
Ordinary Di↵erential Equations

Macroeconomic Analysis Recitation 1

Yang Jiao⇤

1 Introduction
We will cover some basics of ordinary di↵erential equations (ODE). Within this class, we

deal with di↵erential equations, whose variable of interest takes derivative with respect to
time t. Denote Ẏt =

dYt
dt , where Yt can be a scalar or vector. A general explicit form of ODE

is
Ẏt = f(Yt, t) (1)

2 First-Order Di↵erential Equations
• Autonomous equation: ẏt = f(yt), an equation is autonomous when it depends on
time only through the variable itself. Example: kt = sk

↵
t � �kt, where s,↵ and � are

constants.

• Linear equation: ẏt = atyt + bt, where at and bt are taken as given. Example: ċt
ct

=
1
� (rt � ⇢), where � and ⇢ are parameters, while rt is a given function of t.

• Homogeneous: set the above linear di↵erential equation bt = 0. This terminology also
applies to high-order di↵erential equations: e.g. ÿt = gtẏt + htyt.

Autonomous equation can be solved (illustrated) graphically, while linear equation admits
analytical solution.

2.1 Analytical Solution

A homogeneous di↵erential equation

ẏt = atyt (2)

Divide both sides by yt,

ẏt

yt
= at (3)

⇤
Please email me if you find errors or typos to yj2279@columbia.edu. All comments and suggestions are

welcome and appreciated.
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) dlog(yt)

dt

= at (4)

Therefore,

yt = C exp(

Z t

0

asds) (5)

where C is determined by boundary condition.
A linear di↵erential equation

ẏt = atyt + bt (6)

Rearrange the above equation as

ẏt � atyt = bt (7)

Multiply both sides by exp(�
R t

0 asds), we obtain

ẏt exp(�
Z t

0

asds)� atyt exp(�
Z t

0

asds) = bt exp(�
Z t

0

asds) (8)

That is

d[yt exp(�
R t

0 asds)]

dt

= bt exp(�
Z t

0

asds) (9)

) yt = exp(

Z t

0

asds)(

Z t

0

bu exp(�
Z u

0

asds)du+ C) (10)

where C is pinned down by boundary condition.
Example

k̇t = sk

↵
t � �kt (11)

Define zt = k

1�↵
t , then

żt = (1� ↵)k�↵
t k̇t (12)

Substitute k̇t, kt by żt, zt, we arrive at

żt = s(1� ↵)� �(1� ↵)zt (13)

Let at = ��(1 � ↵) and bt = s(1 � ↵), and use the solution we already get in the linear
di↵erential equation.

zt =
s

�

+ (z0 �
s

�

) exp[��(1� ↵)t] (14)

) kt = {s
�

+ (k1�↵
0 � s

�

) exp[��(1� ↵)t]}
1

1�↵ (15)
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2.2 Graphical Solution

An autonomous equation
ẏt = f(yt) (16)

Solution Steps:

• Plot f(y) in the space of (y, ẏ). Put y on the x-axis and ẏ on the y-axis.

• Draw rightward arrows when f > 0, and leftward arrows when f < 0.

• Given an initial point, follow the arrows to track the dynamics of y.

Equilibrium and Stability: When ẏt = 0, we have f(y) = 0. The solutions to
f(yt) = 0 are equilibrium points. An equilibrium point y⇤ is said to be stable if f 0(y⇤) < 0
(or equivelently, write it as @ẏ

@y |y⇤ < 0). Intuitively, the arrows around the equilibrium point
direct to the stable equilibrium point. Or roughly speaking, after a small perturbation, yt
will finally go back to the equilibrium point.

Examples:

• ẏt = ayt + b, where a < 0. The equilibrium point is y⇤ = � b
a . Since

@ẏ
@y |y⇤ = a < 0, this

equilibrium point is stable. See Figure 1. (Figures are on the last two pages.)

• ẏt = ayt + b, where a > 0. The equilibrium point is y⇤ = � b
a . Since

@ẏ
@y |y⇤ = a > 0, this

equilibrium point is unstable. See Figure 2.

• Go back to our old friend, k̇t = sk

↵
t � �kt, with 0 < ↵ < 1. We have two equilibrium

points: k⇤ = ( s� )
1

1�↵ , k⇤⇤ = 0. Then @k̇
@k |k⇤ = �(↵�1) < 0 and @k̇

@k |k⇤⇤+ = +1. Therefore,
k

⇤ is stable and k

⇤⇤ is unstable. See Figure 3.

