Specification of a CRM model

Ken Cheung Department of Biostatistics, Columbia University (joint work with Shing Lee @ Columbia)

Agenda

- Motivation
- Components of a CRM model
 - Dose-toxicity function
 - Initial guesses of DLT rates
 - Prior distribution of model parameter
- Example: A bortezomib trial

Motivation

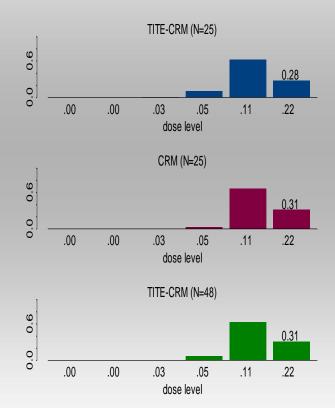
- The CRM is a **model-based** dose-finding method
- Advantage (versus algorithmic designs): a coherent approach to contingencies via the model, e.g.,

$$1/3 + 0/3 + 1/1 \dots$$
?

- Assumption: The model specification is "good"
- **Practical problem:** Specifying a CRM model can be a complex process ... even for statisticians.

Motivation

- Target DLT = 20%
- MTD = 6
- The CRM model violates consistency conditions under this true state of nature
- Shen and O'Quigley (1996)

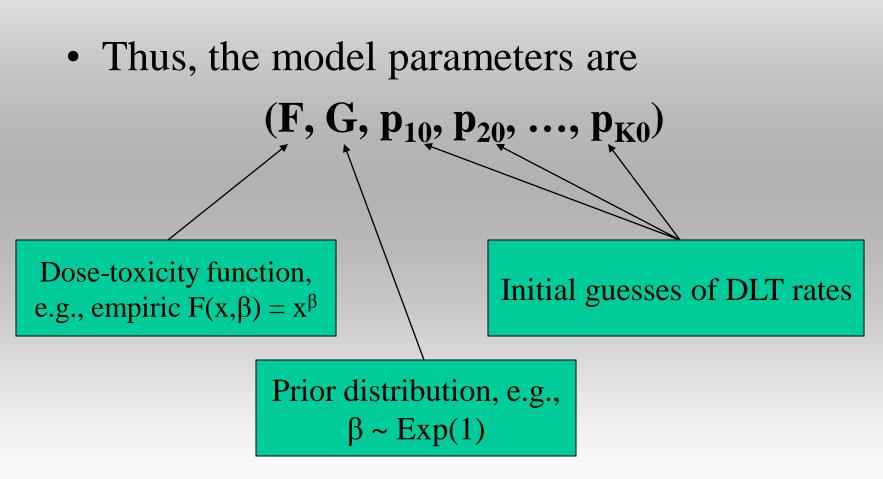


CRM model

Three steps to specify a CRM model:

- 1. Dose-toxicity function $F(x, \beta) = P(DLT \text{ at dose } x)$
- 2. Choose a prior distribution $G(\beta)$ of β .
- 3. Get the dose labels $\{d_1, d_2, ..., d_K\}$ for the K test doses via *backward substitution*:
 - Let p_{i0} denote initial guess of DLT rate for dose i. The dose label d_i is calculated by solving $F\{d_i, E_G(\beta)\} = p_{i0}$ where $E_G(\beta)$ is the prior mean of β .

CRM model



CRM model: Literature

- Chevret (1993): For G = Exp(1) and a given set of p_{10} , p_{20} , ..., p_{K0}
 - Logistic F with $a_0 = 3$ is superior to empiric
- Lee and Cheung (2009): For fixed F and G
 - we can choose p_{10} , p_{20} , ..., p_{K0} to match operating characteristics
- Lee and Cheung (2010): For fixed F and p_{10} , p_{20} , ..., p_{K0}
 - A *least informative prior* is usually adequate

Choice of p_{0k}'s (Lee and Cheung, 2009)

Who should choose p_{0k}'s?

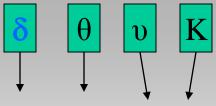
- Ideal clinicians choose the initial guesses for all test doses based on their knowledge/experience
- **Reality** never done; too difficult
- Goal 1: Generate the initial guesses p_{0k} 's with minimal inputs from clinicians by reducing the dimensionality of the specification problem:
 - Reduce the initial guesses (K numbers) into two clinically interpretable parameters.

How to choose p_{0k}'s?

