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Abstract. A method for automatic liver tumor segmentation from com-
puter tomography (CT) images is presented in this paper. Segmentation is
an important operation before surgery planning, and automatic methods
offer an alternative to laborious manual segmentation. In addition, segmen-
tations of automatic methods are reproducible, so they can be reliably eval-
uated and they do not depend on the performer of the segmentation. In this
work, the segmentation is performed in two stages. In the first stage a rough
segmentation of tumors is obtained by simple thresholding and morpho-
logical operations. The second stage refines the rough segmentation result
using fuzzy clustering and a geometric deformable model (GDM) that is fit-
ted on the clustering result. The method was evaluated with data provided
by Liver Tumor Segmentation Challenge 08 (LTS08), to which the method
also participated. The data included 10 images from which 20 tumors were
segmented. The method showed promising results.

1 Introduction

Important information of the condition and location of liver structures can be ac-
quired by accurate image segmentation. Segmentation enables quantitative disease
assessment and is an important step before surgery planning. Other purposes include
research in pathology prediction by determining structural changes or deformations,
multi-modality fusion and registration, navigation and image-guided surgery, 3D
visualization and interactive segmentation. Manual segmentation is often labori-
ous, inaccurate and the result varies strongly dependent on the observer. Manual
segmentation is also not reliably reproducible. These shortcomings have created a
demand for automatic and semi-automatic segmentation methods, which should be
fast, accurate and robust. (See Pham et al [10]).

In the task of liver tumor segmentation from CT images, anatomical variance
combined with limited resolution and random noise of the imaging method are
common problems that require task-specific algorithms. Typically for medical im-
ages, the volumes are three-dimensional which complicates the task even further
compared to simple two-dimensional images.

Liver tumor segmentation methods have attracted increasing attention recently.
Park et al [8] proposed a method that first obtains a segmentation of the liver using
intensity histogram transformation and maximum a posteriori classification result-
ing in a binary mask. After morphological processing of the mask, the tumors are
located by defining a statistically optimal gray level threshold within the mask area.
A method by Ciecholewski et al [1] used a contour model to obtain a segmentation
of the liver, then by histogram transformation enhanced the image to find neoplas-
tic lesions at locations of cavities within the healthy liver volume. Seo et al [11]
proposed a method for segmentation of tumors at liver boundaries using histogram
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variance analysis at locations where a binary mask of healthy liver tissue has a
concave shape at an edge. Another method by Jolly et al [4] locates tumors on 2D
plains after simple gray level distribution estimation, and the results are combined
to obtain final 3D segmentations. In addition to the mentioned methods, several
others have been published recently.

A novel method for automatic liver tumor segmentation from CT images is
proposed in this paper. The segmentation is performed in two stages. First a rough
segmentation of the tumors is obtained by simple thresholding and morphological
operations. The second stage refines the rough segmentation result using a fuzzy
clustering approach that incorporates a spatial smoothing term to the regular fuzzy
c-means (FCM) clustering. The final tumor segmentation is obtained by fitting a
geometric deformable model (GDM) on the membership function generated by the
clustering. The approach of the refinement stage is similar to the one used for cortical
reconstruction from magnetic resonance images by Han et al [2].

The method was evaluated using data provided by Liver Tumor Segmenta-
tion Challenge 08 (LTS08), to which the method also participated (see http:

//lts08.bigr.nl/). All parameter values used by the method are chosen to opti-
mize performance for the training set of the evaluation data. After this introduction
the second chapter describes the rough segmentation, followed by a description of
the refinement stage in the third chapter. The fourth chapter presents results of the
evaluation, and the fifth chapter concludes the document with a discussion.

2 Rough Segmentation

2.1 Liver Mask Generation

Starting with a raw CT image volume I (see Fig. 1(a)), a constant with the value
of 1000 is subtracted from the intensity values, resetting the scale so that voxels
corresponding to air are assigned approximately an intensity value of −1000. The
result of the subtraction is denoted by I

′

. From I
′

, three volumes are generated:
the first one is a binary mask M1 that is obtained by thresholding

M1(x) =

{

1, when a < I
′

(x) < b

0, otherwise
(1)

where x = [x1, x2, x3] represents a single point in the image volume and the
parameters are chosen as a = −20 and b = 240. From M1, all holes with size
of less than 10 are filled, and the resulting mask covers all parts of the image I

′

with healthy liver tissue as well as all liver tumor tissue. The complement of M1 is
considered background.

