Ordinary Differential Equations
Macroeconomic Analysis Recitation 1

Yang Jiao*

1 Introduction

We will cover some basics of ordinary differential equations (ODE). Within this class, we
deal with differential equations, whose variable of interest takes derivative with respect to

time ¢. Denote Y; = %, where Y; can be a scalar or vector. A general explicit form of ODE

1S

Y, = f(Yi.t) (1)

2 First-Order Differential Equations

e Autonomous equation: y; = f(y;), an equation is autonomous when it depends on
time only through the variable itself. Example: k; = sk* — dk;, where s, and J are
constants.

e Linear equation: y; = a;y; + by, where a; and b; are taken as given. Example: 2—’; =
%('r’t — p), where v and p are parameters, while r; is a given function of t.

e Homogeneous: set the above linear differential equation b; = 0. This terminology also
applies to high-order differential equations: e.g. ¥; = g:y; + hiys.

Autonomous equation can be solved (illustrated) graphically, while linear equation admits
analytical solution.

2.1 Analytical Solution

A homogeneous differential equation

Yr = Qi (2)
Divide both sides by y;,

("

— = Q 3

= (3)

*Please email me if you find errors or typos to yj2279@columbia.edu. Your help will be greatly appreciated.
All comments and suggestions are especially welcome.
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dlog(y)
dt

:at

Therefore,
t
Y = CeXp(/ asds)
0

where C' is determined by boundary condition.
A linear differential equation

Yt = aryr + by
Rearrange the above equation as
Yr — aryr = by

Multiply both sides by exp(— fg asds), we obtain
t t t
eexp(— [ auds) —amesp(= [ ads) =bexp(— [ auds)
0 0 0

That is

d — [Tayd t
[yt eXp( fO a S)] _ bt eXp(—/ a3d5>
di ;

t t u
=y = exp(/ asds)(/ by, exp(—/ asds)du + C) (10)
0 0 0
where C' is pinned down by boundary condition.
Example ‘
ky = sk — 6k, (11)
Define z, = k; %, then
4= (1—a)k %k, (12)
Substitute k}t, ki by Z;, z;, we arrive at
Zi=s(1—a)—61—a)z (13)
Let a; = —6(1 — a) and b; = s(1 — «), and use the solution we already get in the linear
differential equation.
s s
2= S (= S expld(1 — )] (14)
= k= {5 + (™ = 5) exp[=6(1 — )]} ™ (15)



2.2 Graphical Solution

An autonomous equation
Y = [(yt) (16)
Solution Steps:

e Plot f(y) in the space of (y,y). Put y on the x-axis and ¢ on the y-axis.
e Draw rightward arrows when f > 0, and leftward arrows when f < 0.
e Given an initial point, follow the arrows to track the dynamics of y.

Equilibrium and Stability: When g, = 0, we have f(y) = 0. The solutions to
f(y:) = 0 are equilibrium points. An equilibrium point y* is said to be stable if f'(y*) < 0
(or equivelently, write it as g—z » < 0). Intuitively, the arrows around the equilibrium point
direct to the stable equilibrium point. Or roughly speaking, after a small perturbation, y,
will finally go back to the equilibrium point.

Examples:

® 4, = ay; + b, where a < 0. The equilibrium point is y* = —g. Since g—z g+ = a < 0, this

equilibrium point is stable. See Figure 1. (Figures are on the last two pages.)

e 1y, = ay; + b, where a > 0. The equilibrium point is y* = —g. Since g—g g+ = a > 0, this
equilibrium point is unstable. See Figure 2.

e Go back to our old friend, k = sky' — 0k, with 0 < a < 1. We have two equilibrium
points: k* = (g)ﬁ’ k™ = 0. Then 2|, = §(a—1) < 0 and 2|4 = +00. Therefore,
k* is stable and k** is unstable. See Figure 3.

2.3 Linearization

Suppose we are interested in the dynamics around the equilibrium y*.
e =fly) = F) + @) e =) = F @) (% —y") (17)
Applying it to the above k, = sk — 0k, we obtain
ke = (ask* ™t = 6) (ky — k) (18)
3 Systems of Differential Equations
3.1 Analytical Solution

Consider the linear system of differential equation Y, = A,Y, + B, with A, = A, B, = 0.
A is a n X n matrix with constant elements.



A simple case is when A has n linearly independent eigenvectors vy, vs....v,, with corre-
sponding eigenvalues A, \s, ..., A\,. It is equivalent to say A is diagonalizable D = P~1AP,
where the diagonal elements of D are Aj, Ag, ..., A, and the columns of P are vy, vs....0,.

Y, = AY, = PDP7Y, (19)
= P Y, = P"'AY, = DP, (20)
Denote Z;, = P~'Y,, we have '
2, = DZ, (21)
= Zyp = MNzi,i=1,2,...,n (22)
= zy =cexp(A\t),i=1,2,...,n (23)

Given Z;, we immediately get Y; = PZ,.

One can follow the same steps above to show that Y, = AY; + B, has analytical solution
as well.

Remark 1. If A is not diagnonalizable (for example, in a two-dimension case, we
may only have one linearly independent eigenvector), we can use another decomposition
T = U 'AU, where T is an upper triangular matrix. Denote W, = U~'Y;, we have W, =
TW, + U~ B,, then solve w;; by the order of w,;, Wn_14, ..., W1, Where wy is the ith element
of W,.

Remark 2. It is possible that eigenvalues are complex numbers, and eigenvectors are
complex vectors thus we obtain complex solutions. However, we want real solutions instead
of complex solutions. Apply the following observation: if p, + iq; is a solution to Y, = AY,
(pr — iq; should also be a solution), where p; and ¢, are real vectors, then p; and ¢; are also
the solutions. This is because Y; = p, + iy = A(p; + iq;) = Ap, + iAqy, then we arrive at
pe = Apy and ¢, = Ag;.

3.2 Graphical Solution (Phase Diagram)

Here we focus on two dimensions of system of differential equations. That is we have two
variables y; and ys of interest.

Yie = f(Y1e, yar) (24)

Yar = 9(Y1e, Yor) (25)
Solution Steps:

In the space (y1,y2), draw the lines of y3; = 0 and y5; = 0 respectively. Or equivalently
to say, draw both f(y1,y2) =0 and g(y1,y2) =0

Draw rightward arrows when yj; > 0, and leftward arrows when y;; < 0

e Draw upward arrows when y5; > 0, and downward arrows when g < 0

The intersections of y;; = 0 and y5; = 0 are equilibrium points. These points can be
stable, unstable or saddle path stable.



e Given an initial point, follow the direction of arrows to track the dynamics of (1, y2t)

Remark. In macroeconomics,we usually have initial values of state varibles (instead of all
the varibles) and a transversality condition to uniquely determine the initial point and thus
the whole dynamics. For example, given 310 ( y1; is a state variable), we will pick up y2o (yor
is a control variable). After picking up a0, we follow arrows and we need to ensure that we
will reach an equilibrium point which satisfies the transversality condition.

Example 1 Consider the following system of differential equations of ¢; and k;.

ke = k& — 6k, — ¢ (26)

1
¢ = ;(akta_l —d—p)a (27)

Boundary condition: initial state ky and transversality condition lem;_, o Atky = 0. You will
see what transversality condition is in class, and it basically guarantees that the economy
will not explode or converge to a non-sense point (no-ponzi scheme). Note we will have a
unique saddle path. See Figure 4.

Example 2 Now we turn to a two dimension linear case Yt = AY}, where Y; = (y11, yor)’
and A is a 2 by 2 matrix with constant elements. We first write out the analytical solutions
(see the above Section 3.1 for how to solve it.). Suppose the eigenvalues of matrix A are \;

and \s.

o If \; # )y and the two linearly independent eigenvectors are vy, vy, the solution is of
the form:
th = Clvleht + 02/026)\21: (28)

e If \; = Ay (must be a real number) and we have two linearly independent eigenvectors
v1, Vg , the solution is of the form:

Y; = C’lvle)‘lt + Cgvge/\lt (29)

e If A\ = Ay (must be a real number) and we only have one linearly independent eigen-
vector vq, the solution is of the form:

Y, = Crvie™ 4 Cy(vitet + vyeh) (30)
where vy is the solution of (A — A I)ve = vy

Constants C; and (5 are determined by boundary conditions.
Eigenvalues and Stability (Example 2)

e If the eigenvalues are both positive real numbers, the equilibrium is unstable. See
Figure 5.

e If the eigenvalues are both negative real numbers, the equilibrium is stable. See Figure
6.



o If the real parts of the eigenvalues are of opposite sign (it also implies that there is
no complex part), the equilibrium is saddle path stable. Note this case is of special
interest in this class. See Figure 7.

e [f the eigenvalues are both complex numbers and the real parts are both positive, the
system is unstable and oscillating. See Figure 8.

e [f the eigenvalues are both complex numbers and the real parts are both negative, the
system converges to the steady state in an oscillating manner. See Figure 9.

3.3 Linearization

Suppose we are interested in the dynamics around equilibrium point. We proceed with
a two-dimension case.

Yie = (W1, y2e) = FU1,92) + iyl ve) (Wie — y1) + fa(urs v2) (Yar — 5) (31)

Yor = 9(Yre, vor) = 9(y1, ¥5) + 91(y1, vs) (Wie — y1) + 92(u1, ¥5) (Yor — ¥5) (32)

Since we linearize around the equilibrium point, f(yf,v3) = 0 and g(y;,v3) = 0. That implies
Y, = A(Y; - Y*) (33)

where V; = (y11, ya1)' or _
Zt - AZt (34)
where Z, =Y, — Y*
Then the above formula goes back to the aformentioned homogeneous system of differ-

ential equation with constant coefficient matrix.

Example ‘
ke = k& — 0ky — cp = (k™" = 8)(ky — k) — (¢ — ¢¥) (35)

Me*k*a_2(kt — k) (36)

¢ =—(ak® ' =5 —p)ey =

Pick up the equilibrium point with positive (k*, ¢*) and write the above in a more compact
form:

ke = Bk = k%) = (¢ — ") (37)
¢ = —7(ki — k) (38)

with 8 > 0 and 7 > 0. The coefficient matrix is (assume parameter 0 < a < 1)

(B -1
A= ( -7 0
One can show the eigenvalues of the above have opposite sign. Therefore, the equilibrium
is saddle path stable.



3.4 Time Elimination Method

An illustrative example .
kt:k?—(gkjt—ct

R
¢ = ;(akt L—d—-pa
If we have policy function ¢(k), we can solve k; from
b=k — 0k — c(k)
by using standard numerical method. In order to get c¢(k), we do the following

de ¢ (ak®™h =8 — p)e(k)

dk ~ k, ko — 0k —c(k)

Initial condition is given by steady state (k*,c*)

(39)

(40)

(42)









Investment Theory
Macroeconomic Analysis Recitation 2

Yang Jiao*

In this note, our focus is 1). Linearization of the internal adjustment cost model. 2).
External adjustment cost model. I type the setup of internal adjustment cost as well in case
you can refer to it. We will come back to the comparison of the two investment models next
time.

1 Internal Adjustment Cost Model
1.1 Model Setup

Internal adjustment cost means in order to invest I;, firms have to themselves forego
additional resources [tgo(}(—tt). Assume ¢(0) = 0, ¢'(-) > 0 and 2¢’ + L¢" > 0. For simplicity,
assume depreciation rate 6 = 0.

+0c0 )
- —rt o . St
Vo = Kir,lli},{h/o e "AF(Ky, Ly) — wy Ly — I,(1 4+ @(Kt))]dt (1)
s.t. '
Kt — -[t (2)
Non-ponzi scheme: tlim e ""K; >0 (3)
—00
K, is given. (4)
1.2 Solve the Model
We first set up the Hamiltonian:
I
H = e AP (K, L) = wily = L(1+ 9(52)] + Ay (5)
t
First order conditions are:
AFL = Wt (6)

*Please email me if you find errors or typos to yj2279@columbia.edu. Your help will be greatly appreciated.
All comments and suggestions are especially welcome.
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L+ P(0) + 2 (GO} + A =0 )
Ay + ()2 ()] = = 0
K K
TVC: lim MK, =0 9)
t—+00

Denote current shadow price ¢; = ")\, then F.O.C.s change to

AFL = Wy (1())
I L, I
=1 —) 4+ = (— 11
0= 1+ p(0) + 70 (L) (1)
i = 10— [AFi + (452! (1)) (12)
K, K,
TVC: lim e "¢K; =0 (13)
t—+oo

Equation (11) establishes the relationship between ¢, and <t. It is a one-to-one mapping

Iy
K
(by 2¢' + £¢" > 0, we know ¢, is an increasing function of Il{—tt)

I
L —p 14
= = hla) (14)
From equation (11), when £ =0, ¢ = 1, thus ~(1) = 0 in equation (14).
To solve the model, capital accumulation equation has to be used as well (don’t foreget
it, since it is not listed in the first order conditions.).

Kt =1 = h(%)Kt (15)
From the first order conditions, we also have

Gr = rqr — [AFk + h* ()¢ (h(gr)] (16)

Now we have got a system of differential equations for ¢,, K; with initial condition K given
and TVC limy_, o e "q; K; = 0.

Remark. In fact, the problem is complicated because labor input L; will depend on
K, see equation (10). And L; shows up in equation (16) Fx (K}, L;) as well. Denote the
functional relationship derived from equation (10) as L; = ¢g(K};). Then in equation (16),
one needs to substitute F (K, L) by Fx(K,g(K)). However, to simplify the analysis, we
assume labor demand L; keeps fixed at L* for the moment.

1.3 Graphical Solution (Phase Diagram)

o We first need to find the steady state. We will focus on the steady state with positive
(k*, q%).
h(g") =0 (17)



rq" = [AFg(K*, L") + h*(¢")¢' (h(q")] (18)

Since h(1) = 0 and h is monotonic, we immediately have ¢* = 1. And then K* =
Fl(r/A).

e [t is easy to draw K, =0, that is h(q) = 0 thus ¢ = 1, a horizontal line in the space of
(K. q).
Since we will concentrate on the dynamics around the steady state, we would like to
know the slope of ¢, = 0 in a small neighborhood of (K*, ¢*). Denote the line ¢, = 0
as m(K,q) =0,

m(K,q) = rq — [AFk (K, L) + h*(q)¢' (h(q))] (19)

For the line m(K, q) = 0, at point (K*,¢*), by the implicit function theorem, the slope
is
dq 0m/8K . AFKK(K*,L*) . AFKK(K*,L*)

Tl = = m/dq — r—2h(g")¢' (h(q*)) — h2(q*)" (h(q*))W (¢¥) 7“<20)

<0

By continuity, in a small neighborhood of (K*, ¢*), the slope is also negative.

Remark 1. If we forget about the assumption that L* is fixed, what we need for
24} e gy < 0 to hold is Frp(K*, g(K*)) + Fr,r(K*, g(K*))g'(K*) < 0. In fact, to
justify the fixed L*, we may consider a general equilibrium model with fixed labor
supply L*, so wages will adjust to guarantee that labor demand equals labor supply
L, = L*.

Remark 2. When we have capital depreciation rate 6 > 0 in this internal adjustment
cost model, the steady state ¢* will not be 1. Please check how depreciation rate will
affect steady state level of ¢*.

See Figure 1 for the phase diagram. When ¢; > 1, firms invest, thus capital stock
increases, while when ¢; < 1, firms disinvest thus capital stock decreases. That is to say
investment depends on ¢;.

1.4 Linearization

Around the steady state (K*,¢*):
Ky~ h(q") (K — K*) + K*H(q") (@ — ") (21)

Gp ~ —AFwr (K", L") (K, — K*) + [r —2h(q")¢ (h(q")) — B*(¢")" (W(a" )W (a"))(a: — 4") (22)
Substituting the steady state property that h(¢*) = h(1) = 0, we obtain

Ky~ K1 (q") (% — q7) (23)
G~ —AFgr (K", L") (K; — K*) + r(¢ — q%) (24)

Write the above in a more compact form
Z, = GZ, (25)
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where Z;, = (K; — K*,q; — ¢*)" and the coefficient matrix is

oo 0 K*I(q*)
- —AFKK(K*,L*> r

The eigenvalues A\; and A\, satisty that
A1k Ay = det(G) = K*IW(¢*) * AFgg(K*, L") <0 (26)

We conclude that eigenvalues must have opposite signs and they are real numbers thus this
system is saddle path stable.
Solving the eigenvalues explicitly, we have

r £ /12— 4AFg b (¢F) K*
2

A\ =

(27)

Let Ay be the eigenvalue smaller than 0, and Ay larger than 0. The solution to the above
system of differential equation is

th = Kt — K* = \IjlleAlt + \11126)\2t (28)

Zy=q—q¢ = WoreM! 4 Wopet?! (29)

(Recall the result from recitation 1, a two-dimension linear system of differential equation
with two different eigenvalues should have the solution form Z, = Civ;e! + Covee??!, where
C and (5 are constants, v; and vy are eigenvectors, and \; and A\, are eigenvalues. Therefore,
Uy = Ciong, Yo = Civig, Vg = Covg, and Wyy = 021122)

To let the system converge to (K*,¢*), we must have Wiy = Wy = 0 ( just set Co=0 ).
Otherwise, the solution would have a term e*?* going to infinity and TVC will be violated.
Now we are on the saddle path.

