
Specification of the Bayesian CRM: Model and Sample Size

Ken Cheung Department of Biostatistics, Columbia University

Phase I Dose Finding

- Consider a set of *K* doses with labels $d_1, d_2, ..., d_K$
- Study objective: Find MTD $v = arg \min_k | \pi(d_k) - \theta |$
- π(x) is the probability of DLT at dose x
- θ is a pre-specified target (e.g. 0.25)

CRM

- First proposed by O'Quigley et al. (1990)
- Model-based
- Single-parameter model
- Bayesian-flavor
- "Myopic"
- Many variations and extensions
 - Two-parameter or curve free; MLE; Continuous dosage; EWOC

CRM

- This talk focuses specifically on the original version of the Bayesian CRM (1990).
- Treat patients sequentially at dose level

 $v_n = arg min_k | F(d_k, b_n) - \theta |$

- The dose-toxicity function $F(x, \beta)$ is one-parameter, with a prior distribution on β .
- b_n is the posterior mean of β
- Patient 1 gets prior MTD
- Recall study objective MTD $v = \arg \min_k |\pi(d_k) \theta|$

CRM

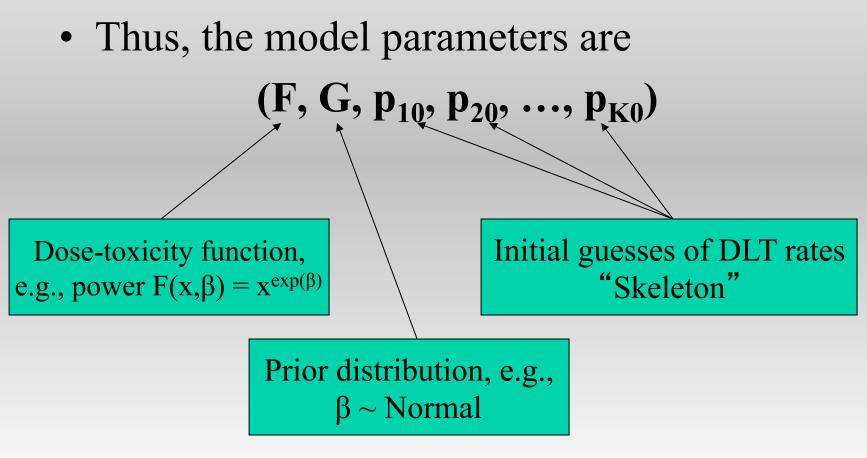
- *Model-based*: *For the CRM* to work well:
 - Do <u>not</u> require the model is correct to be consistent, i.e. $F(d_k, b) = \pi(d_k)$ for some true b "No model is correct. Some are useful." - George Box
 - Do require model specification is properly calibrated
- *Outcome-adaptive: How many patients (N) do we need* – can we determine ahead with respect to some objective criterion?

Objectives of this talk

- Present an approach to specify the Bayesian CRM model in a <u>timely and reproducible</u> manner
- Present a sample size formula for the CRM model obtained via the specification process
- Provide practical guidelines on using the sample size formula

Outline of this talk

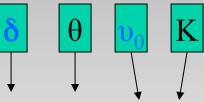
- *Calibration* of a Bayesian CRM model
 - Dose-toxicity function
 - Initial guesses of DLT rates ("Skeleton")
 - Prior distribution of model parameter
- Sample size formulae for a properly calibrated CRM
- **Example:** A PTEN-long trial


CRM model

Three steps to specify a CRM model:

- 1. Dose-toxicity function $F(x, \beta) = P(DLT \text{ at dose } x)$
- 2. Choose a prior distribution $G(\beta)$ of β .
- 3. Evaluate the dose labels $\{d_1, d_2, ..., d_K\}$ for the K test doses via *backward substitution*:
 - Let p_{i0} denote initial guess of DLT rate for dose i. The dose labels d_i are obtained such that $F\{d_i, E_G(\beta)\} = p_{i0}$

where $E_G(\beta)$ is the prior mean of β .

