
Ordinary Di↵erential Equations

Macroeconomic Analysis Recitation 1

Yang Jiao⇤

1 Introduction
We will cover some basics of ordinary di↵erential equations (ODE). Within this class, we

deal with di↵erential equations, whose variable of interest takes derivative with respect to
time t. Denote Ẏt =

dYt
dt , where Yt can be a scalar or vector. A general explicit form of ODE

is
Ẏt = f(Yt, t) (1)

2 First-Order Di↵erential Equations
• Autonomous equation: ẏt = f(yt), an equation is autonomous when it depends on
time only through the variable itself. Example: kt = sk

↵
t � �kt, where s,↵ and � are

constants.

• Linear equation: ẏt = atyt + bt, where at and bt are taken as given. Example: ċt
ct

=
1
� (rt � ⇢), where � and ⇢ are parameters, while rt is a given function of t.

• Homogeneous: set the above linear di↵erential equation bt = 0. This terminology also
applies to high-order di↵erential equations: e.g. ÿt = gtẏt + htyt.

Autonomous equation can be solved (illustrated) graphically, while linear equation admits
analytical solution.

2.1 Analytical Solution

A homogeneous di↵erential equation

ẏt = atyt (2)

Divide both sides by yt,

ẏt

yt
= at (3)

⇤
Please email me if you find errors or typos to yj2279@columbia.edu. Your help will be greatly appreciated.

All comments and suggestions are especially welcome.
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) dlog(yt)

dt

= at (4)

Therefore,

yt = C exp(

Z t

0

asds) (5)

where C is determined by boundary condition.
A linear di↵erential equation

ẏt = atyt + bt (6)

Rearrange the above equation as

ẏt � atyt = bt (7)

Multiply both sides by exp(�
R t

0 asds), we obtain

ẏt exp(�
Z t

0

asds)� atyt exp(�
Z t

0

asds) = bt exp(�
Z t

0

asds) (8)

That is

d[yt exp(�
R t

0 asds)]

dt

= bt exp(�
Z t

0

asds) (9)

) yt = exp(

Z t

0

asds)(

Z t

0

bu exp(�
Z u

0

asds)du+ C) (10)

where C is pinned down by boundary condition.
Example

k̇t = sk

↵
t � �kt (11)

Define zt = k

1�↵
t , then

żt = (1� ↵)k�↵
t k̇t (12)

Substitute k̇t, kt by żt, zt, we arrive at

żt = s(1� ↵)� �(1� ↵)zt (13)

Let at = ��(1 � ↵) and bt = s(1 � ↵), and use the solution we already get in the linear
di↵erential equation.

zt =
s

�

+ (z0 �
s

�

) exp[��(1� ↵)t] (14)

) kt = {s
�

+ (k1�↵
0 � s

�

) exp[��(1� ↵)t]}
1

1�↵ (15)
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2.2 Graphical Solution

An autonomous equation
ẏt = f(yt) (16)

Solution Steps:

• Plot f(y) in the space of (y, ẏ). Put y on the x-axis and ẏ on the y-axis.

• Draw rightward arrows when f > 0, and leftward arrows when f < 0.

• Given an initial point, follow the arrows to track the dynamics of y.

Equilibrium and Stability: When ẏt = 0, we have f(y) = 0. The solutions to
f(yt) = 0 are equilibrium points. An equilibrium point y⇤ is said to be stable if f 0(y⇤) < 0
(or equivelently, write it as @ẏ

@y |y⇤ < 0). Intuitively, the arrows around the equilibrium point
direct to the stable equilibrium point. Or roughly speaking, after a small perturbation, yt
will finally go back to the equilibrium point.

Examples:

• ẏt = ayt + b, where a < 0. The equilibrium point is y⇤ = � b
a . Since

@ẏ
@y |y⇤ = a < 0, this

equilibrium point is stable. See Figure 1. (Figures are on the last two pages.)

• ẏt = ayt + b, where a > 0. The equilibrium point is y⇤ = � b
a . Since

@ẏ
@y |y⇤ = a > 0, this

equilibrium point is unstable. See Figure 2.

• Go back to our old friend, k̇t = sk

↵
t � �kt, with 0 < ↵ < 1. We have two equilibrium

points: k⇤ = ( s� )
1

1�↵ , k⇤⇤ = 0. Then @k̇
@k |k⇤ = �(↵�1) < 0 and @k̇

@k |k⇤⇤+ = +1. Therefore,
k

⇤ is stable and k

⇤⇤ is unstable. See Figure 3.

2.3 Linearization

Suppose we are interested in the dynamics around the equilibrium y

⇤.

ẏt = f(yt) ⇡ f(y⇤) + f

0(y⇤)(yt � y

⇤) = f

0(y⇤)(yt � y

⇤) (17)

Applying it to the above k̇t = sk

↵
t � �kt, we obtain

k̇t = (↵sk⇤↵�1 � �)(kt � k

⇤) (18)

3 Systems of Di↵erential Equations
3.1 Analytical Solution

Consider the linear system of di↵erential equation Ẏt = AtYt + Bt with At = A,Bt = 0.
A is a n⇥ n matrix with constant elements.
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A simple case is when A has n linearly independent eigenvectors v1, v2....vn, with corre-
sponding eigenvalues �1,�2, ...,�n. It is equivalent to say A is diagonalizable D = P

�1
AP ,

where the diagonal elements of D are �1,�2, ...,�n and the columns of P are v1, v2....vn.

Ẏt = AYt = PDP

�1
Yt (19)

) P

�1
Ẏt = P

�1
AYt = DP

�1
Yt (20)

Denote Zt = P

�1
Yt, we have

Żt = DZt (21)

) żit = �izit, i = 1, 2, ..., n (22)

) zit = ci exp(�it), i = 1, 2, ..., n (23)

Given Zt, we immediately get Yt = PZt.
One can follow the same steps above to show that Ẏt = AYt +Bt has analytical solution

as well.
Remark 1. If A is not diagnonalizable (for example, in a two-dimension case, we

may only have one linearly independent eigenvector), we can use another decomposition
T = U

�1
AU , where T is an upper triangular matrix. Denote Wt = U

�1
Yt, we have Ẇt =

TWt +U

�1
Bt, then solve wit by the order of wnt, wn�1,t, ..., w1t, where wit is the ith element

of Wt.
Remark 2. It is possible that eigenvalues are complex numbers, and eigenvectors are

complex vectors thus we obtain complex solutions. However, we want real solutions instead
of complex solutions. Apply the following observation: if pt + iqt is a solution to Ẏt = AYt

(pt � iqt should also be a solution), where pt and qt are real vectors, then pt and qt are also
the solutions. This is because Ẏt = ṗt + iq̇t = A(pt + iqt) = Apt + iAqt, then we arrive at
ṗt = Apt and q̇t = Aqt.

3.2 Graphical Solution (Phase Diagram)

Here we focus on two dimensions of system of di↵erential equations. That is we have two
variables y1 and y2 of interest.

˙y1t = f(y1t, y2t) (24)

˙y2t = g(y1t, y2t) (25)

Solution Steps:

• In the space (y1, y2), draw the lines of ˙y1t = 0 and ˙y2t = 0 respectively. Or equivalently
to say, draw both f(y1, y2) = 0 and g(y1, y2) = 0

• Draw rightward arrows when ˙y1t > 0, and leftward arrows when ˙y1t < 0

• Draw upward arrows when ˙y2t > 0, and downward arrows when ˙y2t < 0

• The intersections of ˙y1t = 0 and ˙y2t = 0 are equilibrium points. These points can be
stable, unstable or saddle path stable.
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• Given an initial point, follow the direction of arrows to track the dynamics of (y1t, y2t)

Remark. In macroeconomics,we usually have initial values of state varibles (instead of all
the varibles) and a transversality condition to uniquely determine the initial point and thus
the whole dynamics. For example, given y10 ( y1t is a state variable), we will pick up y20 (y2t
is a control variable). After picking up y20, we follow arrows and we need to ensure that we
will reach an equilibrium point which satisfies the transversality condition.

Example 1 Consider the following system of di↵erential equations of ct and kt.

k̇t = k

↵
t � �kt � ct (26)

ċt =
1

�

(↵k↵�1
t � � � ⇢)ct (27)

Boundary condition: initial state k0 and transversality condition limt!+1�tkt = 0. You will
see what transversality condition is in class, and it basically guarantees that the economy
will not explode or converge to a non-sense point (no-ponzi scheme). Note we will have a
unique saddle path. See Figure 4.

Example 2 Now we turn to a two dimension linear case Ẏt = AYt, where Yt = (y1t, y2t)0

and A is a 2 by 2 matrix with constant elements. We first write out the analytical solutions
(see the above Section 3.1 for how to solve it.). Suppose the eigenvalues of matrix A are �1

and �2.

• If �1 6= �2 and the two linearly independent eigenvectors are v1, v2, the solution is of
the form:

Yt = C1v1e
�1t + C2v2e

�2t (28)

• If �1 = �2 (must be a real number) and we have two linearly independent eigenvectors
v1, v2 , the solution is of the form:

Yt = C1v1e
�1t + C2v2e

�1t (29)

• If �1 = �2 (must be a real number) and we only have one linearly independent eigen-
vector v1, the solution is of the form:

Yt = C1v1e
�1t + C2(v1te

�1t + v2e
�1t) (30)

where v2 is the solution of (A� �1I)v2 = v1

Constants C1 and C2 are determined by boundary conditions.
Eigenvalues and Stability (Example 2)

• If the eigenvalues are both positive real numbers, the equilibrium is unstable. See
Figure 5.

• If the eigenvalues are both negative real numbers, the equilibrium is stable. See Figure
6.
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• If the real parts of the eigenvalues are of opposite sign (it also implies that there is
no complex part), the equilibrium is saddle path stable. Note this case is of special
interest in this class. See Figure 7.

• If the eigenvalues are both complex numbers and the real parts are both positive, the
system is unstable and oscillating. See Figure 8.

• If the eigenvalues are both complex numbers and the real parts are both negative, the
system converges to the steady state in an oscillating manner. See Figure 9.

3.3 Linearization

Suppose we are interested in the dynamics around equilibrium point. We proceed with
a two-dimension case.

˙y1t = f(y1t, y2t) ⇡ f(y⇤1, y
⇤
2) + f1(y

⇤
1, y

⇤
2)(y1t � y

⇤
1) + f2(y

⇤
1, y

⇤
2)(y2t � y

⇤
2) (31)

˙y2t = g(y1t, y2t) ⇡ g(y⇤1, y
⇤
2) + g1(y

⇤
1, y

⇤
2)(y1t � y

⇤
1) + g2(y

⇤
1, y

⇤
2)(y2t � y

⇤
2) (32)

Since we linearize around the equilibrium point, f(y⇤1, y
⇤
2) = 0 and g(y⇤1, y

⇤
2) = 0. That implies

Ẏt = A(Yt � Y

⇤) (33)

where Yt = (y1t, y2t)0 or
Żt = AZt (34)

where Zt = Yt � Y

⇤

Then the above formula goes back to the aformentioned homogeneous system of di↵er-
ential equation with constant coe�cient matrix.

Example
k̇t = k

↵
t � �kt � ct ⇡ (↵k⇤↵�1 � �)(kt � k

⇤)� (ct � c

⇤) (35)

ċt =
1

�

(↵k↵�1
t � � � ⇢)ct ⇡

↵(↵� 1)

�

c

⇤
k

⇤↵�2(kt � k

⇤) (36)

Pick up the equilibrium point with positive (k⇤
, c

⇤) and write the above in a more compact
form:

k̇t = �(kt � k

⇤)� (ct � c

⇤) (37)

ċt = �⌧(kt � k

⇤) (38)

with � > 0 and ⌧ > 0. The coe�cient matrix is (assume parameter 0 < ↵ < 1)

A =

✓
� �1
�⌧ 0

◆

One can show the eigenvalues of the above have opposite sign. Therefore, the equilibrium
is saddle path stable.
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3.4 Time Elimination Method

An illustrative example
k̇t = k

↵
t � �kt � ct (39)

ċt =
1

�

(↵k↵�1
t � � � ⇢)ct (40)

If we have policy function c(k), we can solve kt from

k̇ = k

↵ � �k � c(k) (41)

by using standard numerical method. In order to get c(k), we do the following

dc

dk

=
ċt

k̇t

=
1
� (↵k

↵�1 � � � ⇢)c(k)

k

↵ � �k � c(k)
(42)

Initial condition is given by steady state (k⇤
, c

⇤)
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Investment Theory

Macroeconomic Analysis Recitation 2

Yang Jiao⇤

In this note, our focus is 1). Linearization of the internal adjustment cost model. 2).
External adjustment cost model. I type the setup of internal adjustment cost as well in case
you can refer to it. We will come back to the comparison of the two investment models next
time.

1 Internal Adjustment Cost Model
1.1 Model Setup

Internal adjustment cost means in order to invest It, firms have to themselves forego
additional resources It'(

It
Kt
). Assume '(0) = 0, '0(·) > 0 and 2'0+ I

K'00 > 0. For simplicity,
assume depreciation rate � = 0.

V0 = max
Kt,Lt,It

Z +1

0

e�rt[AF (Kt, Lt)� wtLt � It(1 + '(
It
Kt

))]dt (1)

s.t.
K̇t = It (2)

Non-ponzi scheme: lim
t!1

e�rtKt � 0 (3)

K0 is given. (4)

1.2 Solve the Model

We first set up the Hamiltonian:

H = e�rt[AF (Kt, Lt)� wtLt � It(1 + '(
It
Kt

))] + �tIt (5)

First order conditions are:
AFL = wt (6)

⇤
Please email me if you find errors or typos to yj2279@columbia.edu. Your help will be greatly appreciated.

All comments and suggestions are especially welcome.

1



e�rt{�[1 + '(
It
Kt

) +
It
Kt

'0(
It
Kt

)]}+ �t = 0 (7)

e�rt[AFK + (
It
Kt

)2'0(
It
Kt

)] = ��̇t (8)

TV C : lim
t!+1

�tKt = 0 (9)

Denote current shadow price qt = ert�t, then F.O.C.s change to

AFL = wt (10)

qt = 1 + '(
It
Kt

) +
It
Kt

'0(
It
Kt

) (11)

q̇t = rqt � [AFK + (
It
Kt

)2'0(
It
Kt

)] (12)

TV C : lim
t!+1

e�rtqtKt = 0 (13)

Equation (11) establishes the relationship between qt and
It
Kt
. It is a one-to-one mapping

(by 2'0 + I
K'00 > 0, we know qt is an increasing function of It

Kt
).

It
Kt

= h(qt) (14)

From equation (11), when I
K = 0, q = 1, thus h(1) = 0 in equation (14).

To solve the model, capital accumulation equation has to be used as well (don’t foreget
it, since it is not listed in the first order conditions.).

K̇t = It = h(qt)Kt (15)

From the first order conditions, we also have

q̇t = rqt � [AFK + h2(qt)'
0(h(qt)] (16)

Now we have got a system of di↵erential equations for qt, Kt with initial condition K0 given
and TVC limt!+1 e�rtqtKt = 0.

Remark. In fact, the problem is complicated because labor input Lt will depend on
Kt, see equation (10). And Lt shows up in equation (16) FK(Kt, Lt) as well. Denote the
functional relationship derived from equation (10) as Lt = g(Kt). Then in equation (16),
one needs to substitute FK(K,L) by FK(K, g(K)). However, to simplify the analysis, we
assume labor demand Lt keeps fixed at L⇤ for the moment.

1.3 Graphical Solution (Phase Diagram)

• We first need to find the steady state. We will focus on the steady state with positive
(k⇤, q⇤).

h(q⇤) = 0 (17)
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rq⇤ = [AFK(K
⇤, L⇤) + h2(q⇤)'0(h(q⇤)] (18)

Since h(1) = 0 and h is monotonic, we immediately have q⇤ = 1. And then K⇤ =
F�1
K (r/A).

• It is easy to draw K̇t = 0, that is h(q) = 0 thus q = 1, a horizontal line in the space of
(K, q).

Since we will concentrate on the dynamics around the steady state, we would like to
know the slope of q̇t = 0 in a small neighborhood of (K⇤, q⇤). Denote the line q̇t = 0
as m(K, q) = 0,

m(K, q) = rq � [AFK(K,L⇤) + h2(q)'0(h(q))] (19)

For the line m(K, q) = 0, at point (K⇤, q⇤), by the implicit function theorem, the slope
is

dq

dK
|(K⇤,q⇤) = �@m/@K

@m/@q
=

AFKK(K⇤, L⇤)

r � 2h(q⇤)'0(h(q⇤))� h2(q⇤)'00(h(q⇤))h0(q⇤)
=

AFKK(K⇤, L⇤)

r
< 0

(20)
By continuity, in a small neighborhood of (K⇤, q⇤), the slope is also negative.

Remark 1. If we forget about the assumption that L⇤ is fixed, what we need for
dq
dK |(K⇤,q⇤) < 0 to hold is FKK(K⇤, g(K⇤)) + FK,L(K⇤, g(K⇤))g0(K⇤) < 0. In fact, to
justify the fixed L⇤, we may consider a general equilibrium model with fixed labor
supply L⇤, so wages will adjust to guarantee that labor demand equals labor supply
Lt = L⇤.
Remark 2. When we have capital depreciation rate � > 0 in this internal adjustment
cost model, the steady state q⇤ will not be 1. Please check how depreciation rate will
a↵ect steady state level of q⇤.

See Figure 1 for the phase diagram. When qt > 1, firms invest, thus capital stock
increases, while when qt < 1, firms disinvest thus capital stock decreases. That is to say
investment depends on qt.

1.4 Linearization

Around the steady state (K⇤, q⇤):

K̇t ⇡ h(q⇤)(Kt �K⇤) +K⇤h0(q⇤)(qt � q⇤) (21)

q̇t ⇡ �AFKK(K
⇤, L⇤)(Kt�K⇤)+ [r�2h(q⇤)'0(h(q⇤))�h2(q⇤)'00(h(q⇤))h0(q⇤)](qt� q⇤) (22)

Substituting the steady state property that h(q⇤) = h(1) = 0, we obtain

K̇t ⇡ K⇤h0(q⇤)(qt � q⇤) (23)

q̇t ⇡ �AFKK(K
⇤, L⇤)(Kt �K⇤) + r(qt � q⇤) (24)

Write the above in a more compact form

Żt = GZt (25)
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where Zt = (Kt �K⇤, qt � q⇤)0 and the coe�cient matrix is

G =

✓
0 K⇤h0(q⇤)

�AFKK(K⇤, L⇤) r

◆

The eigenvalues �1 and �2 satisty that

�1 ⇤ �2 = det(G) = K⇤h0(q⇤) ⇤ AFKK(K
⇤, L⇤) < 0 (26)

We conclude that eigenvalues must have opposite signs and they are real numbers thus this
system is saddle path stable.

Solving the eigenvalues explicitly, we have

� =
r ±

p
r2 � 4AFKKh0(q⇤)K⇤

2
(27)

Let �1 be the eigenvalue smaller than 0, and �2 larger than 0. The solution to the above
system of di↵erential equation is

Z1t = Kt �K⇤ =  11e
�1t + 12e

�2t (28)

Z2t = qt � q⇤ =  21e
�1t + 22e

�2t (29)

(Recall the result from recitation 1, a two-dimension linear system of di↵erential equation
with two di↵erent eigenvalues should have the solution form Zt = C1v1e�1t+C2v2e�2t, where
C1 and C2 are constants, v1 and v2 are eigenvectors, and �1 and �2 are eigenvalues. Therefore,
 11 = C1v11,  21 = C1v12,  12 = C2v21, and  22 = C2v22)

To let the system converge to (K⇤, q⇤), we must have  12 =  22 = 0 ( just set C2=0 ).
Otherwise, the solution would have a term e�2t going to infinity and TVC will be violated.
Now we are on the saddle path.