2.3 Linearization

Suppose we are interested in the dynamics around the equilibrium y

⇤.

ẏt = f(yt) ⇡ f(y⇤) + f

0(y⇤)(yt � y

⇤) = f

0(y⇤)(yt � y

⇤) (17)

Applying it to the above k̇t = sk

↵
t � �kt, we obtain

k̇t = (↵sk⇤↵�1 � �)(kt � k

⇤) (18)

3 Systems of Di↵erential Equations
3.1 Analytical Solution

Consider the linear system of di↵erential equation Ẏt = AtYt + Bt with At = A,Bt = 0.
A is a n⇥ n matrix with constant elements.
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A simple case is when A has n linearly independent eigenvectors v1, v2....vn, with corre-
sponding eigenvalues �1,�2, ...,�n. It is equivalent to say A is diagonalizable D = P

�1
AP ,

where the diagonal elements of D are �1,�2, ...,�n and the columns of P are v1, v2....vn.

Ẏt = AYt = PDP

�1
Yt (19)

) P

�1
Ẏt = P

�1
AYt = DP

�1
Yt (20)

Denote Zt = P

�1
Yt, we have

Żt = DZt (21)

) żit = �izit, i = 1, 2, ..., n (22)

) zit = ci exp(�it), i = 1, 2, ..., n (23)

Given Zt, we immediately get Yt = PZt.
One can follow the same steps above to show that Ẏt = AYt +Bt has analytical solution

as well.
Remark 1. If A is not diagnonalizable (for example, in a two-dimension case, we

may only have one linearly independent eigenvector), we can use another decomposition
T = U

�1
AU , where T is an upper triangular matrix. Denote Wt = U

�1
Yt, we have Ẇt =

TWt +U

�1
Bt, then solve wit by the order of wnt, wn�1,t, ..., w1t, where wit is the ith element

of Wt.
Remark 2. It is possible that eigenvalues are complex numbers, and eigenvectors are

complex vectors thus we obtain complex solutions. However, we want real solutions instead
of complex solutions. Apply the following observation: if pt + iqt is a solution to Ẏt = AYt

(pt � iqt should also be a solution), where pt and qt are real vectors, then pt and qt are also
the solutions. This is because Ẏt = ṗt + iq̇t = A(pt + iqt) = Apt + iAqt, then we arrive at
ṗt = Apt and q̇t = Aqt.

3.2 Graphical Solution (Phase Diagram)

Here we focus on two dimensions of system of di↵erential equations. That is we have two
variables y1 and y2 of interest.

˙y1t = f(y1t, y2t) (24)

˙y2t = g(y1t, y2t) (25)

Solution Steps:

• In the space (y1, y2), draw the lines of ˙y1t = 0 and ˙y2t = 0 respectively. Or equivalently
to say, draw both f(y1, y2) = 0 and g(y1, y2) = 0

• Draw rightward arrows when ˙y1t > 0, and leftward arrows when ˙y1t < 0

• Draw upward arrows when ˙y2t > 0, and downward arrows when ˙y2t < 0

• The intersections of ˙y1t = 0 and ˙y2t = 0 are equilibrium points. These points can be
stable, unstable or saddle path stable.
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• Given an initial point, follow the direction of arrows to track the dynamics of (y1t, y2t)

Remark. In macroeconomics,we usually have initial values of state varibles (instead of all
the varibles) and a transversality condition to uniquely determine the initial point and thus
the whole dynamics. For example, given y10 ( y1t is a state variable), we will pick up y20 (y2t
is a control variable). After picking up y20, we follow arrows and we need to ensure that we
will reach an equilibrium point which satisfies the transversality condition.

Example 1 Consider the following system of di↵erential equations of ct and kt.

k̇t = k

↵
t � �kt � ct (26)

ċt =
1

�

(↵k↵�1
t � � � ⇢)ct (27)

Boundary condition: initial state k0 and transversality condition limt!+1�tkt = 0. You will
see what transversality condition is in class, and it basically guarantees that the economy
will not explode or converge to a non-sense point (no-ponzi scheme). Note we will have a
unique saddle path. See Figure 4.