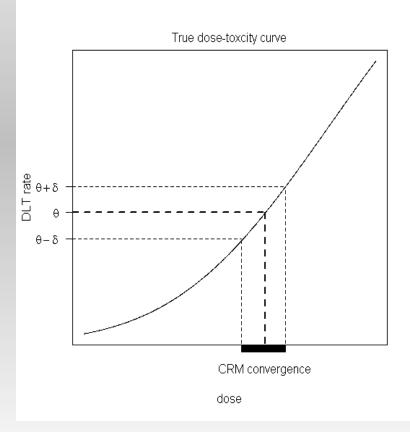


CRM model

- Lee and Cheung (2009): For any fixed F and G, we can choose the skeleton $\{p_{10}, p_{20}, ..., p_{K0}\}$ to match the operating characteristics
- Approach: Reduce the specification problem of K numbers to <u>2</u> meaningful inputs
 - The prior MTD, v_0 = Starting dose level
 - An acceptable range of toxicity rate $\theta \pm \delta$, where θ is the target toxicity rate. E.g., 0.25 ± 0.05

How to choose p_{0k}'s?

 For any given δ, a skeleton can be obtained using the function getprior in the R package `dfcrm'



> p0 <- getprior(0.05,0.25,3,5,model="logistic")
> round(p0,digits=2)
[1] 0.09 0.16 0.25 0.36 0.46

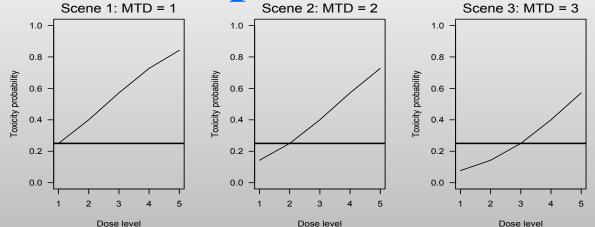
Interpretation of δ

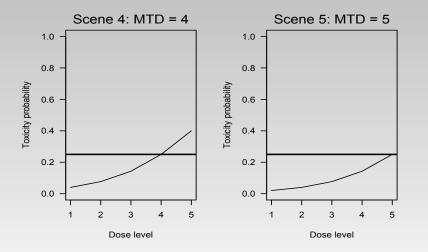
Theoretical basis of p_{0k} 's by the function **getprior:**

- The CRM converges to the acceptable range $\theta \pm \delta$ on the probability scale
- Indifference interval
 (Cheung and Chappell,
 2002, *Biometrics*)

How to choose δ ?

- Choose δ empirically
 - Asymptotically, a small δ has a small bias.
 - With small-moderate sample size, a small δ has a large variance of selected MTD.
 - Use simulations to obtain a δ that yields competitive operating characteristics over a wide range of scenarios
 - "Optimal" δ tabulated in Lee and Cheung (2009) and Cheung (2011)
- Quick rule of thumb: Setting $\delta = 0.25\theta$


Sample size consideration


- Some underlying difficulties
 - Some methods are highly specific:
 - Phase 1: Specify model, prior, skeleton, <u>N</u>, etc.
 - Phase 2: N
 - The truth lives in a higher dimensional space:
 - Phase 1: dose-toxicity curves
 - Phase 2: effect size
 - Performance metrics
 - Phase 1: accuracy index (?)
 - Phase 2: type I error, power
 - Methods are more complicated:
 - Phase 1: Highly outcome adaptive
- ^{Ken Cheung} Phase 2: Central limit theorem \rightarrow analytical N formula

Sample size consideration

	Two-sample comparison	Dose finding
Model assumption	Normal	Logistic dose-toxicity
Effect size (alternative)	A single number: Mean-to- SD ratio	Odds ratio + multiple "alternatives" of true MTD
Performance metrics	Type I error; power	Some sort of average?
Design and analysis	Determine N for t-test	N + model specification

MTD: 25^{th} percentile K = 5 test dose levels Logistic dose-toxicity relationship Odds ratio (effect size): 2

Goal: Seek the average of probabilities of correctly selecting MTD as an accuracy index Ken Cheung 16

Sample size consideration

- Assumption: logistic dose-toxicity curves
- Inputs for sample size calculation:
 - Target rate θ
 - Number of dose levels \underline{K}
 - Effect size (odds ratio) \underline{R} of the logistic curves
 - Desired accuracy (average PCS): <u>a*</u>
- *Working* models:
 - Power dose toxicity function
 - Starting dose = Prior MTD v_0 = Median dose level
 - "Skeleton" with sensitivity at 0.25θ (Lee and Cheung, 2009)
 - Normal prior mean 0, variance 1.34 (O'Quigley and Shen, 1996)

Sample size consideration

• N = rounding up $\tilde{n}(b^*)$ where

 $logit(b^*) = \left\{ logit(a^*) - 2.26 + 0.00235K^2 + 0.7R + 1.903R^{-1} \right\} / 0.854$

$$\tilde{n}(a) = \left\{ \Phi^{-1} \left(1 - \frac{K(1-a)}{2(K-1)} \right) \right\}^2 / \bar{\Delta}^2.$$

 Δ is a known analytical function of $\underline{\theta}$ and \underline{R}

Note: Formulae may <u>not</u> be applicable if calculated N > 60

How to choose *R*?

