Coherence in early phase dose-finding studies

Ken Cheung Dept of Biostatistics Columbia University

Agenda

• Motivation

- Phase I cancer trials
- The conventional method ("3+3")
- Literature: review & critique

• Coherence

- Example: Coherent designs
- Application I: Coherent two-stage CRM
- Application II: Combined phase I/II trial (if time)
- Discussion & resources

Phase I cancer trials

- *Primary objective:*
 - Evaluation of clinical safety
- Dose-finding:
 - Maximum tolerated dose (MTD) with respect to doselimiting toxicity (DLT)
 - A presumed optimal dose
- Complicated issues:
 - Trade-off between safety and efficacy

A conventional method

- Specify a set of dose levels for the trial
- Start at the lowest dose level:

#DLT / #Patients	Action	
0/3	Escalate dose	
1/3	Add 3 patients at same level	
1/6	Escalate dose / Called MTD	
$\ge 2/3 \text{ or } \ge 2/6$	De-escalate	

• MTD = Max dose with fewer than 2/6 DLTs

A conventional method

- Disadvantages
 - 1. Quantitative objective is unclear
 - The operating characteristics arbitrarily depend on the underlying dose-toxicity curve

Phase I Methods: Literature

- Proposals
 - Up-and-down designs (Storer, 1989)
 - Continual reassessment method (O'Quigley et al, 1990)
 - Biased coin design (Durham et al, 1997)
 - EWOC (Babb et al, 1998)
 - Curve-free method (Gasparini and Eisele, 2000)
- MTD = a dose that causes DLT with probability p
- Operating characteristics validated by simulation

— ...

Phase I Methods: Critique

- Critiques
 - Is the "conventional wisdom" respected?
 - De-escalate or stay put if toxicity is observed
 - Escalate or stay put if no toxicity is observed
- Consequence: Pathological behaviors of the methods

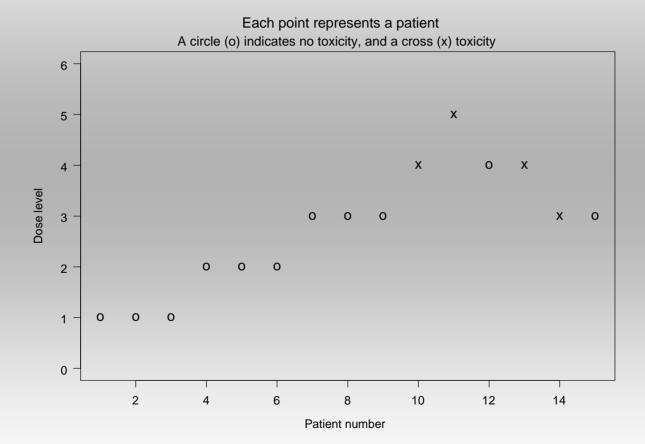
A pathological outcome sequence

Motivation

- Consequence:
 - Deter clinicians from using the more complicated, outcome-adaptive method, which is supposed to be better but now looks dubious
- Prophylaxis:
 - Study whether a design respects the conventional wisdom coherence

Coherence Principles

Escalations


- An escalation for the next patient is said to be *in*coherent if the most recent patient experiences some toxic side-effects
- A design is said to be coherent in escalation if $Pr(U_i > 0 | Y_{i-1} = 1) = 0$ for all i (a.s.) where UL is dose level increment from patient i
 - where U_j is dose level increment from patient j-1 to patient j, and Y_j is the toxicity indicator of patient j.

De-escalations

- A de-escalation for the next patient is said to be *in*coherent if the most recent patient shows no sign of toxicity
- A design is said to be coherent in de-escalation if $Pr(U_i < 0 | Y_{i-1} = 0) = 0$ for all i (a.s.)

where U_j is dose level increment from patient j-1 to patient j, and Y_j is the toxicity indicator of patient j.