To determine  11 and  21, we need two conditions. First, the initial K0 is given

K0 �K⇤ =  11 (30)

Second, ( 11, 21)0 is the eigenvector of �1(v1 is an eigenvalue, then C1v1 is also an eigenvector
when C1 6= 0),

 21 =
�1 11

K⇤h0(q⇤)
=

�1(K0 �K⇤)

K⇤h0(q⇤)
(31)

In sum, we have determined all the dynamics of this linearized system analytically.
Additionally, initial q is given by

q0 = q⇤ + 21 = q⇤ +
�1(K0 �K⇤)

K⇤h0(q⇤)
(32)

2 External Adjustment Cost
In the above internal adjustment cost model, capital is owned by firms and firms bear the

adjustment cost. Now consider an alternative setting in which final goods producers purchase
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capital from capital goods producers. Final goods producers bear no adjustment cost while
capital good producers incur adjustment cost (modeled as a convex cost of production, i.e.
decreasing return to scale production technology). One can think that installation of capital
is done by capital good producers instead of final good producers.

2.1 Model Setup

2.1.1 Capital Goods Firms

To produce It capital goods, capital goods firms have to incur cost C(It). We assume
the cost function satisfies C(0) = 0, C 0(I) > 0 for I > 0, C 00(I) > 0 for I > 0 and
limI!+1 C 0(I) = +1. In short, cost function is convex and marginal cost goes to infinity
when producing infinite capital.

These firms are price takers, and their problem is

max
It

Z +1

0

e�rt[PItIt � C(It)]dt (33)

This is a static problem. It is equivalent to maximize PItIt � C(It) at each moment. The
first order condition is

PIt = C 0(It) (34)

Since C 00 > 0, PI is a strictly increasing function of I and the reverse is true as well:

I = h(PI) (35)

with h0(·) > 0. It is a supply function of capital goods.

2.1.2 Final Goods Producers

We assume final goods producers directly buy capital from capital good producers and
they don’t pay adjustment cost.

V0 = max
Kt,Lt,It

Z +1

0

e�rt[PtAF (Kt, Lt)� wtLt � PItIt]dt (36)

s.t.
K̇t = It � �Kt (37)

Non-ponzi scheme: lim
t!1

e�rtKt � 0 (38)

K0 is given. (39)

2.2 Solve the Model

We set up the Hamiltonian of final goods producers:

H = e�rt[PtAF (Kt, Lt)� wtLt � PItIt] + �t(It � �Kt) (40)
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First order conditions are:
AFL = w/P (41)

� e�rtPIt + �t = 0 (42)

e�rtPAFK � �t� = ��̇t (43)

TV C : lim
t!+1

�tKt = 0 (44)

Denote current shadow price qt = ert�t, then F.O.C.s change to

AFL = wt/Pt (45)

PIt = qt (46)

ṖIt = (r + �)PI � PAFK (47)

TV C : lim
t!+1

e�rtqtKt = 0 (48)

Remember we also have the capital accumulation equation, and plugging in the solution of
capital goods producers yields

K̇t = h(PIt)� �Kt (49)

Combining
ṖIt = (r + �)PIt � PAFK , (50)

initial condition K0 and TVC limt!+1 e�rtPItKt = 0, we are ready to solve a two-dimension
di↵erential equation system.

2.3 Housing Market Interpretation

• One can think of the capital goods producers as firms in construction sector who build
new houses. Final goods producers are real estate agents who will hire labor to provide
housing services.

• Capital stock is housing stock and real estate agents buy newly built houses from the
construction sector. Real estate agents are the owners of housing stock.

• We can view the newly produced capital goods It as residential investment. PAF (K,L)
are the rent income of real estate agents. PI is the price of a unit of newly built house.
We take final goods price P as given, but one can have a household side utility function
to derive a demand function for final goods, then P can be endogenized.

• Some of you asked why capital goods production has convex cost. Here is an interpre-
tation: since land supply is limited, building one house on the top of a skyscraper will
be more di�cult than building a house on the ground.

• Interest rate

r =
ṖI + PAFK � �PI

PI
(51)
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given by equation (50). It is a no-arbitrage condition: return from investing in a unit
of house is equal to the interest rate.

• Rearrange equation (50):
(r + �)PIt � ṖIt = PAFK (52)

Multiply both sides by e�(r+�)t, and take integral from 0 to +1 on both sides,

PI0 =

Z +1

0

e�(r+�)tPAFK(Kt, L
⇤)dt (53)

The price of a house is equal to the present value of all future rent income from the
house. Notice we have an addtional depreciation rate � in the equation, because in the
setup we assume � 6= 0.

Remark.You can use similar steps to get q0 in the internal adjustment cost model:

q0 =

Z +1

0

e�rt[AFK + (
It
Kt

)2'0(
It
Kt

)]dt (54)

The term ( It
Kt
)2'0( It

Kt
) captures the learning by doing benefit from installing capital

today.

2.4 Graphical Solution (Phase Diagram)

Setting K̇t = 0 and ṖIt = 0 leads to

h(PI) = �K (55)

PI =
PAFK(K,L⇤)

r + �
(56)

One is a positive relationship between K and PI , and the other is a negative relationship.
The steady state is given by the intersection of the above two lines. See Figure 2 for the
phase diagram.
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Investment Theory (continued)- Neoclassical Production

Functions

Macroeconomic Analysis Recitation 3

Yang Jiao⇤

1 Comparison of Internal and External Adjustment

Cost Models
Consider a permanent positive productivity shock to both models. See Figure 1 (internal

cost model) and Figure 2 (external cost model). In the external adjustment cost model, long
run q

⇤ = P

⇤
I

will increase, while in the internal adjustment cost model, steady state q

⇤ is
fixed at 1.

One may wonder are these two models really di↵erent? Adjustment cost is just adjust-
ment cost after all. Note the di↵erence we introduced in these two models: in the external
adjustment cost model, we add depreciation rate of capital, and assume the cost of producing
new capital is C(I) instead of I(1 + '( I

K

)) as in the internal adjustment cost model. Now
the question is whether these two di↵erences in modeling generate the di↵erent predictions
as shown in Figure 1 and Figure 2.

In the external adjustment cost model, in steady state, when K

⇤ changes, I⇤ = �K

⇤ will
change as well since we have depreciation rate � > 0. Then q

⇤ = P

⇤
I

= C

0(I⇤) will also
change. In order to make q

⇤ = P

⇤
I

not change with K

⇤ (i.e. a flat K̇

t

= 0 line), we need
to revise the cost function in the external adjustment cost model so that the marginal cost
of capital goods will not di↵er when we have a di↵erent K⇤. Here are two ways: 1) let the
marginal cost of new capital goods be a function of I � �K (in steady state I

⇤ � �K

⇤ will
always be 0). 2) let the marginal cost of new capital goods be a function of I

K

(in steady
state I

⇤

K

⇤ will always be �).

1.1 Capital Depreciation

Assume in the external adjustment cost model, cost function takes the form C̄(I) =
C(I � �K), therefore, replacing depreciated capital costs nothing: C̄(I⇤) = C(I⇤ � �K

⇤) =
C(0) = 0. Resolving the model shows:

P

It

= C̄

0(I) = C

0(I
t

� �K

t

) (1)

⇤
Please email me if you find errors or typos to yj2279@columbia.edu. Your help will be greatly appreciated.

All comments and suggestions are especially welcome.
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Capital accumulation function becomes

K̇

t

= I

t

� �K

t

= h(P
It

) (2)

In this way, you have a flat K̇
t

= 0 schedule: P
I

= h

�1(0).

1.2 I
K and I

In the internal adjustment cost model, the cost function is related to capital stock to
capture the learning by doing e↵ect, while in the external adjustment cost, we ignore it.
Now suppose in the external adjustment cost model, we also take into account the learning
by doing e↵ect and assume the margial cost of producing capital goods is a function of I

K

:

g( I

K

). For example, if C(I,K) = I(1+'(I/K)), we have g(I/K) = @C(I,K)
@I

= 1+'(I/K)+
I

K

'

0(I/K). Resolving the external adjustment cost model shows:

P

It

= g(
I

t

K

t

) (3)

The above establishes a relation
I

t

K

t

= h(P
It

) (4)

Capital accumulation function becomes

K̇

t

= I

t

� �K

t

= [h(P
It

)� �]K
t

(5)

We reach a flat K̇
t

= 0 as well: P
I

= h

�1(�).
Conclusion: these two investment models are essentially the same if we revise the cost

function in the external adjustment cost model to eliminate the di↵erences caused by
di↵erent modeling strategies in the two models.

Remark. We have discussed the line of K̇
t

= 0 for the two models, but what about
the line of q̇

t

= 0 ? In fact, there is externality that is not internalized. In the external
adjustment cost model, final goods producers don’t take into account that their purchasing
of newly built capital goods can decrease the cost of capital goods producers in the future.
That’s why when you set � = 0 and C(I,K) = I(1 + '(I/K)) in the external adjustment
cost model, you will get a di↵erent line for q̇

t

= 0 when comparing to the internal adjustment
cost model (please check what I am saying is correct).

2 Neoclassical Production Functions Y = F (K,L,A)

2.1 Basic Properties

The production function F : R3
+ ! R is twice continuously di↵erentiable to its three

arguments. A production function is called a neoclassical production function if the following
properties are satistied.
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• Constant returns to scale:

F (�K,�L,A) = �F (K,L,A) (6)

That is F (K,L,A) is homogeneous of degree one in K and L. Note A is non-rivalry,
so the replication principle doesn’t apply to A.

• Positive and diminishing returns to K and L:

@F

@K

> 0,
@F

@L

> 0 (7)

@

2
F

@K

2
< 0,

@

2
F

@L

2
< 0 (8)

If we increase the amount of one input, output will increase, but marginal product
will decrease as the input increases.

• Inada Conditions

lim
K!0

@F

@K

= lim
L!0

@F

@L

= 1 (9)

lim
K!+1

@F

@K

= lim
L!+1

@F

@L

= 0 (10)

Inada conditions can help us nail down interior solutions.

• Essentiality
F (K, 0, A) = F (0, L, A) = 0 (11)

Therefore, to produce a positive amount of output, a positive amount of each input
is required.

The first three properties imply the last essentiality property, so we don’t need to write
down the last essentiality property. See the following proof of this argument:
Proof. Recall L’ Hôpital’s Rule:
If lim

x!c

f(x) = lim
x!c

g(x) = 0 or ±1 and lim
x!c

f

0(x)
g

0(x) exists and g

0(x) 6= 0 around I which

is a small neighborhood of c, then lim
x!c

f(x)
g(x) = lim

x!c

f

0(x)
g

0(x)
Apply it to the following:

lim
K!+1

Y

K

= lim
K!1

@Y

@K

@K

@K

= lim
K!1

@Y

@K

= 0 (12)

The last equality comes from Inada conditions.
Note that by CRS (constant returns to scale)

lim
K!+1

Y

K

= lim
K!+1

F (1,
L

K

,A) = F (1, 0, A) (13)

which leads to

F (1, 0, A) = 0 (14)
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And F (L, 0, A) = L ⇤ F (1, 0, A) = 0 follows immediately. Similarly, one can prove that
F (0, K,A) = 0 as well.

Examples A constant elasticity of substitution (CES) production function

Y = F (K,L) = (aK
��1
� + bL

��1
� )

�

��1 (15)

where a � 0, b � and � � 0 are constants. � = � d ln(L/K)
d ln(F

L

/F

K

) , where F

K

and F

L

are partial
derivatives.

• When � ! +1, Y = aK + bL, perfect substitutability

• When � ! 0, Y = min{K,L}, perfect complementarity, Leontief. When Y =
F (K,L) = [(aK)

��1
� + (bL)

��1
� ]

�

��1 , and � ! 0, we have Y = min{aK, bL}. Note
the slight di↵erence.

• When � = 1, Y = K

↵

L

1�↵ with ↵ = a

a+b

, Cobb-Douglas.

We can use L’ Hôpital’s Rule to show when � ! 0 and � ! 1 , we are approaching
Leontief production function and Cobb-Douglas production function respectively.

2.2 Constant Returns to Scale and Zero Profit

Euler Theorem Suppose f : RM ! R is continuously di↵erentiable and homogeneous
of degree ↵, i.e.

8x 2 RM

, f(�x) = �

↵

f(x) (16)

then
MX

i=1

@f(x)

@x

i

x

i

= ↵f(x) (17)

Proof. Di↵erentiate both sides of equation (11) with respective to � and set � = 1.
For a constant returns to scale production function F (K,L,A), we know ↵ = 1. Apply

Euler Theorem,
F

K

K + F

L

L = F (18)

A profit maximization firm takes input price R and W and output price P as given and first
order conditions are PF

K

= R and PF

L

= W . Therefore, RK +WL = PF , or firms’ profit
PF � RK �WL = 0. Note the implicit assumption is that firms are price takers of input
and output.

Some may wonder that in investment theory, firms are price takers but they do have
profits. The reason is that in investment theory we study, firms are capital owners, and they
start with a capital stock K0 > 0.

2.3 Technological Progress

2.3.1 Three Production Function Forms

Three forms of production functions:
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• Hicks neutral: Y = A

t

F (K,L);

• Harrod neutral: Y = F (K,A

t

L);

• Solow neutral: Y = F (A
t

K,L).

Cobb-Douglas production function can be written as all of the above three forms.

2.3.2 Kaldor Facts

Kaldor facts about growth:

• Per capita output Y

L

grows over time, and its growth rate doesn’t tend to diminish.

• Physical capital per worker K

L

grows over time

• Return of capital R keeps nearly constant

• Ratio of physical capital to output K

Y

keeps nearly constant

• Labor share WL

Y

and capital share RK

Y

are nearly constant

• The growth rate of output per worker di↵ers substantially across countries

2.3.3 What Form of Technological Progress?

Suppose there is a production function:

Y

t

= F (K
t

, L

t

, A

t

) (19)

, if

• F exhibits constant returns to scale in K and L

• Resource constraint: K̇
t

= Y

t

� C

t

� �K

t

and saving rate is constant s

• Labor grows at a constant rate L̇

t

L

t

= n

• Capital stock grows at a constant rate K̇

t

K

t

= �

K

then the production function must be labor augmenting, i.e. Harrod neutral
Proof.

From the resource constraint
K̇

t

K

t

= s

Y

t

K

t

� � (20)

Since the left hand side is a constant �

K

, we immediately conclude that Y

K

is a constant
(consistent with one of the Kaldor facts).

Y

t

= F (B
t

K

t

, A

t

L

t

) (21)
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Note when B

t

and A

t

grow at the same rate, we will go to Hicks neutral case by CRS,
therefore, this form includes all three possible production function forms.

We additionally assume that technology will grow at a constant rate. Assume that Ḃ

t

B

t

= z

and Ȧ

t

A

t

= x. Without loss of generality, we let B0 = 1 and A0 = 1 so that B

t

= e

zt and
A

t

= e

xt. Then

Y

t

K

t

=
F (B

t

K

t

, A

t

L

t

)

K

t

= F (B
t

, A

t

L

t

K

t

) = B

t

F (1,
A

t

B

t

L

t

K

t

) = e

zt

F (1, e(x�z)t Lt

K

t

) (22)

Since labor grows at a constant rate n and capital grows at a constant rate of �
K

(again, for
simplicity assume L0 = 1 and K0 = 1), we get

Y

t

K

t

= e

zt

F (1, e(x�z+n��

K

)t) (23)

Define '(·) = F (1, ·) to obtain

Y

t

K

t

= e

zt

'(e(x�z+n��

K

)t) (24)

We have proved that Y

t

K

t

is a constant, and now we discuss two scinarios:
1). If x� z+n� �

K

= 0 thus x = �

K

�n, we need to have z = 0, which means A
t

grows
at a constant rate and B

t

is a constant . So the production function is labor augmenting.

2). If x� z + n� �

K

6= 0, we still need to have @[ezt'(e(x�z+n��

K

)t)]
@t

= 0 which implies

'

0(�)�

'(�)
=

�z

n+ x� z � �

K

(25)

where � = e

(x�z+n��

K

)t. Notice that we need to require n+ x� z � �

K

is non-zero here.
Solve the above di↵erential equation to reach

'(�) = constant · �1�↵ (26)

where ↵ is a constant. Substitute back to the production function to finally write out

F (B
t

K

t

, A

t

L

t

) = B

t

K

t

· F (1,
A

t

L

t

B

t

K

t

) = B

t

K

t

(
A

t

L

t

B

t

K

t

)1�↵ = constant ·K↵

t

(L
t

e

⌫t)1�↵ (27)

where ⌫ = z↵+x(1�↵)
1�↵

. This Cobb-Douglas production function also belongs to labor aug-
menting production function.

We then conclude that production function takes the labor augmenting form.
Remark. We can use other ways to prove the labor augmenting production function.

First, since Y/K is constant and K grows at a constant rate of �
K

, Y will also grow at a
constant rate �

Y

and �

Y

= �

K

. At time 0 (pick up an arbitrary time T should work as well),
the production function is

Y0 = F (K0, L0, A0) (28)
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Multiply both sides by e

�

K

t, we obtain

e

�

K

t

Y0 = F (e�K t

K0, e
�

K

t

L0, A0) (29)

Y

t

= F (K
t

, e

(g
K

�n)t
L

t

, A0) (30)

Denote Ā

t

= e

(g
K

�n)t and re-write

Y

t

= F (K
t

, e

(�
K

�n)t
L

t

, A0) = F (K
t

, Ā

t

L

t

, A0) = F̄ (K
t

, Ā

t

L

t

) (31)

where Ā

t

= e

(�
K

�n)t. The above F̄ (K
t

, Ā

t

L

t

) is already a labor augmenting production
function.
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Growth Model with Exogenous Saving Rate

Macroeconomic Analysis Recitation 4&5

Yang Jiao⇤

1 Extensions of Solow-Swan Model
1.1 Solow-Swan Model with Technolgy Progress

Now we introduce technology progress as well. Assume we have a neoclassical production
function Y = F (K

t

, A
t

L
t

), where technology A
t

grows at a constant rate �
A

and labor L
t

grows at n. All else equal as in the Solow-Swan model we studied in class.

Ȧ
t

A
t

= �
A

(1)

L̇
t

L
t

= n (2)

Define lowercase letter variable x
t

= Xt
AtLt

where X = Y,K.

y
t

=
Y
t

A
t

L
t

= F (k
t

, 1) = f(k
t

) (3)

The last equality is just a definition of f(·).
Capital accumulation equation

K̇
t

= I
t

� �K
t

= sY
t

� �K
t

(4)

Divide both sides by K
t

to obtain
K̇

t

K
t

= s
Y
t

K
t

+ � (5)

First,
Y
t

K
t

=
y
t

k
t

=
f(k

t

)

k
t

(6)

Second,

k
t

=
K

t

A
t

L
t

! k̇
t

k
t

=
K̇

t

K
t

� Ȧ
t

A
t

� L̇
t

L
t

(7)

⇤
Please email me if you find errors or typos to yj2279@columbia.edu. Your help will be greatly appreciated.