To determine Wy, and Wy, we need two conditions. First, the initial K is given

Ko— K* =Wy, (30)

Second, (U1, Way ) is the eigenvector of A;(vy is an eigenvalue, then Cjvy is also an eigenvector
when C # 0),
MV A (K — KY)

Uy = = 31
CERWG) KRG 3
In sum, we have determined all the dynamics of this linearized system analytically.
Additionally, initial ¢ is given by
M(Ky— K*
qO:q*+\1121:q*+—1( . ) (32)

2 External Adjustment Cost

In the above internal adjustment cost model, capital is owned by firms and firms bear the
adjustment cost. Now consider an alternative setting in which final goods producers purchase



capital from capital goods producers. Final goods producers bear no adjustment cost while
capital good producers incur adjustment cost (modeled as a convex cost of production, i.e.
decreasing return to scale production technology). One can think that installation of capital
is done by capital good producers instead of final good producers.

2.1 Model Setup

2.1.1 Capital Goods Firms

To produce I; capital goods, capital goods firms have to incur cost C([;). We assume
the cost function satisfies C'(0) = 0, C'({) > 0 for I > 0, C"(I) > 0 for I > 0 and
lim; o, C'(I) = +00. In short, cost function is convex and marginal cost goes to infinity
when producing infinite capital.

These firms are price takers, and their problem is

I

+oo
max / Pyl — C(I)]dt (33)
0

This is a static problem. It is equivalent to maximize Ppl; — C(I;) at each moment. The

first order condition is
P, =C'(L) (34)

Since C” > 0, Py is a strictly increasing function of I and the reverse is true as well:
I =h(Pr) (35)

with A/(-) > 0. It is a supply function of capital goods.

2.1.2 Final Goods Producers

We assume final goods producers directly buy capital from capital good producers and
they don’t pay adjustment cost.

+o0
% = KmIElXI / e_rt[PtAF(Kt, Lt) - tht - P]t_[t]dt (36)
tyty it J
s.t. .
Kt - It - (SKt (37)
Non-ponzi scheme: tlim e K >0 (38)
—00
Ky is given. (39)

2.2 Solve the Model

We set up the Hamiltonian of final goods producers:

% = G_Tt[PtAF(Kt, Lt) — tht — Pft]t} + >\t(-[t — (SKt) (40)



First order conditions are:

AFp, =w/P (41)
—e "Pp4+XN=0 (42)
e PAFK — M0 = — )\, (43)
TVC : tEeroo MKy =0 (44)
Denote current shadow price ¢, = ")\, then F.O.C.s change to
AFp = w /P, (45)
P =q (46)
Py, = (r+0)P; — PAFg (47)
TVC : tLifrnoo e K =0 (48)

Remember we also have the capital accumulation equation, and plugging in the solution of
capital goods producers yields

K, = h(Py) — 0K, (49)

Combining

Py, = (r+6)P;, — PAFy, (50)

initial condition Ky and TVC lim;_, o e " P K; = 0, we are ready to solve a two-dimension
differential equation system.

2.3

Housing Market Interpretation

One can think of the capital goods producers as firms in construction sector who build
new houses. Final goods producers are real estate agents who will hire labor to provide
housing services.

Capital stock is housing stock and real estate agents buy newly built houses from the
construction sector. Real estate agents are the owners of housing stock.

We can view the newly produced capital goods I; as residential investment. PAF(K, L)
are the rent income of real estate agents. P; is the price of a unit of newly built house.
We take final goods price P as given, but one can have a household side utility function
to derive a demand function for final goods, then P can be endogenized.

Some of you asked why capital goods production has convex cost. Here is an interpre-
tation: since land supply is limited, building one house on the top of a skyscraper will
be more difficult than building a house on the ground.

Interest rate .
B P+ PAFy — 6P

- 1)

r




given by equation (50). It is a no-arbitrage condition: return from investing in a unit
of house is equal to the interest rate.

e Rearrange equation (50): .
(r+0)Pr — Py = PAFy (52)

Multiply both sides by e~("t9* and take integral from 0 to +occ on both sides,
+00
Pro = / e TN PAF (K, L)dt (53)
0

The price of a house is equal to the present value of all future rent income from the
house. Notice we have an addtional depreciation rate ¢ in the equation, because in the
setup we assume ¢ # 0.

Remark.You can use similar steps to get g in the internal adjustment cost model:

Iy
Ky

I

w= [ AR+ (PG (54)

The term (II{—Z)QQDI (II(—tt) captures the learning by doing benefit from installing capital
today. '

2.4 Graphical Solution (Phase Diagram)

Setting Kt =0 and PH = 0 leads to

hP;) = 6K (55)
_ PAFy(K,L¥)
Pr= T i (56)

One is a positive relationship between K and P, and the other is a negative relationship.
The steady state is given by the intersection of the above two lines. See Figure 2 for the
phase diagram.






[nvestment Theory (continued)- Neoclassical Production
Functions

Macroeconomic Analysis Recitation 3

Yang Jiao*

1 Comparison of Internal and External Adjustment
Cost Models

Consider a permanent positive productivity shock to both models. See Figure 1 (internal
cost model) and Figure 2 (external cost model). In the external adjustment cost model, long
run ¢ = P} will increase, while in the internal adjustment cost model, steady state ¢* is
fixed at 1.

One may wonder are these two models really different? Adjustment cost is just adjust-
ment cost after all. Note the difference we introduced in these two models: in the external
adjustment cost model, we add depreciation rate of capital, and assume the cost of producing
new capital is C'(I) instead of I(1 + ¢(£)) as in the internal adjustment cost model. Now
the question is whether these two differences in modeling generate the different predictions
as shown in Figure 1 and Figure 2.

In the external adjustment cost model, in steady state, when K* changes, I* = § K* will
change as well since we have depreciation rate § > 0. Then ¢* = P} = C'(I*) will also
change. In order to make ¢* = P; not change with K* (i.e. a flat K, = 0 line), we need
to revise the cost function in the external adjustment cost model so that the marginal cost
of capital goods will not differ when we have a different K*. Here are two ways: 1) let the
marginal cost of new capital goods be a function of I — §K (in steady state [* — 0 K™ will
always be 0). 2) let the marginal cost of new capital goods be a function of é (in steady

state II{ will always be 4).

1.1 Capital Depreciation

Assume in the external adjustment cost model, cost function takes the form C(I) =
C(I — 0K), therefore, replacing depreciated capital costs nothing: C(I*) = C(I* — §K*) =
C'(0) = 0. Resolving the model shows:

Py = C'(I) = C'(I, - 6K, (1)

*Please email me if you find errors or typos to yj2279@columbia.edu. Your help will be greatly appreciated.
All comments and suggestions are especially welcome.
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Capital accumulation function becomes
Kt - -[t - (SKt - h(Pjt) (2)

In this way, you have a flat K; = 0 schedule: P; = h='(0).

I
1.2 + and /

In the internal adjustment cost model, the cost function is related to capital stock to
capture the learning by doing effect, while in the external adjustment cost, we ignore it.
Now suppose in the external adjustment cost model, we also take into account the learning
by doing effect and assume the margial cost of producing capital goods is a function of %:
g(£). For example, if C(I, K) = I(1+¢(I/K)), we have g(I/K) = % =14+¢(I/K)+
L¢'(I/K). Resolving the external adjustment cost model shows:

Iy
P = e
e = 9( Kt> (3)
The above establishes a relation I
t
— = h(P 4
& = (P ()
Capital accumulation function becomes
K, = I, — 6K, = [h(Py,) — 0] K, (5)

We reach a flat K, = 0 as well: P; = h™1(6).

Conclusion: these two investment models are essentially the same if we revise the cost
function in the external adjustment cost model to eliminate the differences caused by
different modeling strategies in the two models.

Remark. We have discussed the line of K; = 0 for the two models, but what about
the line of ¢; = 0 7 In fact, there is externality that is not internalized. In the external
adjustment cost model, final goods producers don’t take into account that their purchasing
of newly built capital goods can decrease the cost of capital goods producers in the future.
That’s why when you set 6 = 0 and C(I,K) = I(1 4+ ¢(I/K)) in the external adjustment
cost model, you will get a different line for ¢; = 0 when comparing to the internal adjustment
cost model (please check what I am saying is correct).

2 Neoclassical Production Functions Y = F(K, L, A)
2.1 Basic Properties

The production function F' : R? — R is twice continuously differentiable to its three
arguments. A production function is called a neoclassical production function if the following
properties are satistied.



e Constant returns to scale:
FAK,\L,A) = \F(K,L,A) (6)

That is F(K, L, A) is homogeneous of degree one in K and L. Note A is non-rivalry,
so the replication principle doesn’t apply to A.

e Positive and diminishing returns to K and L:

oF oF
ax - a0 (7)
O2F 0%F
oz <0 gz <0 (8)

If we increase the amount of one input, output will increase, but marginal product
will decrease as the input increases.

e Inada Conditions

. OF . oF
Jim 5% = Jmap = (9)
) oF . OF
Jm ox = Am op =0 (10)

Inada conditions can help us nail down interior solutions.

e Essentiality
F(K,0,A)=F(0,L,A) =0 (11)

Therefore, to produce a positive amount of output, a positive amount of each input
is required.

The first three properties imply the last essentiality property, so we don’t need to write
down the last essentiality property. See the following proof of this argument:
Proof. Recall L’ Hopital’s Rule:
If lim, . f(x) = lim,_,. g(x) = 0 or o0 and lim,_,.. / :((3 exists and ¢'(z) # 0 around I which
f(z)

is a small neighborhood of ¢, then lim,_,.. oS lim,_,, f()

()
Apply it to the following: ?

Q

o oY
AL T T A o = i g =0 (12)

The last equality comes from Inada conditions.
Note that by CRS (constant returns to scale)

im ~ — lim F(l,%,A):F(l,O,A) (13)

K—+oo K K—+oc0

which leads to

F(1,0,4) =0 (14)



And F(L,0,A) = L * F(1,0,A) = 0 follows immediately. Similarly, one can prove that
F(0,K,A) =0 as well. =
Examples A constant elasticity of substitution (CES) production function

Y = F(K,L) = (aK* +bL% )71 (15)

where a > 0, b > and o > 0 are constants. o = _—dﬁ?}:’i%}){y

derivatives.

where F and F, are partial

e When 0 — 400, Y = aK + bL, perfect substitutability

e When ¢ — 0, Y = min{K, L}, perfect complementarity, Leontief. When Y =
F(K,L) = [(aK)% 4 (bL)* )77, and ¢ — 0, we have Y = min{aK,bL}. Note
the slight difference.

e Wheno =1,Y = K*L'"® with a = -2, Cobb-Douglas.

a+b?

We can use L” Hopital’s Rule to show when ¢ — 0 and ¢ — 1 , we are approaching
Leontief production function and Cobb-Douglas production function respectively.

2.2 Constant Returns to Scale and Zero Profit

Euler Theorem Suppose f : RM — R is continuously differentiable and homogeneous
of degree a, i.e.

Vo € RM f(Ax) = \*f(z) (16)
then y
Z agg)xl =af(x) (17)

Proof. Differentiate both sides of equation (11) with respective to A and set A=1. m
For a constant returns to scale production function F(K, L, A), we know o = 1. Apply
Euler Theorem,
FxkK+ FpL=F (18)

A profit maximization firm takes input price R and W and output price P as given and first
order conditions are PFx = R and PF;, = W. Therefore, RK + WL = PF, or firms’ profit
PF — RK — WL = 0. Note the implicit assumption is that firms are price takers of input
and output.

Some may wonder that in investment theory, firms are price takers but they do have
profits. The reason is that in investment theory we study, firms are capital owners, and they
start with a capital stock Ky > 0.

2.3 Technological Progress

2.3.1 Three Production Function Forms

Three forms of production functions:



e Hicks neutral: Y = A,F(K, L);
e Harrod neutral: Y = F(K, A;L);
e Solow neutral: Y = F(A,K, L).

Cobb-Douglas production function can be written as all of the above three forms.

2.3.2 Kaldor Facts

Kaldor facts about growth:

e Per capita output % grows over time, and its growth rate doesn’t tend to diminish.

Physical capital per worker % grows over time

Return of capital R keeps nearly constant

Ratio of physical capital to output % keeps nearly constant

Labor share YL and capital share

L RK
v 5 are nearly constant

e The growth rate of output per worker differs substantially across countries

2.3.3 What Form of Technological Progress?

Suppose there is a production function:

Y, = F(K,, L, Ay) (19)

, if

e [ exhibits constant returns to scale in K and L

e Resource constraint: Kt =Y, — C; — 0K, and saving rate is constant s

e Labor grows at a constant rate f—: =n

e Capital stock grows at a constant rate % = VK

then the production function must be labor augmenting, i.e. Harrod neutral
Proof.
From the resource constraint )

K, Y,
ol (20)
K; K

Since the left hand side is a constant g, we immediately conclude that % is a constant

(consistent with one of the Kaldor facts).

}/;/ — F(Bth, AtLt) (21)



Note when B; and A; grow at the same rate, we will go to Hicks neutral case by CRS,
therefore, this form includes all three possible production function forms. .
We additionally assume that technology will grow at a constant rate. Assume that % =z

and % = x. Without loss of generality, we let By = 1 and Ay = 1 so that B, = €** and
A; = e®t. Then

Y, F(B.K;, AiL A L L
t (BeKe, A t):F(Bt,At—):BtF(l t_t):eth(Le(m—z)t_t

L
2 4 = ) (22)
K, K, K, B/ K, K,

Since labor grows at a constant rate n and capital grows at a constant rate of v, (again, for
simplicity assume Ly = 1 and Ky = 1), we get

Y
—tt — GZtF(]_, e(x_z—’_n_’YK)t) (23)
Define ¢(-) = F(1,-) to obtain
Y
tt _ eztw(e(:(;—z—i-n—'y;()t) (24)

We have proved that % is a constant, and now we discuss two scinarios:
1). If t — z4+n—vk = 0 thus z = yx —n, we need to have z = 0, which means A, grows
at a constant rate and B, is a constant . So the production function is labor augmenting.

2). If z — z+n — vk # 0, we still need to have a[eztw(e(z;jrnfv}()t

J = 0 which implies

©'(X)x —z (25)

e(x) n+z—z—7K

where y = e(@=##"=7x)t Notice that we need to require n + x — z — g is non-zero here.
Solve the above differential equation to reach

©(x) = constant - '™ (26)

where a is a constant. Substitute back to the production function to finally write out

AtLt
' BK,

AtLt
B K,

F(B,K,, A/L,) = B/K, - F(1 ) = B.K,( )17 = constant - K (L") (27)

where v = %(;_a) This Cobb-Douglas production function also belongs to labor aug-

menting production function.
We then conclude that production function takes the labor augmenting form. m
Remark. We can use other ways to prove the labor augmenting production function.
First, since Y/K is constant and K grows at a constant rate of g, Y will also grow at a
constant rate vy and vy = vx. At time 0 (pick up an arbitrary time 7" should work as well),

the production function is
)/0 - F(K07 L07 AO) (28)



Multiply both sides by €7%t, we obtain

G’YKtYE) = F(e’YKtKo, G’YKtL(), Ao) (29)

Y, = F(K,;, 95—, Ag) (30)
Denote A; = el9x =™t and re-write
}/t = F<Kt7 e(’YK_n)tLta AO) - F(Kt7 AtLta AO) = F<Kt7 AtLt> (31)

where A, = e0x=!  The above F (K, AiL;) is already a labor augmenting production
function.






Growth Model with Exogenous Saving Rate
Macroeconomic Analysis Recitation 4&5

Yang Jiao*

1 Extensions of Solow-Swan Model
1.1 Solow-Swan Model with Technolgy Progress

Now we introduce technology progress as well. Assume we have a neoclassical production

function Y = F(K,, A;L;), where technology A; grows at a constant rate v4 and labor L;
grows at n. All else equal as in the Solow-Swan model we studied in class.