The second volume is generated by filtering I
′

using a Gaussian filter with stan-
dard deviation of 1.0 in all three coordinate directions (x1, x2, x3). The result is
denoted by I

′

g. The third volume is generated by filtering I
′

one slice at a time
using nonlinear diffusion (see Weickert [14]). Nonlinear diffusion smooths the image
but preserves boundaries and produces piecewise constant regions, and it was used
in a method for liver segmentation from CT images by Lamecker et al [5].

Let I(x) be the original image, then the filtered image F (x, t) is obtained by
solving the partial differential equation

∂tF = div g(|∇Fσ|
2)∇F ) (2)

when F (x, 0) = I(x) and Fσ is the result of Gaussian smoothing of F with standard
deviation σ. The term |∇Fσ|

2 acts as an edge detector, and the diffusivity function
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g(s) is defined as

g(s) :=

{

1, if s ≤ 0

1− exp(−3.315
(s/λ)4 ), if s > 0

(3)

where λ controls how sensitive the smoothing is to intensity changes. In this work
we used parameter values λ = 3.0, σ = 1.4 and t = 100. The result of the nonlinear
diffusion filtering is denoted by I

′

f (see Fig. 1(b)).

Next, an intensity histogram is computed from a part of I
′

f , leaving the bottom

50 percent and the top 10 percent of the image slices out. For example, if I
′

f has 200
image slices, the histogram is computed from the slices 101 to 180. The histogram
is computed between intensity values 70 and 220 using histogram slot width of 1.
The intensity with the highest corresponding value in the histogram is selected as
the average intensity value for healthy liver tissue, denoted by α.

I
′

f is then thresholded to create three binary masks M2, M3 and M4 in the same
fashion as above, using (1). The thresholds for M2 are a = 17 and b = α and
resulting in a mask that contains regions of tumors with low intensities and some
of the healthy liver tissue (see Fig. 1(c)). M3 contains healthy liver tissue, and is
created using thresholds a = 0.82α and b = 1.25α (see Fig. 1(d)). M4 is generated
with thresholds a = α and b = 240, corresponding to tumors with high intensities
and some of the healthy liver tissue (see Fig. 1(e)).

(a) (b) (c)

(d) (e) (f)

Fig. 1. (a) Original image (LTS IMG09.raw), (b) image filtered with nonlinear diffusion,
(c) mask M2 (including tumor tissue with low intensities), (d) mask M3 of healthy liver

tissue, (e) mask M4 (including tumor tissue with high intensities), (f) M
′

3, largest connected
component after performing morphological opening on M3

Morphological opening is performed on M3, using a spherical structuring ele-
ment with the radius of 1, and from the result the largest connected component is
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selected using 6-connectivity, resulting in a binary object that is an initial estimate
of the liver, denoted by M

′

3 (see Fig. 1(f)). This object has typically many holes,
particularly large at locations of tumors. Next we generate the filled mask Mfill

a ,
which is initialized as M

′

3. First advancing from the top of the image volume Mfill
a

is filled one slice at a time using M2, so that a slice k of Mfill
a (i.e. Mfill

a (k)) is
changed to

Mfill
a (k)←Mfill

a (k) ∪ [M2(k) ∩Mfill
a (k + 1)] (4)

After this has been done for slice k, morphological closing is performed on it, using
a disk-shaped structuring element with a radius of 6. Any remaining holes within
slice k are filled, and morphological opening is performed using the same structur-
ing element as in closing. Then k is decreased by one and the same operation is
repeated. After all the slices have been processed this way, the whole process is
repeated starting from the bottom of the image volume, advancing in the direction
of increasing k (using Mfill

a (k − 1) instead of Mfill
a (k + 1) in (4)). The result is a

filled mask including all the healthy liver tissue and tumors with low intensities (see

Fig. 2(a)). In the same way, M
fill
b (k) is generated for tumors with high intensities,

but using M4 instead of M2 (see Fig. 2(b)).