Incoherent escalation, Pt 11

Coherent designs

- Algorithm-based designs
 - Coherence by construction
 - Up-and-down (Storer, 1989)
 - Biased coin design (Durham et al., 1997)
- Model-based designs
 - Coherence is not obvious, but can be proved
 - CRM (O'Quigley et al., 1990)

One-stage CRM is coherent

- Define the MTD: a dose that causes DLT with probability p
- Assume a dose-toxicity model

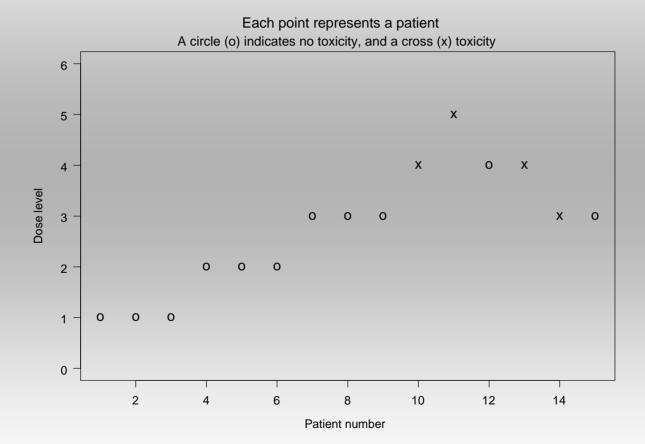
 $F(d, \beta) = Prob(DLT at dose d)$

- Treat patient at prior MTD.
- Estimate β based on binary toxic outcomes from first n patients. Denote estimator by b_n .
- Select dose level d* for patient (n+1) such that $d^* = \arg \min_k |F(d_k, b_n) - p|$

Initial design

- Practical considerations
 - "Conservative" initial dose assignments
 - No information about dose-toxicity curve until toxicity is seen (especially, likelihood CRM)
- Initial design D₀
 - A predetermined monotone sequence of dose levels $\{x_{10}, x_{20}, ..., x_{n0}\}$ such that $x_{i0} \ge x_{i-1,0}$
 - E.g., Groups-of-three:

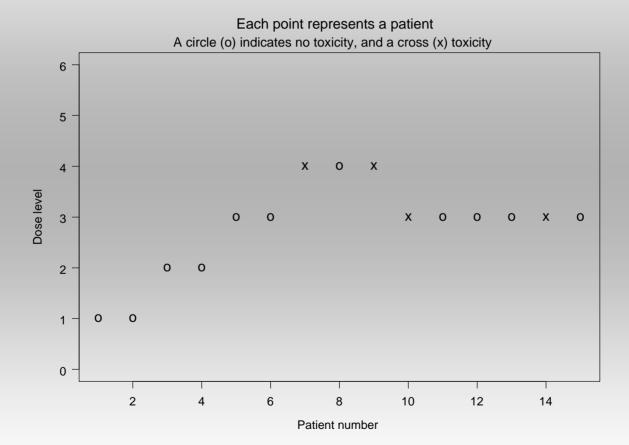
$$\mathbf{x}_{10} = \mathbf{x}_{20} = \mathbf{x}_{30} = 1, \, \mathbf{x}_{40} = \mathbf{x}_{50} = \mathbf{x}_{60} = 2, \, \dots$$


Two-stage CRM: definition

- Let $D_1(H_i)$ be the design point for patient i by the one-stage CRM, where H_i is the information available upon entry of patient i.
- Let D*(H_i) denote the design point for patient i by a two-stage CRM. Then
 - $\begin{array}{ll} D^*(H_i) &= x_{i0} & \text{if } Y_j = 0 \text{ for all } j < i, \\ &= D_1(H_i) & \text{if } Y_j = 1 \text{ for some } j < i. \end{array}$

Two-stage CRM: example

- A one-stage CRM is coherent; a two-stage CRM may not be coherent in escalation.
- Consider the following two-stage CRM:
 - $-F(d_k, \beta) = d_k^{\ \beta} \text{ with } d = (0.05, 0.10, 0.15, 0.25, 0.35, 0.45)$
 - $-\log(\beta)$ is normal with mean 0 and variance 1.34
 - Initial design: groups of three
 - Target: p = 0.25