A,
L 1
2, =4 (1)
Ly
-t 2
= @)
Define lowercase letter variable z; = Ai(lt/t where X =Y, K.
Y;
= = F(k;,1) = f(k 3
w= = Pk 1) = (k) ©
The last equality is just a definition of f(-).
Capital accumulation equation
K, =1, — 0K, = sY, — 0K, (4)
Divide both sides by K; to obtain '
Ky Y:
gty 5
KK (5)
First,
Ky ke Ky
Second,

Ky kt:&_é_é (7)

k, = 5t
CTAL kKA L

*Please email me if you find errors or typos to yj2279@columbia.edu. Your help will be greatly appreciated.
All comments and suggestions are especially welcome.
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K, K

— K & tyatn (8)
Substitute equation (6) and (8) to equation (5) to get
k k
R S t>—(6+n+7A) (9)
ky Ky

Note the interpretation of k; or y; is no longer per capita variables. k;A; and 13, A; are
per capita terms instead.

1.2 A Model with Poverty Trap

Suppose the economy has access to two possible technologies,

Yi=AK°L'™® (10)

Yp = BK*L'™™ — bL (11)

where B > A, and b > 0.
In per capita terms, the production functions become

ya = Ak (12)

yp = BE* — b (13)

The economy will compare and decide which technology to use and it will depend on
the level of k. There is a level of capital k = (5%5)"/ such that when k > k, the economy

chooses technology B to produce, otherwise when k < k, the economy chooses technology A

From the Solow-Swan model, we have

k
7 = sfk)/k—(n+9) (14)
Here f(k) = Ak when k < k, and f(k) = Bk® — b when k > k.
It is easy to draw sf(k)/k when k < k, since it is strictly decreasing. However, when
k > k, function h(k) := sf(k)/k = Bk*~' — 2 may not be a monotonic function. There is a

cutoff k = (ﬁ)i such that when k < k, h(k) is decreasing in k, and when k > k, h(k)
is increasing in k.

If k > k, sf(k)/k will first decrease then increase and finally decrease. To determine the
steady state, we also need to plot a horizontal line n + d. One particularly interesting case
is shown in Figure 1. There are three steady states. And two of them are stable. It means
the initial level ky matters for the long run steady state. A country with very little ko will

end up with a steady state of lower output per capita (poverty trap).



If k < k, sf(k)/k will always decrease with k. There is only one stable steady state. See
Figure 2.

1.3 A Model with Physical Capital K and Human Capital H

Now we introduce both physical capital and human capital into the Slow-Swan model.
Let’s assume a Cobb-Douglas production function:

Y, = KP H{ (A L)' 07"

where A; is technology which grows at rate v4 and L; is labor force which grows at rate n.
Parameters satisty 0 < a+n < 1.
Divide both sides by A;L;:

Y = k?h?

There are two possible ways to introduce exogenous saving rates. 1) exogenous saving
rate s for the sum of physical capital and human capital, and the economy will decide how
to allocate between physical capital and human capital 2) exogenous saving rates s, and sy,
for physical capital and human capital respectively.

For the first case, the law of motion of the sum of physical and human capital is

e+ h=sk®h" — (5 +n+va)(k + h)

Additionally, households allocate between human capital and physical capital so that the
marginal returns are equalized:

MPK —6=MPH — 9

That is ah = nk. Substitute back to the law of motion equation to eliminate h, we can

get
. 7777@1—77 +
k= s(——)k*T — (6 + n+ya)k
S = Gt )

For the second case, the law of motions of physical and human capital are

ke = s53k®R" — (5 +n +v4)k

h = spk®R" — (6 +n+~4)h
Notice that in the second case, we cannot impose the condition that MPK —d = MPH — 0.
This is because, once we have exogenous saving rates for both physical and human capital,
then given kg, ho, the path for k; and h; are pinned down by the two law of motions. There
is no freedom to adjust k; or h; to equalize marginal returns of physical and human capital.



2 Golden Rule

In the Solow-Swan model, consumption is

¢ = (1—5)f(ky) (15)

In the steady state £* is a function of saving rate s and higher s leads to higher £* thus
higher output per capita f(k*). However, higher saving rate also means smaller fraction of
output per capita will go to consumption. So there is a trade-off here if one wants to achieve
higher consumption. The question is what value of saving rate s can deliver the highest
steady state consumption c*.

We want to maximize the following by choosing s

¢ = (1= 8) [k (s) (16)

In steady state, sf(k*) = (n + 0)k*, therefore, our objective is to maximize

¢ = (1L =s)f[k"(s)] = fIE"(s)] = (n + 6)k"(s) (17)
First order condition: I
] - 0 (18)
As dk;S(S) > 0, we have
f'k*(s)] = (n+9) (19)

Denote the corresponding k* as kg4, saving rate s as sqoia-
f/(kgold) =n -+ 5 (20)

Once we have kgqq, we can use the relationship k*(s) to infer sgq4.
Remark. With Cobb-Douglas production function (capital share ), the above condition
becomes
aky gy =n+0 (21)

and we also know that in the Solow-Swan model, in steady state

sf(kgota) = (1 + 0)kgo1a (22)
i.e.
skgorg = (1 + 6)kgoia (23)

Comparing equation (21) and (22) we conclude that sy,q = o for this special case.

3 Absolute and Conditional Convergence
3.1 Absolute Convergence

In the Solow-Swan model, .
k_ f(k)



So the growth rate % depends on the level of k.

k /
dk k?

This implies higher the level of capital per capita, the slower the growth rate of capi-
tal per capita: poor countries should grow faster than rich countries. Note the underlying
assumption is that poor countries and rich countries share the similar characteristics (pa-
rameters). The hypothesis that poor countries tend to grow faster than rich ones without
conditioning on any other characteristics of economies is called absolute convergence (i.e. a
negative relationship between the level of output per capita and the growth rate of output
per capita).

In the data, when we have a broad set of countries (countries from both poor countries
and rich countries), the hypothesis in fact fails. While if we look at more homogeneous
groups, e.g. only OECD countries or states within U.S., evidence accepts the hypothesis
instead.

3.2 Conditional Convergence

Next we drop the assumption that countries share similar characteristics. We will proceed
with a simple example. Suppose two countries only differ in their saving rates. So they will
also differ in their steady state k*. The country with higher saving rate will have higher k*.
Again the growth rate of capital per capita is

Z:s@—wm) (26)
and in steady state
s% =(0+n) (27)
Substitute equation (27) to equation (26) to eliminate s.
ko f(k)/k

Assume the production function is in Cobb-Douglas form, then

k ko .
7= (6 + n)[(g) — 1] (29)

Then it is clear that the growth rate depends on the distance of k£ to steady state k* (kﬁ
matters). It becomes possible that a richer country can grow faster than a poorer country
as they have different steady states.

Therefore, in order to account for the difference in these two countries’ growth rate, one
has to look at both the current level of k; and the steady state level £* which depends on
country characteristics, i.e. country characteristics matter. After controling variables that
proxy for differences in steady state positions, we can get a significantly negative relationship



between per capita growth rate and the log of initial real per capita GDP. In short, data
supports the conditional convergence hypothesis.

4 The Speed of Convergence

We have discussed roughly about the speed of convergence. Now we formally define this
concept speed of convergence as
O(k/k)
dlogk
We assume that countries are near to their steady state (in order to use approximations).
We will also adopt Cobb-Douglas production function.

B=- (30)

k
= SARTE = (64 n 4 y4) = ATV — (54 + 94) (31)

Around the steady state

A(k/k) O(sAelo=Dlogk _ (§ 4 4+ ~,)) 1
* = — * — ]_ - A *a 2
b Ologk g Ologk L ( a)sAk (32)

Recall that with technology progress in steady state sAE** ™' = § +n + v4.
r=(1-a)d+n+7) (33)

The above procedures are equivalent (the same thing) to first log-linearize the right hand
side of equation (31) and take the coefficient directly

_O(sAelr Dok — (§ +n 4 v4))
Ologk

= sAk* ' —(6+n) ~

ke (logk—logk™) = —*(logk—logk™)
(34)

Remark. A more general form of log-linearization is the following. Assume we want to
log-linearize a multivariate function y = f(z1, ..., x,) around z*.

Enl

y=f(z1,....,x,) = f(elog(”“), s elog("””)) (35)

Define z; = log(z;), then the first order approximation is

v log(x;) —log(x7)]

(36)

Notice for the left hand side, we didn’t do any thing. In the future (the second half of

this semester), we will do log-linearization on both sides. We are interested in the percentage
deviation of variables from its steady state. You can ignore the following now.

y=flz1,..,xn) (37)

y:f($17...,$n):f(e 7...,6”)’\" ax ‘.’lt ez. . Zaxl



Then

log(y) — log(y Z - w; - [log(w;) — log(x})] (38)
f x17 ey n)
We will come back to this later in the second half of the semester.

5 Some Other Empirical Issues
5.1 Capital Stock Measurement

Perpetual Inventory Method (PIM) is so far perhaps the most popular way to compute
gross capital stock. In discrete time, capital accumulation is

K= (1-90)K, + 1 (39)
400 '
= Ki=Y (1=08)s (40)
=0

But unfortunately in the data, we don’t have an infinite series of investment.

K, =(1-0)"K, +Z (1= 8)' L iy (41)

How to get the initial capital stock K,?
In neoclassical growth model, under balanced growth path (constant growth rate)

Ky — Ky Iy

deppr = 9K K, K, ( )
Therefore,
I
Ky= "~ 43
°" gapp+0 (43)

But the economy may not be on a balanced growth path, we can use g; instead of ggpp,
it is still an approximation anyway.

I
Ky = 44
’ gr+90 (44)
To obtain g;, we can choose a three-year average or more years’ average.
5.2 Growth Accounting
Assume the production function is
Y, = A KL (45)



Define

Y,
SRt — ﬁ (46)
KLy
Then we get the data of SR.
SR, Y, K Ly
— ==—-—a——(1—a)— 47
SRy, °K, ( Oz)Lt (47)
STy = % is the Solow residual: the growth of output that cannot be accounted by the
growth of capital and labor.
Y, K, Ly
= = — 4+ (1—-a)— 48
T smtagt +(1-a) (45)
or write it in discrete time
Vi—Yi1 SR — SR Ky — Ky Ly — Ly
= + + (1 — o) —F— 49
Yia SR Ky ( ) Ly (49)

This equation can be used to find out the sources of a particular economy’s economic
growth. Alwyn Young (1995, QJE) uses this method (not exactly the same, e.g. they use
a more complicated production function and take human capital into account as well etc.,
but the main idea is similar) to show that the East Asian growth miracles are largely due to
capital accumulation % and increasing labor force participation J%






Endogenous Growth Models
Macroeconomic Analysis Recitation 6

Yang Jiao*

1 A Congestion Model

In class, we learned a growth model with government spending. In that model, production
function is Y; = AL;"*K*G'~®, where G is government spending. In this setup, government
spending is a public good. However, in reality, many government spending is not, such
as highways. Now we introduce a congestion model with a continuum of firms, where the
production function for firm ¢ € [0, 1] is

Y = AKP L f(G/K) (1)

where (G is government spending and K is aggregate capital: K = fol K;di. We assume that
f satisfies f' > 0 and f” < 0.

1.1 Decentralization

Firms’ problem is static as before

Inax AKSLf(G/K) — w, Ly — R Ky (2)

F.O.C:s are
aAKSTVLY Y f(G/K) = R, (3)
(1 = )AKGL " f(G/K) = w, (4)

In equilibrium L = fol L;di as well, and all firms are symmetric, so L;; = L, K;; = K for
iel0,1].
In per capita terms:

O‘Ak?_lf(gt/kt) = Ry (5)

(1 —a)Ak{ f(ge/ k) = wy (6)

Households’ problem is quite standard as in Ramsey model,

*Please email me if you find errors or typos to yj2279@columbia.edu. Your help will be greatly appreciated.
All comments and suggestions are especially welcome.
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+00 ( )t c%—@ _ 1
ST ———————(t 7
max [ = "
S.t.
dt = TG + Wy — C — NAy — Ty (8)
lim e "a; >0 9)
t——+00
with ag > 0 given. 7; is a lump sum tax in per capita term 7, = f—i
Set up the Hamiltonian
olh
I = ef(ﬂfn)ttl—e + )\t(rtat +wy — ¢ — nay — Tt) (10)
F.O.C.s are
e Pmmie N, =0 (11)
- );t = )\t(rt — n) (12)
lim )\tat =0 (13)
t—+o00
Therefore,
a1
2 T, — 14
L= ) (14)

The rate of return from investing in risk free bond is r; and the rate of return from
investing in physical capital is R; —J. By no arbitrage condition, they are equal

Tt = Rt - 5 (15)
Market clearing condition gives
ay = kt + bt (16>
and bt =0.
Balanced government budget:
or in per capita term
9t =T (18)

We conclude that equation (14) and (15) gives the Euler equation is

& ek (g /) 0 - ) (19)

The law of motion of capital comes from equation (3)(4)(8)(15)

ke = Ak;T fge/ke) — o — (n+ 0)ky — gy (20)



Notice we haven’t chosen the sequence of g; yet to maximize household utility. That’s
going to be a very complicated problem. Perhaps what we can do is to let the government
set a constant ¢ and compare steady states to choose an optimal fiscal policy g.

We are interested in whether the above decentralization problem is socially optimal.

1.2 Social Planner

Social planner maximizes household utility subject to resource constraint.

max /+OO e’(p’")t&dt (21)
avct Jg 1-6
S.t. .
ke = ARV f (gi/ke) —co — (n+ 0)ky — gy (22)
From F.O.C.s, we derive Euler equation
& AR /) — 27 () =5 = p) (23)

What we find is that the decentralized case doesn’t have the same formula of the Euler
equation as that of the social planner’s problem. The externality comes from the fact that
each individual firm doesn’t consider their capital choice’s congestion effect on other firms,
so they over employ capital: a traditional Tragedy of Commons problem.

To have a rough idea why we think decentralized case will over accumulate capital, we
can assume a common steady state policy g for these two cases. Then we compare the steady
state k, which comes from the Euler equation. For decentralized case, in steady state

aAk* f(g/k) =6 +p

For social planner, in steady state
aAk* ™ f(g/k) = %f’(g/k) +o+p>d+p

Comparing the above two equations, it is easy to verify that decentralized case have higher
steady state k.

Remark. We deliberately choose a lump sum tax in order not to impose additional
externality so that we can isolate the aformentioned externality which firms don’t internize.

2 A Rising Cost of R&D model

In class, we learned a expanding variety model of growth with constant R& D cost. Now
let’s turn to a setting with increasing cost of R&D: n/(N) > 0. Specifically, let’s assume
that

B(N) = 6N (24)

Free entry condition says
Vi =n(Ne) = oNY (25)



Remark. Free entry condition above holds only when there is positive entry. In general, it
should be a complementary slackness condition N, n(Ny) — Vi =0, N, > 0 and n(Ny) > V.
So if N, is strictly greater than 0, we will have n(Ny) = V,.

Interest rate

™+ V; T N,
Ty = v quNto—l—Uﬁt (26)
Households’ problem is
/ L Bt B (27)
0 1—0
s.t.
a; = weL + ra; — Cy (28)

The Euler equation from the above households’ problem is

C’t_]- _1 ™ Nt
a_e(rt_p)_9<¢th UNt_p) (29)

When o = 0, we go back to the case where innovation cost is constant, and this equation
alone can tell us the growth rate of C;. However, now we have to deal with the dynamics of
N; as well.

Note in this model, the asset held by households is the market value of all firms a =
n - N. Cobb-Douglas final good production function means wL = (1 — «)Y. Plug these two
equations and also equation (26) into equation (28) to generate

n(N,)N, = Nym + (1 — )Y, — C, (30)

Since Y = AL YN Xo X, = ATwaTeL and 7 = LAT==2qTa = LAT= (o —
20 J= J a N
a?)a1-a (One can check that by some manipulation, we can express the above as nN; =
— Cy — X, which is in fact the resource constraint), we obtain

n(N)N, = N+ (1 — )Y, — Cy = (1 — a®)ATa -« LN, — C, (31)
That is )
Nt w — Ct —(1+0)
=N - 32

with ¢ = (1 — a?)ATeais L
Substitute equation (32) to equation (29) to yield

C, 1 1
— =—(rp—p) = 9(2]\7 +a¢

_ Ci
N7 -0
Cy 0

¢! ¢
Equation (32) and (33) define a differential equation system.
To sum up, the main procedure is first we start from Euler equation and households’

budget constraint, and then we try to substitute variables except C; and V;.

We then display the phase diagram. See Figure 1. N™ = (p;a‘ﬁ;))l/” and N* = (ﬁ)l/".

— N0 —p) (33)




Notice N™ > N* because of ¢ > 7.
In this rising cost of R&D setting, there is no long run growth. While with constant
R&D cost, we do have long run growth.
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Consumption & Hours Worked
Macroeconomic Analysis Recitation 7

Yang Jiao*

1 Natural Debt Limit and No Ponzi Scheme

In class, we learned that we can derive the natural debt limit from intertemporal budget
constraint and no ponzi scheme. In fact, we can prove the equivalence between the natural
debt limit and the no ponzi scheme, given the budget constraint. We first review how to go
from no ponzi scheme to natural debt limit.