2.2 Tumor Object Extraction

The tumors are extracted from Mfill
a and M

fill
b by removing the healthy liver tissue

and possible background regions from them. For this purpose I
′

g is thresholded with
the same parameter values as when creating M3, a = 0.82α and b = 1.25α, denoting
the resulting mask by Mg. The removal is done in the same way for both masks:

M
fill
a,b ←M

fill
a,b ∩ (M1 ∪ ¬Mg), (5)

(see Fig. 2(c)). The resulting volumes are opened with spherical structuring element
with radius of 4. From the resulting binary objects, the ones with size larger than 200
voxels are selected. These selected objects are the tumor objects for the refinement
stage (see Fig. 2(d)). However, it was noted that on rare occasions this approach
was unable to detect a tumor at a desired location. For this reason, the set of tumor
objects is supplemented by performing the tumor object extraction again, but this
time using M

′

3 instead of Mg as the healthy liver tissue mask in (5). The resulting
objects are added to the set of tumor objects only if they do not overlap with the
existing tumor objects.

Each tumor object is dilated using a spherical structuring element with radius
of 5. If the dilation leads to any part of the object expanding in background region
(¬M1) or to overlap another tumor object, these parts are removed from the dilated
object.

3 Refinement Stage

3.1 Fuzzy clustering

The generated tumor objects are processed one at a time. The area covered by
the dilated tumor object is extracted from I

′

, and clustering is performed on this
part of the image using two classes in robust fuzzy C-means (RFCM) clustering
as proposed by Pham [9]. Compared to standard fuzzy c-means clustering, RFCM
includes a spatial smoothing term to reduce the effect of noise.

When the number of classes is denoted by C, standard FCM minimizes the
objective function JFCM with respect to the membership values u and the centroids



Liver Tumor Segmentation Using Implicit Surface Evolution 5

v (see Pham [9]):

JFCM =
∑

j∈Ω

C
∑

k=1

u
q
jk||yj − vk||

2 (6)

where Ω is the set of voxel locations in the image volume, q is a parameter that
controls the fuzziness of the classification and is constrained to be greater than one
(if q = 1, FCM is equal to k-means clustering), ujk is the membership value at voxel

location j for class k so that
∑C

k=1 ujk = 1, yj is the image intensity at location
j, and vk is the centroid of class k . The objective function is minimized when high
values are assigned to voxels with intensities close to the centroid of the particular
class, and low values are assigned to voxels with intensities far from the centroid.

For spatial smoothing of the resulting membership functions, RFCM simply adds
a second term to the objective function:

JRFCM =
∑

j∈Ω

C
∑

k=1

u
q
jk||yj − gjvk||

2 +
β

2

∑

j∈Ω

C
∑

k=1

u
q
jk

∑

l∈Nj

C
∑

m 6=k

u
q
lm (7)

where Nj represents the set of first order neighbors of voxel j, and β is a weight
constant that determines the smoothness between neighboring voxels in the resulting
membership functions. In this implementation, RFCM was computed using a plug-
in for MIPAV (see McAuliffe et al [6]), implemented by Pierre-Louis Bazin and
Dzung L. Pham. The values used for the variables were q = 2, C = 2, β = 0.1 (this
is the normalized value for β, which is multiplied by the square of intensity range
in the image). The resulting membership functions for the two classes are denoted
by µ1 and µ2, and the respective cluster centroids have the property v1 < v2.

For tumor objects generated from Mfill
a , µ1 is used for directing the geometric

deformable model, but only if |v1 − α| > |v2 − α| (if this condition is not fulfilled,

the tumor object is discarded). In the same way, for objects generated from M
fill
b ,

µ2 is used, but only if |v1 − α| < |v2 − α|.