• Inputs for sample size calculation:

- Target rate θ
- Number of dose levels \underline{K}
- Effect size (odds ratio) \underline{R} of the logistic curves
- Desired accuracy (average PCS): <u>a*</u>

Table 1. Odds ratio R and steepness of dose-toxicity curve. The pair in each entry indicates the toxicity probabilities associated with the doses adjacent to the MTD, i.e., $(p_{j-1,j}, p_{j+1,j}).$

θ	R					
	1.25	1.50	1.75	2.00	2.25	2.50
0.10	(0.08, 0.12)	(0.07, 0.14)	(0.06, 0.16)	(0.05, 0.18)	(0.05, 0.20)	(0.04, 0.22)
0.15	(0.12, 0.18)	(0.11, 0.21)	(0.09, 0.24)	(0.08, 0.26)	(0.07, 0.28)	(0.07, 0.31)
0.20	(0.17, 0.24)	(0.14, 0.27)	(0.13, 0.30)	(0.11, 0.33)	(0.10, 0.36)	(0.09, 0.38)
0.25	(0.21, 0.29)	(0.18, 0.33)	(0.16, 0.37)	(0.14, 0.40)	(0.13, 0.43)	(0.12, 0.45)
0.30	(0.26, 0.35)	(0.22, 0.39)	(0.20, 0.43)	(0.18, 0.46)	(0.16, 0.49)	(0.15, 0.52)

Example: A PTEN-long trial

- PTEN-long in pancreatic cancer patients
- Trial design: CRM with

$$-\theta = 0.25, K = 5, v_0 = 3$$

 $\rightarrow \delta = 0.0625$

→ p_{01} = 0.06, p_{02} = 0.14, p_{03} = 0.25, p_{04} = 0.38, p_{05} = 0.51

- Power function $F(x, \beta) = x^{\exp(\beta)}$

 $-\beta \sim N(0, 1.34)$

Sample size consideration "getn" in dfcrm

32

- > library(dfcrm)
- > a = 0.6
- > theta = 0.25
- > K = 5
- > oddsRatio = 1.8
- > obj = getn(a, theta, K, oddsRatio)
- > obj

Target rate:	0.25
Number of dose levels:	5
Effect size (odds ratio):	1.8
Required accuracy:	0.6

Calculated sample size:

Sample size consideration Simulation

CRM model	Probability selecting MTD under Scene			Ave PCS		
	1	2	3	4	5	
Assumed working model $\delta = 0.25\theta, v_0 = 3$.77	.56	.52	.52	.65	.604
Optimal δ for $v_0 = 3$.78	.56	.53	.52	.66	.610
Optimal δ for $v_0 = 2$.80	.53	.52	.51	.64	.600

Optimal δ is obtained the algorithm in Cheung 2011.

Target = 0.6

Practical Guidelines

- Calibration & Sample size formulae
 - Reduce the dimension of the specification problem
 - Provide a reproducible approach to specify a CRM model
 - Facilitate sample size calculation
 - <u>Quick</u> N formula is useful in consultation setting and for initial budgeting purposes
 - Like in other N calculation settings, simplifying assumptions are needed and desirable
 - Intended to be starting point

Practical Guidelines

- Simulation is essential after initial N calculation
 - *Refinement:* To improve upon the working model or use other methods
 - Robustness: To assess impact of model violation
 - *Rollout:* To examine other metrics of operating characteristics and report performance under a variety of scenarios

Useful Resources

- "dfcrm" library in R
 - Version 0.2-2 [update if you have 0.2-1]
- Main references
 - Lee and Cheung (2009): Model calibration in the CRM. Clinical Trials 6:227—238.
 - Cheung (2011). Dose Finding by the Continual Reassessment Method. CRC Press/Taylor & Francis Group
 - Cheung (2013): Sample size formulae for the Bayesian CRM. *Clinical Trials* in press.