Assume there is no uncertainty and interest rate is fixed at r.

"<=" For arbitrary j < T, the intertemporal budget constraint is

T T
. a .
()t ey = (U rag + 3 (LY g
2

t=J
Since ¢; > 0, then the above says

T
i ar41
1 ; 1 Iy, > ————
(1+7)ay +;< ) w2 (14r)T=d
Let T goes to infinity and we know no ponzi scheme requires

. ar41
Tglfw[(l + r)T+1] 20

Therefore,
+oo
a; 2y (L+r) "y
t=j

When w; is a constant,

LW
T=
which is the natural debt limit.
”?=—=" The natural debt limit is w
a; > —7

*Please email me if you find errors or typos to yj2279@columbia.edu. Your help will be greatly appreciated.

All comments and suggestions are especially welcome.



Then
A
(I+r)t = r(l+4+r)

Take limit of t — +o00, we have the right hand side goes to 0, thus
lim ——— >0
t—+o00 (1 -+ T)t -

2 Marginal Propensity to Consume
2.1 Continuous Time

s.t.

lim are” Io (rs=m)ds > 0
T—+o0 -

The Euler equation from the above equation is
G 1
G

and the budget constraint is
Cit — (Tt — n)at = Wt — C¢

Multiply both sides by e~ Jors=m)ds of the budget constraint and integrate from 0 to o0
to yield

oo t +o0 t +0o0 t
/ ld¢ — (1 — n)age” o rmmds gy — / wye” Jorsmmds gy / cre™ Jo(rammds gy
0 0 0

Euler equation implies

cr = Coefg 5 (ro=p)ds

So we obtain

+o0 t +o0 t +o0 t1 d t
/ [, — (re—n)a e Joremmds gy :/ we™ o (TS‘")det—/ coelo 5 e =PI o= fo (re=n)ds gy
0 0 0

400 " +oo 1 .
0—ag= / wye” Jorsmds gy 00/ eJo 5 (remp)ds=Jo(re=mds gy
0 0

foo ) —ft( ) +o0 . p
co/ elo 5 (remp)ds=Jo(ra=mds gy (a0+/ wpe™ o (rammds gy
0 0

Finally, write
Co — MPC(](CL() + P‘/O)



where M PCy ! = f0+°° eo 3 (ra=p)ds=fy(rs=m)ds gy o114 PV — f0+00 wye—Jo rs=myds gy
Intuitively, consumption is a fraction of the present value of his wealth.

2.2 Discrete Time

For simplicity, assume r; = r.
The Bellman equation is

V(a) = max {u((1+r)a+w—ad)+BV(d)}

a/zf%
F.O.C. for @’ is
—u/(c) + pV'(d) =0

Envelope theorem:
Vi(a) = (1+7)d(c)

Combine the above two to get Euler equation
u'(c) = B(1+r)u'(c)

For CRRA utility (the same utility as in the continuous time case above), Euler equation
becomes

¢ =[B(1+7)]e
which leads to .
¢ =[B(1+7r)]co

Recall that the lifetime budget constraint is

+00 +oo
Z(l +r) ey = (1+1r)ag + Z(l + 1) rw,
t=0 t=0
Substitute ¢,
o0 . —+o0
S (L) BL o= (L+7)ao+ Y (1+7)"w
t=0 t=0

Therefore,
Co = MPCo[(l —FT)CLO —|—P%]

where M PCyt =S5 (1+ 7)Y B(1 + r)ﬁ and PV = > 5 (14 7) " w,.
When v =1, i.e. log-utility, we have M PCy =1 — £5.

3 Log-Linearization

The idea of log-linearization is to look at the percentage change (log-change) of a vari-
able in response to other variables in terms of percentage change as well around a small



neighborhood of some state (usually steady state).

Yy = f(xh ---,xn>

Then first order expansion is

n af .
log(y) — log(y™) =Y ﬁ -} - [log(x;) — log(x})]

i=1 »n

Denote log-change as & = log(x) — log(z*), the above becomes

n of

*
T A

szax’—-m-x-
— flar, ax) 707

Useful formulas to remember (derived based on the equation above)

ar = 7T, where a is a constant.

/—l—\ T N Yy N
€T —_=
TY=1i+9

a = 0, where a is a constant.
ar = T, where a is a constant.

r® = ax, where « is a constant.

Apply to the hours worked model covered in your lecture note 2.

l—a, 1 1—m7 e
he =1 v Ct/yt((1+xt)(1+/~bt))]

Assume x; and p; are fixed —

= 7 + -7

For example, in page 18 of lecture note 2, substitute France data.

—(/y—\) — 0.11 and

(T—7) = —0.22. When ¢ =0, iy = 0. When ¢ = 1, h, = —0.165. When ¢ = 4, hy, = —0.264.

When € — +o00, hy = —0.33.



4 Balanced Growth Preferences on Labor

Slide 22 of lecture note 3:
up(t)

uc(t)
Here is the proof. Since w; and ¢; both grow at the same rate, so w; = ac;, where a is a
constant.

:wt

Up = ACHUe (3)

Take derivative w.r.t. ¢; on both sides:
Ueh = QU + CAUe (4)

Divide (3) by (4) and rearrange to arrive at

UchCy — 14+ UccCt —1 —
Up, Ue




Consumption & Hours Worked (continued)-Dynamic
Programming

Macroeconomic Analysis Recitation 8

Yang Jiao*

1 Consumption and Hours Worked with GHH Prefer-

ence
With Balanced Growth Path Preference (abbreviated as BGP preference) we studied in
class,

€ 1
Uy = u(ey, hy) = log(ey) +v(—=hy) = log(c) — (1 + xt)(lzL e)htlﬂ’

we have derived the labor supply is (slide 20 of lecture note 2)

[(1 — Tht)wt]e)\e

€h, =
L 1+ 2, t
Frisch elasticity is € since this concept is defined as gfg;’—((g’i)ﬂ x (i.e. keeping \; fixed).
Hicks elasticity is going to be more complicated. It is defined as %]U. We first

need to write hours worked h; as a function of w; and U, instead of w; and ;.
1+1

Since Cit = M(1 4 74) (slide 11 of lecture note 2), and Uy = log(c;) — (14 ) () ke <,
the labor supply function can be re-written as

— e 1+t 1
L= wp Ut (a0 2hy hti
1 + Tet ’}/(]. —+ .Tt)

The above implicit function gives h; as a function of w; and U;. Now assume x; = 0,
17, = T are constant and we are near steady state h*:

ve
1+

1 1
log(w,) = Uy + exp| * Eloght] + —log(hy) + constant
€ € €

Applying implicit function theorem, we obtain

Olog(hy) 1 €

U — 1 - 1
Olog(wy) (b)) — 1 ve(h*) e 41

*Please email me if you find errors or typos to yj2279@columbia.edu. Your help will be greatly appreciated.
All comments and suggestions are especially welcome.
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e Remark. If you use Lagrange multiplier method to solve the model instead of Bellman
equation, you will find that )\; above coincides with the Lagrange multiplier of the
budget constraint because there we will also have c17 = M(1 + 7).

Now we introduce another utility function form called Greenwood-Hercowitz-Huffman

preferences:
u(cy, hy) = Uley — v(hy))

Specifically, let’s assume

w(ce, he) = log(er — (14 ) (——)hy ™)

1+4+e€
Now the dynamic problem of an agent is
400 ye 41
max » [log(ce — (14 z¢)(———)h; )]
ct,hy p— 1+e€

s.t. budget constraint:
(1 + Tct)ct + A1 = (]_ — Tat)(]- + Tt)at + (1 — Tht)wtht

with no ponzi scheme and aq given. 7., 7, and 7, are tax rates.
Write the Bellman equation

V(@) = max{log(c — (1+2) ({0 ) 4 BV((L=7)(1+ r)a+ (1= mwh — (1+7)0)}

where we use ' to represent next period’s variable (but V' means derivative)
Two F.O.C.s for ¢ and h are

c— (1 +aj(i)h1+i = 1+ m)8V(d) @
T 1/e
UHonh ™ (1 pywpvi(a) @)

c—(1 +x)(g—;€)hl+%

and Envelope theorem implies

Vi(a) = B(1 — 1) (1 +r)V'(a’)

Define
V'(a)
At —
(1 — Tat)(l + Tt)
as well.
Divide (2) by (1), we have
1/e T — T
(1 4+ z)vh/" = Wy

n ]-+Tct



In fact, one can directly get this equation by using the fact marginal rate of substitution
between consumption and hours workerd should be equal to the relative price (you can also
try it for the previous balanced growth path preference).

We can see that hours worked is a function of w; and not related to A\;. Therefore, Frisch
elasticity is gll;’g(ht)\ = e. Hicks elasticity is gzlzg((ﬁi)) |y = € as well.

Remark 1. Notice the difference of labor supply between BGP and GHH preference.
Under BGP, labor supply h; is not only related to w; but also a function of ;. While under
GHH, labor supply h; is not related to ;.

The relative price of leisure in terms of consumption good 3 :’f wy captures the substi-
tution effect (if w; is smaller, enjoy more leisure and thus work less) while \; captures the
income effect (if \; is high, i.e. consumption level is low, like in a recession, income is
smaller, you will want to enjoy less leisure ”good” as well, which means you want to work
more ).

To sum up, in a recession, with BGP, substitution effect means work less but income effect
means work more. While with GHH, there is no income effect, so unambiguously, workers
will work less. Typically, during a recession, total hours drop significantly, so income effect
is very small. That makes it popular to use GHH preference to study business cycles (short
run fluctuations).

Remark 2. (minor remark) Jaimovich and Rebelo (2009, AER) have a more general
form of utility function.

(Ct — wh?Xt>1_a -1

l1—0

U(Ct, ht) =

with X; = ¢/ X;7. When ~ = 0, we have GHH. When v = 1, we have BGP.

2 Dixit-Stiglitz Preference

The cost minimization problem for Dixit-Stiglitz preference is

1
min / P,-tCZ-t dZ
0

it

s.t.

This is in fact a static problem, so one can omit all the time subscript here. Denote 1
as the Lagrange multiplier of the constraint.
First order condition is

which will hold for any 7 € [0, 1].



Rearrange the above equation to get

0—1 0—1 0—1 1-6
[ _ 0 - -
C,7 =C,7 PP,
1-0 ~ %5 e )
_o A5 .
L PICT =7 P,

L pit.oT =%t pl
where price index P is defined as P = | fol le_odj]fle.

— P,C; = P?PPC
Integrate both sides from 0 to 1 to finally have the total expenditure

1
/ P,C;di = PC
0
This final equation makes it clear why we call P as price index.

3 Dynamic Programming
A standard sequential problem (SP) is

“+oo

max Z 5tF($t, Tei1)
{ze1} =5

s.t.
Tir1 € F(l't)

and z( given. I is a correspondence.
For example, we have studied the following consumption decision problem

max Z Bru(cy)

{ct}{at+1} P
s.t.
ctap = 14+r)a+w
C 2 0
natural debt limit
a1 > —NDL

4



with ag given.
Write the above in a standard sequential problem form

max E Blu(ag = (1+1)a; — w)
{at41} P
S.t.
aze1 — (1+7r)a; —w >0

a1 > —NDL

with ag given.
A Bellman equation (BE) has the following form

J(z) = max F(z,2")+ B8J(z")
z'el(x)

Therefore, the consumption decision problem can be written as

J(a) = max F(a,d") + pJ(a)

a’>-NDL,a’>(14r)a—w

(See Stockey, Lucas and Prescott’s book for details, within this semester’s macro class, I
don’t think you will be required to do these proofs.) SP can imply BE but in order to let the
reverse hold, one has to add one more condition. After we have established the equivalence
between SP and BE, we can just focus on BE. In order to let BE solution exist and be
unique, we usually apply the fixed point theorem. Finally, to apply fixed point theorem, we
need some conditions, for example Blackwell sufficient conditions.

Now let’s introduce two simple examples of Bellman equation. And we can also make
ourselves more familiar with the solving steps of a Bellman equation.

Example 1. Consider the following growth model,

“+00

max Z Blog(cy)

ct k41
b + t:()

S.t.
ct + kt+1 — (1 — 5)]{} = k’?

ct20
ki1 >0

with kg given.
The Bellman equation is

Vi(k) = mkeltx{log(ka +(1=0)k—K)+pV(K)}
F.O.C.:

ke 4 (1—0)k — K

+BV'(K) =0



Envelope theorem:
_ak* 4 (1-9)
ke (1—0)k — K

V'(k)

TVC:
lim SV (ky )k, <0
t—o0

Then from equation (3):

ak/ ™t 4 (1-9)
/ k/ —
V( ) k/a+(1_5>k/_k//
Substitute it to the F.O.C.:
1 ak™ 4+ (1-6
)
c c

When ¢ = 1, this problem admits analytical solution.

We will use ”guess and verify” strategy. Guess V(k) = A + Blog(k) (this is value
function ”guess and verify”, but we can alternatively use policy function ”guess and verify” ).
Substitute V' (k') = A + Blog(k’) to the Bellman equation

V(k) = %@X{log(ka — k') + B[A+ Blogkl]}

F.O.C. B
k/ — ﬁ k,oc
1+ 3B
Substitute the FOC back to the value function to get

V(k) =a(l+ pB)logk — (1 + B)log(l + 5B) + BA + Blog(8B)

It is indeed a linear function of log k, i.e. we verify our guess is correct here.
Compare coefficients to have

A= —(1+pB)log(l1+ B)+ A+ Blog(8B)

B=a(l+ 5B)
The unique solution is
1
A= 125 log(a) + log(1 - af)]
o
B= 1—ap

Finally, by equation (4) and resource constraint ¢ + k' = k%, policy functions satisfy

E = aBk®



c=(1—-ap)k”

Notice this model generates that consumption is a constant fraction of total output k.
Example 2. Consider the following investment problem under uncertainty

l1—0o

+oo
¢ 7—1
max F [ S
{ct,At41} ; B 1—0
S.t.
At+1 = Rt+1(At - Ct)
When Ry isi.i.d., this model will admit analytical solution as well (guess policy function

1
5

1—0

is ¢, = AA;, where X is a constant). Assume E[R, ] <



Costs of Fluctuations-Consumption Theory
Macroeconomic Analysis Recitation 9

Yang Jiao*

1 Costs of Fluctuations

Mathematical preparation:

1).If X follows log-normal, i.e. log(X) ~ N(u,02), we have E[X] = E(e!*8X) = e#t27”,

2).log(1 +a) =~ a, e* ~ 1+ a, when |a is small.

In the data, variables usually not only have a growth trend but also fluctuate around
the trend. Our objective is to measure the cost of fluctuations. Our measure is how much
to compensate consumers in a world with fluctuations so that he is as well-off as in a world
without fluctuations.

S e u(By(C) = Bl e u(Cu(1 + \))} (1)

=0
This is a representative agent framework and let’s assume u(-) is CRRA: u(c) = Cllj;l
Then equation (1) becomes
+oo +oo
> E(CIT = Eo{ Y e (G + ] )
t=0 t=0
%
+oo +o0o
> ME(CT = (14 VB e (0] ) 2
t=0 t=0

We stand at time 0 and assume: log(C;) follows normal distribution and E,(C;) =
Coegt.

Denote the variance of log(Cy) as Varg(log(Cy)) and mean as Ey(log(Cy)). Since

EO(Ot) — E(elog(Ct)> — eEO(log(C’t))—&—%Varo(log(Ct))

and we already assume Ey(C;) = Cpe?", therefore,

Ey(log(Cy)) + %Varo(log(ct)) = log(Cp) + gt

*Please email me if you find errors or typos to yj2279@columbia.edu. Your help will be greatly appreciated.
All comments and suggestions are especially welcome.

1



which means

Eo(log(Cy)) = log(Co) + gt — %Varo(log(Ct))

That is 1
log(Cy) ~ N(log(Cy) + gt — QVaro(log(Ct)), Vary(log(Ch)))

Since (1 — v)log(Cy) is also a normal distribution, then

EO(Ctl_7> _ Eo(e(l_” log(Ct)) — (1=m)log(Co)+gt—5Varo(log(Cr))+5 (1—7)*Varg (log(Ct))

_ (Coegt)1—ve%v('y—1)Varo(log(Ct))

Remember we also have Euler equation = p + vg. The left hand side of equation (2) is

+oo
1 1
- 1=y —=lp—g(1-t —_ 17 — Ot
L5 ;;C% ¢ R g R g

The right hand side of equation (2) is

400 ) +00 .
RHS = (1477 Z e—pt(Coegt)1—7657(7—1)Varo(10g(0t)) — (1_{_)\)1—703—7 Z e~ (r=9)t o 57(v—=1)Varo(log(Ct))

t=0 =0

Finally, LHS = RHS gives

“+o00
(1 + )\)'y—l _ [1 _ e—(r—g)] Ze—(r—g)teéw(w—1)Va7"0(10g(ct))
=0
Case 1. If log(C;) = log(Cy) + gt — %az + ¢, with ¢ ii.d. normal with variance o2

(notice that we need to guarantee that F(Cy) = Cype?"), then Vary(log(Cy))) = o
1+ = ez (r—1)o?