3.2 Geometric deformable model

In a standard geometric deformable model, the evolving curve or surface Γ (t) is
embedded as the zero level set of the higher-dimensional level set function φ(x, t)
(see Sethian et al [13]):

Γ (t) = {x|φ(x, t) = 0} (8)

The evolution is usually prescribed by a partial differential equation of the following
form

φt(x, t) = Fprop(x)||∇φ(x, t)|| + Fcurv(x)||∇φ(x, t)|| + F adv(x) · ∇φ(x, t) (9)

where Fprop, Fcurv and F adv are spatially varying speed terms and φt is the partial
time derivative of φ. Fprop is an expansion or contraction speed in the normal
direction, Fcurv is the curvature term that depends on the intrinsic geometry of the
surface and F adv is the advection term, which represents an independent velocity
field. (See Han et al [2, 3]).

By convention, the level set function φ(x, t) is initialized as a signed distance
function to the initial surface Γ (t = 0) (see Sethian et al [13])

φ(x, t = 0) = ±d (10)

where d is the distance from x to Γ (t = 0), choosing negative values on the inside
and positive on the outside of Γ (t). If φ(x, t) is a signed distance function, it also
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has a property ||∇φ(x, t)|| = 1. After initialization, Γ (t) is expressed as the zero
level set of φ(x, t) as presented in (8). Computing the signed distance function was
done with the fast marching level set method (see Sethian et al [12]).

In this implementation of the geometric deformable model, the two speed terms
Fprop and Fcurv in (9) are used. Fprop is a signed pressure force computed from the
fuzzy membership function µ and Fcurv is proportional to the mean curvature κ(x)
of the surface. These choices form the evolution equation to

φt(x, t) = ωRR(x)||∇φ(x, t)|| + ωκκ(x, t)||∇φ(x, t)|| (11)

where R(x) = 2µ(x)− 1. ωR and ωκ are weights that cause the terms to be empha-
sized differently, chosen as ωR = 1 and ωκ = −0.4.

Following the definition of Osher et al [7], the normal N of the surface φ(x, t)
at point x is defined as

N =
∇φ(x, t)

||∇φ(x, t)||
(12)

and the mean curvature κ(x) of the interface is the divergence of the normal

κ(x) = ∇ ·N = ∇ · (
∇φ(x, t)

||∇φ(x, t)||
) (13)

In this work, the numerical solution of 11 is obtained by simple upwind differencing
(see Sethian et al [13]), also used by Han et al [2].

(a) (b) (c)

(d) (e) (f)

Fig. 2. Filled masks (a) Mfill
a and (b) M

fill

b , (c) M
fill

b with healthy liver tissue and back-
ground removed, (d) tumor candidate objects, (e) fuzzy segmentation class membership
µ2, (f) segmentation result

Topological flexibility of the geometric deformable models is usually considered
as a great advantage but it also means that topological changes are difficult to
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prevent. This can be a significant problem when the initial topology of the surface
is wished to be preserved. In this work, as a single connected binary object is
desired as the result from each tumor object, we used a topology-preserving GDM
proposed by Han et al [3]. This modification prevents sign changes at grid points of
the level set function if the topology of the object is about to be altered. The final
segmentation of the liver tumor is obtained after the GDM has reached a steady
state by selecting all the points with negative values in φ(x, t) as the segmented
object.

4 Results

From the data of LTS08, 20 tumors in 10 images were used for evaluation. Of these
data, 10 tumors from 4 images were used as training data for the method, and
the remaining 10 tumors from 6 images as test data. Using reference segmenta-
tions created by an experienced radiologist and confirmed by another radiologist,
five measures were computed from each segmentation generated by the proposed
method: volumetric overlap error (%), relative absolute volume difference (%), aver-
age symmetric surface distance (mm), RMS symmetric surface distance (mm) and
maximum symmetric surface distance (mm). These measures are described in more
detail on the LTS08 website (see http://lts08.bigr.nl/).