Example 2 Now we turn to a two dimension linear case Ẏt = AYt, where Yt = (y1t, y2t)0

and A is a 2 by 2 matrix with constant elements. We first write out the analytical solutions
(see the above Section 3.1 for how to solve it.). Suppose the eigenvalues of matrix A are �1

and �2.

• If �1 6= �2 and the two linearly independent eigenvectors are v1, v2, the solution is of
the form:

Yt = C1v1e
�1t + C2v2e

�2t (28)

• If �1 = �2 (must be a real number) and we have two linearly independent eigenvectors
v1, v2 , the solution is of the form:

Yt = C1v1e
�1t + C2v2e

�1t (29)

• If �1 = �2 (must be a real number) and we only have one linearly independent eigen-
vector v1, the solution is of the form:

Yt = C1v1e
�1t + C2(v1te

�1t + v2e
�1t) (30)

where v2 is the solution of (A� �1I)v2 = v1

Constants C1 and C2 are determined by boundary conditions.
Eigenvalues and Stability (Example 2)

• If the eigenvalues are both positive real numbers, the equilibrium is unstable. See
Figure 5.

• If the eigenvalues are both negative real numbers, the equilibrium is stable. See Figure
6.
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• If the real parts of the eigenvalues are of opposite sign (it also implies that there is
no complex part), the equilibrium is saddle path stable. Note this case is of special
interest in this class. See Figure 7.

• If the eigenvalues are both complex numbers and the real parts are both positive, the
system is unstable and oscillating. See Figure 8.

• If the eigenvalues are both complex numbers and the real parts are both negative, the
system converges to the steady state in an oscillating manner. See Figure 9.

3.3 Linearization

Suppose we are interested in the dynamics around equilibrium point. We proceed with
a two-dimension case.

˙y1t = f(y1t, y2t) ⇡ f(y⇤1, y
⇤
2) + f1(y

⇤
1, y

⇤
2)(y1t � y

⇤
1) + f2(y

⇤
1, y

⇤
2)(y2t � y

⇤
2) (31)

˙y2t = g(y1t, y2t) ⇡ g(y⇤1, y
⇤
2) + g1(y

⇤
1, y

⇤
2)(y1t � y

⇤
1) + g2(y

⇤
1, y

⇤
2)(y2t � y

⇤
2) (32)

Since we linearize around the equilibrium point, f(y⇤1, y
⇤
2) = 0 and g(y⇤1, y

⇤
2) = 0. That implies

Ẏt = A(Yt � Y

⇤) (33)

where Yt = (y1t, y2t)0 or
Żt = AZt (34)

where Zt = Yt � Y

⇤

Then the above formula goes back to the aformentioned homogeneous system of di↵er-
ential equation with constant coe�cient matrix.

Example
k̇t = k

↵
t � �kt � ct ⇡ (↵k⇤↵�1 � �)(kt � k

⇤)� (ct � c

⇤) (35)

ċt =
1

�

(↵k↵�1
t � � � ⇢)ct ⇡

↵(↵� 1)

�

c

⇤
k

⇤↵�2(kt � k

⇤) (36)

Pick up the equilibrium point with positive (k⇤
, c

⇤) and write the above in a more compact
form:

k̇t = �(kt � k

⇤)� (ct � c

⇤) (37)

ċt = �⌧(kt � k

⇤) (38)

with � > 0 and ⌧ > 0. The coe�cient matrix is (assume parameter 0 < ↵ < 1)

A =

✓
� �1
�⌧ 0

◆

One can show the eigenvalues of the above have opposite sign and are real numbers.
Therefore, the equilibrium is saddle path stable.
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Investment Theory

Macroeconomic Analysis Recitation 2

Yang Jiao⇤

In this note, our focus is 1). Linearization of the internal adjustment cost model. 2).
External adjustment cost model.

1 Internal Adjustment Cost Model
1.1 Model Setup

Internal adjustment cost means in order to invest It, firms have to themselves forego
additional resources It'(

It
Kt
). Assume '(0) = 0, '0(·) > 0 and 2'0+ I

K'00 > 0. For simplicity,
assume depreciation rate � = 0.