2

log(1+A) = A= %

Case 2. If log(C;) = g — 302 + log(Ci_1) + €, with € i.i.d. normal with variance o2,
then Vary(log(Cy))) = o?t.

]_ — 6—(7'—9)

e -
(1+2) 1 — e (r—g+57(1-7)0?)
1 — e (r—g+37(1-7)0?) _ r—g-+ %7(1 — 7)02

1+ 077 =
( T ) 1 —e(r—9) r—g

~

(—g+%wl—wﬁ)wéﬂl—ﬂﬁ
r—g r—g

(1 —)log(1+ \) = log



2
yo© 1

log(l+ )~ A=—

og( ) 2 r—g

Case 3. If my = Omy_1 + ¢ with mg = 0 and log(C;) = m; + gt + In(Cp) — %02 16
(again, expost we add the mean term to ensure that Eq(C}) = Cped"), then Varg(log(Cy))) =
vary(3L_, 07 1e;) = o2 11__6;;.

S Li(y-1)o?1=2] — vy —1)o?
(LA = (1= 0] e e 0N s [1 — ] 7 e L a1 - 67)
t=0 t=0 2(1 —0 )
oo 2 2 2 —(1-— ef(rfg))’Y(’Y_l)UQ
=[1— 6—(7“—9)] Z 6—(r—g)t[1 4 vy — 1o _ (v —1)o ta] 14 (v —1)o 2(1—-07)
s 2(1—62)  2(1-67) 2(1 — 62) 1 (92
%
(1 _ o—(r—g\2(=Do?
v(y —1)o? (1-e ) 2(1-62)
— Dlog(1+ \) =
—1Do?e r=9(1 — 62 —1)g? e (9 —1)o? 1
_ v =1 _ _ v
201 -62) 1—e (92 2 1 —e (962 2 er=9 — 2
%
yo? 1

A= log(l+ ) ~

2 1—-02+r—g
Notice that when § = 0 and ¢ = 1, we can go back to the first two cases. Intuitively,

when @ is larger, given o2, vary(log(C;)) will be larger, leading to higher uncertainty thus
higher costs of fluctuations.

2 Consumption Theory
2.1 CRRA Utility

Euler equation:

u'(cr) = B(L+ 1) Ey(u'(cri1))

With CRRA utility function u(c) = ‘311%, we know that “:,((?)C = —, for any ¢ > 0.
Then do the following approximation
u’(cp)ey

log u'(crp1) = log /(€8 & log v/ (¢;) +

w(c) (log(cr+1) — log(cy))

The above equation is a first order approximation of function f(z) = logu/(e”) around
x* = log(c;), where x = log(c41).
—

log u'(elog(ct“)) ~ logu/'(c;) — v(log(cey1) — log(cy))

UI(CtJrl) = ul(Ct)e*’Y(log(CtJﬂ)flog(ct))



Assume log(c;;1) follows normal distribution with variance o2, and then plug the above
into the Euler equation to get

1.2 2

1=p6(1+ 7«)e—WEt(10g(0t+1)—10g(0t))+ Vo

Pilog(cv12) = log(c0) = ~log(5(1 + 1)) + 370°

When o2 # 0, even if (1 + r) = 1, in expectation, consumption will have a positive
growth rate and the growth rate is increasing with variance o2, in contrast with quadratic
utility function where consumption growth rate is 0 and volatility doesn’t matter.

2.2 CARA Utility

(We will finish up this problem next time.)
Setup a consumption problem with CARA utility (i.e. u(c) = —%{ac, which satisfies —1;—,,/

is a constant):
—QcC

+ BEV (R(w —c) + /)]

where y is i.i.d. normal N(0,0?). Assume SR = 1. We also relax the constraint that ¢; has

to be non-negative so that we don’t need to worry about natural debt limit here.
F.O.C.:

V(w) = max —

e = B(V'(w)
V(w) = E(V'(w)

Euler equation
e~ — E[e—ac’]

Guess policy function is ¢ = Aw + B.
Then

E( fac) ( a(Aw’ +B) E( fa[A(R(wa)+y/)+B})

_ E( —a[A(R(w—c))+B] —aAy) e—aAR(l A)w—aB(1— AR) a?A2%52/2 — ¢

which implies

c=AR(1 — A)w+ B(1 — AR) — aA*0?/2
It verifies our guess. Compare coefficients
A=AR(1-A)
B = B(1 — AR) — aA%0?*/2

Solution



or

and B can be any number.
But the latter solution violates the TVC

lim E[B'V'(w)w] =0

t—+o00

This is because if it is the solution then V'(w;) = e72 = ¢~ and
w1 = R(wy — B) +yp11 = R"Mwy — RB— R*B — ... — R B+ y,.1 + Ry, + ... + Ry

which implies
. o B
t£+mooE[6t+1V’(wt+1)wt+1] =¢€ B[wo - m}
It is not valid to argue that if wy = %, that solution satisfies TVC, since TVC has to be
satisfied at all time, i.e. for wy, ws...etc. As we have shocks, {w;} will fluctuate. Therefore,
TVC is violated.

So our solution should be

R—-1
A=
R
_ (R-1)0?

B =—« 52

%
R—1)0?
w1 = R(wy — ¢;) + g1 = R(1 — A)wy — RB + yp1 = wy + CI% + Y1
%
R—-1 1(R—1)? 1(R—1)?
Ei[Cin1 — G = Eif[A(win —wy)] = Ey[—p—yen] + 5(7)0402 = 5(7)0402 >0

This example also shows that consumption growth is positive, and the higher the variance
of income shock, the higher the difference between expected tomorrow’s consumption and
today’s consumption, in contrast with quadratic utility function where consumption growth
is 0 and volatility doesn’t matter.



Consumption Theory (continued)
Macroeconomic Analysis Recitation 10

Yang Jiao*

1 Consumption Theory
1.1 CARA Utility

See Recitation note 9.

1.2 Borrowing Constraint

We have known that with quadratic utility and no borrowing constraint, we will have
consumption is a random walk. There is no precautionary saving. However, we have seen
from Recitation note 9 that with CRRA utility or CARA utility, but without borrowing
constraint (in CRRA case, since Inada condition is satisfied, even if we impose natural debt
limit, we don’t need to worry because it never binds ) that we will have consumption growth,
and more uncertainty leads to more savings: i.e. precautionary savings.

Suppose now we introduce borrowing constraint but preserve quadratic utility function,
we will see that we will also have precautionary saving.

Consider the following problem:

+oo
mx S B fu(cr)]
ct,ber1 pa—

s.t. budget constraint
bt+1 = (1 + T)(bt + Y — Ct)

and borrowing constraint
biy1 >0

Write down the Lagrangian problem:

—+00

Imax Z BYE{u(cr) + M[(1+7) (b + ye — ¢1) = bega] + pagabega }]
ct,bet1 p—

*Please email me if you find errors or typos to yj2279@columbia.edu. Your help will be greatly appreciated.
All comments and suggestions are especially welcome.



F.O.C.
W (c)) — (14+7r)A\ =0

perr — Ar + B(1+ 1) Et[Aa] = 0

Complementary slackness condition:

pir1berr =0, pgyr > 0,040 >0

Therefore,
W(ce) = B(L+ ) Eu (cor)] + s (1 +7) > B(L + ) Ey[u/ (cre1)]

If p441 > 0, we must have b1 = 0 thus ¢; = y; + b, = wy, which means v'(¢;) = o' (wy) >
B(1 4 r)Ew (ciir).
If ;11 = 0, we directly have u/(¢;) = (1 + 7) B (cey1).
In sum,
W (c0) = masc{u (), B(1 + ) (cus)}

Check the above is what you have on slide 7 of lecture note 6: generalized Euler equation.

Remark. Suppose S(1 +7r) = 1.

When v = 0, but with borrowing constraint so that sometimes we will have ;.1 > 0,
which implies ¢; < Fi(ciiq).

When u’ is strictly convex, i.e. u” > 0, by Jensen’s inequality, u'(¢;) > Ei[u'(ci1)] >
W' (E(civ1)). We also assume u is concave, so ¢; < Fy(cqq).

"

|
Next by Benveniste-Scheinkman formula,

u'(c) = V'(w)
Therefore,
Vi(we) = B(L+ 1)V (wis1)
Remark. See Benveniste-Scheinkman (1979, Econometrica), it basically says the follow-

ing Envelope theorem: a Bellman equation

V(z) = max u(z,2') + BV ('),

z'el(x)
implies
Ou(x, x"™)
or
where z* is the policy function as a function of z.

V'(z) =

[
Notice that we haven’t introduced restrictions on the income process or utility function
yet. Therefore, we have reviewed what we studied in class here.

Now let’s use quadratic utility: u(c) = —3(c — ) and assume (1 +7) = 1.

¢y = min{y: + b, Eyci1]} = min{y; + by, By[min{ye1 + b1, Ei[ciio] }] }



First, ¢; is no longer a random walk and ¢; < Ey[c;11]. Second, with larger uncertainty
in y;41, ¢; will be smaller since we have a larger chance of getting smaller realization of ;.
(but of course, this is not a rigorous proof, since variables b;,1, ¢;12 are also endogenous).

To conclude, either we have quadratic utility function «” = 0 but with borrowing
constriant or we have v > 0 (check that it is true for CRRA and CARA ), but regardless
of whether you have borrowing constraint, precautionary saving will show up.

1.3 Role of Market Incompleteness

One caution is that here we have assumed that financial market is incomplete: only risk
free bond is traded in the economy. Note that borrowing constraint itself means financial
market is not complete. But u”” > 0 is nothing related to the financial market completeness
or not.

Let’s consider a case without borrowing constraint, and with v > 0. Instead of assuming
only a risk free bond is traded, we assume market is complete. idiosyncratic income process
is i.i.d. with distribution N(u,0?). Assume there is a continuum of agents who start with the
same wealth yg + by, but there is no aggregate risk for the economy, i.e. under an aggregate
state s;, some guys get good shocks, and some get bad shocks. Denote the c.d.f. of aggregate
state p(s;). For agent i:

n

maxtzgﬁt/u(ci(st))p(st)dst

o)+ [ alore ¥ i) < v (s0) + V(s

Denote \(s;) the Lagrange multiplier of the budget constraint. F.O.C.:
u'(c'(s0) = N(s1)

Ai(st)Q(StH)p(St) = B)‘i(st—i-l)p(stﬂ)

Therefore,

(e alsesr) = B (0 s,)
p(st)

In period 0, by symmetry, we should have all agents choose the same consumption cy.
Then the above equation says, in future days, no matter what the aggregate state is, all
agents also have the same consumption. Since the aggregate income is pu, we will have that
each guy consumes ;2 no matter what idiosyncratic shock he has. Note idiosyncratic income
process’s volatility o doesn’t matter in this economy.

One can use a two-agent, two state, complete market setting to illustrate the above as
well. Assume income process is i.i.d. binary with probability 1/2 the outcome is u + o and
with probability 1/2 the outcome is p — o.

There is no precautionary saving in this economy since they can insure against each other
(compare with Aiyagari model).



2 Some General Results
We have already derived

U/(Ct) > B(1+ T)Et[UI(CtH)]

Assume Inada condition: lim._,ou/(c) = 400
Case 1. If B(1+r) > 1,

u'(cr) > B(1+ 1) Edfu’(cren)]

Denote h; = [8(1+47)]"/(¢;), then we have hy > Fyhyyq. By super martingale convergence
theorem, h; — x a.s., where random variable x satisfies that E[x| < M. Therefore, u/(¢;) =
[B(1+ )] *hy — 0 a.s., which means ¢, — +o0 a.s.

Case 2. If f(1+7) =1,

W' (ce) > Exfu'(cirr)]

See Chamberlain and Wilson (2000, RED), we also get consumption grows without bound
with probability 1.

Case 3. If B(1+r) < 1,

Suppose additionally we assume

lim — =0
c—-+o00 Ue

then asset w; has an upper bound w,,.

Intuition: with the decreasing absolute risk aversion, agents care less about uncertainty
when they get richer, so they choose to consume instead of continue to accumulate, dragging
down asset.

3 Log-Linearization (continued)

In recitation 7, we have considered how to implement log-linearization. However, there,
the euqation is with contemporaneous variables. Now let’s consider a more general case with
both time ¢ variables {xy;, Tat, ...z } and time ¢ + 1 variables {21 141, 22441 Zmt+1) }. Some
x and z can coincide.

Yt = Et[f(xlta Loty ooy Tty Z1t+15 R2,t415 -5 Zm,t—i—l)]

y o E elogf(elog 11t73105 12t7.”elog znt7€10g 21,641 76log 22 t4+1 ’.”’elog Zm,t+l)
t — t[ ]
s}
1 * ok * ok ok * n aﬂ'{i :c;k 1 1 * m 6zf7 'Z; 1 1 *
oy Et[e ng(xl’IQw-wxnle:Zza~~-vzm)+zi:0 G z;«ﬂ)[ngzt* ng,-HZj:o G z;«n)[OgZJ-,tJrl* ngj}]
Of _x
n Jx; Ty

* % * ok ok * L *
10gf(-7717$2r~-:xn,31722:-~7zm)+zz‘:0 F% 28, wh.21 .25 zfn)[longi Ingi]

of _x
m sz i * 1.0
20 T g ks o e [ 108 21 ~log 2]+ 3 Sk



where the last equality comes from the moment generating function of a multivariate normal

gf 2 g’f 2 f x

. . . 0z m /

distribution. Here k = ( - -2 i ).
f(CEI7$§,...,$:,ZT,Z;7...7Z:”)’ f(.Z’T,x;,...,IZ,Z{,Z;,---,Z;’;L), ’ f(zi7x§7'“7x:uzf72;2‘(7"'72:77,)

Note we assume that (log z1 141 —log 27, log 20441 —log 23, ..., log 2, 111 — log ;%) follows mul-
tivariate normal distribution with variance matrix .

Finally,
3 T S o L,
7, = —_ * — i A. J A. u—
gr = logy;—logy™ = f(:E* e R oo )%H— f(x* o R *)Etzg,t+1+2k‘ Yk
i=0 12y 200 ¥my “1y #2520 “m =0 192y =00 Fmy ©15 #2999 “m

where definition & = logz — log z™* is for any variable x.

We additionally have a variance term %k’ Yk compared to the result in recitation 7 without
uncertainty. But we usually neglect that variance term. For example, Euler equation with
log-utility:

m+ét_Etd:1:O

Approximately, ﬂ\m = log(l + ;) —log(14+r*) = r, —r*



Price Level Determination
Macroeconomic Analysis Recitation 11

Yang Jiao*

1 Aiyagari Economy (Quick Review)

Aiyagari economy is a general equilibrium model with each individual subject to bor-
rowing constraint. By definition, stationary equilibrium implies aggregate variables keep
constant, e.g. interest rate r, aggregate capital K etc., but since individuals are subject to
idiosyncratic shocks, every agent’s variables behave stochastically.

Supply Side of Capital

At the individual level, agent ¢ solves a standard precautionary saving problem.

max E[Z Bt—(ci)l_V — 1]

@ = [

s.t. budget constraint
¢ +apy = (L+7r)a; +y;
borroing constraint:
ai+1 > —¢
where labor income y! = siw, with s! a Markov process as the source of uncertainty.

First, we must have §(1 + r) < 1, otherwise, individuals accumulate infinite asset. That
is, 147 is bounded by % Or alternatively speaking, when 14 approaches 1/ from below,
individuals accumulate more and more asset. When r is larger, individuals accumulate more
assets ai. Therefore, capital stock in the economy K = . a} will also be larger.

That’s why we have an upward sloping capital supply curve and capital goes to infinity
when 1+ r approaches 1/4.

Demand Side of Capital

Demand side is simple: representative firms rent capital and hire labor from households:

max KtaNtlia — RKt + (1 — (S)Kt — th

Ki,Ny

where R is the gross interest rate.

*Please email me if you find errors or typos to yj2279@columbia.edu. Your help will be greatly appreciated.
All comments and suggestions are especially welcome.



F.0.C.s give the demand for capital
R=1-§+aK N}~

Labor market clearing: N; = 1. In stationary equilibrium, aggregate capital K, is a
constant K.

Asset market no arbitrage condition: R =1+ r.

Therefore, 1 +7 = 1 — 4§ + K1, which is the demand function for capital (a downward
sloping curve).

Demand curve and supply curve determine the equilibrium capital and interest rate.