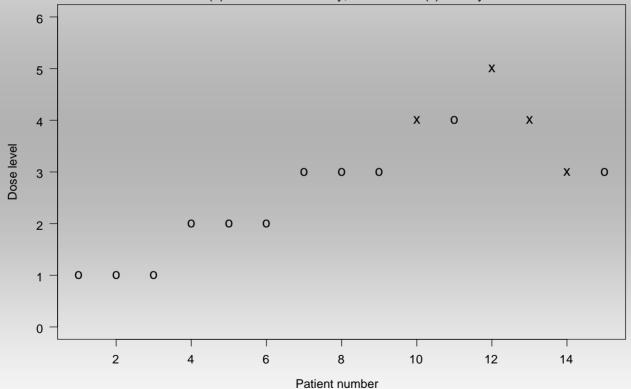

Incoherent escalation, Pt 11

Two-stage CRM: example

- Problem:
 - Nontoxic group size before an escalation is too large: too conservative *for* p = 0.25
 - Influence estimation at higher doses via parametric extrapolation
- Let's fix it:
 - Decrease group size in the initial design, e.g. groups of two

Coherent two-stage CRM

Two-stage CRM: coherence


- Let $M_0 = \min\{i: Y_i = 1\}$
- Theorem 1 Condition of coherence If $D^*(H_{M_0+1}) \le D^*(H_{M_0})$ almost surely, then the (unrestricted) two-stage CRM D* is coherent.
- In words, coherence at the transition of stages implies coherence.
- Computational advantage: Examine N-1 sequences instead of 2^{N-1} sequences

Two-stage CRM: coherence

- How about enforcing coherence by restriction? No escalation for next patient if current patient experiences toxicity
 - Goodman et al. (1995)
 - Faries (1994)
- Consider the previous CRM model with
 - Initial design: Groups of three
 - p = 0.25
 - Enforce coherence by restriction

What is the problem?

Each point represents a patient A circle (o) indicates no toxicity, and a cross (x) toxicity

Two-stage CRM: compatibility

- Incompatibility:
 - Patient 12 receives dose level 5.
 - If patient 10 did not experience toxicity, patient
 12 would have received dose level 4 according to the initial design.

Two-stage CRM: compatibility

- Initial design should represent the fastest escalation scheme that takes place when there is no toxicity ⇒
- *Definition:* An initial design $\{x_{i0}\}$ is said to be compatible with the CRM component D_1 in an unrestricted two-stage CRM D* with respect to p if $D^*(H_i) \le x_{i0}$ for all i with probability one.

Two-stage CRM: compatibility

• *Theorem 2:* With some mild conditions on F, if an unrestricted two-stage CRM is coherent in escalation, then its initial design is compatible with its CRM component.

Two-stage CRM: discussion

- Enforce coherence by restriction:
 - Does not enforce compatibility
 - Gives no insight to the choice of initial design
- Enforce coherence by applying Theorem 1
 - Enforce also compatibility
 - Calibrate initial design with respect to p
 - Choose p with respect to an initial design

Application II:

Combined phase I/II trial

Combined phase I/II Trials

- Bivariate binomial outcomes
 - -T = indication of Toxicity
 - -R = indication of Response
- Monotone dose-toxicity and dose-response
 - -P(T = 1 | dose = x) increases in x
 - -P(R = 1 | dose = x) increases in x

Combined phase I/II Trials

- Use coherence structure to guide dose assignments:
 Stuck when (T,R) = (1,0)?
 - Stay or stop

Т	R	Escalation	De-escalation
0	0	Ok	X/X
0	1	Ok	Χ
1	0	X	Χ
1	1	Χ	Ok

Summary & resources

- Motivation: Study coherence, whose ethical implication is immediately observed in dose-finding studies.
- Technical details: Cheung (2005). Coherence principles in dose-finding studies. *Biometrika* **92**, 863-873
- Software: An R function "cohere" in the "titecrm" library at CRAN