V0 = max
Kt,Lt,It

Z +1

0

e�rt[AF (Kt, Lt)� wtLt � It(1 + '(
It
Kt

))]dt (1)

s.t.
K̇t = It (2)

Non-ponzi scheme: lim
t!1

e�rtKt � 0 (3)

K0 is given. (4)

1.2 Solve the Model

We first set up the Hamiltonian:

H = e�rt[AF (Kt, Lt)� wtLt � It(1 + '(
It
Kt

))] + �tIt (5)

First order conditions are:
AFL = wt (6)

e�rt{�[1 + '(
It
Kt

) +
It
Kt

'0(
It
Kt

)]}+ �t = 0 (7)

⇤
Please email me if you find errors or typos to yj2279@columbia.edu. All comments and suggestions are

welcome and appreciated.
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e�rt[AFK + (
It
Kt

)2'0(
It
Kt

)] = ��̇t (8)

TV C : lim
t!+1

�tKt = 0 (9)

Denote current shadow price qt = ert�t, then F.O.C.s change to

AFL = wt (10)

qt = 1 + '(
It
Kt

) +
It
Kt

'0(
It
Kt

) (11)

q̇t = rqt � [AFK + (
It
Kt

)2'0(
It
Kt

)] (12)

TV C : lim
t!+1

e�rtqtKt = 0 (13)

Equation (11) establishes the relationship between qt and
It
Kt
. It is a one-to-one mapping

(by 2'0 + I
K'00 > 0, we know qt is an increasing function of It

Kt
).

It
Kt

= h(qt) (14)

From equation (11), when I
K = 0, q = 1, thus h(1) = 0 in equation (14).

To solve the model, capital accumulation equation has to be used as well (don’t foreget
it, since it is not listed in the first order conditions.).

K̇t = It = h(qt)Kt (15)

From the first order conditions, we also have

q̇t = rqt � [AFK + h2(qt)'
0(h(qt)] (16)

Now we have got a system of di↵erential equations for qt, Kt with initial condition K0 given
and TVC limt!+1 e�rtqtKt = 0.

Remark. In fact, the problem is complicated because labor input Lt will depend on
Kt, see equation (10). And Lt shows up in equation (16) FK(Kt, Lt) as well. Denote the
functional relationship derived from equation (10) as Lt = g(Kt). Then in equation (16),
one needs to substitute FK(K,L) by FK(K, g(K)). However, to simplify the analysis, we
assume labor demand Lt keeps fixed at L⇤ for the moment.

1.3 Graphical Solution (Phase Diagram)

• We first need to find the steady state. We will focus on the steady state with positive
(k⇤, q⇤).

h(q⇤) = 0 (17)

rq⇤ = [AFK(K
⇤, L⇤) + h2(q⇤)'0(h(q⇤)] (18)

Since h(1) = 0 and h is monotonic, we immediately have q⇤ = 1. And then K⇤ =
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F�1
K (r/A).

• It is easy to draw K̇t = 0, that is h(q) = 0 thus q = 1, a horizontal line in the space of
(K, q).

Since we will concentrate on the dynamics around the steady state, we would like to
know the slope of q̇t = 0 in a small neighborhood of (K⇤, q⇤). Denote the line q̇t = 0
as m(K, q) = 0,

m(K, q) = rq � [AFK(K,L⇤) + h2(q)'0(h(q))] (19)

For the line m(K, q) = 0, at point (K⇤, q⇤), by the implicit function theorem, the slope
is

dq

dK
|(K⇤,q⇤) = �@m/@K

@m/@q
=

AFKK(K⇤, L⇤)

r � 2h(q⇤)'0(h(q⇤))� h2(q⇤)'00(h(q⇤))h0(q⇤)
=

AFKK(K⇤, L⇤)

r
< 0

(20)
By continuity, in a small neighborhood of (K⇤, q⇤), the slope is also negative.

Remark 1. If we forget about the assumption that L⇤ is fixed, what we need for
dq
dK |(K⇤,q⇤) < 0 to hold is FKK(K⇤, g(K⇤)) + FK,L(K⇤, g(K⇤))g0(K⇤) < 0. In fact, to
justify the fixed L⇤, we may consider a general equilibrium model with fixed labor
supply L⇤, so wages will adjust to guarantee that labor demand equals labor supply
Lt = L⇤.
Remark 2. When we have capital depreciation rate � > 0 in this internal adjustment
cost model, the steady state q⇤ will not be 1. Please check by yourself how depreciation
rate will a↵ect steady state level of q⇤.

See Figure 1 for the phase diagram. Note the role of TVC is to guarantee that firms will
choose to stay on the saddle path. When qt > 1, firms invest, thus capital stock increases,
while when qt < 1, firms disinvest thus capital stock decreases. That is to say investment
depends on qt.