Remark 1. When borrowing constraint is looser, i.e. an increase in ¢, what will happen
to the supply curve of capital? First, given an interest rate, agents will not accumulate so
much wealth as before, i.e. supply curve shift left. Second, at the point 1 + r = 1, since
individuals’ constraints become

¢+ (afy +0) = (0 + ¢) +w

ai+1 +¢ Z 07

an increase in ¢ means optimal choice of a! will decrease the same amount as ¢ increases.
That is to say, aggregate capital also decrease the same amount as ¢ at point 1 4+ r = 1.

Remark 2. Decrease in the volatility of idiosyncratic shock to labor income will also
shift the supply side of capital because the precautionary saving motive is smaller.

2 Inflation in a Cashless Economy

See your Lecture note 7.

Although the economy is cashless, we have nominal account. One can think every trans-
action is done by revising the balance sheet of the nominal account.

+o0
max E[) _ ' log(Cy)]
t=0
s.t.
P.Ci+ By + P Ky = BY, + By(1 4 i4—1) + PK(1 + 1)

where K, is real bonds and B;,; is nominal bonds. #;_; and r,_; are risk-free nominal
interest rate and real interest rate, which are determined at time ¢ — 1. Notice this is an
endowment economy, so Y; is an exogenous process.

Euler equation for real bonds

(]. + Tt)Ct

R

In steady state (1+7*) = 87! thus r* ~ log(1 +7*) = —log . Log-linearize the above Euler
equation L
Ey(Cir — Cy) =74



where é\t =log Cy —log C*, 7y = log(1 + 1) — log(1 4 r*) = r; — r*. Define ¢; = log C}, then
re-write the above as
Ey(cipr — ) =14

Euler equation for nominal bonds

(1+44) P.C,

1=pE
pE Fri1Cia ]

Notice we have steady sate for inflation but not necessarily price level (only when steady
state inflation is 0, price level has steady state constant value). So let’s do it carefully instead
of directly apply the log-linearization rule as in recitation note 7. Define p; = log P, (instead
of log P, — log P* since P* may not exist), thus m1 =~ pyy1 — pr = Aper1. Let p = —log S.
The Euler equation becomes

1 = E{exp(i; — Aciyr — mp1 — p)}

We used the approximation exp(i;) ~ 1 + i,.
In steady state 1 = exp(i —0 — 7 — p), L.e. i =7+ p.
First order Taylor expansion of the Euler equation above around steady state

1=E{l+i—i— (Acyr —0) — (myr — 1)}

Ei(cipr — ) =iy — Ey(mga) — p
Combine the two log-linearized equations to obtain
Ty — 1" =i — E(Apia) — p
As r* = p = —log 3, we get Fisher equation

iy — 1 = Ey(Apigr)

Remark. In fact, you can use the simiar steps of the derivation following the Euler
equation for nominal bonds, to get r, — p = E(ciy1 — ¢) from the Euler equation for real
bonds. That is, forget about log-linearization rules, and do it in the following way.

1= E{exp(ry — p— Aciy1)}

In steady state: r* = p.
First order approximation:

l~E{l4+r,—p—Ac1}



ie.
e —p= E(Ct+1 - Ct)
Classical Dichotomy
Suppose now there is no government intervention. Assets market clearing condition

Kt — 0

Bt - O
Goods market clearing

Ci=Y,

It gives the following equilibrium solution for real variables:
Kiy1=0
Ci=Y,
Euler equation for real bonds

BC
Cima

(147" = Ey )

We can see that since Y; is an exogenous process, Cy, K;y1, 7 will be determined only by the
process of real variable Y;. There is no role for nominal stuff to affect the outcome of real
variables.

Price Level Indeterminacy

We need to pin down P, i; but we only have the following one equation: Euler equation
for nominal bonds

BCy P

Ct+1 Pt-‘rl

—
th-i-l Pt+1

(1+1i) " = By

One can choose i; to move correspondingly with P;, but we cannot pin down F;, there is
no other equation for us to determine F;.

Therefore, we need additional conditions (where the number of conditions must exceed
the number of newly introduced variables by 1). We will introduce government/ central bank
to resolve the price indeterminacy problem.

2.1 Nominal Reserves 1

Fiscal Policy: T;+D; = G;, where T} is tax, G; is government spending. G; is exogenous.
D, is called fiscal deficit. T; is chosen by policy as well. Fiscal policy brings one new
endogenous variable D;, and one new equation.

Central Bank: There is fiscal deficit. Central bank issues liability to fill this gap.
Specifically, the central bank promises to pay P;(1 + z;_1) dollars back at time ¢ if he
borrows 1 dollar at time ¢ — 1. Notice this is neither a real bond nor a nominal bond as in
the consumer problem. It links the payment schedule to price level. The law of motion of



libability (called reserves)

Vi = P(1+z4)V + P.D,

Note x; is a policy variable. That is we have one new endogenous variable V;® and one new
equation here.

Remark. Alternatively, you can take V,' as exogenous policy, but tax T; as endogenous
variable. [ |

We still lack one equation.The central bank’s libability is an asset traded in the market
as well. We should have an Euler equation for this asset.

Recall Euler equation for nominal bonds:

P,Cy(1+ i)

E
PE Fii1Cia

=1

Similarly, Euler equation for the central bank’s liability is

P,Ci Py (1 + xy)
P1Cipa

ﬁEt[ ]:1

ie.
C
1 = (1 + xt)PtEt[g t

t+1

]

Substitute the Euler equation for real bonds to arrive at:

. 1 + Tt
b 1+ Tt
where (1 + 1)~ = E] ggtl] and C; = Y; — G;. Therefore, here we are able to pin down

price level.

2.2 Nominal Reserves 2

Fiscal Policy no change.

Central Bank directly issues a nominal bonds with nominal interest rate ¢, which is
set by the central bank (thus it is exogenous). Nominal interest rate must be the same as
the policy choice as a result of no arbitrage condition

’Lt:Z%}

which is the one additional equation we are looking for.
Fisher equation

Ty =1l — Et(Apt—i—l) =1 — Et(Apt—H)

pr = Eipryr + 1 — 47,



then

“+o00
v .
t — Tt — 1 + lim Et t 1
p § 0:( +s t+s> ern Pt+s+
s=

But we cannot do this, since in steady state, we cannot do the summation for the first term
because it doesn’t converge and we don’t know lim,_, o Fp;isi1, either.
Come back to
Pt = Eipeyr +1 — i,

If we expect tomorrow’s price level will jump up, today’s price will immediately jump up,
and vice versa (expectation driven).

One may have found that the problem lies in the fact that the coefficient before p; is not
larger than 1. Let’s link the nominal interest rate policy to price level or inflation to resolve
this problem.

Wicksellian Rules (Price Targeting)

Let i, = if = ¢(py — p*), where p* is the constant (not steady state value) price target,
taken as given, and parameter ¢ > 0.

Fisher equation becomes

(0+1D)pe = Exprr + 1 + ¢p°

ie.
1
= ——Epip1 + —(r, + ¢p*
2 146 tPt+1 1+¢(7‘t ¢p*)
Iterate forward to get
+o0 +o0
by = Z;(l + ) T Ey[regs + op] + sginoo(l +¢) T Eprys = Z;(l + )T B i + ¢p7]

Taylor Rules (Inflation Targeting)

Let iy = ¢(Ap; — Ap*), where Ap* = 7* is the constant inflation target, taken as given
and parameter ¢ > 1.

Fisher equation becomes

OAp; = B Api + 1 + 9Ap*

Similarly, iterate forward to get

“+oo

Ap, = Z ¢ Eifrigs + Ap']

s=0

Notice at time t, either you have inflation Ap; or price level p;, you can determine the
other, since p;_; is already known.

Remark. Imagine inflation is really really negative, Taylor rule above with linear form
means interest rate has to be negative as well, violating ZLB (zero lower bound). We argue
that we only consider locally bounded equilibrium around the steady state so 7; > 0 will be



satisfied locally. However, a global interest rule has to consider the ZLB constraint i; > 0.

2.3 Global Analysis and the ZLB

For simplicity, assume there is no uncertainty, and C; = Y; is constant. Combine the two
Euler equations to get

1
= =1+ i)l
B
where II;,1 = Pior Again one equation is not enough to pin down two variables P;, ;.

P
Suppose central bank takes the following policy rule, taking care of the ZLB

IT 11
1+ = max{g(ﬁt)(f’, 1}
where II is the constant inflation target.
By eliminating 1 + 7;, we conclude
B I 11,
1= max{—(—=)%,1
0 5 ()% 1}

Draw Il;,; against II;, one can find globally we have two steady states. But previous
local equilibrium analysis will ignore the possibility of two steady states.

The high inflation steady state is not stable and if you perturbate leftward a little, the
economy will run into a deflation spiral, until reaching another steady state at the ZLB.

3 Inflation with Money

See your lecture note 8.

In the previous section, we studied an economy without money (I mean, cash), where one
can think transactions happen through the nominal account. Now let’s introduce money to
the model. Then the question is, why do people hold money, since it is an asset which only
pays 0 nominal interest rate. As long as, nominal bonds pay i; > 0, there is no reason to
hold money. To let money have a role, we assume that real money balance directly enters
into utility function, which, of course, is a shortcut.

Households problem

400
EO{Z B'u(Cr, My/ Fy)}
t=0
where u,, > 0, Upmm < 0, Uen > 0.
s.t.

P.Ci+ B+ PKyy1 + My < P(Y, = T,) + Bi(1 +441) + PEK(1+ 1) + My

Notice that money as an asset pays zero interest, so the reason that we hold money comes
from that holding money itself brings utility. Since money itself provides utility but nominal

bond doesn’t. We must require
1 >0



Otherwise, one can sell bonds to exchange money without any restriction, leading to infinite
utility. Furthermore, one cannot short money (but you can issue bond to others):

M, >0

However, when the utility function satisfies Inada condition for real money balance, we
never need to worry about this constraint.
First order condition gives
U () o
uc(-) 1+,

Assume that the utility function is
u(C, M/P) =log C + xlog(M;/P,)

Remark. One can use more general CRRA utility for both consumption and real money
balance, or other more sophisticated formula, and follow similar analysis below. Note the
utility function specified in your lecture note is not consistent with the later used Euler

equations. That’s why I choose to use this simple utility function instead of that one. [
Then PO L
[3%47 (2
- (1)
Mt X 1 + (N

which is the quantity theory of money.
Take log of both sides (instead of log-linearization, since price level P, doesn’t have a
steady state)

i
—my = —1 1 2
Dt +C — My og X + Og(1+2.t) (2)
Here
iy . . 1
1 = log(1— ~ log(1— = log(1— —1;)) ~ log(1— —i))+—
0g(3 n Z.t) og(l—7 n Z.t) og( eXp(m) og(1—exp(—i;)) ~ log(1—exp(—i ))+exp(i*> —
The last approximation is a first order Taylor expansion.
Denote n = exp(il*)fl and ignore constant terms, we have

Dt + ¢ —my = iy
Fiscal Policy Similar to before.
T, + D, =G,

where G, is exogenous.
Monetary Policy There is no nominal reserves. But the central bank can print money
to fill the fiscal deficit.
MP = M7, + P,D,

The central bank is the only source who can print money, so aggregate money in the



economy is equal to the money central bank supplies: M, = M.
Equilibrium
Real variables are still not affected by nominal stuff, i.e. classical dichotomy holds.
Market clearing for goods market:

C=Y,— G
Market clearing for real bonds:
K1 =0
Euler equation for real bonds
_ C
(147 = B(5H)
t+1
Fiscal balance
T, = Gy — Dy

In fact, T; and D, are both endogenous, where D; will be determined by monetary policy.
Nominal variables satisfy the following.
Market clearing for nominal bonds:

Bt+1 = 0.

Euler equation for nominal bonds

pCy P
Cip1 P

(1 + ?:t)il - Et{
Notice we have come across this "one equation, two variables” problem in the cashless
economy. However, now we addtionally have the equation of quantity theory of money

PCy 1 4
M,  x1l+7

If we know M;, then we will have two equations for two variables i;, P;.

3.1 Money Supply Rules

This rule directly specifies an exogenous path for money supply M; thus m;. From
above, we know we are able to pin down price level and nominal interest rate: two equations
for two endogenous variables.

Using log- forms as before. Combine two Euler equations to get Fisher equation

it — 11 = Ey(Apria)
Substitute the above into quantity theory:

my —pr = ¢ — iy = ¢ — N(re + Ei(Apiia)) (3)



pe(1+ 1) = nEpe1 +my — ¢ +nry

Rearrange and iterate forward :

LSS
b= (m) ;(m) Ei(Mess = Covs +1ess)

This Cagan equation implies that price level is determined by money supply, not only
today’s money supply but also expected money supply in the future. Suppose there is a
news that in the future money supply will jump up, price level will immediately jump up
as well. Inflation is always and everywhere a monetary phenomenon (by Milton
Friedman) (later, when we change the way to pin down price, we can see inflation is always
and everywhere a fiscal phenomenon...).

This theory has the following implications. With a random walk process m; = m;_1 + €,
we have p; = my (ignore constant terms), ie. pp1 —pr = myy1 —my = €. Putting more
realistic process, we find the model predicts inflation is less serially correlated than money
growth and inflation is more volatile than money growth. But these predictions are not
consistent with facts.

3.2 Fiscal Rules

Fiscal Policy Suppose now 7} is chosen exogenously. Then we can pin down D, =
Gy — T; (government spending still exogenous).

Monetary Policy

Given D, above from the fiscal policy, we are able to pin down price level now. This
D, is the additional condition we are going to use to pin down price level (compared to the
Monetary rules, where the addtional condition is exogenous M,).

First, equation (3) says

my = py + ¢, — n(re + Ey(Apiya))

secondly,
My — My = B.D,

Substitute the first equation (use it twice) to the second equation to see that it is an
equation with only price as unknown. In order to solve it formally, one needs to do log-
linearization for the second equation (but since M, doesn’t have steady state, one has to
divide both sides by P,C; first). The important thing is you know you have one equation,
and one unknown p;.

Monetary policy has to accomodate the fiscal policy, following the law of motion

Mt - PtDt + Mt—l (4)
with Dy, P;, already solved above. That is, money supply’s dynamics has to obey this

equation. Monetary policy becomes passive. If we have a deficit D;, the central bank has

10



to print money to fill this gap (collects seignorage). However, that would cause inflation
based on Cagan equation. Now you see fiscal deficit leads to inflation. Inflation is always
and everywhere a fiscal phenonmenon.
[ |

Remark 1. Either monetary rules or fiscal rules can pin down price. However, you
cannot employ these two rules at the same time, because that would ”over-determine” the
equilibrium (more equations than unknown variables). You have to give up one rule.

Remark 2. Suppose the government runs a fiscal deficit, can he always fill this gap by
printing money? Notice that although printing money can fill some of this gap, we also know
that when money supply increases, price level goes up. Go back to your equation (4), we can
see that since price goes up, now the nominal deficit gap will be higher as well. Therefore,
it is possible that printing money is not able to fill that gap (notice we assume the deficit
Dy is in real terms).

As a matter of fact, assuming Y; is constant, hence there is no uncertainty, we have

Sy My— M,y M My Py

¢, RC, PG P.Co R
Since
M, =exp(my — pr — ¢;) = exp(—niy) = (1 +4,)7"
PC, t t t UL t
then
St o\ — . — —1
- = (]_ +Zt) m_ (]_ +Zt—1) nHt
Cy
Since (1 +7r) =1 and (14 4;) = (1 + )11, we get
Sy _ e
a = 5”(Htﬁ1 - Ht ! l)

Assume inflation is at its steady state:
Z =8 -1

The above has a maximum, taking n as a parameter.

Remark. What is n? It depends on steady state nominal interest rate ¢, which is affected
by steady state inflation as well (real interet rate r already known, by Fisher equation). When
I directly substitute % from the quantity theory without log. I still get S/C bounded above,
but not bounded below. So here we can just take the quantity theory as an empirical result
and 7 is a fixed parameter, instead of a function of ¢ as we have derived.

4 Fiscal Theory in a Cashless Economy

We have analyzed a cashless economy with active monetary policies (lecture 7), and an
economy with cash with active monetary policy or active fiscal policy (lecture 8). However,
we haven’t discussed a cashless economy with active fiscal policy. Now we come to this
scenario (lecture 9).

11



Monetary Policy There is no cash, thus no seignorage. Central bank doesn’t exist:
D; = 0. That is we have passive monetary policy.

Fiscal Policy Before, we do have nominal bonds and real bonds, but in equilibrium, net
supply is 0. Now suppose government issues bonds to the households, then the net supply
to the households will not be 0.