- To get p_{0k} 's we need:
 - The prior MTD, v =**Starting dose**
 - An acceptable range of DLT rate $\theta \pm \delta$, where θ is the target DLT rate. E.g., 0.25 \pm 0.05
 - in addition to other CRM parameters:
 - Dose-toxicity function F
 - Number of test doses K
 - Target DLT rate θ

How to choose p_{0k}'s?

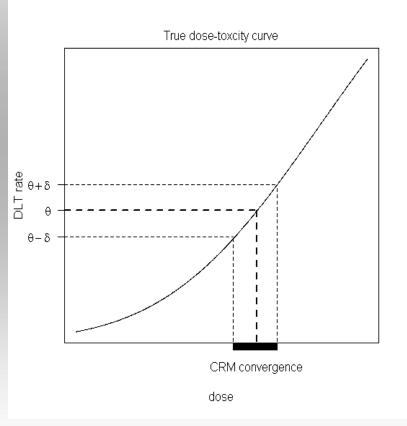
• The initial guesses of DLT rates can be obtained using the function getprior in the R package `dfcrm'



- > p0 <- getprior(0.05,0.25,3,5,model="logistic")</pre>
- > round(p0,digits=2)
- [1] 0.09 0.16 0.25 0.36 0.46

Interpretation of δ

• **Theoretical basis** of p_{0k} 's by the function getprior: The CRM converges to the acceptable range $\theta \pm$ δ on the probability scale, a.k.a. indifference interval (Cheung and Chappell, 2002)



How to choose δ ?

- Goal 2: Choose δ <u>empirically</u> (if the clinicians don't call it)
 - Asymptotically, a small δ has a small bias.
 - With small-moderate sample size, a small δ has a large variance of selected MTD.
 - Use simulations to obtain a δ that yields competitive operating characteristics over a wide range of scenarios

Step 1 – Iterate δ

Specify a CRM model:

- Logistic function (with fixed intercept):
 logit { F(x, β) } = 3 + exp(β) x
- Normal prior $\beta \sim N(0, 1.34)$
- Target rate $\theta = 0.25$
- $\mathbf{K} = \mathbf{5}$ dose levels
- Prior MTD v = 3 (starting dose)
- Iterate δ from 0.01 to 0.24

Step 2 – Simulate

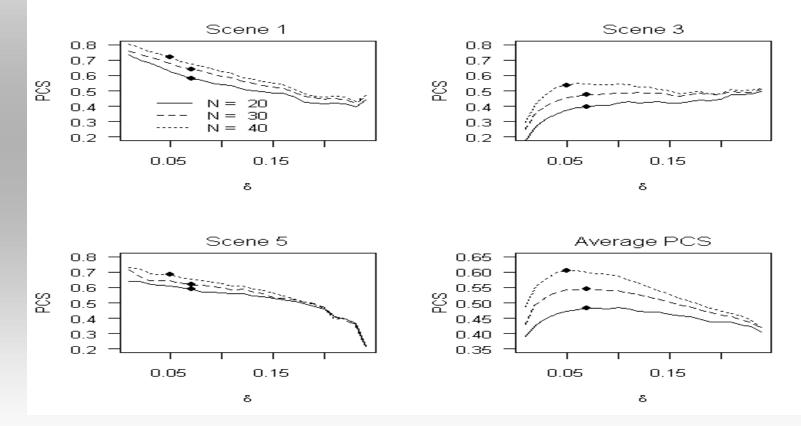
For each δ,

Run CRM under the plateau scenarios (calibration set): Record **average** probability of correctly selecting (**PCS**) the MTD

Scene	True p ₁	True p ₂	True p ₃	True p ₄	True p ₅
1	0.25	0.40	0.40	0.40	0.40
2	0.14	0.25	0.40	0.40	0.40
3	0.14	0.14	0.25	0.40	0.40
4	0.14	0.14	0.14	0.25	0.40
5	0.14	0.14	0.14	0.14	0.25

Step 3 – Compare PCS (ave.)

Choose δ with the highest <u>average</u> PCS



Dose-finding workshop March 2010 Reading, UK

Choice of \delta: results

Extensive simulations show, for N ≈ 20 —40:

- For logistic with $a_0 = 3$ (Cheung, 2010):
 - For $\theta = 0.10$, the optimal δ ranges 0.02–0.04
 - For $\theta = 0.20$, the optimal δ ranges 0.04—0.08
 - For $\theta = 0.25$, the optimal δ ranges 0.04—0.08 - For $\theta = 0.33$, the optimal δ ranges 0.04—0.10
- For empiric, the optimal δ is tabulated in Lee and Cheung (2009).