1.4 Linearization

Around the steady state (K⇤, q⇤):

K̇t ⇡ h(q⇤)(Kt �K⇤) +K⇤h0(q⇤)(qt � q⇤) (21)

q̇t ⇡ �AFKK(K
⇤, L⇤)(Kt�K⇤)+ [r�2h(q⇤)'0(h(q⇤))�h2(q⇤)'00(h(q⇤))h0(q⇤)](qt� q⇤) (22)

Substituting the steady state property that h(q⇤) = h(1) = 0, we obtain

K̇t ⇡ K⇤h0(q⇤)(qt � q⇤) (23)

q̇t ⇡ �AFKK(K
⇤, L⇤)(Kt �K⇤) + r(qt � q⇤) (24)

Write the above in a more compact form

Żt = GZt (25)
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where Zt = (Kt �K⇤, qt � q⇤)0 and the coe�cient matrix is

G =

✓
0 K⇤h0(q⇤)

�AFKK(K⇤, L⇤) r

◆

The eigenvalues �1 and �2 satisty that

�1 ⇤ �2 = det(G) = K⇤h0(q⇤) ⇤ AFKK(K
⇤, L⇤) < 0 (26)

We conclude that eigenvalues must have opposite signs and they are real numbers thus this
system is saddle path stable.

Solving the eigenvalues explicitly, we have

� =
r ±

p
r2 � 4AFKKh0(q⇤)K⇤

2
(27)

Let �1 be the eigenvalue smaller than 0, and �2 larger than 0. The solution to the above
system of di↵erential equation is

Z1t = Kt �K⇤ =  11e
�1t + 12e

�2t (28)

Z2t = qt � q⇤ =  21e
�1t + 22e

�2t (29)

(Recall the result from recitation 1, a two-dimension linear system of di↵erential equation
with two di↵erent eigenvalues should have the solution form Zt = C1v1e�1t+C2v2e�2t, where
C1 and C2 are constants, v1 and v2 are eigenvectors, and �1 and �2 are eigenvalues. Therefore,
 11 = C1v11,  21 = C1v12,  12 = C2v21, and  22 = C2v22)

To let the system converge to (K⇤, q⇤), we must have  12 =  22 = 0 ( just set C2=0 ).
Otherwise, the solution would have a term e�2t going to infinity and TVC will be violated.
Now we are on the saddle path.

To determine  11 and  21, we need two conditions. First, the initial K0 is given

K0 �K⇤ =  11 (30)

Second, ( 11, 21)0 is the eigenvector of �1(v1 is an eigenvalue, then C1v1 is also an eigenvector
when C1 6= 0),

 21 =
�1 11

K⇤h0(q⇤)
=

�1(K0 �K⇤)

K⇤h0(q⇤)
(31)

In sum, we have determined all the dynamics of this linearized system analytically.
Additionally, initial q is given by

q0 = q⇤ + 21 = q⇤ +
�1(K0 �K⇤)

K⇤h0(q⇤)
(32)

2 External Adjustment Cost
In the above internal adjustment cost model, capital is owned by firms and firms bear the

adjustment cost. Now consider an alternative setting in which final goods producers purchase
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capital from capital goods producers. Final goods producers bear no adjustment cost while
capital good producers incur adjustment cost (modeled as a convex cost of production, i.e.
decreasing return to scale production technology). One can think that installation of capital
is done by capital good producers instead of final good producers.

2.1 Model Setup

2.1.1 Capital Goods Firms

To produce It capital goods, capital goods firms have to incur cost C(It). We assume
the cost function satisfies C(0) = 0, C 0(I) > 0 for I > 0, C 00(I) > 0 for I > 0 and
limI!+1 C 0(I) = +1. In short, cost function is convex and marginal cost goes to infinity
when producing infinite capital.

These firms are price takers, and their problem is

max
It

Z +1

0

e�rt[PItIt � C(It)]dt (33)

This is a static problem. It is equivalent to maximize PItIt � C(It) at each moment. The
first order condition is

PIt = C 0(It) (34)

Since C 00 > 0, PI is a strictly increasing function of I and the reverse is true as well:

I = h(PI) (35)

with h0(·) > 0. It is a supply function of capital goods.

2.1.2 Final Goods Producers

We assume final goods producers directly buy capital from capital good producers and
they don’t pay adjustment cost.