The test data evaluation results were given points in LTS08, 100 points being the
maximum for an exact match with the reference segmentation. For each evaluation
metric a reference value from segmentation performed by independent users was
assigned a score of 90. These reference values were

1. Volumetric overlap error [%] 12.94
2. Relative absolute volume difference [%] 9.64
3. Average symmetric surface distance [mm] 0.40
4. RMS symmetric surface distance [mm] 0.72
5. Maximum symmetric surface distance [mm] 4.0

The points were assigned by using linear interpolation or extrapolation between
the two points specified above, with a minimum value of zero and rounded to the
nearest integer. The points received from segmentations of the test data set were
used to compare method performance in the competition. The method received an
average of 48 points for the test data. Points for training data segmentations were
also computed, where higher points were achieved, with an average of 69 points.
The evaluation measures and scores are presented in table 1 for training data and
in table 2 for test data.

For interpreting the results of the evaluation we categorize the results based on
their overlap error. When the overlap error is smaller than 67%, a segmentation
is considered successful and if the measure is smaller than 50%, a segmentation
is considered good. Using this categorization, out of the total of 20 segmentations
17 are considered successful and 14 good. In table 3 the averages and standard
deviations of the evaluation measures are listed for different categories.

Tables 1 and 2 show that the performance of the method varied largely between
images. For example, for the segmentations of image IMG04 which was part of the
training data set and included four tumors, corresponding to 40% of the training
data, the method generated excellent results for all tumor segmentations. But for
images such as IMG05 including three tumors in the test data, only one had an
overlap error smaller than 60%. The difference in evaluation measure averages of
the successful segmentations between training and test data sets in table 3 indicate
the same characteristic, showing significantly lower performance for the test data.
The method seems sensitive to data in its current implementation. This is believed
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Table 1. Results of the comparison metrics and scores for training data

Overlap Volume Ave. Surf. RMS Surf. Max. Surf.
Error Difference Dist. Dist. Dist.

Tumor (%) Score (%) Score (mm) Score (mm) Score (mm) Score Total
Score

IMG01 L1 51.40 60 49.72 48 4.10 0 5.29 27 17.02 57 38
IMG01 L2 37.96 71 37.77 61 1.36 66 1.65 77 5.31 87 72
IMG02 L1 41.70 68 39.80 59 1.66 59 2.04 72 8.12 80 68
IMG02 L2 23.63 82 20.24 79 0.82 80 1.29 82 5.85 85 82
IMG02 L3 95.16 26 95.16 1 7.06 0 7.44 0 12.49 69 19
IMG03 L1 42.93 67 36.07 63 1.05 74 1.56 78 6.26 84 73
IMG04 L1 18.26 86 12.95 87 1.37 66 1.84 74 8.29 79 78
IMG04 L2 9.79 92 2.59 97 0.35 91 0.60 92 3.10 92 93
IMG04 L3 12.44 90 7.88 92 0.86 79 1.37 81 8.75 78 84
IMG04 L4 15.52 88 11.54 88 0.80 80 1.47 80 8.30 79 83

Average 34.88 73 31.37 68 1.94 60 2.46 66 8.35 79 69

Table 2. Results of the comparison metrics and scores for all ten tumors of test data

Overlap Volume Ave. Surf. RMS Surf. Max. Surf.
Error Difference Dist. Dist. Dist.

Tumor (%) Score (%) Score (mm) Score (mm) Score (mm) Score Total
Score

IMG05 L1 62.10 52 60.28 37 6.92 0 10.42 0 27.23 32 24
IMG05 L2 43.65 66 39.03 60 1.70 57 2.17 70 5.26 87 68
IMG05 L3 68.38 47 124.63 0 8.27 0 12.64 0 39.59 1 10
IMG06 L1 39.75 69 29.51 69 1.08 73 1.30 82 3.54 91 77
IMG06 L2 88.25 32 750.87 0 14.69 0 19.40 0 48.35 0 6
IMG07 L1 51.04 61 33.41 65 13.20 0 21.61 0 81.70 0 25
IMG07 L2 31.21 76 10.44 89 1.49 62 2.27 68 12.34 69 73
IMG08 L1 36.55 72 28.15 71 4.43 0 5.79 19 19.11 52 43
IMG09 L1 27.17 79 9.70 90 0.89 78 1.27 82 6.11 85 83
IMG10 L1 25.17 81 25.08 74 1.35 66 1.82 75 7.46 81 75

Average 47.33 64 111.11 56 5.40 34 7.87 40 25.07 50 48

to be caused by a large number of empirically determined parameters in the rough
segmentation stage.