All comments and suggestions are especially welcome.
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! K̇
t

K
t

=
k̇
t

k
t

+ �
A

+ n (8)

Substitute equation (6) and (8) to equation (5) to get

k̇
t

k
t

= s
f(k

t

)

k
t

� (� + n+ �
A

) (9)

Note the interpretation of k
t

or y
t

is no longer per capita variables. k
t

A
t

and y
t

A
t

are
per capita terms instead.

1.2 A Model with Poverty Trap

Suppose the economy has access to two possible technologies,

Y
A

= AK↵L1�↵ (10)

Y
B

= BK↵L1�↵ � bL (11)

where B > A, and b > 0.
In per capita terms, the production functions become

y
A

= Ak↵ (12)

y
B

= Bk↵ � b (13)

The economy will compare and decide which technology to use and it will depend on
the level of k. There is a level of capital k̃ = ( b

B�A

)1/↵ such that when k > k̃, the economy

chooses technology B to produce, otherwise when k  k̃, the economy chooses technology A
.

From the Solow-Swan model, we have

k̇

k
= sf(k)/k � (n+ �) (14)

Here f(k) = Ak↵ when k  k̃, and f(k) = Bk↵ � b when k > k̃.
It is easy to draw sf(k)/k when k  k̃, since it is strictly decreasing. However, when

k > k̃, function h(k) := sf(k)/k = Bk↵�1 � b

k

may not be a monotonic function. There is a

cuto↵ k̄ = ( b

B(1�↵))
1
↵ such that when k < k̄, h(k) is decreasing in k, and when k � k̄, h(k)

is increasing in k.
If k̄ > k̃, sf(k)/k will first decrease then increase and finally decrease. To determine the

steady state, we also need to plot a horizontal line n + �. One particularly interesting case
is shown in Figure 1. There are three steady states. And two of them are stable. It means
the initial level k0 matters for the long run steady state. A country with very little k0 will
end up with a steady state of lower output per capita (poverty trap).
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If k̄  k̃, sf(k)/k will always decrease with k. There is only one stable steady state. See
Figure 2.

1.3 A Model with Physical Capital K and Human Capital H

Now we introduce both physical capital and human capital into the Slow-Swan model.
Let’s assume a Cobb-Douglas production function:

Y
t

= K↵

t

H⌘

t

(A
t

L
t

)1�↵�⌘

where A
t

is technology which grows at rate �
A

and L
t

is labor force which grows at rate n.
Parameters satisty 0 < ↵ + ⌘ < 1.

Divide both sides by A
t

L
t

:

y
t

= k↵

t

h⌘

t

There are two possible ways to introduce exogenous saving rates. 1) exogenous saving
rate s for the sum of physical capital and human capital, and the economy will decide how
to allocate between physical capital and human capital 2) exogenous saving rates s

k

and s
h

for physical capital and human capital respectively.
For the first case, the law of motion of the sum of physical and human capital is

k̇ + ḣ = sk↵h⌘ � (� + n+ �
A

)(k + h)

Additionally, households allocate between human capital and physical capital so that the
marginal returns are equalized:

MPK � � = MPH � �

That is ↵h = ⌘k. Substitute back to the law of motion equation to eliminate h, we can
get

k̇ = s(
⌘⌘↵1�⌘

↵ + ⌘
)k↵+⌘ � (� + n+ �

A

)k

For the second case, the law of motions of physical and human capital are

k̇ = s
k

k↵h⌘ � (� + n+ �
A

)k

ḣ = s
h

k↵h⌘ � (� + n+ �
A

)h

Notice that in the second case, we cannot impose the condition that MPK� � = MPH� �.
This is because, once we have exogenous saving rates for both physical and human capital,
then given k0, h0, the path for k

t

and h
t

are pinned down by the two law of motions. There
is no freedom to adjust k

t

or h
t

to equalize marginal returns of physical and human capital.
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2 Golden Rule
In the Solow-Swan model, consumption is

c
t

= (1� s)f(k
t

) (15)

In the steady state k⇤ is a function of saving rate s and higher s leads to higher k⇤ thus
higher output per capita f(k⇤). However, higher saving rate also means smaller fraction of
output per capita will go to consumption. So there is a trade-o↵ here if one wants to achieve
higher consumption. The question is what value of saving rate s can deliver the highest
steady state consumption c⇤.

We want to maximize the following by choosing s

c⇤ = (1� s)f [k⇤(s)] (16)

In steady state, sf(k⇤) = (n+ �)k⇤, therefore, our objective is to maximize

c⇤ = (1� s)f [k⇤(s)] = f [k⇤(s)]� (n+ �)k⇤(s) (17)

First order condition:

{f 0[k⇤(s)]� (n+ �)}dk
⇤(s)

ds
= 0 (18)

As dk

⇤(s)
ds

> 0, we have
f 0[k⇤(s)] = (n+ �) (19)

Denote the corresponding k⇤ as k
gold

, saving rate s as s
gold

.

f 0(k
gold

) = n+ � (20)

Once we have k
gold

, we can use the relationship k⇤(s) to infer s
gold

.
Remark. With Cobb-Douglas production function (capital share ↵), the above condition

becomes
↵k↵�1

gold

= n+ � (21)

and we also know that in the Solow-Swan model, in steady state

sf(k
gold

) = (n+ �)k
gold

(22)

i.e.
sk↵

gold

= (n+ �)k
gold

(23)

Comparing equation (21) and (22) we conclude that s
gold

= ↵ for this special case.

3 Absolute and Conditional Convergence
3.1 Absolute Convergence

In the Solow-Swan model,
k̇

k
= s

f(k)

k
� (� + n) (24)
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So the growth rate k̇

k

depends on the level of k.

d( k̇
k

)

dk
= s

f 0(k)� kf(k)

k2
< 0 (25)

This implies higher the level of capital per capita, the slower the growth rate of capi-
tal per capita: poor countries should grow faster than rich countries. Note the underlying
assumption is that poor countries and rich countries share the similar characteristics (pa-
rameters). The hypothesis that poor countries tend to grow faster than rich ones without
conditioning on any other characteristics of economies is called absolute convergence (i.e. a
negative relationship between the level of output per capita and the growth rate of output
per capita).

In the data, when we have a broad set of countries (countries from both poor countries
and rich countries), the hypothesis in fact fails. While if we look at more homogeneous
groups, e.g. only OECD countries or states within U.S., evidence accepts the hypothesis
instead.

3.2 Conditional Convergence

Next we drop the assumption that countries share similar characteristics. We will proceed
with a simple example. Suppose two countries only di↵er in their saving rates. So they will
also di↵er in their steady state k⇤. The country with higher saving rate will have higher k⇤.
Again the growth rate of capital per capita is

k̇

k
= s

f(k)

k
� (� + n) (26)

and in steady state

s
f(k⇤)

k⇤ = (� + n) (27)

Substitute equation (27) to equation (26) to eliminate s.

k̇

k
= (� + n)[

f(k)/k

f(k⇤)/k⇤ � 1] (28)

Assume the production function is in Cobb-Douglas form, then

k̇

k
= (� + n)[(

k

k⇤ )
↵�1 � 1] (29)

Then it is clear that the growth rate depends on the distance of k to steady state k⇤ ( k

k

⇤

matters). It becomes possible that a richer country can grow faster than a poorer country
as they have di↵erent steady states.

Therefore, in order to account for the di↵erence in these two countries’ growth rate, one
has to look at both the current level of k

t

and the steady state level k⇤ which depends on
country characteristics, i.e. country characteristics matter. After controling variables that
proxy for di↵erences in steady state positions, we can get a significantly negative relationship
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between per capita growth rate and the log of initial real per capita GDP. In short, data
supports the conditional convergence hypothesis.

4 The Speed of Convergence
We have discussed roughly about the speed of convergence. Now we formally define this

concept speed of convergence as

� = �@(k̇/k)

@logk
(30)

We assume that countries are near to their steady state (in order to use approximations).
We will also adopt Cobb-Douglas production function.

k̇

k
= sAk↵�1 � (� + n+ �

A

) = sAe(↵�1)log(k) � (� + n+ �
A

) (31)

Around the steady state

�⇤ = �@(k̇/k)

@logk
|
k

⇤ = �@(sAe(↵�1)logk � (� + n+ �
A

))

@logk
|
k

⇤ = (1� ↵)sAk⇤↵�1 (32)

Recall that with technology progress in steady state sAk⇤↵�1 = � + n+ �
A

.

�⇤ = (1� ↵)(� + n+ �) (33)

The above procedures are equivalent (the same thing) to first log-linearize the right hand
side of equation (31) and take the coe�cient directly

k̇

k
= sAk↵�1�(�+n) ⇡ �@(sAe(↵�1)logk � (� + n+ �

A

))

@logk
|
k

⇤(logk�logk⇤) = ��⇤(logk�logk⇤)

(34)
Remark. A more general form of log-linearization is the following. Assume we want to

log-linearize a multivariate function y = f(x1, ..., xn

) around x⇤.

y = f(x1, ..., xn

) = f(elog(x1), ..., elog(xn)) (35)

Define z
i

= log(x
i

), then the first order approximation is

y = f(x1, ..., xn

) = f(ez1 , ..., ezn) ⇡
nX

i=1

@f

@x
i

|
x

⇤ ·ez⇤i ·(z
i

�z⇤
i

) =
nX

i=1

@f

@x
i

|
x

⇤ ·x⇤
i

·[log(x
i

)�log(x⇤
i

)]

(36)
Notice for the left hand side, we didn’t do any thing. In the future (the second half of

this semester), we will do log-linearization on both sides. We are interested in the percentage
deviation of variables from its steady state. You can ignore the following now.

y = f(x1, ..., xn

) (37)

6



Then

log(y)� log(y⇤) =
nX

i=1

@f

@xi
|
x

⇤

f(x⇤
1, ..., x

⇤
n

)
· x⇤

i

· [log(x
i

)� log(x⇤
i

)] (38)

We will come back to this later in the second half of the semester.

5 Some Other Empirical Issues
5.1 Capital Stock Measurement

Perpetual Inventory Method (PIM) is so far perhaps the most popular way to compute
gross capital stock. In discrete time, capital accumulation is

K
t+1 = (1� �)K

t

+ I
t

(39)

! K
t

=
+1X

i=0

(1� �)iI
t�(i+1) (40)

But unfortunately in the data, we don’t have an infinite series of investment.

K
t

= (1� �)t�1K0 +
t�1X

i=0

(1� �)iI
t�(i+1) (41)

How to get the initial capital stock K0?
In neoclassical growth model, under balanced growth path (constant growth rate)

g
GDP

= g
K

=
K

t

�K
t�1

K
t�1

=
I
t

K
t�1

� � (42)

Therefore,

K0 =
I1

g
GDP

+ �
(43)

But the economy may not be on a balanced growth path, we can use g
I

instead of g
GDP

,
it is still an approximation anyway.

K0 =
I1

g
I

+ �
(44)

To obtain g
I

, we can choose a three-year average or more years’ average.

5.2 Growth Accounting

Assume the production function is

Y
t

= A
t

K↵

t

L1�↵

t

(45)
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Define

SR
t

=
Y
t

K↵

t

L1�↵

t

(46)

Then we get the data of SR.

˙SR
t

SR
t

=
Ẏ
t

Y
t

� ↵
K̇

t

K
t

� (1� ↵)
L̇
t

L
t

(47)

sr
t

=
˙

SRt
SRt

is the Solow residual: the growth of output that cannot be accounted by the
growth of capital and labor.

Ẏ
t

Y
t

= sr
t

+ ↵
K̇

t

K
t

+ (1� ↵)
L̇
t

L
t

(48)

or write it in discrete time

Y
t

� Y
t�1

Y
t�1

=
SR

t

� SR
t�1

SR
t�1

+ ↵
K

t

�K
t�1

K
t�1

+ (1� ↵)
L
t

� L
t�1

L
t�1

(49)

This equation can be used to find out the sources of a particular economy’s economic
growth. Alwyn Young (1995, QJE) uses this method (not exactly the same, e.g. they use
a more complicated production function and take human capital into account as well etc.,
but the main idea is similar) to show that the East Asian growth miracles are largely due to

capital accumulation K̇t
Kt

and increasing labor force participation L̇t
Lt
.
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Endogenous Growth Models

Macroeconomic Analysis Recitation 6

Yang Jiao⇤

1 A Congestion Model
In class, we learned a growth model with government spending. In that model, production

function is Yi = AL1�↵
i K↵

i G
1�↵, where G is government spending. In this setup, government

spending is a public good. However, in reality, many government spending is not, such
as highways. Now we introduce a congestion model with a continuum of firms, where the
production function for firm i 2 [0, 1] is

Yi = AK↵
i L

1�↵
i f(G/K) (1)

where G is government spending and K is aggregate capital: K =
R 1

0 Kidi. We assume that
f satisfies f 0 > 0 and f 00 < 0.

1.1 Decentralization

Firms’ problem is static as before

max
Kit,Lit

AK↵
itL

1�↵
it f(G/K)� wtLit �RtKit (2)

F.O.C.s are
↵AK↵�1

it L1�↵
it f(G/K) = Rt (3)

(1� ↵)AK↵
itL

�↵
it f(G/K) = wt (4)

In equilibrium L =
R 1

0 Lidi as well, and all firms are symmetric, so Lit = L, Kit = K for
i 2 [0, 1].

In per capita terms:
↵Ak↵�1

t f(gt/kt) = Rt (5)

(1� ↵)Ak↵t f(gt/kt) = wt (6)

Households’ problem is quite standard as in Ramsey model,

⇤
Please email me if you find errors or typos to yj2279@columbia.edu. Your help will be greatly appreciated.

All comments and suggestions are especially welcome.
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max
at,ct

Z +1

0

e�(⇢�n)t c
1�✓
t � 1

1� ✓
dt (7)

s.t.
ȧt = rtat + wt � ct � nat � ⌧t (8)

lim
t!+1

e�rtat � 0 (9)

with a0 > 0 given. ⌧t is a lump sum tax in per capita term ⌧t =
Tt
Lt
.

Set up the Hamiltonian

H = e�(⇢�n)t c
1�✓
t � 1

1� ✓
+ �t(rtat + wt � ct � nat � ⌧t) (10)

F.O.C.s are
e�(⇢�n)tc�✓t � �t = 0 (11)

� �̇t = �t(rt � n) (12)

lim
t!+1

�tat = 0 (13)

Therefore,
ċt
ct

=
1

✓
(rt � ⇢) (14)

The rate of return from investing in risk free bond is rt and the rate of return from
investing in physical capital is Rt � �. By no arbitrage condition, they are equal

rt = Rt � � (15)

Market clearing condition gives

at = kt + bt (16)

and bt = 0.
Balanced government budget:

Gt = Tt (17)

or in per capita term
gt = ⌧t (18)

We conclude that equation (14) and (15) gives the Euler equation is

ċt
ct

=
1

✓
(↵Ak↵�1

t f(gt/kt)� � � ⇢) (19)

The law of motion of capital comes from equation (3)(4)(8)(15)

k̇t = Ak↵�1
t f(gt/kt)� ct � (n+ �)kt � gt (20)
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Notice we haven’t chosen the sequence of gt yet to maximize household utility. That’s
going to be a very complicated problem. Perhaps what we can do is to let the government
set a constant g and compare steady states to choose an optimal fiscal policy g.

We are interested in whether the above decentralization problem is socially optimal.

1.2 Social Planner

Social planner maximizes household utility subject to resource constraint.

max
at,ct

Z +1

0

e�(⇢�n)t c
1�✓
t � 1

1� ✓
dt (21)

s.t.
k̇t = Ak↵�1

t f(gt/kt)� ct � (n+ �)kt � gt (22)

From F.O.C.s, we derive Euler equation

ċt
ct

=
1

✓
(↵Ak↵�1

t [f(gt/kt)�
gt
kt
f 0(

gt
kt
)]� � � ⇢) (23)

What we find is that the decentralized case doesn’t have the same formula of the Euler
equation as that of the social planner’s problem. The externality comes from the fact that
each individual firm doesn’t consider their capital choice’s congestion e↵ect on other firms,
so they over employ capital: a traditional Tragedy of Commons problem.

To have a rough idea why we think decentralized case will over accumulate capital, we
can assume a common steady state policy g for these two cases. Then we compare the steady
state k, which comes from the Euler equation. For decentralized case, in steady state

↵Ak↵�1f(g/k) = � + ⇢

For social planner, in steady state

↵Ak↵�1f(g/k) =
g

k
f 0(g/k) + � + ⇢ > � + ⇢

Comparing the above two equations, it is easy to verify that decentralized case have higher
steady state k.

Remark. We deliberately choose a lump sum tax in order not to impose additional
externality so that we can isolate the aformentioned externality which firms don’t internize.

2 A Rising Cost of R&D model
In class, we learned a expanding variety model of growth with constant R&D cost. Now

let’s turn to a setting with increasing cost of R&D: ⌘0(N) > 0. Specifically, let’s assume
that

⌘(N) = �N� (24)

Free entry condition says
Vt = ⌘(Nt) = �N�

t (25)
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Remark. Free entry condition above holds only when there is positive entry. In general, it
should be a complementary slackness condition Ṅt[⌘(Nt)� Vt] = 0, Ṅt � 0 and ⌘(Nt) � Vt.
So if Ṅt is strictly greater than 0, we will have ⌘(Nt) = Vt.

Interest rate

rt =
⇡ + V̇t

Vt
=

⇡

�N�
t

+ �
Ṅt

Nt
(26)

Households’ problem is Z +1

0

e�⇢t
c1�✓t � 1

1� ✓
dt (27)

s.t.
ȧt = wtL+ rtat � Ct (28)

The Euler equation from the above households’ problem is

Ċt

Ct
=

1

✓
(rt � ⇢) =

1

✓
(
⇡

�N�
t

+ �
Ṅt

Nt
� ⇢) (29)

When � = 0, we go back to the case where innovation cost is constant, and this equation
alone can tell us the growth rate of Ct. However, now we have to deal with the dynamics of
Nt as well.

Note in this model, the asset held by households is the market value of all firms a =
⌘ ·N . Cobb-Douglas final good production function means wL = (1� ↵)Y . Plug these two
equations and also equation (26) into equation (28) to generate

⌘(Nt)Ṅt = Nt⇡ + (1� ↵)Yt � Ct (30)

Since Y = AL1�↵PN
j=1 X

↵
j , Xj = A

1
1�↵↵

2
1�↵L and ⇡ = LA

1
1�↵ 1�↵

↵ ↵
2

1�↵ = LA
1

1�↵ (↵ �
↵2)↵

2↵
1�↵ (One can check that by some manipulation, we can express the above as ⌘Ṅt =

Yt � Ct �Xt which is in fact the resource constraint), we obtain

⌘(Nt)Ṅt = Nt⇡ + (1� ↵)Yt � Ct = (1� ↵2)A
1

1�↵↵
2↵
1�↵LNt � Ct (31)

That is
Ṅt

Nt
=
 

�
N��

t � Ct

�
N�(1+�)

t (32)

with  = (1� ↵2)A
1

1�↵↵
2↵
1�↵L

Substitute equation (32) to equation (29) to yield

Ċt

Ct
=

1

✓
(rt � ⇢) =

1

✓
(
⇡

�
N��

t + �
 

�
N��

t � �
Ct

�
N�(1+�)

t � ⇢) (33)

Equation (32) and (33) define a di↵erential equation system.
To sum up, the main procedure is first we start from Euler equation and households’

budget constraint, and then we try to substitute variables except Ct and Nt.
We then display the phase diagram. See Figure 1. Nm = ( ⇡+� 

⇢�(1+�))
1/� and N⇤ = ( ⇡⇢�)

1/�.
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Notice Nm > N⇤ because of  > ⇡.
In this rising cost of R&D setting, there is no long run growth. While with constant

R&D cost, we do have long run growth.
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Consumption & Hours Worked

Macroeconomic Analysis Recitation 7

Yang Jiao∗

1 Natural Debt Limit and No Ponzi Scheme
In class, we learned that we can derive the natural debt limit from intertemporal budget

constraint and no ponzi scheme. In fact, we can prove the equivalence between the natural
debt limit and the no ponzi scheme, given the budget constraint. We first review how to go
from no ponzi scheme to natural debt limit.