V0 = max
Kt,Lt,It

Z +1

0

e�rt[PtAF (Kt, Lt)� wtLt � PItIt]dt (36)

s.t.
K̇t = It � �Kt (37)

Non-ponzi scheme: lim
t!1

e�rtKt � 0 (38)

K0 is given. (39)

2.2 Solve the Model

We set up the Hamiltonian of final goods producers:

H = e�rt[PtAF (Kt, Lt)� wtLt � PItIt] + �t(It � �Kt) (40)
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First order conditions are:
AFL = w/P (41)

� e�rtPIt + �t = 0 (42)

e�rtPAFK � �t� = ��̇t (43)

TV C : lim
t!+1

�tKt = 0 (44)

Denote current shadow price qt = ert�t, then F.O.C.s change to

AFL = wt/Pt (45)

PIt = qt (46)

ṖIt = (r + �)PI � P · AFK (47)

TV C : lim
t!+1

e�rtqtKt = 0 (48)

Remember we also have the capital accumulation equation, and plugging in the solution of
capital goods producers yields

K̇t = h(PIt)� �Kt (49)

Combining
ṖIt = (r + �)PIt � P · AFK , (50)

initial condition K0 and TVC limt!+1 e�rtPItKt = 0, we are ready to solve a two-dimension
di↵erential equation system.

2.3 Housing Market Interpretation

• One can think of the capital goods producers as firms in construction sector who build
new houses. Final goods producers are real estate agents who will hire labor to provide
housing services.

• Capital stock is housing stock and real estate agents buy newly built houses from the
construction sector. Real estate agents are the owners of housing stock.

• We can view the newly produced capital goods It as residential investment. PAF (K,L)
are the rent income of real estate agents. PI is the price of a unit of newly built house.
We take final goods price P as given, but one can have a household side utility function
to derive a demand function for final goods, then P can be endogenized.

• Why capital goods production has convex cost? Here is a simple interpretation: since
land supply is limited, building one house on the top of a skyscraper will be more
di�cult than building a house on the ground.

• Interest rate

r =
ṖI + P · AFK � �PI

PI
(51)
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given by equation (50). It is a no-arbitrage condition: return from investing in a unit
of house is equal to the interest rate.

• Rearrange equation (50):

(r + �)PIt � ṖIt = P · AFK (52)

Multiply both sides by e�(r+�)t, and take integral from 0 to +1 on both sides,

PI0 =

Z +1

0

e�(r+�)tP · AFK(Kt, L
⇤)dt (53)

The price of a house is equal to the present value of all future rent income from the
house. Notice we have an addtional depreciation rate � in the equation, because in the
setup we assume � 6= 0.

Remark.You can use similar steps to get q0 in the internal adjustment cost model:

q0 =

Z +1

0

e�rt[AFK + (
It
Kt

)2'0(
It
Kt

)]dt (54)

The term ( It
Kt
)2'0( It

Kt
) captures the learning by doing benefit from installing capital

today.

2.4 Graphical Solution (Phase Diagram)

Setting K̇t = 0 and ṖIt = 0 leads to

h(PI) = �K (55)

PI =
P · AFK(K,L⇤)

r + �
(56)

One is a positive relationship between K and PI , and the other is a negative relationship.
The steady state is given by the intersection of the above two lines. See Figure 2 for the
phase diagram.
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Investment Theory (continued)- Neoclassical Production

Functions

Macroeconomic Analysis Recitation 3

Yang Jiao⇤

1 Comparison of Internal and External Adjustment

Cost Models
Consider a permanent positive productivity shock to both models. See Figure 1 (internal

cost model) and Figure 2 (external cost model). In the external adjustment cost model, long
run q

⇤ = P

⇤
I

will increase, while in the internal adjustment cost model, steady state q

⇤ is
fixed at 1.

One may wonder are these two models really di↵erent? Adjustment cost is just adjust-
ment cost after all. Note the di↵erence we introduced in these two models: in the external
adjustment cost model, we add depreciation rate of capital, and assume the cost of producing
new capital is C(I) instead of I(1 + '( I

K

)) as in the internal adjustment cost model. Now
the question is whether these two di↵erences in modeling generate the di↵erent predictions
as shown in Figure 1 and Figure 2.