For the test data can be seen from table 2 that the method receives substantially
lower points on average for surface distance measures than overlap error or volume
difference. This is believed to be caused by a problem where the method and more
specifically the rough segmentation stage either misses a significant part of the
tumor or includes parts of the image outside the liver. This way, the segmentation
is usually relatively good for most part of the tumor, but the surface distances
become large because of inaccuracies at a specific location.

Table 3 shows that for the good segmentations, the average measures have excel-
lent values with small standard deviations. However, when including the remaining
results the average values deteriorate substantially. This can be considered as evi-
dence of good accuracy but lack of robustness of the method.

Examples of segmentation results are shown in Fig. 3. The most common prob-
lem in the segmentations was the rough segmentation result including parts of the
image outside the liver. This occurred with tumors IMG05 03, IMG06 L2 (see Fig.
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Table 3. Average values and standard deviations (average ± std) of evaluation measures
in seven categories (including difference in values between successful segmentations of
training and test data), from top down: successful segmentations of training data (9 cases),
successful segmentations of test data (8 cases), training data average subtracted from test
data average, all segmentations of training data (10 cases), all segmentations of test data
(10 cases), all good segmentations (14 cases), all successful segmentations (17 cases), and
all segmentations (20 cases).

Data Overlap Error Volume
Difference

Ave. Surf.
Dist.

RMS Surf.
Dist.

Max. Surf.
Dist.

(%) (%) (mm) (mm) (mm)

Training (s) 28.18 ± 15.41 24.28 ± 16.79 1.37 ± 1.09 1.90 ± 1.33 7.89 ± 3.89
Test (s) 39.58 ± 12.51 29.45 ± 16.17 3.88 ± 4.31 5.83 ± 7.11 20.34 ± 26.07

Difference 11.40 5.17 2.51 3.93 12.45

Training (a) 34.88 ± 25.69 31.37 ± 27.44 1.94 ± 2.07 2.46 ± 2.16 8.35 ± 3.94
Test (a) 47.33 ± 20.26 111.11 ± 227.22 5.40 ± 5.20 7.87 ± 7.76 25.07 ± 25.14

Good (70%) 28.98 ± 11.82 22.20 ± 13.04 1.37 ± 0.96 1.89 ± 1.20 7.70 ± 4.04
Succ. (85%) 33.55 ± 14.89 26.72 ± 16.20 2.55 ± 3.22 3.75 ± 5.20 13.75 ± 18.60
All (100%) 41.10 ± 23.40 71.24 ± 162.74 3.67 ± 4.24 5.16 ± 6.20 16.71 ± 19.50

3(e)), IMG07 L1 and IMG08 01 (see Fig. 3(f)). Another notable problem was the
rough segmentation result lacking a significant part of the tumor area, which hap-
pened with tumors IMG01 L1, IMG02 L3 and IMG05 L1 (see Fig. 3(d)). The fuzzy
clustering and geometric deformable model worked expectedly in all cases.

5 Discussion

The proposed method produced very good results for a majority of the evaluation
data. These were obtained when the rough segmentation stage was successful, indi-
cating that the chosen approach for the refinement stage using fuzzy clustering and
a geometric deformable model is able to generate reliably accurate results. How-
ever, the rough segmentation stage suffers currently from lack of robustness, which
degrades the overall performance of the method. In the future we plan to combine
the proposed tumor segmentation method with a segmentation of the liver using
a prior statistical shape model. This should improve the results dramatically for
segmentations such as the ones that advanced to parts of the image outside the
liver in the conducted evaluation.

The fuzzy clustering worked expectedly in all cases, but in the future it might
be useful to look into to the possibility of clustering data based on their absolute
deviation from the average healthy tissue intensity, rather than using it directly on
the intensity values. This way, tumors with low and high intensities would not be
extracted separately, and a single tumor segmentation might include segments of
the image with both low and high intensities.
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