Assume there is no uncertainty and interest rate is fixed at r.
”⇐=” For arbitrary j ≤ T , the intertemporal budget constraint is

T∑
t=j

(1 + r)j−tct +
aT+1

(1 + r)T−j
= (1 + r)aj +

T∑
t=j

(1 + r)j−twt

Since ct ≥ 0, then the above says

(1 + r)aj +
T∑
t=j

(1 + r)j−twt ≥
aT+1

(1 + r)T−j

Let T goes to infinity and we know no ponzi scheme requires

lim
T→+∞

[
aT+1

(1 + r)T+1
] ≥ 0

Therefore,

aj ≥
+∞∑
t=j

(1 + r)j−t−1wt

When wt is a constant,

aj ≥ −
w

r

which is the natural debt limit.
”=⇒” The natural debt limit is

at ≥ −
w

r

∗Please email me if you find errors or typos to yj2279@columbia.edu. Your help will be greatly appreciated.
All comments and suggestions are especially welcome.
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Then
at

(1 + r)t
≥ − w

r(1 + r)t

Take limit of t→ +∞, we have the right hand side goes to 0, thus

lim
t→+∞

at
(1 + r)t

≥ 0

2 Marginal Propensity to Consume
2.1 Continuous Time

max
ct

∫ +∞

0

e−(ρ−n)t
c1−γt − 1

1− γ
dt

s.t.
ȧt = (rt − n)at + wt − ct

lim
T→+∞

aT e
−

∫ T
0 (rs−n)ds ≥ 0

The Euler equation from the above equation is

ċt
ct

=
1

γ
(rt − ρ)

and the budget constraint is
ȧt − (rt − n)at = wt − ct

Multiply both sides by e−
∫ t
0 (rs−n)ds of the budget constraint and integrate from 0 to +∞

to yield∫ +∞

0

[ȧt − (rt − n)at]e
−

∫ t
0 (rs−n)dsdt =

∫ +∞

0

wte
−

∫ t
0 (rs−n)dsdt−

∫ +∞

0

cte
−

∫ t
0 (rs−n)dsdt

Euler equation implies

ct = c0e
∫ t
0

1
γ
(rs−ρ)ds

So we obtain∫ +∞

0

[ȧt−(rt−n)at]e
−

∫ t
0 (rs−n)dsdt =

∫ +∞

0

wte
−

∫ t
0 (rs−n)dsdt−

∫ +∞

0

c0e
∫ t
0

1
γ
(rs−ρ)dse−

∫ t
0 (rs−n)dsdt

0− a0 =

∫ +∞

0

wte
−

∫ t
0 (rs−n)dsdt− c0

∫ +∞

0

e
∫ t
0

1
γ
(rs−ρ)ds−

∫ t
0 (rs−n)dsdt

c0

∫ +∞

0

e
∫ t
0

1
γ
(rs−ρ)ds−

∫ t
0 (rs−n)dsdt = (a0 +

∫ +∞

0

wte
−

∫ t
0 (rs−n)dsdt)

Finally, write
c0 = MPC0(a0 + PV0)
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where MPC−10 =
∫ +∞
0

e
∫ t
0

1
γ
(rs−ρ)ds−

∫ t
0 (rs−n)dsdt and PV0 =

∫ +∞
0

wte
−

∫ t
0 (rs−n)dsdt.

Intuitively, consumption is a fraction of the present value of his wealth.

2.2 Discrete Time

For simplicity, assume rt = r.
The Bellman equation is

V (a) = max
a′≥−w

r

{u((1 + r)a+ w − a′) + βV (a′)}

F.O.C. for a′ is
−u′(c) + βV ′(a′) = 0

Envelope theorem:
V ′(a) = (1 + r)u′(c)

Combine the above two to get Euler equation

u′(c) = β(1 + r)u′(c′)

For CRRA utility (the same utility as in the continuous time case above), Euler equation
becomes

c′ = [β(1 + r)]
1
γ c

which leads to
ct = [β(1 + r)]

t
γ c0

Recall that the lifetime budget constraint is

+∞∑
t=0

(1 + r)−tct = (1 + r)a0 +
+∞∑
t=0

(1 + r)−twt

Substitute ct,
+∞∑
t=0

(1 + r)−t[β(1 + r)]
t
γ c0 = (1 + r)a0 +

+∞∑
t=0

(1 + r)−twt

Therefore,
c0 = MPC0[(1 + r)a0 + PV0]

where MPC−10 =
∑+∞

t=0 (1 + r)−t[β(1 + r)]
t
γ and PV0 =

∑+∞
t=0 (1 + r)−twt.

When γ = 1, i.e. log-utility, we have MPC0 = 1− β.

3 Log-Linearization
The idea of log-linearization is to look at the percentage change (log-change) of a vari-

able in response to other variables in terms of percentage change as well around a small
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neighborhood of some state (usually steady state).

y = f(x1, ..., xn) (1)

Then first order expansion is

log(y)− log(y∗) =
n∑
i=1

∂f
∂xi
|x∗

f(x∗1, ..., x
∗
n)
· x∗i · [log(xi)− log(x∗i )] (2)

Denote log-change as x̂ = log(x)− log(x∗), the above becomes

ŷ =
n∑
i=1

∂f
∂xi
|x∗

f(x∗1, ..., x
∗
n)
· x∗i · x̂i

Useful formulas to remember (derived based on the equation above)

âx = x̂,where a is a constant.

x̂+ y =
x∗

x∗ + y∗
x̂+

y∗

x∗ + y∗
ŷ

x̂y = x̂+ ŷ

â = 0,where a is a constant.

âx = x̂,where a is a constant.

x̂α = αx̂,where α is a constant.

Apply to the hours worked model covered in your lecture note 2.

ht = [(
1− α
γ

)
1

ct/yt
(

1− τt
(1 + xt)(1 + µt)

)]
ε

1+ε

Assume xt and µt are fixed →

ĥt =
ε

1 + ε
[−(̂

ct
yt

) + ̂(1− τt)]

For example, in page 18 of lecture note 2, substitute France data. −(̂ ct
yt

) = 0.11 and

̂(1− τt) = −0.22. When ε = 0, ĥt = 0. When ε = 1, ĥt = −0.165. When ε = 4, ĥt = −0.264.
When ε→ +∞, ĥt = −0.33.
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4 Balanced Growth Preferences on Labor
Slide 22 of lecture note 3:

uh(t)

uc(t)
= wt

Here is the proof. Since wt and ct both grow at the same rate, so wt = act, where a is a
constant.

uh = actuc (3)

Take derivative w.r.t. ct on both sides:

uch = auc + ctaucc (4)

Divide (3) by (4) and rearrange to arrive at

uchct
uh

= 1 +
uccct
uc

= 1− γ
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Consumption & Hours Worked (continued)-Dynamic
Programming

Macroeconomic Analysis Recitation 8

Yang Jiao∗

1 Consumption and Hours Worked with GHH Prefer-

ence
With Balanced Growth Path Preference (abbreviated as BGP preference) we studied in

class,

Ut = u(ct, ht) = log(ct) + v(−ht) = log(ct)− (1 + xt)(
γε

1 + ε
)h

1+ 1
ε

t ,

we have derived the labor supply is (slide 20 of lecture note 2)

γεht = [
(1− τht)wt

1 + xt
]ελεt

Frisch elasticity is ε since this concept is defined as ∂log(ht)
∂log(wt)

|λ (i.e. keeping λt fixed).

Hicks elasticity is going to be more complicated. It is defined as ∂log(ht)
∂log(wt)

|U . We first
need to write hours worked ht as a function of wt and Ut instead of wt and λt.

Since 1
ct

= λt(1 + τct) (slide 11 of lecture note 2), and Ut = log(ct) − (1 + xt)(
γε

1+ε
)h

1+ 1
ε

t ,
the labor supply function can be re-written as

1− τht
1 + τct

wt
γ(1 + xt)

= eUte(1+xt)
γε
1+ε

h
1+1

ε
t h

1
ε
t

The above implicit function gives ht as a function of wt and Ut. Now assume xt = 0,
τt = τ are constant and we are near steady state h∗:

log(wt) = Ut +
γε

1 + ε
exp[

1 + ε

ε
loght] +

1

ε
log(ht) + constant

Applying implicit function theorem, we obtain

∂log(ht)

∂log(wt)
|U = − 1

−γ(h∗)1+ 1
ε − 1

ε

=
ε

γε(h∗)1+ 1
ε + 1

∗Please email me if you find errors or typos to yj2279@columbia.edu. Your help will be greatly appreciated.
All comments and suggestions are especially welcome.

1



• Remark. If you use Lagrange multiplier method to solve the model instead of Bellman
equation, you will find that λt above coincides with the Lagrange multiplier of the
budget constraint because there we will also have 1

ct
= λt(1 + τct).

Now we introduce another utility function form called Greenwood-Hercowitz-Huffman
preferences:

u(ct, ht) = U(ct − v(ht))

Specifically, let’s assume

u(ct, ht) = log(ct − (1 + xt)(
γε

1 + ε
)h

1+ 1
ε

t )

Now the dynamic problem of an agent is

max
ct,ht

+∞∑
t=0

[log(ct − (1 + xt)(
γε

1 + ε
)h

1+ 1
ε

t )]

s.t. budget constraint:

(1 + τct)ct + at+1 = (1− τat)(1 + rt)at + (1− τht)wtht

with no ponzi scheme and a0 given. τc, τa and τh are tax rates.
Write the Bellman equation

V (a) = max
c,h
{log(c− (1 + x)(

γε

1 + ε
)h1+ 1

ε ) + βV ((1− τa)(1 + r)a+ (1− τh)wh− (1 + τc)c)}

where we use ′ to represent next period’s variable (but V ′ means derivative)
Two F.O.C.s for c and h are

1

c− (1 + x)( γε
1+ε

)h1+ 1
ε

= (1 + τc)βV
′(a′) (1)

(1 + x)γh1/ε

c− (1 + x)( γε
1+ε

)h1+ 1
ε

= (1− τh)wβV ′(a′) (2)

and Envelope theorem implies

V ′(a) = β(1− τa)(1 + r)V ′(a′)

Define

λt =
V ′(a)

(1− τat)(1 + rt)

as well.
Divide (2) by (1), we have

(1 + xt)γh
1/ε
t =

1− τht
1 + τct

wt

2



In fact, one can directly get this equation by using the fact marginal rate of substitution
between consumption and hours workerd should be equal to the relative price (you can also
try it for the previous balanced growth path preference).

We can see that hours worked is a function of wt and not related to λt. Therefore, Frisch
elasticity is ∂log(ht)

∂log(wt)
|λ = ε. Hicks elasticity is ∂log(ht)

∂log(wt)
|U = ε as well.

Remark 1. Notice the difference of labor supply between BGP and GHH preference.
Under BGP, labor supply ht is not only related to wt but also a function of λt. While under
GHH, labor supply ht is not related to λt.

The relative price of leisure in terms of consumption good 1−τht
1+τct

wt captures the substi-
tution effect (if wt is smaller, enjoy more leisure and thus work less) while λt captures the
income effect (if λt is high, i.e. consumption level is low, like in a recession, income is
smaller, you will want to enjoy less leisure ”good” as well, which means you want to work
more ).

To sum up, in a recession, with BGP, substitution effect means work less but income effect
means work more. While with GHH, there is no income effect, so unambiguously, workers
will work less. Typically, during a recession, total hours drop significantly, so income effect
is very small. That makes it popular to use GHH preference to study business cycles (short
run fluctuations).

Remark 2. (minor remark) Jaimovich and Rebelo (2009, AER) have a more general
form of utility function.

u(ct, ht) =
(ct − ψhθtXt)

1−σ − 1

1− σ
with Xt = cγtX

1−γ
t−1 . When γ = 0, we have GHH. When γ = 1, we have BGP.

2 Dixit-Stiglitz Preference
The cost minimization problem for Dixit-Stiglitz preference is

min
Cit

∫ 1

0

PitCitdi

s.t.

Ct = (

∫ 1

0

C
θ−1
θ

it )
θ
θ−1

This is in fact a static problem, so one can omit all the time subscript here. Denote ψ
as the Lagrange multiplier of the constraint.

First order condition is

Pi = ψ(

∫ 1

0

C
θ−1
θ

i )
θ
θ−1
−1C

− 1
θ

i

which will hold for any i ∈ [0, 1].

→ Ci
Cj

= (
Pi
Pj

)−θ

3



Rearrange the above equation to get

C
θ−1
θ

i = C
θ−1
θ

j P θ−1
j P 1−θ

i

→ P 1−θ
j C

θ−1
θ

i = C
θ−1
θ

j P 1−θ
i

→
∫ 1

0

P 1−θ
j dj · C

θ−1
θ

i =

∫ 1

0

C
θ−1
θ

j dj · P 1−θ
i

→ P 1−θ · C
θ−1
θ

i = C
θ−1
θ · P 1−θ

i

where price index P is defined as P = [
∫ 1

0
P 1−θ
j dj]

1
1−θ .

→ Ci = C(
Pi
P

)−θ

→ PiCi = P 1−θ
i P θC

Integrate both sides from 0 to 1 to finally have the total expenditure∫ 1

0

PiCidi = PC

This final equation makes it clear why we call P as price index.

3 Dynamic Programming
A standard sequential problem (SP) is

max
{xt+1}

+∞∑
t=0

βtF (xt, xt+1)

s.t.
xt+1 ∈ Γ(xt)

and x0 given. Γ is a correspondence.
For example, we have studied the following consumption decision problem

max
{ct},{at+1}

∞∑
t=0

βtu(ct)

s.t.
ct + at+1 = (1 + r)at + w

ct ≥ 0

natural debt limit
at+1 ≥ −NDL

4



with a0 given.
Write the above in a standard sequential problem form

max
{at+1}

∞∑
t=0

βtu(at+1 − (1 + r)at − w)

s.t.
at+1 − (1 + r)at − w ≥ 0

at+1 ≥ −NDL

with a0 given.
A Bellman equation (BE) has the following form

J(x) = max
x′∈Γ(x)

F (x, x′) + βJ(x′)

Therefore, the consumption decision problem can be written as

J(a) = max
a′≥−NDL,a′≥(1+r)a−w

F (a, a′) + βJ(a′)

(See Stockey, Lucas and Prescott’s book for details, within this semester’s macro class, I
don’t think you will be required to do these proofs.) SP can imply BE but in order to let the
reverse hold, one has to add one more condition. After we have established the equivalence
between SP and BE, we can just focus on BE. In order to let BE solution exist and be
unique, we usually apply the fixed point theorem. Finally, to apply fixed point theorem, we
need some conditions, for example Blackwell sufficient conditions.

Now let’s introduce two simple examples of Bellman equation. And we can also make
ourselves more familiar with the solving steps of a Bellman equation.

Example 1. Consider the following growth model,

max
ct,kt+1

+∞∑
t=0

βtlog(ct)

s.t.
ct + kt+1 − (1− δ)kt = kαt

ct ≥ 0

kt+1 ≥ 0

with k0 given.
The Bellman equation is

V (k) = max
k′
{log(kα + (1− δ)k − k′) + βV (k′)}

F.O.C.:
−1

kα + (1− δ)k − k′
+ βV ′(k′) = 0

5



Envelope theorem:

V ′(k) =
αkα−1 + (1− δ)
kα + (1− δ)k − k′

(3)

TVC:
lim
t→∞

βtV ′(kt)kt ≤ 0

Then from equation (3):

V ′(k′) =
αk′α−1 + (1− δ)

k′α + (1− δ)k′ − k′′

Substitute it to the F.O.C.:

1

c
= β

αk′α−1 + (1− δ)
c′

When δ = 1, this problem admits analytical solution.
We will use ”guess and verify” strategy. Guess V (k) = A + B log(k) (this is value

function ”guess and verify”, but we can alternatively use policy function ”guess and verify”).
Substitute V (k′) = A+B log(k′) to the Bellman equation

V (k) = max
k′
{log(kα − k′) + β[A+B log k]}

F.O.C.:

k′ =
βB

1 + βB
kα (4)

Substitute the FOC back to the value function to get

V (k) = α(1 + βB) log k − (1 + βB) log(1 + βB) + βA+ βB log(βB)

It is indeed a linear function of log k, i.e. we verify our guess is correct here.
Compare coefficients to have

A = −(1 + βB) log(1 + βB) + βA+ βB log(βB)

B = α(1 + βB)

The unique solution is

A =
1

1− β
[
αβ

1− αβ
log(αβ) + log(1− αβ)]

B =
α

1− αβ
Finally, by equation (4) and resource constraint c+ k′ = kα, policy functions satisfy

k′ = αβkα

6



c = (1− αβ)kα

Notice this model generates that consumption is a constant fraction of total output kα.
Example 2. Consider the following investment problem under uncertainty

max
{ct,At+1}

E
+∞∑
t=0

βt
c1−σ
t − 1

1− σ

s.t.
At+1 = Rt+1(At − Ct)

When Rt+1 is i.i.d., this model will admit analytical solution as well (guess policy function
is ct = λAt, where λ is a constant). Assume E[R1−σ

t+1 ] < 1
β
.

7



Costs of Fluctuations-Consumption Theory

Macroeconomic Analysis Recitation 9

Yang Jiao∗

1 Costs of Fluctuations
Mathematical preparation:
1).If X follows log-normal, i.e. log(X) ∼ N(µ, σ2), we have E[X] = E(elogX) = eµ+

1
2
σ2

.
2).log(1 + a) ≈ a, ea ≈ 1 + a, when |a| is small.
In the data, variables usually not only have a growth trend but also fluctuate around

the trend. Our objective is to measure the cost of fluctuations. Our measure is how much
to compensate consumers in a world with fluctuations so that he is as well-off as in a world
without fluctuations.

+∞∑
t=0

e−ρtu(E0(Ct)) = E0{
+∞∑
t=0

e−ρtu(Ct(1 + λ))} (1)

This is a representative agent framework and let’s assume u(·) is CRRA: u(c) = c1−γ−1
1−γ .