Government budget constraint

By + PKyn + PTy = (1+41) By + (1 + 1) P K,

Assume Y; — Gy is constant~(Yt, G, are exogenous as usual), so by Euler equation for real
bonds (1+r) = 7!, Denote By = (1 +i;_1)B; + (1 + ri_1) P K;.
Government budget constraint can be re-written as

When T, is exogenous, we can pin down price P, since B, is a state variable already
determined at period t — 1. This exogenous T; is again the ”"additional condition” we use to
pin down price.

Remark 1. We understand this model can pin down price, but in fact, we haven’t solved
it explicitly since {B;} sequence hasn’t been solved. However, the choice of sequence {B;}
will be determined by households problem, given {P;} sequence (Fixed point argument).

Remark 2. We have both nominal government bonds B; and real government bonds
K,;. But we can only determine the aggregate bonds B, (instead of K; and B; separately),
which is in nominal terms. This nominal debt fills the gap of exogenous fiscal deficit (real
deficit). Price will adjust to make sure that nominal debt matches real deficit.

Remark 3. In models we studied before, we only have real bonds. That is B; = 0.
Government budget constraint becomes

+oo
K, =) BT — Gy
=0

As K, is a given initial condition, 7;;; becomes endogenous. Furthermore, we have
Ricardian equivalence. Since the sequence of {7}, ;} has to satisfy the above budget
constraint, a reduction of tax today means an increase of tax tomorrow, i.e. the present
value of tax cannot change.

12



New Keynesian Model
Macroeconomic Analysis Recitation 12

Yang Jiao*

1 Baseline New Keynesian Model
Households Problem

—+00 1 1
max £ f'log C; — e / hay < di]
t=0 0

Cit,hit 1+€
s.t.
Lo,
ci=([
0
1 1
/ PyCydi+ Byy1 + PKy + BTy < By(1+4y) + Ki(1 4+ 1) Py + / Wihydi + X,

0 0

where X, is the total dividends that distributed by firms to households. Notice we assume
that for the households, labor supply h;; is differentiated across firms as well.

After solving the dyamic problem, we will get the log-linearized equations (lowercase
variables mean log of the original uppercase variables):

Euler equation for real bonds

Ei(cir —c) =1
Demand for each variety of good

Cig = C¢ — 9(1%: - pt)

1
Pt = / Dirdi
0

¢t + hife = wy — py

Price index

Labor supply to firm i

Fisher equation (derived from Euler equation for real bonds and nominal bonds)

re =1 — Ey(Apigr)

*Please email me if you find errors or typos to yj2279@columbia.edu. Your help will be greatly appreciated.
All comments and suggestions are especially welcome.
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Remark. Price index )
P~ = /0 By di

In steady state P* = P;. Apply our rules for log-linearization (refer to the summation
case, and for integrals, it is the same rule)

1 P~*1_6
(=0 = [ (L O)pudi
0

1
Dr = / Dirdi
0

1
Dt = / Dirdi
0

max (1 +7)Py;Yy — WyLy

Lit,Yit,Pit

Firms Problem

s.t.
production function
}/it = AitLit

and demand function

Y;t = Yt(Pz‘t/Pt)_g

After solving the problem, we will have the log-linearized equations (lowercase variables
mean log of the original uppercase variables)

Yit = Q¢ + liy

pir = log + Wi — Qg

0
@ —1)(1+71)
Fiscal Policy P1T; =1 fol P,Y;, a static budget constraint.
Monetary Policy Reduced form nominal income policy: Ny = P,Y;, i.e. ny = py + ys.
In equilibrium All markets clear: B,y 1 =0, Ky 1 =0, Iy = hy, cip = Y-
[ |
Labor supply
i+ hi/e = wy — py

ct 4 lin/e = wi —



¢+ (yit - ait)/e = Wit — Pt

N
i+ (Cit — ai) /€ = wy — py
N
i+ (¢t — 0(pie — pt) — air) /€ = Wiy — py
Use
pir = log m T Wit — it

to substitute w;; to get

pit = pe+ p+ ale — a)
where a = 5. We define p = log m/(l + %) and we can choose tax rate so that

e+0°
w=0.
Summary of equilibrium equations

re = B — ¢

Ty =1 — Et(Apt—f—l)

pit = pr + a(ce — ai)

1
P = / pidi
0

ng = Py + Y

Take integrals of p;; = py + oy — ay) to have ¢ = fol a;di, thus p; = py.

We can see that ¢, doesn’t depend on nominal stuff and thus y;,r; doesn’t depend on
nominal stuff. Therefore, classical dichotomy holds in this economy. Nominal income
process n; is not relevant for real variables.

Note in the above economy, firms are free to adjust their prices. However, if there is
physical menu cost k and real rigidity a (large k£ or small «), nominal rigidity (no change in
prices) shows up. It is possible that with nominal rigidity, classical dichotomy breaks down.

Strategic Complementarity

Recall

Pit = Pe + 0+ ey — air)

For simplicity, assume g = 0 and there is no supply side shock a; = 0.

Dit = Pt + Qg



Since ¢; = y; and ny = py + Y,
pir = (1 — a)ps + any

That is the desired price of a firm (without other frictions, such as nominal rigidity),
pi = (1 —a)p + any

It basically says an individual firm wants to set his price close to others if a is small
(Ojajl): strategic complementarity.

Strategic complementarity will "amplify” aggregate price rigidity, since if some adjust and
some not, those who adjust want to be close to those non-adjusters. As a result, aggregate
price doesn’t change much.

Remark. It just happens that the real rigidity parameter a and the strategic comple-
mentarity parameter « are the same. Real rigidity and strategic complementarity are two
different concepts. Real rigidity refers to the flatness of the profit function.

2 Phillips Curve

In the data, there is a relationship between nominal variables and real economic activities.
Phillips curve describes one important aspect of this relationship

T = Ty + Ky

Inflation (nominal stuff) can affect real output.

However, in the baseline New Keynesian model (lecture 10), classical dichotomy still
holds. We will introduce two frictions in addition to the baseline New Keynesian model to
link nominal variables and real variables. One is sticky price model (menu cost): the Calvo
model. The other is sticky information model: the Mankiw-Reis Model.

3 Sticky Price: the Calvo Model

Each period with probability A, a firm can adjust its price. The firm understands that
this price may stay in the future, so he takes into account today’s price’s effect on future
periods.

Suppose the firm sets price Py at time ¢t. With probability (1 — \), his price is still Py at
time ¢ + 1. With probability (1 — X\)?, his price is still P; at time ¢ + 2 ...With probability
(1 — \)*, his price is still Py at time t + k... That’s where the following summation comes
from. The firm chooses P;; to maximize the following:

+o00
M,
max Z(l — )\)kEt{M[PM — MC;)Yirsn}
Py 0 Pt—i—k

s.t.
Yiiik = Yier(Pie/ Prpr)™°

where [P,; — MC;11]Y; 1k is nominal profit. M, is the stochastic discount factor.
The constraint is the demand function for firm ¢ product.
Remark. This stochastic discount factor comes from households’ problem. Households



trade the firm’s stock shares. For example, consider the following household problem

7t

+o0 1
max Et Z Bt[log Ct _ hl'—H/Edj]
t=0 0

Ct,ht,qi,t+1

s.t.

1 1 1
Ptct—i‘Bt+1+Pth+1+Ptﬂ+/ Qi1 (Vi —diy)di < By(14ig)+ K (14r,) P+ M/jthjtdj+/ QirVirdi
0 0 0

where g; +41 is the share of stocks of firm ¢ households buy. v;; is firm ¢’s stock price before
paying dividends d.
Denote A; the Lagrange multiplier of the budget constraint. F.O.C. for C}

1
a - PtAt
F.O.C. for ¢; 141

Ay(vig — diy) = ﬁEt(AtJrle t41)

-~ A
Vit = diy + BEY( Xrlvi,tﬂ)
t
Iterate forward to get
— Avin
Vit = ZﬁkEt( A dz,t+k)
k=0 t

Firm stock price is the discounted dividends of the firm. Now substitute A; to have

= P,C,
Vip = E Ey(pf———d; = P, E E —dZ
! Pt 1Ch P Cryk o) ! 4 Pt+k0t+k o)

Define My 41, =

Uzt E M, t+k
E t i t+k:)

Firms should maximize its stock price (firm value for equity holders).

What is d; ;4 for each firm? Its nominal profits in each period. Then check the above is
your firm maximiazation objective for the Calvo model (up to the consideration of changing
price probability).

In equilibrium, stock shares should be ¢;; = 1(100%), then we can see that all dividends
fol d;;di go to households.

[

First order condition of the Calvo firm is (substitute the constraint into the objective



function):

+o00o
M
Z(l — NFE{ Pt’Hk [(1=0)+ 5 MCii|Yierr} =0
prd bk it
ie.

= My i, 0

(= W EL Y [P — gy MCira]} = 0 M

k=0 +

- M,
p oo 2oL = NFE] “HthJrkMCz thk )
it —

o1 = NEE; {Mt Yk}

Log-linearize the above equation to get (apply several formulas of log-linearization, see
recitation note 7)

Dy = f (1 —N)* kMC*Y (M ptk + Yigrk + MCigtk — Prtk) f NFpEY B ~(Meern + Ui t+k — Dirk)
it — oo s 1 x 0 sY
k=0 ::0( - ) ﬁ ]\/][DC*‘ Y =0 ::0(1_ ) 6 P+
ie.
+oo
pir = (1= B(1 =)D B = NI Eme s
k=0

Notice under flexible price, price p;,., = mc;+r. Therefore,

+oo
pir =[1 = B(1 = N)] Z[ﬁ(l - )‘)]kEt(p;’k,t-l-k)
k=0
Substitute ¢ by ¢t — j, where 7 =0,1,2, ...:
+o0
Pie—j = 1= BA=N] DB = N B0 i)
k=0

We can ignore index i, since each firm is subject to the same shock,

“+00

pel) = [L= B =N _[BOL = NI*Eiy(pi 1) (2)

k=0

At time ¢, we know in the economy, A firms set price at time ¢ with price p;(0), A(1 — \)
firms set price at time ¢ with price p;(1), A(1 — \)? firms set price at time ¢ with price p;(2),
etc. Hence

ptZ/pndz AZl—

which implies
pe = Ap:(0) + (1 — AN)pia (3)




Equation (2) implies

pe(0) = [1 = B = Nlp; + B(1 = N E¢[Ery1(pe+1(0))]
- pl0) = [1= 81 = N]pi + B0 = NEu(ps: (0) ()
Combine equation (3) and (4) to eliminate p;(0):

(1 — )\)ﬂ't -+ )\pt = )\[1 — 6(1 — )\)]p;k + 5(1 — )\)Et[(l — )\)7Tt+1 + )\pt+1]
Substitute flexible price p; = p; + ay; to the above equation:

T = 5Et(7rt+1) + Kyt

[1-B(1-N]aA

where kK = -

£~ 1, so
Ty = Et(ﬂt—&-l) + KUYt

which is the Phillips curve.
Additionally, we have

Y = Ny — Pt

where n; is an exogenous process. Assume n;, = n;_1 + €;, our objective is to solve p, as
a function of exogenous shocks.

e Algebra Method

Our Phillips curve can be re-written as
Ei(pe1) — (2 + K)pe + pr1 = —kmny

which is a stochastic second-order difference equation.

Denote L as the lag-operator and denote FF = L~!. Tt is easy to show ( solve a
second-order equation)

(F? - (2+K)F 4+ 1)LE,p, = —xEn,

ie.
1
(1 — 0L>(F — E)Etpt = —/{Etnt

where @ < 1 is the smaller root of (1—6)?/6 = k (because 0 + 3 =2+ ), and 1/0 > 1
is the other root.

That is )
(1—0L)E;p; = —k(F — 5)’1Etnt =0k(1 — OF) ' Ey(ny)
— (substitute x by (1 — 0)%/0)
(1—0L)Ejp, = (1—0)*(1 —0F) 'Ey(ny) = (1 — 0)*[1 +0F + 0°F* + ..|Eyny

7



+o00
pe—Opi1 = (1—0)° Z 0" Ey(nus)
k=0
As ny is random walk, then Ey(n;i) = n;, which means

pe="0pi—1 + (1 —0)ny.

Undetermined Coefficients Method

By Wold decomposition, we know
“+o0o
bt = Z Oj€—j
j=0

By Wold decomposition, p; = ijog fjei—;, where 0; are coefficients to be determined.

Replace it into the Phillips curve to get

+o0 +oo +o0 +oo
Et Z ngt-‘rl—j — (2 + :‘i) Z ejgt—j + Z ngt—l—j = —K Z Et—j
Jj=0 j=0 j=0 =0

i.e.

“+o0 “+00 “+oo “+o00
Y Oy — Q4R e+ Oiac = —K) ey
Jj=0 j7=0 j=1 =0

Compare coefficients to get

Ojr1 — 2+ K)0; + 01 = —k
when j > 1.
91 - (2 + /ﬁ?)eg = —K

when 7 = 0.

6; = 11is a special solution. 6 and 1/6 are two roots of 22 — (2+k)z +1 = 0. Therefore,
the general solution is

. 1.
Hj =6 + CQ(g)j +1

c2 = 0 to guarantee stationarity. Solve ¢; = —6 to guarantee that 6; — (2+ k)0y = —k.

Therefore,



0;=1—6"
Check that it is the same as in the algebra method.

Guess and Verify Method
Please check by yourself.
After solving py, it is straightforward to get y; from y, = ny — py.

4 Sticky Information: the Mankiw-Reis Model

Each period, A firms obtain up-to-date information. Therefore, at period ¢, A firms
have period ¢ information set, (1 — A)A have period ¢t — 1 information set, (1 — X))
firms have period ¢ — 2 information set etc.

1 oo
pe= / pudi =AY (1 =AY Eeylpy + ayi] (5)
0

J=0

Expand the above with the first term before the summation of other terms

+oo
pr = AEpe+ oy + XD (1= A B lps + ayi (6)
j=1
+0o0 '
= AE[p: + oy + (1= M)A (1= N Er_y_jlpe + o] (7)
=0
%
A o ,
P oo AL (L A Bt ol (®)

Additionally, write equation (5) for time ¢ — 1 to get

“+o00

pr-1=A Z(l — N B jlpe + oy (9)

=0

Substract equation (8) by equation (9) to obtain the Phillips curve for sticky informa-

tion model.

pYe! &= .
et A (L= N B lm + ady)]

=0

Tt =

Assume exogenous n; = ZZ;’B Vi€, we would like to derive the solution for p,. Note
when 7, = 1, n; is a random walk.



e Undetermined Coeflicients Method
By Wold decomposition,

oo
bt = E Orer—i
k=0

where 60;, are coefficients to be determined.

Go back to equation (5).

“+o0o +00
pt—)\z (1 = N Ei_;[p: + ayi] —)\Zl— Y Ei_jlan; + (1 — a)py]
] =0 ]—O
%
+oo +oo +oo +oo
Y ek =AY (1=NE 0> e+ (1—a)) Orey]
k=0 §=0 k=0 k=0
%
+oo +oo ' +o00 +oo k
Zﬁket,k = )\Z(l—)\)] Z AYE€r— k—l—(l Oé ert k Z Z)\ 1 )\ a’yk—i—(l Oé)(gk]
k=0 =0 k= k=0 j=0
Compare coefficients to have
)\Z 1= Moy + (1 — )by

afl — (1 =N
at (1—a)(1—nhk

O =

After solving py, it is straightforward to get y; from y, = ny — p.

When v, =1, i.e. n; is a random walk,

aft — (1 -]

0, —
T At (1= a)(1 = A)EH
Inflation
+00
T = Dp — Pr—1 = Oo€r + Z(Gk — Op—1)€—
k=1

5 Comparison between Sticky Price and Sticky In-
formation

They both generate inflation persistence and less volatile inflation compared to
money growth. When exogenous shocks arrive, only some firms adjust, so the volatility

10



of inflation is smaller than the volatility of money growth. Inflation persistence is
related to the fact that some firms adjust today, some firms adjust tomorrow, and we
have strategic complementarity, firms price near to other firms’ prices.

Additionally, if there is a negative shock to n;, price will not fall that much, y, =
ny — py predicts both models produce a recession, which is consistent with facts.

However, the Calvo model produces some undesirable results.

Natural Rate property

In steady state:
(1-p)r

R

T=0T+ Ky —>y=

It is a non-vertical long run phillip curve, which means you can use long run high
inflation to achieve high real output. In the long run, we would like monetary policy
to be neutral.

Even if some may argue that g is near 1, so that y = 0. One can use an alternative
monetary policy 7,11 = (1 — g)m to get m = (k/g)y;. If g is very high, y;, will also be
very high.

Accelerationist Problem

A simple example to illustrate why change in inflation and real output are neg-
atively correlated by the Calvo model: suppose that the government announces
a disinflation 7,1 < m(caused by contractionary monetary shocks), recall that the
Phillips curve is

T = By + Ky

Ty — M1 = KYg > 0

That is the Calvo model predicts that the correlation between change in inflation and
output is negative.
This is at odds with data.

