi(k) = wl if Ui,l+1  > rl+1(k) and Uij ≤ rj for all j=1,…,l 
–  rj(k) = πj(k) / πj-1(k) 

•  Nonparametric optimal π*(k) = average of I{Yi(k) ≥wl} 
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Simulation results 

Model Dose 1 Dose 2 Dose 3 Dose 4 Dose 5 
Desirability -0.48 -0.13 0.22 0.32 -0.26 
PO✔ 0 0 20 72 7 
CR 0 2 32 49 16 
d(π*) 0 0 13 85 1 
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Model Dose 1 Dose 2 Dose 3 Dose 4 Dose 5 
Desirability 0.12 0.29 0.45 0.58 0.69 
PO 0 2 10 34 54 
CR✔ 0 0 1 5 94 
d(π*) 0 0 0 5 95 

Scenario 3 

Scenario 4 



Dose finding benchmark 

•  Features of a good benchmark: 
– Easy and quick to compute (not error prone) 
– Nonparametric (not favoring one parametric 

model over another) 
– Upper bound of accuracy for parametric 

methods 
– Sharp upper bound: warrant more work 
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DISCUSSION 
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Summary 

•  Efficiency: AD is efficient from a portfolio management 
perspective 
–  Funding agency buy-in 
–  Incentive for individual investigators 

•  Success of study: AD often gains in terms of ethical costs, 
rather than economic costs 

•  Better understanding: AD gains by giving up something 
–  Need to know exactly what is being given up 

•  More statistical work is needed on AD to make it more 
automated, accessible, and transparent 
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Phase 3: 
Randomized 

Phase 2: underpowered 
“pilot” studies 

Single  
dose phase 1s Traditional paradigm 

 
 

Multi dose phase 1  
dose finding MTD 

Phase 3:  
well-defined  population 
optimized dose/schedule 

Phase 2: randomized 
Dose selection 

Biomarkers/mechanism 

“New” paradigm CRM 

Internal pilot 
Drop-the-loser 

Monitoring: SPRT/futility 

Seamless phase 2/3 

Group sequential 

A D 
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Pyramid vs Trapezoid 



REFERENCES 
1.  Cheung, Kaufmann: Efficiency perspectives on adaptive designs in stroke 

clinical trials.  Stroke 2011;42,2990-4. 
2.  Cheung: Sample size formulae for the Bayesian CRM.  Clin Trials 

2013;10,852-61 
3.  Cheung: Simple benchmark for complex dose finding studies.  Biometrics 

2014 in press. 
4.  Elkind et al.: High dose lovastatin for acute ischemic stroke: results of the 

phase 1 dose escalation NeuSTART.  Cerebrovasc Dis 2009;28,266-75. 
5.  FDA: Guidance for industry: adaptive design clinical trials for drugs and 

biologics.  February 2010 
6.  Jia et al.: Characterisation of the likelihood CRM.  Biometrika 2014 in press. 
7.  Lee, Cheung: Model calibration in the CRM.  Clin Trials 2009;6,227-38. 
8.  Thall, Cook: Dose finding based on efficacy-toxicity tradeoffs.  Biometrics 

2004;60,684-93. 
 

AD1 46 