Then equation (1) becomes

+∞∑
t=0

e−ρt[E0(Ct)]
1−γ = E0{

+∞∑
t=0

e−ρt[Ct(1 + λ)]1−γ}

→
+∞∑
t=0

e−ρt[E0(Ct)]
1−γ = (1 + λ)1−γE0{

+∞∑
t=0

e−ρt[Ct]
1−γ} (2)

We stand at time 0 and assume: log(Ct) follows normal distribution and E0(Ct) =
C0e

gt.
Denote the variance of log(Ct) as V ar0(log(Ct)) and mean as E0(log(Ct)). Since

E0(Ct) = E(elog(Ct)) = eE0(log(Ct))+
1
2
V ar0(log(Ct))

and we already assume E0(Ct) = C0e
gt, therefore,

E0(log(Ct)) +
1

2
V ar0(log(Ct)) = log(C0) + gt

∗Please email me if you find errors or typos to yj2279@columbia.edu. Your help will be greatly appreciated.
All comments and suggestions are especially welcome.
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which means

E0(log(Ct)) = log(C0) + gt− 1

2
V ar0(log(Ct))

That is

log(Ct) ∼ N(log(C0) + gt− 1

2
V ar0(log(Ct)), V ar0(log(Ct)))

Since (1− γ) log(Ct) is also a normal distribution, then

E0(C
1−γ
t ) = E0(e

(1−γ) log(Ct)) = e(1−γ)[log(C0)+gt− 1
2
V ar0(log(Ct))]+

1
2
(1−γ)2V ar20(log(Ct))

= (C0e
gt)1−γe

1
2
γ(γ−1)V ar0(log(Ct))

Remember we also have Euler equation r = ρ+ γg. The left hand side of equation (2) is

LHS =
+∞∑
t=0

C1−γ
0 e−[ρ−g(1−γ)]t = C1−γ

0

1

1− e−(ρ−g(1−γ))
= C1−γ

0

1

1− e−(r−g)

The right hand side of equation (2) is

RHS = (1+λ)1−γ
+∞∑
t=0

e−ρt(C0e
gt)1−γe

1
2
γ(γ−1)V ar0(log(Ct)) = (1+λ)1−γC1−γ

0

+∞∑
t=0

e−(r−g)te
1
2
γ(γ−1)V ar0(log(Ct))

Finally, LHS = RHS gives

(1 + λ)γ−1 = [1− e−(r−g)]
+∞∑
t=0

e−(r−g)te
1
2
γ(γ−1)V ar0(log(Ct))

Case 1. If log(Ct) = log(C0) + gt − 1
2
σ2 + εt, with εt i.i.d. normal with variance σ2

(notice that we need to guarantee that E(Ct) = C0e
gt), then V ar0(log(Ct))) = σ2.

(1 + λ)γ−1 = e
1
2
γ(γ−1)σ2

log(1 + λ) ≈ λ =
γσ2

2

Case 2. If log(Ct) = g − 1
2
σ2 + log(Ct−1) + εt, with εt i.i.d. normal with variance σ2,

then V ar0(log(Ct))) = σ2t.

(1 + λ)γ−1 =
1− e−(r−g)

1− e−(r−g+ 1
2
γ(1−γ)σ2)

(1 + λ)1−γ =
1− e−(r−g+ 1

2
γ(1−γ)σ2)

1− e−(r−g)
=
r − g + 1

2
γ(1− γ)σ2

r − g

(1− γ)log(1 + λ) = log(
r − g + 1

2
γ(1− γ)σ2

r − g
) ≈

1
2
γ(1− γ)σ2

r − g

2



log(1 + λ) ≈ λ =
γσ2

2

1

r − g

Case 3. If mt = θmt−1 + εt with m0 = 0 and log(Ct) = mt + gt + ln(C0) − 1
2
σ2 1−θ2t

1−θ2
(again, expost we add the mean term to ensure that E0(Ct) = C0e

gt), then V ar0(log(Ct))) =
var0(

∑t
i=1 θ

i−1εi) = σ2 1−θ2t
1−θ2 .

(1 + λ)γ−1 = [1− e−(r−g)]
+∞∑
t=0

e−(r−g)te
1
2
γ(γ−1)σ2 1−θ2t

1−θ2 ≈ [1− e−(r−g)]
+∞∑
t=0

e−(r−g)t[1 +
γ(γ − 1)σ2

2(1− θ2)
(1− θ2t)]

= [1− e−(r−g)]
+∞∑
t=0

e−(r−g)t[1 +
γ(γ − 1)σ2

2(1− θ2)
− γ(γ − 1)σ2

2(1− θ2)
θ2t] = 1 +

γ(γ − 1)σ2

2(1− θ2)
+
−(1− e−(r−g))γ(γ−1)σ

2

2(1−θ2)

1− e−(r−g)θ2

→

(γ − 1)log(1 + λ) =
γ(γ − 1)σ2

2(1− θ2)
+
−(1− e−(r−g))γ(γ−1)σ

2

2(1−θ2)

1− e−(r−g)θ2

=
γ(γ − 1)σ2

2(1− θ2)
e−(r−g)(1− θ2)
1− e−(r−g)θ2

=
γ(γ − 1)σ2

2

e−(r−g)

1− e−(r−g)θ2
=
γ(γ − 1)σ2

2

1

er−g − θ2

→
λ ≈ log(1 + λ) ≈ γσ2

2

1

1− θ2 + r − g
Notice that when θ = 0 and θ = 1, we can go back to the first two cases. Intuitively,

when θ is larger, given σ2, var0(log(Ct)) will be larger, leading to higher uncertainty thus
higher costs of fluctuations.

2 Consumption Theory
2.1 CRRA Utility

Euler equation:
u′(ct) = β(1 + r)Et(u

′(ct+1))

With CRRA utility function u(c) = c1−γ

1−γ , we know that u′′(c)c
u′(c)

= −γ, for any c > 0.
Then do the following approximation

log u′(ct+1) = log u′(elog(ct+1)) ≈ log u′(ct) +
u′′(ct)ct
u′(ct)

(log(ct+1)− log(ct))

The above equation is a first order approximation of function f(x) = log u′(ex) around
x∗ = log(ct), where x = log(ct+1).
→

log u′(elog(ct+1)) ≈ log u′(ct)− γ(log(ct+1)− log(ct))

→
u′(ct+1) = u′(ct)e

−γ(log(ct+1)−log(ct))

3



Assume log(ct+1) follows normal distribution with variance σ2, and then plug the above
into the Euler equation to get

1 = β(1 + r)e−γEt(log(ct+1)−log(ct))+ 1
2
γ2σ2

→
Et(log(ct+1)− log(ct)) =

1

γ
log(β(1 + r)) +

1

2
γσ2

When σ2 6= 0, even if β(1 + r) = 1, in expectation, consumption will have a positive
growth rate and the growth rate is increasing with variance σ2, in contrast with quadratic
utility function where consumption growth rate is 0 and volatility doesn’t matter.

2.2 CARA Utility

(We will finish up this problem next time.)
Setup a consumption problem with CARA utility (i.e. u(c) = − e−αc

α
, which satisfies −u′′

u′

is a constant):

V (w) = max
c

−e−αc

α
+ βE[V (R(w − c) + y′)]

where y is i.i.d. normal N(0, σ2). Assume βR = 1. We also relax the constraint that ct has
to be non-negative so that we don’t need to worry about natural debt limit here.

F.O.C.:
e−αc = E(V ′(w′))

V ′(w) = E(V ′(w′))

Euler equation
e−αc = E[e−αc

′
]

Guess policy function is c = Aw +B.
Then

E(e−αc
′
) = E(e−α(Aw

′+B)) = E(e−α[A(R(w−c)+y′)+B])

= E(e−α[A(R(w−c))+B]e−αAy
′
) = e−αAR(1−A)w−αB(1−AR)eα

2A2σ2/2 = e−αc

which implies
c = AR(1− A)w +B(1− AR)− αA2σ2/2

It verifies our guess. Compare coefficients

A = AR(1− A)

B = B(1− AR)− αA2σ2/2

Solution

A =
R− 1

R

4



B = −α(R− 1)σ2

2R2

or
A = 0

and B can be any number.
But the latter solution violates the TVC

lim
t→+∞

E[βtV ′(wt)wt] = 0

This is because if it is the solution then V ′(wt) = e−αct = e−αB and

wt+1 = R(wt −B) + yt+1 = Rt+1w0 −RB −R2B − ...−Rt+1B + yt+1 +Ryt + ...+Rty1

which implies

lim
t→+∞

E[βt+1V ′(wt+1)wt+1] = e−αB[w0 −
B

1− β
]

It is not valid to argue that if w0 = B
1−β , that solution satisfies TVC, since TVC has to be

satisfied at all time, i.e. for w1, w2...etc. As we have shocks, {wt} will fluctuate. Therefore,
TVC is violated.

So our solution should be

A =
R− 1

R

B = −α(R− 1)σ2

2R2

→

wt+1 = R(wt − ct) + yt+1 = R(1− A)wt −RB + yt+1 = wt + α
(R− 1)σ2

2R
+ yt+1

→

Et[Ct+1 − Ct] = Et[A(wt+1 − wt)] = Et[
R− 1

R
yt+1] +

1

2

(R− 1)2

R2
ασ2 =

1

2

(R− 1)2

R2
ασ2 > 0

This example also shows that consumption growth is positive, and the higher the variance
of income shock, the higher the difference between expected tomorrow’s consumption and
today’s consumption, in contrast with quadratic utility function where consumption growth
is 0 and volatility doesn’t matter.
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Consumption Theory (continued)

Macroeconomic Analysis Recitation 10

Yang Jiao∗

1 Consumption Theory
1.1 CARA Utility

See Recitation note 9.

1.2 Borrowing Constraint

We have known that with quadratic utility and no borrowing constraint, we will have
consumption is a random walk. There is no precautionary saving. However, we have seen
from Recitation note 9 that with CRRA utility or CARA utility, but without borrowing
constraint (in CRRA case, since Inada condition is satisfied, even if we impose natural debt
limit, we don’t need to worry because it never binds ) that we will have consumption growth,
and more uncertainty leads to more savings: i.e. precautionary savings.

Suppose now we introduce borrowing constraint but preserve quadratic utility function,
we will see that we will also have precautionary saving.

Consider the following problem:

max
ct,bt+1

+∞∑
t=0

βtEt[u(ct)]

s.t. budget constraint
bt+1 = (1 + r)(bt + yt − ct)

and borrowing constraint
bt+1 ≥ 0

Write down the Lagrangian problem:

max
ct,bt+1

+∞∑
t=0

βtEt[{u(ct) + λt[(1 + r)(bt + yt − ct)− bt+1] + µt+1bt+1}]

∗Please email me if you find errors or typos to yj2279@columbia.edu. Your help will be greatly appreciated.
All comments and suggestions are especially welcome.

1



F.O.C.:
u′(ct)− (1 + r)λt = 0

µt+1 − λt + β(1 + r)Et[λt+1] = 0

Complementary slackness condition:

µt+1bt+1 = 0, µt+1 ≥ 0, bt+1 ≥ 0

Therefore,

u′(ct) = β(1 + r)Et[u
′(ct+1)] + µt+1(1 + r) ≥ β(1 + r)Et[u

′(ct+1)]

If µt+1 > 0, we must have bt+1 = 0 thus ct = yt + bt = wt, which means u′(ct) = u′(wt) >
β(1 + r)Etu

′(ct+1).
If µt+1 = 0, we directly have u′(ct) = β(1 + r)Etu

′(ct+1).
In sum,

u′(ct) = max{u′(wt), β(1 + r)u′(ct+1)}

Check the above is what you have on slide 7 of lecture note 6: generalized Euler equation.
Remark. Suppose β(1 + r) = 1.
When u′′′ = 0, but with borrowing constraint so that sometimes we will have µt+1 > 0,

which implies ct < Et(ct+1).
When u’ is strictly convex, i.e. u′′′ > 0, by Jensen’s inequality, u′(ct) > Et[u

′(ct+1)] >
u′(Et(ct+1)). We also assume u is concave, so ct < Et(ct+1).

�
Next by Benveniste-Scheinkman formula,

u′(c) = V ′(w)

Therefore,
V ′(wt) ≥ β(1 + r)V ′(wt+1)

Remark. See Benveniste-Scheinkman (1979, Econometrica), it basically says the follow-
ing Envelope theorem: a Bellman equation

V (x) = max
x′∈Γ(x)

u(x, x′) + βV (x′),

implies

V ′(x) =
∂u(x, x′∗)

∂x
.

where x′∗ is the policy function as a function of x.
�

Notice that we haven’t introduced restrictions on the income process or utility function
yet. Therefore, we have reviewed what we studied in class here.

Now let’s use quadratic utility: u(c) = −1
2
(c− c̄)2 and assume β(1 + r) = 1.

ct = min{yt + bt, Et[ct+1]} = min{yt + bt, Et[min{yt+1 + bt+1, Et[ct+2]}]}

2



First, ct is no longer a random walk and ct ≤ Et[ct+1]. Second, with larger uncertainty
in yt+1, ct will be smaller since we have a larger chance of getting smaller realization of yt+1.
(but of course, this is not a rigorous proof, since variables bt+1, ct+2 are also endogenous).

To conclude, either we have quadratic utility function u′′′ = 0 but with borrowing
constriant or we have u′′′ > 0 (check that it is true for CRRA and CARA ), but regardless
of whether you have borrowing constraint, precautionary saving will show up.

1.3 Role of Market Incompleteness

One caution is that here we have assumed that financial market is incomplete: only risk
free bond is traded in the economy. Note that borrowing constraint itself means financial
market is not complete. But u′′′ > 0 is nothing related to the financial market completeness
or not.

Let’s consider a case without borrowing constraint, and with u′′′ > 0. Instead of assuming
only a risk free bond is traded, we assume market is complete. idiosyncratic income process
is i.i.d. with distribution N(µ, σ2). Assume there is a continuum of agents who start with the
same wealth y0 + b0, but there is no aggregate risk for the economy, i.e. under an aggregate
state st, some guys get good shocks, and some get bad shocks. Denote the c.d.f. of aggregate
state p(st). For agent i:

max
+∞∑
t=0

βt

∫
u(ci(st))p(st)dst

s.t.

ci(st) +

∫
q(st+1)bi(st+1)dst+1 ≤ yi(st) + bi(st)

Denote λi(st) the Lagrange multiplier of the budget constraint. F.O.C.:

u′(ci(st)) = λi(st)

λi(st)q(st+1)p(st) = βλi(st+1)p(st+1)

Therefore,

u′(ci(st))q(st+1) = β
p(st+1)

p(st)
u′(ci(st+1))

In period 0, by symmetry, we should have all agents choose the same consumption c0.
Then the above equation says, in future days, no matter what the aggregate state is, all
agents also have the same consumption. Since the aggregate income is µ, we will have that
each guy consumes µ no matter what idiosyncratic shock he has. Note idiosyncratic income
process’s volatility σ doesn’t matter in this economy.

One can use a two-agent, two state, complete market setting to illustrate the above as
well. Assume income process is i.i.d. binary with probability 1/2 the outcome is µ+ σ and
with probability 1/2 the outcome is µ− σ.

There is no precautionary saving in this economy since they can insure against each other
(compare with Aiyagari model).
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2 Some General Results
We have already derived

u′(ct) ≥ β(1 + r)Et[u
′(ct+1)]

Assume Inada condition: limc→0 u
′(c) = +∞

Case 1. If β(1 + r) > 1,

u′(ct) ≥ β(1 + r)Et[u
′(ct+1)]

Denote ht = [β(1+r)]tu′(ct), then we have ht ≥ Etht+1. By super martingale convergence
theorem, ht → x a.s., where random variable x satisfies that E[x] < M . Therefore, u′(ct) =
[β(1 + r)]−tht → 0 a.s., which means ct → +∞ a.s.

Case 2. If β(1 + r) = 1,
u′(ct) ≥ Et[u

′(ct+1)]

See Chamberlain and Wilson (2000, RED), we also get consumption grows without bound
with probability 1.

Case 3. If β(1 + r) < 1,
Suppose additionally we assume

lim
c→+∞

ucc
uc

= 0

then asset wt has an upper bound wm.
Intuition: with the decreasing absolute risk aversion, agents care less about uncertainty

when they get richer, so they choose to consume instead of continue to accumulate, dragging
down asset.

3 Log-Linearization (continued)
In recitation 7, we have considered how to implement log-linearization. However, there,

the euqation is with contemporaneous variables. Now let’s consider a more general case with
both time t variables {x1t, x2t, ...xnt} and time t+ 1 variables {z1,t+1, z2,t+1...zm,t+1)}. Some
x and z can coincide.

yt = Et[f(x1t, x2t, ..., xnt, z1,t+1, z2,t+1, ..., zm,t+1)]

yt = Et[e
log f(elog x1t ,elog x2t ,...elog xnt ,elog z1,t+1 ,elog z2,t+1 ,...,elog zm,t+1 )]

≈ Et[e
log f(x∗1,x

∗
2,...,x

∗
n,z
∗
1 ,z
∗
2 ,...,z

∗
m)+

∑n
i=0

∂f
∂xi
·x∗i

f(x∗1,x
∗
2,...,x

∗
n,z∗1 ,z∗2 ,...,z∗m)

[log xit−log x∗i ]+
∑m

j=0

∂f
∂zj
·z∗j

f(x∗1,x
∗
2,...,x

∗
n,z∗1 ,z∗2 ,...,z∗m)

[log zj,t+1−log z∗j ]
]

= e
log f(x∗1,x

∗
2,...,x

∗
n,z
∗
1 ,z
∗
2 ,...,z

∗
m)+

∑n
i=0

∂f
∂xi
·x∗i

f(x∗1,x
∗
2,...,x

∗
n,z∗1 ,z∗2 ,...,z∗m)

[log xit−log x∗i ]

·e
∑m

j=0

∂f
∂zj
·z∗j

f(x∗1,x
∗
2,...,x

∗
n,z∗1 ,z∗2 ,...,z∗m)

[Et log zj,t+1−log z∗j ]+ 1
2
k′Σk
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where the last equality comes from the moment generating function of a multivariate normal

distribution. Here k = (
∂f
∂z1
·z∗1

f(x∗1,x
∗
2,...,x

∗
n,z
∗
1 ,z
∗
2 ,...,z

∗
m)
,

∂f
∂z2
·z∗2

f(x∗1,x
∗
2,...,x

∗
n,z
∗
1 ,z
∗
2 ,...,z

∗
m)
, ...,

∂f
∂zm
·z∗m

f(x∗1,x
∗
2,...,x

∗
n,z
∗
1 ,z
∗
2 ,...,z

∗
m)

)′.

Note we assume that (log z1,t+1− log z∗1 , log z2,t+1− log z∗2 , ..., log zn,t+1− log z∗n)′ follows mul-
tivariate normal distribution with variance matrix Σ.

Finally,

ŷt = log yt−log y∗ =
n∑

i=0

∂f
∂xi
· x∗i

f(x∗1, x
∗
2, ..., x

∗
n, z
∗
1 , z
∗
2 , ..., z

∗
m)
x̂it+

m∑
j=0

∂f
∂zj
· z∗j

f(x∗1, x
∗
2, ..., x

∗
n, z
∗
1 , z
∗
2 , ..., z

∗
m)
Etẑj,t+1+

1

2
k′Σk

where definition x̂ = log x− log x∗ is for any variable x.
We additionally have a variance term 1

2
k′Σk compared to the result in recitation 7 without

uncertainty. But we usually neglect that variance term. For example, Euler equation with
log-utility:

Et(
β(1 + rt)Ct

Ct+1

) = 1

→
1̂ + rt + Ĉt − EtĈt+1 = 0

Approximately, 1̂ + rt = log(1 + rt)− log(1 + r∗) ≈ rt − r∗
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Price Level Determination

Macroeconomic Analysis Recitation 11

Yang Jiao∗

1 Aiyagari Economy (Quick Review)
Aiyagari economy is a general equilibrium model with each individual subject to bor-

rowing constraint. By definition, stationary equilibrium implies aggregate variables keep
constant, e.g. interest rate r, aggregate capital K etc., but since individuals are subject to
idiosyncratic shocks, every agent’s variables behave stochastically.

