Preparing for Future Pandemics: Subway Crowd anagement to Minimize Airborne Transmission of REspiratory Viruses (Way-CARE)

The goal is to equip public transit communities for greater preparedness and resilience to future pandemics with a crowd management system leveraging sensing, data science, and digital twin. The research
question is: how should crowds be managed in realtime during the pandemic to mitigate risk and ease
the public fear of taking mass transit? This question will be addressed by bridging engineering and scientific models at the intersection of indoor pedestrian mobility, epidemiology, and travel behavior. Rather
than investing in transit infrastructure and services in a short timeframe (which is especially challenging when transit agencies are struggling with staffing shortage and financial crisis), reshaping public transport mobility could be a more viable way.

NSF Link SCC Link

PIs:

jls106@cumc.columbia.edu

sharon.di@columbia.edu

Xuan Sharon Di

Jeffrey L. Shaman xiaofan.jiang@columbia.edu Xiaofan (Fred) Jiang marco.giometto@columbia.edu kai.ruggeri@columbia.edu ef25@columbia.edu vfm2103@columbia.edu Marco Giometto Kai Ruggeri Ester Fuchs V. Faye McNeill

News:

Tackling Crowd Management in Subways During Pandemics

learn more

Strengthening the Pandemic Resilience of the Subway System with a Crowd Management System

learn more

Sharon Di wins NSF grant to work with NYC’s MTA

learn more