Choice of prior G(β)

Problem reduction

• Focus on the logistic model with the following parametrization:

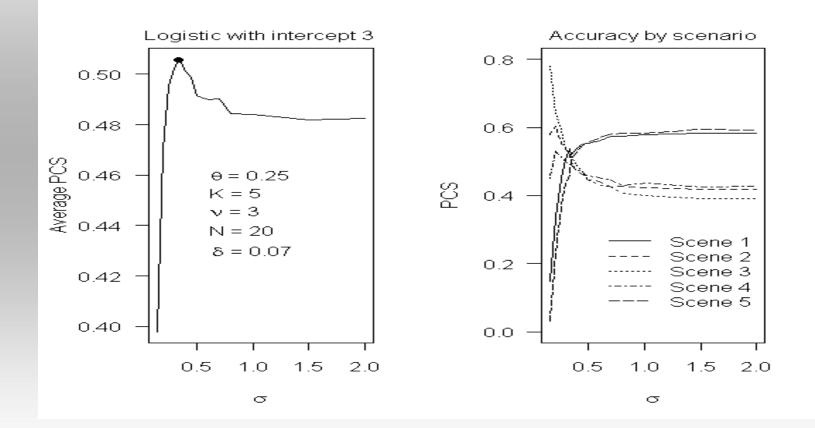
- Logistic: logit { $F(x, \beta)$ } = $a_0 + \exp(\beta) x$ and a normal prior $\beta \sim N(0, \sigma^2)$

- Suppose $\mathbf{p}_{01}, \ldots, \mathbf{p}_{0K}$ are chosen and fixed.
- The CRM model is then completed by specifying the prior standard deviation σ.

Simulation to get σ

- 1st try: Use the same simulation approach as before:
 - 1. Iterate σ : Fix all CRM parameters but σ
 - 2. *Simulate:* Run CRM under the plateau scenarios
 - *3. Compare PCS:* Choose σ with the highest average PCS

Simulation to get σ: Results

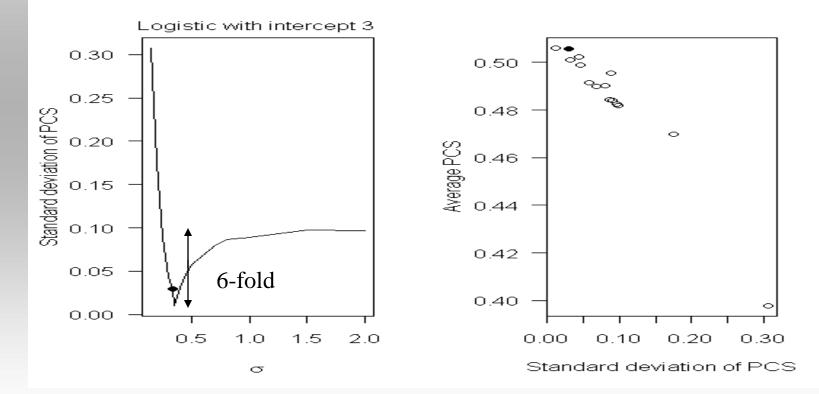


Simulation to get σ: Problem 1

- Average PCS is quite flat once σ is "large" enough
 - difference less than 3 percentage points
 - The average PCS criterion does not seem sensitive and discriminatory

Alternative criterion

Standard deviation of PCS



Simulation to get σ: Problem 2

- Range of good σ is dependent on the other design parameters, and is not bounded
 - Good range of σ for logistic: 0.25–0.45
 - Good range of σ for empiric: 0.75–1.50
 - A general exhaustive search is infeasible

Detour: Least informative prior

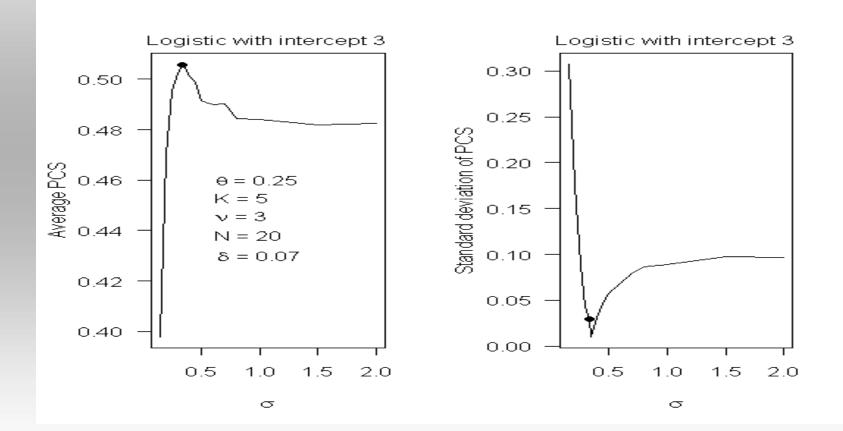
- A large σ is **not** vague on the MTD scale
- Using the above specified logistic model:

σ	Prior probability $v = dose level$				
	1	2	3	4	5
0.20	0.09	0.24	0.36	0.23	0.08
0.33	0.21	0.19	0.22	0.19	0.20
1.16	0.41	0.06	0.06	0.06	0.40

Detour: Least informative prior

- Definition: A least informative σ^{LI} for the normal prior G(β) is a value of σ that gives a prior distribution of υ "closest" to the uniform distribution.
- **Observation:** For the logistic model, simulations show that the least informative prior performs well.

Detour: Least informative prior



Dose-finding workshop March 2010 Reading, UK

Simulation to get σ : Aided by σ^{LI}

- A general search in the neighborhood of least informative prior
 - Evaluate least informative σ^{LI} (binary search)
 - Iterate σ in the neighborhood of σ^{LI} , e.g., from 0.8 σ^{LI} to 1.5 σ^{LI} .
 - Choose σ that minimizes standard deviation of PCS over the plateau scenarios (calibration set)

 Leonard, Furman, Cheung, et al. (2005): CHOP-R + escalation dose of bortezomib in lymphoma patients

Table 1.1 Dose schedules of bortezomib used in Leonard et al. (2005) with the sample size (n) and the number of dose-limiting toxicity (z) at each dose.

Level	Dose and schedule within cycle	n	Ζ
1	0.7 mg/m^2 on day 1 of each cycle	0	0
2	0.7 mg/m^2 on days 1 and 8 of each cycle	0	0
3	0.7 mg/m^2 on days 1 and 4 of each cycle	4	0
4	1.0 mg/m^2 on days 1 and 4 of each cycle	9	1
5	1.3 mg/m^2 on days 1 and 4 of each cycle	7	0

- Trial design:
 - (TITE-)CRM
 - $-\theta = 0.25, K = 5, \upsilon = 3$
 - $-p_{01}=.05, p_{02}=.12, p_{03}=.25, p_{04}=.40, p_{05}=.55$
 - Empiric $F(x, \beta) = x^{exp(\beta)}$
 - $-\beta \sim N(0, 1.34)$

• These design parameters were chosen by trial-and-error aided by simulations under the validation scenarios:

Scene	True p ₁	True p ₂	True p ₃	True p ₄	True p ₅
1	0.25	0.40	0.45	0.55	0.60
2	0.05	0.25	0.40	0.45	0.55
3	0.05	0.05	0.25	0.45	0.55
4	0.05	0.05	0.08	0.25	0.45
5	0.05	0.05	0.08	0.12	0.25

	Study model	Logistic	Logistic
	σ = 1.16	δ = 0.07 , σ=1.16	δ=0.07, σ = 0.35
PCS - 1	0.67	0.69	0.62
PCS - 2	0.58	0.57	0.60
PCS - 3	0.68	0.64	0.69
PCS - 4	0.64	0.61	0.66
PCS - 5	0.66	0.70	0.61
PCS (ave)	0.65	0.64	0.64
PCS (std)	0.04	0.05	0.04

Overall summary

- Simplify the model specification process
 - Get a reasonable δ : available from existing tables
 - Get the least informative σ^{LI} : 5-line code in R
 - (Optional) Iterate in the neighborhood of σ^{LI}
- NOT to improve upon trial-and-error in terms of accuracy, but to provide competitive operating characteristics with an <u>automated</u> model specification; e.g., bortezomib trial

Resources

- `dfcrm' package in R (http://www.r-project.org)
- Lee and Cheung (2009): Model calibration in the CRM. *Clinical Trials* 6:227—238.
- Lee and Cheung (2010):
 - Tabulate (δ , σ) for a wide range of (θ , K, υ , N).
- Cheung (ongoing):
 - Dose-toxicity model F (ψ -equivalence)
 - Initial designs in two-stage CRM