Supply Side of Capital
At the individual level, agent i solves a standard precautionary saving problem.

max
{cit}

E[
+∞∑
t=0

βt
(cit)

1−γ − 1

1− γ
]

s.t. budget constraint
cit + ait+1 = (1 + r)ait + yit

borroing constraint:
ait+1 ≥ −φ

where labor income yit = sitw, with sit a Markov process as the source of uncertainty.
First, we must have β(1 + r) < 1, otherwise, individuals accumulate infinite asset. That

is, 1 + r is bounded by 1
β
. Or alternatively speaking, when 1 + r approaches 1/β from below,

individuals accumulate more and more asset. When r is larger, individuals accumulate more
assets ait. Therefore, capital stock in the economy K =

∑
i a

i
t will also be larger.

That’s why we have an upward sloping capital supply curve and capital goes to infinity
when 1 + r approaches 1/β.

Demand Side of Capital
Demand side is simple: representative firms rent capital and hire labor from households:

max
Kt,Nt

Kα
t N

1−α
t −RKt + (1− δ)Kt − wNt

where R is the gross interest rate.

∗Please email me if you find errors or typos to yj2279@columbia.edu. Your help will be greatly appreciated.
All comments and suggestions are especially welcome.
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F.O.C.s give the demand for capital

R = 1− δ + αKα−1
t N1−α

t

Labor market clearing: Nt = 1. In stationary equilibrium, aggregate capital Kt is a
constant K.

Asset market no arbitrage condition: R = 1 + r.
Therefore, 1 + r = 1− δ+αKα−1, which is the demand function for capital (a downward

sloping curve).
Demand curve and supply curve determine the equilibrium capital and interest rate.
Remark 1. When borrowing constraint is looser, i.e. an increase in φ, what will happen

to the supply curve of capital? First, given an interest rate, agents will not accumulate so
much wealth as before, i.e. supply curve shift left. Second, at the point 1 + r = 1, since
individuals’ constraints become

cit + (ait+1 + φ) = (ait + φ) + yt

ait+1 + φ ≥ 0,

an increase in φ means optimal choice of ait will decrease the same amount as φ increases.
That is to say, aggregate capital also decrease the same amount as φ at point 1 + r = 1.

Remark 2. Decrease in the volatility of idiosyncratic shock to labor income will also
shift the supply side of capital because the precautionary saving motive is smaller.

2 Inflation in a Cashless Economy
See your Lecture note 7.
Although the economy is cashless, we have nominal account. One can think every trans-

action is done by revising the balance sheet of the nominal account.

maxE[
+∞∑
t=0

βt log(Ct)]

s.t.
PtCt +Bt+1 + PtKt+1 = PtYt +Bt(1 + it−1) + PtKt(1 + rt−1)

where Kt+1 is real bonds and Bt+1 is nominal bonds. it−1 and rt−1 are risk-free nominal
interest rate and real interest rate, which are determined at time t − 1. Notice this is an
endowment economy, so Yt is an exogenous process.

Euler equation for real bonds

1 = βEt[
(1 + rt)Ct
Ct+1

]

In steady state (1 + r∗) = β−1 thus r∗ ≈ log(1 + r∗) = − log β. Log-linearize the above Euler
equation

Et(Ĉt+1 − Ĉt) = r̂t
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where Ĉt = logCt − logC∗, r̂t = log(1 + rt)− log(1 + r∗) = rt − r∗. Define ct = logCt, then
re-write the above as

Et(ct+1 − ct) = r̂t

Euler equation for nominal bonds

1 = βEt[
(1 + it)PtCt
Pt+1Ct+1

]

Notice we have steady sate for inflation but not necessarily price level (only when steady
state inflation is 0, price level has steady state constant value). So let’s do it carefully instead
of directly apply the log-linearization rule as in recitation note 7. Define pt = logPt (instead
of logPt − logP ∗ since P ∗ may not exist), thus πt+1 ≈ pt+1 − pt = ∆pt+1. Let ρ = − log β.
The Euler equation becomes

1 = Et{exp(it −∆ct+1 − πt+1 − ρ)}

We used the approximation exp(it) ≈ 1 + it.
In steady state 1 = exp(i− 0− π − ρ), i.e. i = π + ρ.
First order Taylor expansion of the Euler equation above around steady state

1 = Et{1 + it − i− (∆ct+1 − 0)− (πt+1 − π)}

→
Et(ct+1 − ct) = it − Et(πt+1)− ρ

Combine the two log-linearized equations to obtain

rt − r∗ = it − Et(∆pt+1)− ρ

As r∗ = ρ = − log β, we get Fisher equation

it − rt = Et(∆pt+1)

Remark. In fact, you can use the simiar steps of the derivation following the Euler
equation for nominal bonds, to get rt − ρ = E(ct+1 − ct) from the Euler equation for real
bonds. That is, forget about log-linearization rules, and do it in the following way.

1 = βEt{
(1 + rt)Ct
Ct+1

}

→
1 = Et{exp(rt − ρ−∆ct+1)}

In steady state: r∗ = ρ.
First order approximation:

1 ≈ Et{1 + rt − ρ−∆ct+1}
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i.e.
rt − ρ = E(ct+1 − ct)

Classical Dichotomy
Suppose now there is no government intervention. Assets market clearing condition

Kt = 0

Bt = 0

Goods market clearing
Ct = Yt

It gives the following equilibrium solution for real variables:

Kt+1 = 0

Ct = Yt

Euler equation for real bonds

(1 + rt)
−1 = Et(

βCt
Ct+1

)

We can see that since Yt is an exogenous process, Ct, Kt+1, rt will be determined only by the
process of real variable Yt. There is no role for nominal stuff to affect the outcome of real
variables.

Price Level Indeterminacy
We need to pin down Pt, it but we only have the following one equation: Euler equation

for nominal bonds

(1 + it)
−1 = Et(

βCt
Ct+1

Pt
Pt+1

) = Et(
βYt
Yt+1

Pt
Pt+1

)

One can choose it to move correspondingly with Pt, but we cannot pin down Pt, there is
no other equation for us to determine Pt.

Therefore, we need additional conditions (where the number of conditions must exceed
the number of newly introduced variables by 1). We will introduce government/ central bank
to resolve the price indeterminacy problem.

2.1 Nominal Reserves 1

Fiscal Policy: Tt+Dt = Gt, where Tt is tax, Gt is government spending. Gt is exogenous.
Dt is called fiscal deficit. Tt is chosen by policy as well. Fiscal policy brings one new
endogenous variable Dt, and one new equation.

Central Bank: There is fiscal deficit. Central bank issues liability to fill this gap.
Specifically, the central bank promises to pay Pt(1 + xt−1) dollars back at time t if he
borrows 1 dollar at time t − 1. Notice this is neither a real bond nor a nominal bond as in
the consumer problem. It links the payment schedule to price level. The law of motion of
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libability (called reserves)

V R
t+1 = Pt(1 + xt−1)V

R
t + PtDt

Note xt is a policy variable. That is we have one new endogenous variable V R
t and one new

equation here.
Remark. Alternatively, you can take V R

t as exogenous policy, but tax Tt as endogenous
variable. �

We still lack one equation.The central bank’s libability is an asset traded in the market
as well. We should have an Euler equation for this asset.

Recall Euler equation for nominal bonds:

βEt[
PtCt(1 + it)

Pt+1Ct+1

] = 1

Similarly, Euler equation for the central bank’s liability is

βEt[
PtCtPt+1(1 + xt)

Pt+1Ct+1

] = 1

i.e.

1 = (1 + xt)PtEt[
βCt
Ct+1

]

Substitute the Euler equation for real bonds to arrive at:

Pt =
1 + rt
1 + xt

where (1 + rt)
−1 = Et[

βCt

Ct+1
] and Ct = Yt − Gt. Therefore, here we are able to pin down

price level.

2.2 Nominal Reserves 2

Fiscal Policy no change.
Central Bank directly issues a nominal bonds with nominal interest rate ivt , which is

set by the central bank (thus it is exogenous). Nominal interest rate must be the same as
the policy choice as a result of no arbitrage condition

it = ivt

which is the one additional equation we are looking for.
Fisher equation

rt = it − Et(∆pt+1) = ivt − Et(∆pt+1)

→

pt = Etpt+1 + rt − ivt ,
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then

pt =
+∞∑
s=0

(rt+s − ivt+s) + lim
s→+∞

Etpt+s+1

But we cannot do this, since in steady state, we cannot do the summation for the first term
because it doesn’t converge and we don’t know lims→+∞Etpt+s+1, either.

Come back to
pt = Etpt+1 + rt − ivt ,

If we expect tomorrow’s price level will jump up, today’s price will immediately jump up,
and vice versa (expectation driven).

One may have found that the problem lies in the fact that the coefficient before pt is not
larger than 1. Let’s link the nominal interest rate policy to price level or inflation to resolve
this problem.

Wicksellian Rules (Price Targeting)
Let it = ivt = φ(pt − p∗), where p∗ is the constant (not steady state value) price target,

taken as given, and parameter φ > 0.
Fisher equation becomes

(φ+ 1)pt = Etpt+1 + rt + φp∗

i.e.

pt =
1

1 + φ
Etpt+1 +

1

1 + φ
(rt + φp∗)

Iterate forward to get

pt =
+∞∑
s=0

(1 + φ)−s−1Et[rt+s + φp∗] + lim
s→+∞

(1 + φ)−s−1Etpt+s =
+∞∑
s=0

(1 + φ)−s−1Et[rt+s + φp∗]

Taylor Rules (Inflation Targeting)
Let it = φ(∆pt −∆p∗), where ∆p∗ = π∗ is the constant inflation target, taken as given

and parameter φ > 1.
Fisher equation becomes

φ∆pt = Et∆pt+1 + rt + φ∆p∗

Similarly, iterate forward to get

∆pt =
+∞∑
s=0

φ−s−1Et[rt+s + ∆p∗]

Notice at time t, either you have inflation ∆pt or price level pt, you can determine the
other, since pt−1 is already known.

Remark. Imagine inflation is really really negative, Taylor rule above with linear form
means interest rate has to be negative as well, violating ZLB (zero lower bound). We argue
that we only consider locally bounded equilibrium around the steady state so it ≥ 0 will be
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satisfied locally. However, a global interest rule has to consider the ZLB constraint it ≥ 0.

2.3 Global Analysis and the ZLB

For simplicity, assume there is no uncertainty, and Ct = Yt is constant. Combine the two
Euler equations to get

1

β
= (1 + it)Πt+1

where Πt+1 = Pt+1

Pt
. Again one equation is not enough to pin down two variables Pt, it.

Suppose central bank takes the following policy rule, taking care of the ZLB

1 + it = max{Π̄

β
(
Πt

Π̄
)φ, 1}

where Π̄ is the constant inflation target.
By eliminating 1 + it, we conclude

1 =
β

Πt+1

max{Π̄

β
(
Πt

Π̄
)φ, 1}

Draw Πt+1 against Πt, one can find globally we have two steady states. But previous
local equilibrium analysis will ignore the possibility of two steady states.

The high inflation steady state is not stable and if you perturbate leftward a little, the
economy will run into a deflation spiral, until reaching another steady state at the ZLB.

3 Inflation with Money
See your lecture note 8.
In the previous section, we studied an economy without money (I mean, cash), where one

can think transactions happen through the nominal account. Now let’s introduce money to
the model. Then the question is, why do people hold money, since it is an asset which only
pays 0 nominal interest rate. As long as, nominal bonds pay it > 0, there is no reason to
hold money. To let money have a role, we assume that real money balance directly enters
into utility function, which, of course, is a shortcut.

Households problem

E0{
+∞∑
t=0

βtu(Ct,Mt/Pt)}

where um > 0, umm ≤ 0, ucm ≥ 0.
s.t.

PtCt +Bt+1 + PtKt+1 +Mt ≤ Pt(Yt − Tt) +Bt(1 + it−1) + PtKt(1 + rt−1) +Mt−1

Notice that money as an asset pays zero interest, so the reason that we hold money comes
from that holding money itself brings utility. Since money itself provides utility but nominal
bond doesn’t. We must require

it ≥ 0

7



Otherwise, one can sell bonds to exchange money without any restriction, leading to infinite
utility. Furthermore, one cannot short money (but you can issue bond to others):

Mt ≥ 0

However, when the utility function satisfies Inada condition for real money balance, we
never need to worry about this constraint.

First order condition gives
um(·)
uc(·)

=
it

1 + it

Assume that the utility function is

u(C,M/P ) = logC + χ log(Mt/Pt)

Remark. One can use more general CRRA utility for both consumption and real money
balance, or other more sophisticated formula, and follow similar analysis below. Note the
utility function specified in your lecture note is not consistent with the later used Euler
equations. That’s why I choose to use this simple utility function instead of that one. �

Then
PtCt
Mt

=
1

χ

it
1 + it

(1)

which is the quantity theory of money.
Take log of both sides (instead of log-linearization, since price level Pt doesn’t have a

steady state)

pt + ct −mt = − logχ+ log(
it

1 + it
) (2)

Here

log(
it

1 + it
) = log(1− 1

1 + it
) ≈ log(1− 1

exp(it)
) = log(1−exp(−it)) ≈ log(1−exp(−i∗))+ 1

exp(i∗)− 1
(it−i∗)

The last approximation is a first order Taylor expansion.
Denote η = 1

exp(i∗)−1 and ignore constant terms, we have

pt + ct −mt = ηit

Fiscal Policy Similar to before.

Tt +Dt = Gt

where Gt is exogenous.
Monetary Policy There is no nominal reserves. But the central bank can print money

to fill the fiscal deficit.
MS

t = MS
t−1 + PtDt

The central bank is the only source who can print money, so aggregate money in the
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economy is equal to the money central bank supplies: Mt = MS
t .

Equilibrium
Real variables are still not affected by nominal stuff, i.e. classical dichotomy holds.
Market clearing for goods market:

Ct = Yt −Gt

Market clearing for real bonds:
Kt+1 = 0

Euler equation for real bonds

(1 + rt)
−1 = Et(

βCt
Ct+1

)

Fiscal balance
Tt = Gt −Dt

In fact, Tt and Dt are both endogenous, where Dt will be determined by monetary policy.
Nominal variables satisfy the following.
Market clearing for nominal bonds:

Bt+1 = 0.

Euler equation for nominal bonds

(1 + it)
−1 = Et{

βCt
Ct+1

Pt
Pt+1

}

Notice we have come across this ”one equation, two variables” problem in the cashless
economy. However, now we addtionally have the equation of quantity theory of money

PtCt
Mt

=
1

χ

it
1 + it

If we know Mt, then we will have two equations for two variables it, Pt.

3.1 Money Supply Rules

This rule directly specifies an exogenous path for money supply Mt thus mt. From
above, we know we are able to pin down price level and nominal interest rate: two equations
for two endogenous variables.

Using log- forms as before. Combine two Euler equations to get Fisher equation

it − rt = Et(∆pt+1)

Substitute the above into quantity theory:

mt − pt = ct − ηit = ct − η(rt + Et(∆pt+1)) (3)
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→
pt(1 + η) = ηEtpt+1 +mt − ct + ηrt

Rearrange and iterate forward :

pt = (
1

1 + η
)
+∞∑
s=0

(
η

1 + η
)sEt(mt+s − ct+s + ηrt+s)

This Cagan equation implies that price level is determined by money supply, not only
today’s money supply but also expected money supply in the future. Suppose there is a
news that in the future money supply will jump up, price level will immediately jump up
as well. Inflation is always and everywhere a monetary phenomenon (by Milton
Friedman) (later, when we change the way to pin down price, we can see inflation is always
and everywhere a fiscal phenomenon...).

This theory has the following implications. With a random walk process mt = mt−1 + εt,
we have pt = mt (ignore constant terms), i.e. pt+1 − pt = mt+1 − mt = εt. Putting more
realistic process, we find the model predicts inflation is less serially correlated than money
growth and inflation is more volatile than money growth. But these predictions are not
consistent with facts.

3.2 Fiscal Rules

Fiscal Policy Suppose now Tt is chosen exogenously. Then we can pin down Dt =
Gt − Tt (government spending still exogenous).

Monetary Policy
Given Dt above from the fiscal policy, we are able to pin down price level now. This

Dt is the additional condition we are going to use to pin down price level (compared to the
Monetary rules, where the addtional condition is exogenous Mt).

First, equation (3) says

mt = pt + ct − η(rt + Et(∆pt+1))

secondly,
Mt −Mt−1 = PtDt

Substitute the first equation (use it twice) to the second equation to see that it is an
equation with only price as unknown. In order to solve it formally, one needs to do log-
linearization for the second equation (but since Mt doesn’t have steady state, one has to
divide both sides by PtCt first). The important thing is you know you have one equation,
and one unknown pt.

Monetary policy has to accomodate the fiscal policy, following the law of motion

Mt = PtDt +Mt−1 (4)

with Dt, Pt, already solved above. That is, money supply’s dynamics has to obey this
equation. Monetary policy becomes passive. If we have a deficit Dt, the central bank has
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to print money to fill this gap (collects seignorage). However, that would cause inflation
based on Cagan equation. Now you see fiscal deficit leads to inflation. Inflation is always
and everywhere a fiscal phenonmenon.

�
Remark 1. Either monetary rules or fiscal rules can pin down price. However, you

cannot employ these two rules at the same time, because that would ”over-determine” the
equilibrium (more equations than unknown variables). You have to give up one rule.

Remark 2. Suppose the government runs a fiscal deficit, can he always fill this gap by
printing money? Notice that although printing money can fill some of this gap, we also know
that when money supply increases, price level goes up. Go back to your equation (4), we can
see that since price goes up, now the nominal deficit gap will be higher as well. Therefore,
it is possible that printing money is not able to fill that gap (notice we assume the deficit
Dt is in real terms).

As a matter of fact, assuming Yt is constant, hence there is no uncertainty, we have

St
Ct

=
Mt −Mt−1

PtCt
=

Mt

PtCt
− Mt−1

Pt−1Ct−1

Pt−1
Pt

Since
Mt

PtCt
= exp(mt − pt − ct) = exp(−ηit) ≈ (1 + it)

−η

then
St
Ct

= (1 + it)
−η − (1 + it−1)

−ηΠ−1t

Since β(1 + r) = 1 and (1 + it) = (1 + rt)Πt+1, we get

St
Ct

= βη(Π−ηt+1 − Π−η−1t )

Assume inflation is at its steady state:

S

C
= βη(Π−η − Π−η−1)

The above has a maximum, taking η as a parameter.
Remark. What is η? It depends on steady state nominal interest rate i, which is affected

by steady state inflation as well (real interet rate r already known, by Fisher equation). When
I directly substitute Mt

PtCt
from the quantity theory without log. I still get S/C bounded above,

but not bounded below. So here we can just take the quantity theory as an empirical result
and η is a fixed parameter, instead of a function of i as we have derived.

4 Fiscal Theory in a Cashless Economy
We have analyzed a cashless economy with active monetary policies (lecture 7), and an

economy with cash with active monetary policy or active fiscal policy (lecture 8). However,
we haven’t discussed a cashless economy with active fiscal policy. Now we come to this
scenario (lecture 9).
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Monetary Policy There is no cash, thus no seignorage. Central bank doesn’t exist:
Dt = 0. That is we have passive monetary policy.