Remark. Acceleration phenomenon means the positive correlation between real out-
put and change in inflation in the data, i.e. when real output is high, inflation tends
to rise.

Non Hump-Shape
Iterate forward the Phillips Curve:

+oo
Tt =K Z 5kEt<yt+k)
k=0

When the economy gets hit by a negative shock to n;, and the shock dies out gradually.
Real output also dies out gradually. Then the above Phillips curve would predict a non-

11



hump shaped path for inflation. This result is not in line with empirical evidence,
where the response of inflation to monetary shocks tends to be hump-shaped.

However, the above three problems of the Calvo model are not problems for the
Mankiw-Reis model. Let’s investigate the above three points one by one.

From equation (8), in steady state, we will have y = 0. So in the steady state, money
is neutral.

Suppose the government announces a disinflation in the future (caused by contrac-
tionary monetary shocks), firms don’t change their pricing before that shock happens.
The reason is as follows:

“+00
)\Z (L= AN Erjlpe + oy = XD (1= AN E_jlan, + (1 - a)p)]

7=0

pe is not related to future n.y; or expectation about n.y;, 7 > 1.

However, when the disinflation comes at time ¢ + 1, firms start to decrease price (still,
not too much, since only some firms know it), v = n; — p; < 0, which is a recession.
This experiment means we have a positive correlation between real output and change
in inflation.

Remark. For comparison, let’s consider the intuition for the Calvo result: in the
Calvo model, when government announces disinflation in the future, if firms have the
opportunity to adjust prices, they will immediately respond. Because they understand
in the future they may not have opportunity to decrease their price to accomodate
with the contractionary monetary shock, they immediately decrease their price. Now
their n; is still 0 as in previous periods, so when they get the news (announcement by
the government), y; = ny — p; > 0 means the economy will have a boom. This is a
negative relationship between real output and change in inflation.

Hump shaped response of inflation can be achieved in the Mankiw-Reis model. Suppose
there is a positive monetary shock.

In the sticky information model, those firms who get the information will increase
price initially, but not so much. They understand that now not so many firms know it
yet. They will "wait for others” and increase their price further when more firms get
informed (due to strategic complementarity). Therefore, inflation response is hump-
shaped. Note sticky information doesn’t mean a flat price plan.

While for the sticky price model, those who have the opportunity to adjust prices, will
respond more than the sticky information case. They really value this opportunity to
change price. They will not wait for others, since if they wait, they may be stuck in
that price in the future.
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Dynamic New Keynesian Model-Optimal Monetary
Policy

Macroeconomic Analysis Recitation 13

Yang Jiao*

1 Dynamic New Keynesian Model
1.1 Phillips Curve

Recall that in recitation 12, we already derived firm pricing under flexible price:
Piy =P+ p+ oy — air)

Now assume that all firms are subject to the common productivity shock so that a; = a;;.
Furthermore, let’s assume there is government spending g; as well, so we have

Py = Do+ p A+ oy — @i — 1ngit) (1)

Remark. When introducing government spending, let’s repeat similar procedures on
page 2-3 of recitation 12.
Labor supply
e+ lig/e = wiy — py

%
Y — Gt + (Yir — i) /€ = wi — py
_>
yt_gt+[yt_0(pit_pt)_ait]/ezwit_pt
Use
i = log ————— + wy — a;
Pie =208 g Ty (L 4 ) T T

to substitute w;; to get
pit = Pe + p+ a(ys — air — ngs)

where o = :[—é and n = 5, p = log m/(l + g) With common shocks to productivity

*Please email me if you find errors or typos to yj2279@columbia.edu. Your help will be greatly appreciated.
All comments and suggestions are especially welcome.
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Ay = Agt.
pit = pe + p+ oy — a; — ngy) (2)

[ |
Natural rate of output is defined as the equilibrium output when prices are flexible
and markups (price markup and wage markup) are constant. Integrate both sides of equation
(1) to get
n H
Yp = Qg + NG — —
Q@

As before, when we introduce sticky price, we will have a Phillips Curve. Recall that
in recitation note 12, when we derive the Phillips curve, we assume a; = 0. Now suppose,
a; +1g; is not a constant 0, then the Phillips curve will change to (repeat similar procedures
as before, in fact we will show the derivation in the Remark below.)

Ty = BE(T41) + KUy

with output gap v, =y — v;' .
Also, we will introduce exogenous markup shock (price markup or wage markup) so that
the Phillips curve will have an additional shocks u;:

T = BE(T41) + K +

Remark.
Suppose the elasticity of substitution 6 is no longer a constant but a stochastic process. Go
back to page 6 of recitation 12, the equation just below equation (1). Substitute 6 by 6,.

Define x; = log(efjl), and steady state y = log(%). After log-linearization, we will have
+oo
pi = [1 = B(1 = A)] 2[6(1 - A)]kEt<mCi,t+k + Xt)
k=0

Notice that with shocks to ;, under flexible price Diiik = MCitrk + Xt —

+oo

Pit = [1 - 5(1 - A)] 2[5(1 - A)]kEt(p;tJrk)

k=0

Follow the similar steps as in recitation 12 to get (a same equation as in recitation 12)

For simplicity, let’s assume € — +00 so that labor supply is not differentiated. Set tax rate
7 = 0 or 7 is a constant. Now the flexible price p; = pt—|—log(9t9i1)+yt—yf = petxe Y —Yr —X
(refer to equation (2), use 6, to substitute ¢ and let € — 400).

Substitute p; into equation (3), we will have the Phillips curve

M1 — - A
= BEym + L (15_(1)\) ) (Ye — v + Xt — X)




le.
T = BEym + “(yt - ?Jtn) + uy

where k = W and uy = K(x¢ — X)-

_>

T = BEyTi1 + KU+

with 7; = y: — y;'. Now we can see that with markup shocks, the Phillips curve will have an
additional shock term w;. The Phillips curve comes from firms optimization problem, so we
sometimes also call u; supply shocks.

There are also other ways to introduce shocks to the Phillips curve, e.g. shocks to wage
markup will also introduce additional shocks to the Phillips curve. [ |

1.2 IS Curve

Now we turn to the demand side. The Euler equation for nominal bonds

w(ce) = B(1+ i) Ee(u'(corn)

We will introduce preference shocks as well: u(c;, hyy) = &llog Cyp — 2% = fo it edz then
we will get

et = Ei(cipr) — (ie — Ei(my1)) + E(&ep1) — &

With government spending, market clearing condition is y; = ¢; + g, —

Yo = Ey(yir1) — (i — Ee(m1)) + Ee(§eq1) — &+ Ei(gi1) — 9
Define the natural rate of interest as
e = By — u) + E(&) — &+ Ee(gev1) — o

It is also sometimes called Wicksellian rate.
Therefore, the IS curve is

Ue = Ei(Ji11) — (i — Ey(m1) — 17')
We can substitute i; — E;(m41) by 74
Ue = Ee(Ji1) — (1 — 1)
Iterate forward to get

+oo
- Z Ey(reyr — 7“?+k)
k=0

which establishes the relationship between today’s output gap and the long term interest
rate.
Note the Phillips curve and the IS curve are not enough to nail down the equilibrium,



since we have three variables 7y, y; and 7;. We will use a policy rule below as an additional
equation.

1.3 Taylor Rule

The Taylor rule is
i = Tf + Qpmy + ¢y?Jt + vy

or

1 = Ty +T? + (¢7r - 1)7Tt + (byyAt + vy

In the long run, we want m; = 0 (zero inflation steady state). The above rule satisfies
this property since when r; = 7, g; = 0, v; = 0, we will get m; = 0.

Assume ¢, > 1 to ensure a determinate price or inflation (refer to recitation 11).

We also assume ¢, > 0 so that when output gap is positive, the policy will increase
nominal interest rate (thus real interest rate, since price is sticky, inflation doesn’t change
much), so that demand for today’s consumption is lower (compared to the future), leading
to lower output today. It provides stabilization of output.

In sum, we obtain the Dynamic New Keynesian model: three equations for three variables,

T = BE T + kY +

Yt = Ei(Gi1) — (ir — Ey(mT41) — 1)
iy =1y + Op + OyYr +

The solution will be (g, m,4;) as functions of exogenous process (v, ug, ry'). In fact, one
can put the last equation into the second equation to eliminate ;, so that we have

Ur = E(Je41) + Ee(Ti41) — (0rme + Gyl + v1)
Together with the NK Phillips curve
Ty = BEiT + Ky +

Two equations for two variables: {m;,7;}. To guarantee stability, we have to restrict
the parameter space. For discussions about stability, one can refer to the Blanchard-Khan
condition after writing the system in matrix representation form.

2 Optimal Monetary Policy

The previous section takes monetary policy as given. This section will look at how to
design optimal monetary policy. So we will keep the Phillips curve and IS curve as constraints
but drop the monetary policy, compared to the previous section. The two constraints are:

e = BE T + Ky 4wy
U = Ei(Ge11) — (it — Ey(me41) — 17)



The objective function is to minimize a loss function
+oo
L=E) A+ A3~y
t=0

by choosing {m,} and {g;}, where A and y* are constants (here A does not represent the Calvo
changing price probability, it is only a constant). y* is non-zero when there is monopoly
distortion in steady state (remember we have monopolistic competitive firms). See the
Remark below for how to derive the loss function (basically, second order approximation)
and the details about the two constants.

Intuitively, inflation brings about price dispersion which means resource misallocation
(first term) but inflation can also push up output to correct monopolistic distortions (second
term).

Remark. (You don’t need to know the following derivation to prepare for exams, just
let you know how it Works) For simplicity, we again assume labor supply is not differ-

entiated, so that H, = fo Hjdi (then the utility function is U(C, H) = logC — vH, you
Cl o Hl

can change it to more complicated U(C, H) = S—- — 757-) and since labor is homoge-
neous, w; = w;; as well. We will shut down preference shock and ignore government
spending as well (but you can add them for exercise).

A representative household’s utility function is U(C, H). Do a second order Taylor ex-
pansion around steady state (C, H).

C,—C H, —H

Cy—C
+ U H 7 t

C

Hi—H,
H

1 1
U — U= UCC + §Uccc’2( )2 + §UhhH2(

Note that we have assumed utility is seperable in consumption and leisure so that U, = 0.

We will employ the following second order approximation for variable X:

X;—X X" —X
X X

:e”t—lzft+§ft2

where the log-deviation z; = log(X;) — log X. Therefore, up to second order, we get

_ B 1 -
Up — U m U6+ %b+mﬂw+—;%b

On the other hand,
zt ! Pzt —0 3-
Hy = Hztdl —d = ( ) "di
P,

_ Y Py, 0
hy = 7 — a; + log(/ (— 7 ) di) =~y — a; + 2varl{pzt}.
0 b

— (take log)



(for the price dispersion term above, see e.g. Gali (2008) book page 62) and ¢, = 3, —

. 1—-0_ 0 1+
Ut —-U= UCC(yt + Tyf) + UhH[yt — ay + 2@(17’@{}7“&} + T@(yt — at)2

~Lvart {pu}]
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Ignore terms higher than second order:

_ 1—0_ 0 1+
U —U=U.C(y + Tyf) + U, H[y, — ay + 2UCLTz{pzt} + Tw(yt - at)2]

Policy cannot affect a; term, so ignore it as well,

1 —-0_ 0 1+¢ _
U, —-U = UCC(yt + Tyf) + UhH[yt + ivan{pit} + Tsp(yt — at)2]

U, —U l—0 ., UyH

=1+ + [ +9var{ }+1+90
U.C =Yt B Y UC’yt i\Pit

9 (s _at)Q]

Since —%2 = W/P and C =Y = ;2 W/PH (recall 6 is the elasticity of substitution
across varletles)

u,-v _ 1—-o., 6—-1_ 0 lto
;fc(] =Y+ 5 i — 0 [yt—i-§vari{pit}+T¢(yt_at)2]
u-uv 1. 1—-o, 6-120 1+

9 (yt - at)z]

Again ignore terms that policy cannot affect (policy cannot affect a; but can affect ;) to
get

U.C :5yt+ 9 Yy — 7 [QUaTz{pzt}“‘

U,-U 1 6-1 o1, o+10-1, o1
U.C gt g v ;U g Bt D ha
%
U, —U 1 e+1)0—-1), o 242(p+1)0—1)a;
;]C :_5{(9—1)vari{p¢t}+[a—1+( >0( )]y?_ ( 0)( )tyt}

To be consistent with what we have used before, we take U(C, H) = logC — vH , so
that o = 1 and ¢ = 0 (caution: if we want to use a more general utility function form, e.g.
U(C,H) = ¢ UU —’yhﬁ; , we have to re-derive the natural rate of output, it is not necessarily
Yy =a; — log 7). Then

U,-U 1 0Ly 2220 Doy
;]CC’ - —5{(9 — Dwvar{ps} + 0 yf - (9 ) tyt}
— U, U 1 0 1 !
t— Y trn_ 1 Di ——— =)
e 2{(9 Lvarid{pu} + 0 G — ar 6 — 1) J



Denote z; = ; — a4, the above turns to

U,-U 1 o-1._ 1
o = 50— Dverdpah + =@ - —)7)

From Woodford (2003) book Chapter 6, > ,° ffvari{ps} = 6(1 A) 7 20 BT
The welfare gain (as a fraction of steady state consumptlon) is

-U

WG = EOZBt e

1 =, 1=N0-1) , 6-1,_ 1
=B Pl —gn gt g g1

Then the loss function L = —WG. Now let y* = ﬁ and notice that z; = 4 — a; =

U — log % — (a; —log eiil) = y; —y; which is in fact, the output gap y; we defined on page
2. |

2.1 No cost-push shocks and y* =

Consider a case without markup shocks, i.e. we shut down wu;. The problem becomes:
“+o00
min B B + Mg — y*)*]
t=0

s.t.
Ty = 5Et7rt+1 + Ky

Yr = Ee(Jer1) — (ie — Ee(msn) — 17')

Notice that in the objective function 7; doesn’t appear and it only appears in the second
constraint. Therefore, we can drop the second constraint.

If y* = 0 (for example, tax already corrects the distortion), the solution is 7, = 0 and
7 = 0. We obtain the divine coincidence: the optimal solution shows there is no trade-
off between stabilizing inflation and stabilizing output gap. Note that ¢, = 0 doesn’t mean
ye = 0. With g, = 0, we get y, = vy}, that is output moves one-to-one with natural level
of output, which can be affected by e.g. technology. As with nominal interest rate, we go
back to the second constraint to see that i; = r}’, which implies the policy rule should give
a coefficient of 1. Taylor rule satisfies this property.

In sum, the optimal policy is to stabilize inflation and let output fluctuate with the
natural level. Although we have a Phillips curve which features trade-off between inflation
and output gap, the optimal policy is not to exploit it.



2.2  With cost-push shocks and y* > 0

With cost-push shocks u; and y* > 0, the Lagrangean problem is to minimize

—+o0
E {lm} + Mt — v*)* + 2@ilm — By — ki — u]]}
t=0
First order conditions are

T+ @ —p—1 =10
A — y*) — kipr = 0

Combining the above two gives
A
T+ —ﬁ(yt - yt—l) =0

with initial my + %(gjo —y*) = 0. Note that ¢_; = 0 since policy hasn’t kicked in (assume
the policy design is conducted from ¢ = 0).
Since m, = p; — pi_1, We get

A A A -
De+ —Y=pPi1t —Y1=...=p1+ —Y*
K K K

which is a constant. This rule is price level targeting.
Plugging the F.O.C.s into the Phillips curve, we have

+oo
Pt = [pr—1 — [ Z B (kY + By )
=0

where 0 < p < 1 is a constant.

Without shocks, ¢; converges to a constant. So m; = ;1 — ¢, converges to 0. Notice
that it gradually converges to 0 instead of a flat line.

We have assumed commitment so far, i.e. the optimal policy plan is set at time 0 and the
central bank sticks to the original plan. Next we will consider the case without commitment.

2.3 Discretion

Policy will re-optimize each time, given its expectation Ey (1) = 7f for tomorrow. The
problem can be written as
min 72 + (g, — y*)?
s.t.
Ty = ,Bﬂ'te + /fgt + Ut
F.O.C. is

s (kG* + By + )

AT A2



Since Ey(miy1) = 7, we iterate forward the above to get

D
™= X o ) e )

Without any shocks, it is a flat line with positive value.

Discretion gives higher inflation than the commitment case in the long run or
under a positive cost-push shock. The intuition is that under discretion, the policy maker
doesn’t internalize their choice of high inflation will push up previous period’s inflation. The
temptation to inflate comes from the incentive to get closer to y* or to offset markup shocks
u; (uy increase means markup increase, i.e. more monopoly distortions, which requires higher
inflation to correct the distortion).
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