Fiscal Policy Before, we do have nominal bonds and real bonds, but in equilibrium, net
supply is 0. Now suppose government issues bonds to the households, then the net supply
to the households will not be 0.

Government budget constraint

Bt+1 + PtKt+1 + PtTt = (1 + it−1)Bt + (1 + rt−1)PtKt

Assume Yt−Gt is constant (Yt, Gt are exogenous as usual), so by Euler equation for real
bonds (1 + r) = β−1. Denote B̃t = (1 + it−1)Bt + (1 + rt−1)PtKt.

Government budget constraint can be re-written as

B̃t

Pt
= (Tt −Gt) + β

B̃t+1

Pt+1

=
+∞∑
j=0

βj[Tt+j −Gt+j]

When Tt is exogenous, we can pin down price Pt since B̃t is a state variable already
determined at period t− 1. This exogenous Tt is again the ”additional condition” we use to
pin down price.

Remark 1. We understand this model can pin down price, but in fact, we haven’t solved
it explicitly since {B̃t} sequence hasn’t been solved. However, the choice of sequence {B̃t}
will be determined by households problem, given {Pt} sequence (Fixed point argument).

Remark 2. We have both nominal government bonds Bt and real government bonds
Kt. But we can only determine the aggregate bonds B̃t (instead of Kt and Bt separately),
which is in nominal terms. This nominal debt fills the gap of exogenous fiscal deficit (real
deficit). Price will adjust to make sure that nominal debt matches real deficit.

Remark 3. In models we studied before, we only have real bonds. That is Bt = 0.
Government budget constraint becomes

Kt =
+∞∑
j=0

βj[Tt+j −Gt+j]

As Kt is a given initial condition, Tt+j becomes endogenous. Furthermore, we have
Ricardian equivalence. Since the sequence of {Tt+j} has to satisfy the above budget
constraint, a reduction of tax today means an increase of tax tomorrow, i.e. the present
value of tax cannot change.
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New Keynesian Model

Macroeconomic Analysis Recitation 12

Yang Jiao∗

1 Baseline New Keynesian Model
Households Problem

max
Cit,hit

E
+∞∑
t=0

βt[logCt −
γε

1 + ε

∫ 1

0

h
1+ 1

ε
it di]

s.t.

Ct = (

∫ 1

0

C
θ−1
θ

it )
θ
θ−1

∫ 1

0

PitCitdi+Bt+1 + PtKt+1 + PtTt ≤ Bt(1 + it) +Kt(1 + rt)Pt +

∫ 1

0

Withitdi+Xt

where Xt is the total dividends that distributed by firms to households. Notice we assume
that for the households, labor supply hit is differentiated across firms as well.

After solving the dyamic problem, we will get the log-linearized equations (lowercase
variables mean log of the original uppercase variables):

Euler equation for real bonds

Et(ct+1 − ct) = rt

Demand for each variety of good

cit = ct − θ(pit − pt)

Price index

pt =

∫ 1

0

pitdi

Labor supply to firm i
ct + hit/ε = wit − pt

Fisher equation (derived from Euler equation for real bonds and nominal bonds)

rt = it − Et(∆pt+1)

∗Please email me if you find errors or typos to yj2279@columbia.edu. Your help will be greatly appreciated.
All comments and suggestions are especially welcome.
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Remark. Price index

P 1−θ
t =

∫ 1

0

P 1−θ
it di

In steady state P ∗ = P ∗i . Apply our rules for log-linearization (refer to the summation
case, and for integrals, it is the same rule)

(1− θ)p̂t =

∫ 1

0

P ∗i
1−θ

P ∗1−θ
(1− θ)p̂itdi

→
p̂t =

∫ 1

0

p̂itdi

→
pt =

∫ 1

0

pitdi

�
Firms Problem

max
Lit,Yit,Pit

(1 + τ)PitYit −WitLit

s.t.
production function

Yit = AitLit

and demand function
Yit = Yt(Pit/Pt)

−θ

After solving the problem, we will have the log-linearized equations (lowercase variables
mean log of the original uppercase variables)

yit = ait + lit

pit = log
θ

(θ − 1)(1 + τ)
+ wit − ait

Fiscal Policy PtTt = τ
∫ 1

0
PitYit, a static budget constraint.

Monetary Policy Reduced form nominal income policy: Nt = PtYt, i.e. nt = pt + yt.
In equilibrium All markets clear: Bt+1 = 0, Kt+1 = 0, lit = hit, cit = yit.

�
Labor supply

ct + hit/ε = wit − pt
→

ct + lit/ε = wit − pt
→

2



ct + (yit − ait)/ε = wit − pt
→

ct + (cit − ait)/ε = wit − pt
→

ct + (ct − θ(pit − pt)− ait)/ε = wit − pt
Use

pit = log
θ

(θ − 1)(1 + τ)
+ wit − ait,

to substitute wit to get

pit = pt + µ+ α(ct − ait)

where α = ε+1
ε+θ

. We define µ = log θ
(θ−1)(1+τ)/(1 + θ

ε
) and we can choose tax rate so that

µ = 0.
Summary of equilibrium equations

rt = Etct+1 − ct

rt = it − Et(∆pt+1)

pit = pt + α(ct − ait)

pt =

∫ 1

0

pitdi

nt = pt + yt

Take integrals of pit = pt + α(ct − ait) to have ct =
∫ 1

0
aitdi, thus pit = pt.

We can see that ct doesn’t depend on nominal stuff and thus yt, rt doesn’t depend on
nominal stuff. Therefore, classical dichotomy holds in this economy. Nominal income
process nt is not relevant for real variables.

Note in the above economy, firms are free to adjust their prices. However, if there is
physical menu cost k and real rigidity α (large k or small α), nominal rigidity (no change in
prices) shows up. It is possible that with nominal rigidity, classical dichotomy breaks down.

Strategic Complementarity
Recall

pit = pt + µ+ α(ct − ait)

For simplicity, assume µ = 0 and there is no supply side shock ait = 0.

pit = pt + αct
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Since ct = yt and nt = pt + yt,
pit = (1− α)pt + αnt

That is the desired price of a firm (without other frictions, such as nominal rigidity),

p∗it = (1− α)pt + αnt

It basically says an individual firm wants to set his price close to others if α is small
(0¡α¡1): strategic complementarity.

Strategic complementarity will ”amplify” aggregate price rigidity, since if some adjust and
some not, those who adjust want to be close to those non-adjusters. As a result, aggregate
price doesn’t change much.

Remark. It just happens that the real rigidity parameter α and the strategic comple-
mentarity parameter α are the same. Real rigidity and strategic complementarity are two
different concepts. Real rigidity refers to the flatness of the profit function.

2 Phillips Curve
In the data, there is a relationship between nominal variables and real economic activities.

Phillips curve describes one important aspect of this relationship

πt = πet + κyt

Inflation (nominal stuff) can affect real output.
However, in the baseline New Keynesian model (lecture 10), classical dichotomy still

holds. We will introduce two frictions in addition to the baseline New Keynesian model to
link nominal variables and real variables. One is sticky price model (menu cost): the Calvo
model. The other is sticky information model: the Mankiw-Reis Model.

3 Sticky Price: the Calvo Model
Each period with probability λ, a firm can adjust its price. The firm understands that

this price may stay in the future, so he takes into account today’s price’s effect on future
periods.

Suppose the firm sets price Pit at time t. With probability (1−λ), his price is still Pit at
time t + 1. With probability (1 − λ)2, his price is still Pit at time t + 2 ...With probability
(1 − λ)k, his price is still Pit at time t + k...That’s where the following summation comes
from. The firm chooses Pit to maximize the following:

max
Pi,t

+∞∑
k=0

(1− λ)kEt{
Mt,t+k

Pt+k
[Pi,t −MCi,t+k]Yi,t+k}

s.t.
Yi,t+k = Yt+k(Pit/Pt+k)

−θ

where [Pi,t −MCi,t+k]Yi,t+k is nominal profit. Mt,t+k is the stochastic discount factor.
The constraint is the demand function for firm i product.

Remark. This stochastic discount factor comes from households’ problem. Households
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trade the firm’s stock shares. For example, consider the following household problem

max
Ct,ht,qi,t+1

Et

+∞∑
t=0

βt[logCt −
γε

1 + ε

∫ 1

0

h
1+1/ε
jt dj]

s.t.

PtCt+Bt+1+PtKt+1+PtTt+

∫ 1

0

qi,t+1(vit−dit)di ≤ Bt(1+it)+Kt(1+rt)Pt+

∫ 1

0

Wjthjtdj+

∫ 1

0

qitvitdi

where qi,t+1 is the share of stocks of firm i households buy. vit is firm i’s stock price before
paying dividends dit.

Denote Λt the Lagrange multiplier of the budget constraint. F.O.C. for Ct

1

Ct
= PtΛt

F.O.C. for qi,t+1

Λt(vit − dit) = βEt(Λt+1vi,t+1)

→
vit = dit + βEt(

Λt+1

Λt

vi,t+1)

Iterate forward to get

vit =
+∞∑
k=0

βkEt(
Λt+k

Λt

di,t+k)

Firm stock price is the discounted dividends of the firm. Now substitute Λt to have

vit =
+∞∑
k=0

Et(β
k PtCt
Pt+kCt+k

di,t+k) = Pt

+∞∑
k=0

Et(β
k Ct
Pt+kCt+k

di,t+k)

Define Mt,t+k = βk Ct
Ct+k

, then

vit
Pt

=
+∞∑
k=0

Et(
Mt,t+k

Pt+k
di,t+k)

Firms should maximize its stock price (firm value for equity holders).
What is di,t+k for each firm? Its nominal profits in each period. Then check the above is

your firm maximiazation objective for the Calvo model (up to the consideration of changing
price probability).

In equilibrium, stock shares should be qit = 1(100%), then we can see that all dividends∫ 1

0
ditdi go to households.

�
First order condition of the Calvo firm is (substitute the constraint into the objective
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function):
+∞∑
k=0

(1− λ)kEt{
Mt,t+k

Pt+k
[(1− θ) +

θ

Pit
MCi,t+k]Yi,t+k} = 0

i.e.
+∞∑
k=0

(1− λ)kEt{
Mt,t+k

Pt+k
Yi,t+k[Pit −

θ

θ − 1
MCi,t+k]} = 0 (1)

→

Pit =

θ
θ−1

∑+∞
k=0(1− λ)kEt{Mt,t+k

Pt+k
Yi,t+kMCi,t+k}∑+∞

k=0(1− λ)kEt{Mt,t+k

Pt+k
Yi,t+k}

Log-linearize the above equation to get (apply several formulas of log-linearization, see
recitation note 7)

pit =
+∞∑
k=0

(1− λ)kβk MC∗

P ∗ Y
∗(mt,t+k + yi,t+k +mci,t+k − pt+k)∑+∞
s=0(1− λ)sβsMC∗

P ∗ Y ∗
−

+∞∑
k=0

(1− λ)kβk Y
∗

P ∗ (mt,t+k + yi,t+k − pt+k)∑+∞
s=0(1− λ)sβs Y

∗

P ∗

i.e.

pit = [1− β(1− λ)]
+∞∑
k=0

[β(1− λ)]kEtmci,t+k

Notice under flexible price, price p∗i,t+k = mci,t+k. Therefore,

pit = [1− β(1− λ)]
+∞∑
k=0

[β(1− λ)]kEt(p
∗
i,t+k)

Substitute t by t− j, where j = 0, 1, 2, ...:

pi,t−j = [1− β(1− λ)]
+∞∑
k=0

[β(1− λ)]kEt−j(p
∗
i,t−j+k)

We can ignore index i, since each firm is subject to the same shock,

pt(j) = [1− β(1− λ)]
+∞∑
k=0

[β(1− λ)]kEt−j(p
∗
t−j+k) (2)

At time t, we know in the economy, λ firms set price at time t with price pt(0), λ(1− λ)
firms set price at time t with price pt(1), λ(1− λ)2 firms set price at time t with price pt(2),
etc. Hence

pt =

∫ 1

0

pitdi = λ

+∞∑
j=0

(1− λ)jpt(j)

which implies
pt = λpt(0) + (1− λ)pt−1 (3)
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Equation (2) implies

pt(0) = [1− β(1− λ)]p∗t + β(1− λ)Et[Et+1(pt+1(0))]

i.e.
pt(0) = [1− β(1− λ)]p∗t + β(1− λ)Et(pt+1(0)) (4)

Combine equation (3) and (4) to eliminate pt(0):

(1− λ)πt + λpt = λ[1− β(1− λ)]p∗t + β(1− λ)Et[(1− λ)πt+1 + λpt+1]

Substitute flexible price p∗t = pt + αyt to the above equation:

πt = βEt(πt+1) + κyt

where κ = [1−β(1−λ)]αλ
1−λ .

β ≈ 1, so
πt = Et(πt+1) + κyt

which is the Phillips curve.
Additionally, we have

yt = nt − pt
where nt is an exogenous process. Assume nt = nt−1 + εt, our objective is to solve pt as

a function of exogenous shocks.

• Algebra Method

Our Phillips curve can be re-written as

Et(pt+1)− (2 + κ)pt + pt−1 = −κnt

which is a stochastic second-order difference equation.

Denote L as the lag-operator and denote F = L−1. It is easy to show ( solve a
second-order equation)

(F 2 − (2 + κ)F + 1)LEtpt = −κEtnt

i.e.

(1− θL)(F − 1

θ
)Etpt = −κEtnt

where θ < 1 is the smaller root of (1− θ)2/θ = κ (because θ+ 1
θ

= 2 + κ), and 1/θ > 1
is the other root.

That is

(1− θL)Etpt = −κ(F − 1

θ
)−1Etnt = θκ(1− θF )−1Et(nt)

→ (substitute κ by (1− θ)2/θ)

(1− θL)Etpt = (1− θ)2(1− θF )−1Et(nt) = (1− θ)2[1 + θF + θ2F 2 + ...]Etnt
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→

pt − θpt−1 = (1− θ)2
+∞∑
k=0

θkEt(nt+k)

As nt is random walk, then Et(nt+k) = nt, which means

pt = θpt−1 + (1− θ)nt.

• Undetermined Coefficients Method

By Wold decomposition, we know

pt =
+∞∑
j=0

θjεt−j

By Wold decomposition, pt =
∑+∞

j=0 θjεt−j, where θj are coefficients to be determined.

Replace it into the Phillips curve to get

Et

+∞∑
j=0

θjεt+1−j − (2 + κ)
+∞∑
j=0

θjεt−j +
+∞∑
j=0

θjεt−1−j = −κ
+∞∑
j=0

εt−j

i.e.

+∞∑
j=0

θj+1εt−j − (2 + κ)
+∞∑
j=0

θjεt−j +
+∞∑
j=1

θj−1εt−j = −κ
+∞∑
j=0

εt−j

Compare coefficients to get

θj+1 − (2 + κ)θj + θj−1 = −κ

when j ≥ 1.

θ1 − (2 + κ)θ0 = −κ

when j = 0.

θj ≡ 1 is a special solution. θ and 1/θ are two roots of x2−(2+κ)x+1 = 0. Therefore,
the general solution is

θj = c1θ
j + c2(

1

θ
)j + 1

c2 = 0 to guarantee stationarity. Solve c1 = −θ to guarantee that θ1− (2 +κ)θ0 = −κ.

Therefore,
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θj = 1− θj+1

Check that it is the same as in the algebra method.

• Guess and Verify Method

Please check by yourself.

After solving pt, it is straightforward to get yt from yt = nt − pt.

4 Sticky Information: the Mankiw-Reis Model
Each period, λ firms obtain up-to-date information. Therefore, at period t, λ firms
have period t information set, (1 − λ)λ have period t − 1 information set, (1 − λ)2λ
firms have period t− 2 information set etc.

pt =

∫ 1

0

pitdi = λ
+∞∑
j=0

(1− λ)jEt−j[pt + αyt] (5)

Expand the above with the first term before the summation of other terms

pt = λEt[pt + αyt] + λ
+∞∑
j=1

(1− λ)jEt−j[pt + αyt] (6)

= λEt[pt + αyt] + (1− λ)λ
+∞∑
j=0

(1− λ)jEt−1−j[pt + αyt] (7)

→

pt =
λα

1− λ
yt + λ

+∞∑
j=0

(1− λ)jEt−1−j[pt + αyt] (8)

Additionally, write equation (5) for time t− 1 to get

pt−1 = λ

+∞∑
j=0

(1− λ)jEt−1−j[pt−1 + αyt−1] (9)

Substract equation (8) by equation (9) to obtain the Phillips curve for sticky informa-
tion model.

πt =
λα

1− λ
yt + λ

+∞∑
j=0

(1− λ)jEt−1−j[πt + α∆yt]

Assume exogenous nt =
∑+∞

k=0 γkεt−k, we would like to derive the solution for pt. Note
when γk = 1, nt is a random walk.
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• Undetermined Coefficients Method

By Wold decomposition,

pt =
+∞∑
k=0

θkεt−k

where θk are coefficients to be determined.

Go back to equation (5).

pt = λ
+∞∑
j=0

(1− λ)jEt−j[pt + αyt] = λ

+∞∑
j=0

(1− λ)jEt−j[αnt + (1− α)pt]

→
+∞∑
k=0

θkεt−k = λ
+∞∑
j=0

(1− λ)jEt−j[α
+∞∑
k=0

γkεt−k + (1− α)
+∞∑
k=0

θkεt−k]

→
+∞∑
k=0

θkεt−k = λ
+∞∑
j=0

(1−λ)j
+∞∑
k=j

[αγkεt−k+(1−α)θkεt−k] =
+∞∑
k=0

k∑
j=0

λ(1−λ)j[αγk+(1−α)θk]

Compare coefficients to have

θk = λ
k∑
j=0

(1− λ)j[αγk + (1− α)θk]

→
θk =

α[1− (1− λ)k+1]

α + (1− α)(1− λ)k+1
γk

After solving pt, it is straightforward to get yt from yt = nt − pt.
When γk = 1, i.e. nt is a random walk,

θk =
α[1− (1− λ)k+1]

α + (1− α)(1− λ)k+1

Inflation

πt = pt − pt−1 = θ0εt +
+∞∑
k=1

(θk − θk−1)εt−k

5 Comparison between Sticky Price and Sticky In-

formation
They both generate inflation persistence and less volatile inflation compared to
money growth. When exogenous shocks arrive, only some firms adjust, so the volatility
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of inflation is smaller than the volatility of money growth. Inflation persistence is
related to the fact that some firms adjust today, some firms adjust tomorrow, and we
have strategic complementarity, firms price near to other firms’ prices.

Additionally, if there is a negative shock to nt, price will not fall that much, yt =
nt − pt predicts both models produce a recession, which is consistent with facts.

However, the Calvo model produces some undesirable results.

• Natural Rate property

In steady state:

π = βπ + κy → y =
(1− β)π

κ

It is a non-vertical long run phillip curve, which means you can use long run high
inflation to achieve high real output. In the long run, we would like monetary policy
to be neutral.

Even if some may argue that β is near 1, so that y = 0. One can use an alternative
monetary policy πt+1 = (1− g)πt to get πt = (κ/g)yt. If g is very high, yt will also be
very high.

• Accelerationist Problem

A simple example to illustrate why change in inflation and real output are neg-
atively correlated by the Calvo model: suppose that the government announces
a disinflation πt+1 < πt(caused by contractionary monetary shocks), recall that the
Phillips curve is

πt = Etπt+1 + κyt

→
πt − πt+1 = κyt > 0

That is the Calvo model predicts that the correlation between change in inflation and
output is negative.

This is at odds with data.

Remark. Acceleration phenomenon means the positive correlation between real out-
put and change in inflation in the data, i.e. when real output is high, inflation tends
to rise.

• Non Hump-Shape

Iterate forward the Phillips Curve:

πt = κ

+∞∑
k=0

βkEt(yt+k)

When the economy gets hit by a negative shock to nt, and the shock dies out gradually.
Real output also dies out gradually. Then the above Phillips curve would predict a non-
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hump shaped path for inflation. This result is not in line with empirical evidence,
where the response of inflation to monetary shocks tends to be hump-shaped.

However, the above three problems of the Calvo model are not problems for the
Mankiw-Reis model. Let’s investigate the above three points one by one.

• From equation (8), in steady state, we will have y = 0. So in the steady state, money
is neutral.

• Suppose the government announces a disinflation in the future (caused by contrac-
tionary monetary shocks), firms don’t change their pricing before that shock happens.
The reason is as follows:

pt = λ
+∞∑
j=0

(1− λ)jEt−j[pt + αyt] = λ

+∞∑
j=0

(1− λ)jEt−j[αnt + (1− α)pt]

pt is not related to future nt+j or expectation about nt+j, j ≥ 1.

However, when the disinflation comes at time t+ 1, firms start to decrease price (still,
not too much, since only some firms know it), yt = nt − pt < 0, which is a recession.
This experiment means we have a positive correlation between real output and change
in inflation.

Remark. For comparison, let’s consider the intuition for the Calvo result: in the
Calvo model, when government announces disinflation in the future, if firms have the
opportunity to adjust prices, they will immediately respond. Because they understand
in the future they may not have opportunity to decrease their price to accomodate
with the contractionary monetary shock, they immediately decrease their price. Now
their nt is still 0 as in previous periods, so when they get the news (announcement by
the government), yt = nt − pt > 0 means the economy will have a boom. This is a
negative relationship between real output and change in inflation.

• Hump shaped response of inflation can be achieved in the Mankiw-Reis model. Suppose
there is a positive monetary shock.

In the sticky information model, those firms who get the information will increase
price initially, but not so much. They understand that now not so many firms know it
yet. They will ”wait for others” and increase their price further when more firms get
informed (due to strategic complementarity). Therefore, inflation response is hump-
shaped. Note sticky information doesn’t mean a flat price plan.

While for the sticky price model, those who have the opportunity to adjust prices, will
respond more than the sticky information case. They really value this opportunity to
change price. They will not wait for others, since if they wait, they may be stuck in
that price in the future.
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Dynamic New Keynesian Model–Optimal Monetary
Policy

Macroeconomic Analysis Recitation 13

Yang Jiao∗

1 Dynamic New Keynesian Model
1.1 Phillips Curve

Recall that in recitation 12, we already derived firm pricing under flexible price:

p∗it = pt + µ+ α(yt − ait)

Now assume that all firms are subject to the common productivity shock so that at = ait.
Furthermore, let’s assume there is government spending gt as well, so we have

p∗it = pt + µ+ α(yt − ait − ηgit) (1)

Remark. When introducing government spending, let’s repeat similar procedures on
page 2-3 of recitation 12.

Labor supply
ct + lit/ε = wit − pt

→
yt − gt + (yit − ait)/ε = wit − pt

→

yt − gt + [yt − θ(pit − pt)− ait]/ε = wit − pt
Use

pit = log
θ

(θ − 1)(1 + τ)
+ wit − ait

to substitute wit to get
pit = pt + µ+ α(yt − ait − ηgt)

where α = ε+1
ε+θ

and η = ε
ε+1

, µ = log θ
(θ−1)(1+τ)

/(1 + θ
ε
). With common shocks to productivity

∗Please email me if you find errors or typos to yj2279@columbia.edu. Your help will be greatly appreciated.
All comments and suggestions are especially welcome.
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at = ait.
pit = pt + µ+ α(yt − at − ηgt) (2)

�
Natural rate of output is defined as the equilibrium output when prices are flexible

and markups (price markup and wage markup) are constant. Integrate both sides of equation
(1) to get

ynt = at + ηgt −
µ

α

As before, when we introduce sticky price, we will have a Phillips Curve. Recall that
in recitation note 12, when we derive the Phillips curve, we assume at = 0. Now suppose,
at + ηgt is not a constant 0, then the Phillips curve will change to (repeat similar procedures
as before, in fact we will show the derivation in the Remark below.)

πt = βEt(πt+1) + κŷt

with output gap ŷt = yt − ynt .
Also, we will introduce exogenous markup shock (price markup or wage markup) so that

the Phillips curve will have an additional shocks ut:

πt = βEt(πt+1) + κŷt + ut

Remark.
Suppose the elasticity of substitution θ is no longer a constant but a stochastic process. Go
back to page 6 of recitation 12, the equation just below equation (1). Substitute θ by θt.
Define χt = log( θt

θt−1
), and steady state χ = log( θ

θ−1
). After log-linearization, we will have

pit = [1− β(1− λ)]
+∞∑
k=0

[β(1− λ)]kEt(mci,t+k + χt)

Notice that with shocks to θt, under flexible price p∗i,t+k = mci,t+k + χt →

pit = [1− β(1− λ)]
+∞∑
k=0

[β(1− λ)]kEt(p
∗
i,t+k)

Follow the similar steps as in recitation 12 to get (a same equation as in recitation 12)

(1− λ)πt + λpt = λ[1− β(1− λ)]p∗t + β(1− λ)Et[(1− λ)πt+1 + λpt+1] (3)

For simplicity, let’s assume ε→ +∞ so that labor supply is not differentiated. Set tax rate
τ = 0 or τ is a constant. Now the flexible price p∗t = pt+log( θt

θt−1
)+yt−ynt = pt+χt+yt−ynt −χ

(refer to equation (2), use θt to substitute θ and let ε→ +∞).
Substitute p∗t into equation (3), we will have the Phillips curve

πt = βEtπt+1 +
λ[1− β(1− λ)]

(1− λ)
(yt − ynt + χt − χ)
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i.e.
πt = βEtπt+1 + κ(yt − ynt ) + ut

where κ = λ[1−β(1−λ)]
(1−λ)

and ut = κ(χt − χ).
→

πt = βEtπt+1 + κŷt + ut

with ŷt = yt − ynt . Now we can see that with markup shocks, the Phillips curve will have an
additional shock term ut. The Phillips curve comes from firms optimization problem, so we
sometimes also call ut supply shocks.

There are also other ways to introduce shocks to the Phillips curve, e.g. shocks to wage
markup will also introduce additional shocks to the Phillips curve. �

1.2 IS Curve

Now we turn to the demand side. The Euler equation for nominal bonds

u′(ct) = β(1 + it)Et(u
′(ct+1)

Pt
Pt+1

)

We will introduce preference shocks as well: u(ct, hit) = ξt[logCt − γε
1+ε

∫ 1

0
h

1+ 1
ε

it di], then
we will get

ct = Et(ct+1)− (it − Et(πt+1)) + Et(ξt+1)− ξt
With government spending, market clearing condition is yt = ct + gt →

yt = Et(yt+1)− (it − Et(πt+1)) + Et(ξt+1)− ξt + Et(gt+1)− gt
Define the natural rate of interest as

rnt = Et(y
n
t+1 − ynt ) + Et(ξt+1)− ξt + Et(gt+1)− gt

It is also sometimes called Wicksellian rate.
Therefore, the IS curve is

ŷt = Et(ŷt+1)− (it − Et(πt+1)− rnt )

We can substitute it − Et(πt+1) by rt:

ŷt = Et(ŷt+1)− (rt − rnt )

Iterate forward to get

ŷt = −
+∞∑
k=0

Et(rt+k − rnt+k)

which establishes the relationship between today’s output gap and the long term interest
rate.

Note the Phillips curve and the IS curve are not enough to nail down the equilibrium,
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since we have three variables πt, ŷt and it. We will use a policy rule below as an additional
equation.

1.3 Taylor Rule

The Taylor rule is
it = rnt + φππt + φyŷt + vt

or

it = πt + rnt + (φπ − 1)πt + φyŷt + vt

In the long run, we want πt = 0 (zero inflation steady state). The above rule satisfies
this property since when rt = rnt , ŷt = 0, vt = 0, we will get πt = 0.

Assume φπ > 1 to ensure a determinate price or inflation (refer to recitation 11).
We also assume φy > 0 so that when output gap is positive, the policy will increase

nominal interest rate (thus real interest rate, since price is sticky, inflation doesn’t change
much), so that demand for today’s consumption is lower (compared to the future), leading
to lower output today. It provides stabilization of output.

In sum, we obtain the Dynamic New Keynesian model: three equations for three variables,

πt = βEtπt+1 + κŷt + ut

ŷt = Et(ŷt+1)− (it − Et(πt+1)− rnt )

it = rnt + φππt + φyŷt + vt

The solution will be (ŷt, πt, it) as functions of exogenous process (vt, ut, r
n
t ). In fact, one

can put the last equation into the second equation to eliminate it, so that we have

ŷt = Et(ŷt+1) + Et(πt+1)− (φππt + φyŷt + vt)

Together with the NK Phillips curve

πt = βEtπt+1 + κŷt + ut

Two equations for two variables: {πt, ŷt}. To guarantee stability, we have to restrict
the parameter space. For discussions about stability, one can refer to the Blanchard-Khan
condition after writing the system in matrix representation form.

2 Optimal Monetary Policy
The previous section takes monetary policy as given. This section will look at how to

design optimal monetary policy. So we will keep the Phillips curve and IS curve as constraints
but drop the monetary policy, compared to the previous section. The two constraints are:

πt = βEtπt+1 + κŷt + ut

ŷt = Et(ŷt+1)− (it − Et(πt+1)− rnt )
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The objective function is to minimize a loss function

L = E
+∞∑
t=0

βt[π2
t + λ(ŷt − ŷ∗)2]

by choosing {πt} and {ŷt}, where λ and ŷ∗ are constants (here λ does not represent the Calvo
changing price probability, it is only a constant). ŷ∗ is non-zero when there is monopoly
distortion in steady state (remember we have monopolistic competitive firms). See the
Remark below for how to derive the loss function (basically, second order approximation)
and the details about the two constants.

Intuitively, inflation brings about price dispersion which means resource misallocation
(first term) but inflation can also push up output to correct monopolistic distortions (second
term).

Remark. (You don’t need to know the following derivation to prepare for exams, just
let you know how it works) For simplicity, we again assume labor supply is not differ-

entiated, so that Ht =
∫ 1

0
Hitdi (then the utility function is U(C,H) = logC − γH, you

can change it to more complicated U(C,H) = C1−σ

1−σ − γH
1+ϕ

1+ϕ
) and since labor is homoge-

neous, wt = wit as well. We will shut down preference shock and ignore government
spending as well (but you can add them for exercise).

A representative household’s utility function is U(C,H). Do a second order Taylor ex-
pansion around steady state (C,H).

Ut − U ≈ UcC
Ct − C
C

+ UhH
Ht −H
H

+
1

2
UccC

2(
Ct − C
C

)2 +
1

2
UhhH

2(
Ht −H
H

)2

Note that we have assumed utility is seperable in consumption and leisure so that Uch = 0.
We will employ the following second order approximation for variable Xt:

Xt −X
X

=
Xex̄t −X

X
= ex̄t − 1 ≈ x̄t +

1

2
x̄t

2

where the log-deviation x̄t = log(Xt)− logX. Therefore, up to second order, we get

Ut − U ≈ UcC(c̄t +
1− σ

2
c̄2
t ) + UhH(h̄t +

1 + ϕ

2
h̄2
t )

On the other hand,

Ht =

∫ 1

0

Hitdi =

∫ 1

0

Yit
At
di =

Yt
At

∫ 1

0

(
Pit
Pt

)−θdi

→ (take log)

h̄t = ȳt − at + log(

∫ 1

0

(
Pit
Pt

)−θdi) ≈ ȳt − at +
θ

2
vari{pit}.
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(for the price dispersion term above, see e.g. Gali (2008) book page 62) and c̄t = ȳt, →

Ut − U = UcC(ȳt +
1− σ

2
ȳ2
t ) + UhH[ȳt − at +

θ

2
vari{pit}+

1 + ϕ

2
(ȳt − at)2

+(1 + ϕ)(ȳt − at)θvari{pit}+
1 + ϕ

8
θvar2

i {pit}]

Ignore terms higher than second order:

Ut − U = UcC(ȳt +
1− σ

2
ȳ2
t ) + UhH[ȳt − at +

θ

2
vari{pit}+

1 + ϕ

2
(ȳt − at)2]

Policy cannot affect at term, so ignore it as well,

Ut − U = UcC(ȳt +
1− σ

2
ȳ2
t ) + UhH[ȳt +

θ

2
vari{pit}+

1 + ϕ

2
(ȳt − at)2]

→
Ut − U
UcC

= ȳt +
1− σ

2
ȳ2
t +

UhH

UcC
[ȳt +

θ

2
vari{pit}+

1 + ϕ

2
(ȳt − at)2]

Since −Uh
Uc

= W/P and C = Y = θ
θ−1

W/PH (recall θ is the elasticity of substitution
across varieties),

Ut − U
UcC

= ȳt +
1− σ

2
ȳ2
t −

θ − 1

θ
[ȳt +

θ

2
vari{pit}+

1 + ϕ

2
(ȳt − at)2]

Ut − U
UcC

=
1

θ
ȳt +

1− σ
2

ȳ2
t −

θ − 1

θ
[
θ

2
vari{pit}+

1 + ϕ

2
(ȳt − at)2]

Again ignore terms that policy cannot affect (policy cannot affect at but can affect ȳt) to
get

Ut − U
UcC

=
1

θ
ȳt −

θ − 1

2
vari{pit} −

σ − 1

2
ȳ2
t −

ϕ+ 1

2

θ − 1

θ
ȳ2
t + (ϕ+ 1)

θ − 1

θ
ȳtat

→

Ut − U
UcC

= −1

2
{(θ − 1)vari{pit}+ [σ − 1 +

(ϕ+ 1)(θ − 1)

θ
]ȳ2
t −

2 + 2(ϕ+ 1)(θ − 1)at
θ

ȳt}

To be consistent with what we have used before, we take U(C,H) = logC − γH , so
that σ = 1 and ϕ = 0 (caution: if we want to use a more general utility function form, e.g.
U(C,H) = C1−σ

1−σ −γ
H1+ϕ

1+ϕ
, we have to re-derive the natural rate of output, it is not necessarily

ynt = at − log θ
θ−1

). Then

Ut − U
UcC

= −1

2
{(θ − 1)vari{pit}+

θ − 1

θ
ȳ2
t −

2 + 2(θ − 1)at
θ

ȳt}

→
Ut − U
UcC

= −1

2
{(θ − 1)vari{pit}+

θ − 1

θ
(ȳt − at −

1

θ − 1
)2}
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Denote x̄t = ȳt − at, the above turns to

Ut − U
UcC

= −1

2
{(θ − 1)vari{pit}+

θ − 1

θ
(x̄t −

1

θ − 1
)2}

From Woodford (2003) book Chapter 6,
∑∞

0 βtvari{pit} = 1−λ
(1−β(1−λ))λ

∑∞
0 βtπ2

t

The welfare gain (as a fraction of steady state consumption) is

WG = E0

∞∑
0

βt
Ut − U
UcC

→

WG = −1

2
E0

∞∑
0

βt[
(1− λ)(θ − 1)

(1− β(1− λ))λ
π2
t +

θ − 1

θ
(x̄t −

1

θ − 1
)2]

Then the loss function L = −WG. Now let ŷ∗ = 1
θ−1

and notice that x̄t = ȳt − at =

ȳt− log θ
θ−1
− (at− log θ

θ−1
) = yt− ynt which is in fact, the output gap ŷt we defined on page

2. �

2.1 No cost-push shocks and ŷ∗ = 0

Consider a case without markup shocks, i.e. we shut down ut. The problem becomes:

minE
+∞∑
t=0

βt[π2
t + λ(ŷt − ŷ∗)2]

s.t.
πt = βEtπt+1 + κŷt

ŷt = Et(ŷt+1)− (it − Et(πt+1)− rnt )

Notice that in the objective function it doesn’t appear and it only appears in the second
constraint. Therefore, we can drop the second constraint.

If ŷ∗ = 0 (for example, tax already corrects the distortion), the solution is πt = 0 and
ŷt = 0. We obtain the divine coincidence: the optimal solution shows there is no trade-
off between stabilizing inflation and stabilizing output gap. Note that ŷt = 0 doesn’t mean
yt = 0. With ŷn = 0, we get yt = ynt , that is output moves one-to-one with natural level
of output, which can be affected by e.g. technology. As with nominal interest rate, we go
back to the second constraint to see that it = rnt , which implies the policy rule should give
a coefficient of 1. Taylor rule satisfies this property.

In sum, the optimal policy is to stabilize inflation and let output fluctuate with the
natural level. Although we have a Phillips curve which features trade-off between inflation
and output gap, the optimal policy is not to exploit it.
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2.2 With cost-push shocks and ŷ∗ > 0

With cost-push shocks ut and ŷ∗ > 0, the Lagrangean problem is to minimize

E

+∞∑
t=0

{[π2
t + λ(ŷt − ŷ∗)2 + 2ϕt[πt − βπt+1 − κŷt − ut]]}

First order conditions are

πt + ϕt − ϕt−1 = 0

λ(ŷt − ŷ∗)− κϕt = 0

Combining the above two gives

πt +
λ

κ
(ŷt − ŷt−1) = 0

with initial π0 + λ
κ
(ŷ0 − ŷ∗) = 0. Note that ϕ−1 = 0 since policy hasn’t kicked in (assume

the policy design is conducted from t = 0).
Since πt = pt − pt−1, we get

pt +
λ

κ
ŷt = pt−1 +

λ

κ
ŷt−1 = ... = p−1 +

λ

κ
ŷ∗

which is a constant. This rule is price level targeting.
Plugging the F.O.C.s into the Phillips curve, we have

ϕt = µϕt−1 − µ
+∞∑
j=0

βjµj(κŷ∗ + Etut+j)

where 0 < µ < 1 is a constant.
Without shocks, ϕt converges to a constant. So πt = ϕt−1 − ϕt converges to 0. Notice

that it gradually converges to 0 instead of a flat line.
We have assumed commitment so far, i.e. the optimal policy plan is set at time 0 and the

central bank sticks to the original plan. Next we will consider the case without commitment.

2.3 Discretion

Policy will re-optimize each time, given its expectation Et(πt+1) = πet for tomorrow. The
problem can be written as

minπ2
t + λ(ŷt − ŷ∗)2

s.t.
πt = βπet + κŷt + ut

F.O.C. is

πt =
λ

λ+ κ2
(κŷ∗ + βπet + ut)
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Since Et(πt+1) = πet , we iterate forward the above to get

πt =
λ

λ+ κ2

+∞∑
j=0

βj(
λ

λ+ κ2
)j(κŷ∗ + Etut+j)

Without any shocks, it is a flat line with positive value.
Discretion gives higher inflation than the commitment case in the long run or

under a positive cost-push shock. The intuition is that under discretion, the policy maker
doesn’t internalize their choice of high inflation will push up previous period’s inflation. The
temptation to inflate comes from the incentive to get closer to ŷ∗ or to offset markup shocks
ut (ut increase means markup increase, i.e. more monopoly distortions, which requires higher
inflation to correct the distortion).
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