In the external adjustment cost model, in steady state, when K

⇤ changes, I⇤ = �K

⇤ will
change as well since we have depreciation rate � > 0. Then q

⇤ = P

⇤
I

= C

0(I⇤) will also
change. In order to make q

⇤ = P

⇤
I

not change with K

⇤ (i.e. a flat K̇

t

= 0 line), we need
to revise the cost function in the external adjustment cost model so that the marginal cost
of capital goods will not di↵er when we have a di↵erent K⇤. Here are two ways: 1) let the
marginal cost of new capital goods be a function of I � �K (in steady state I

⇤ � �K

⇤ will
always be 0). 2) let the marginal cost of new capital goods be a function of I

K

(in steady
state I

⇤

K

⇤ will always be �).

1.1 Capital Depreciation

Assume in the external adjustment cost model, cost function takes the form C̄(I) =
C(I � �K), therefore, replacing depreciated capital costs nothing: C̄(I⇤) = C(I⇤ � �K

⇤) =
C(0) = 0. Resolving the model shows:

P

It

= C̄

0(I) = C

0(I
t

� �K

t

) (1)

⇤
Please email me if you find errors or typos to yj2279@columbia.edu. All comments and suggestions are

welcome and appreciated.
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Capital accumulation function becomes

K̇

t

= I

t

� �K

t

= h(P
It

) (2)

In this way, you have a flat K̇
t

= 0 schedule: P
I

= h

�1(0).

1.2 I
K and I

In the internal adjustment cost model, the cost function is related to capital stock to
capture the learning by doing e↵ect, while in the external adjustment cost, we ignore it.
Now suppose in the external adjustment cost model, we also take into account the learning
by doing e↵ect and assume the margial cost of producing capital goods is a function of I

K

:

g( I

K

). For example, if C(I,K) = I(1+'(I/K)), we have g(I/K) = @C(I,K)
@I

= 1+'(I/K)+
I

K

'

0(I/K). Resolving the external adjustment cost model shows:

P

It

= g(
I

t

K

t

) (3)

The above establishes a relation
I

t

K

t

= h(P
It

) (4)

Capital accumulation function becomes

K̇

t

= I

t

� �K

t

= [h(P
It

)� �]K
t

(5)

We reach a flat K̇
t

= 0 as well: P
I

= h

�1(�).
Conclusion: these two investment models are essentially the same if we revise the cost

function in the external adjustment cost model to eliminate the di↵erences caused by
di↵erent modeling strategies in the two models.

Remark. We have discussed the line of K̇
t

= 0 for the two models, but what about
the line of q̇

t

= 0 ? In fact, there is externality that is not internalized. In the external
adjustment cost model, final goods producers don’t take into account that their purchasing
of newly built capital goods can decrease the cost of capital goods producers in the future.
That’s why when you set � = 0 and C(I,K) = I(1 + '(I/K)) in the external adjustment
cost model, you will get a di↵erent line for q̇

t

= 0 when comparing to the internal adjustment
cost model (please check what I am saying is correct).

2 Neoclassical Production Functions Y = F (K,L,A)

2.1 Basic Properties

The production function F : R3
+ ! R is twice continuously di↵erentiable to its three

arguments. A production function is called a neoclassical production function if the following
properties are satistied.
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• Constant returns to scale:

F (�K,�L,A) = �F (K,L,A) (6)

That is F (K,L,A) is homogeneous of degree one in K and L. Note A is non-rivalry,
so the replication principle doesn’t apply to A.

• Positive and diminishing returns to K and L:

@F

@K

> 0,
@F

@L

> 0 (7)

@

2
F

@K

2
< 0,

@

2
F

@L

2
< 0 (8)

If we increase the amount of one input, output will increase, but marginal product
will decrease as the input increases.

• Inada Conditions

lim
K!0

@F

@K

= lim
L!0

@F

@L

= 1 (9)

lim
K!+1

@F

@K

= lim
L!+1

@F

@L

= 0 (10)

Inada conditions can help us nail down interior solutions.

• Essentiality
F (K, 0, A) = F (0, L, A) = 0 (11)

Therefore, to produce a positive amount of output, a positive amount of each input
is required.

The first three properties imply the last essentiality property, so we don’t need to write
down the last essentiality property. See the following proof of this argument:
Proof. Recall L’ Hôpital’s Rule:
If lim

x!c

f(x) = lim
x!c

g(x) = 0 or ±1 and lim
x!c

f

0(x)
g

0(x) exists and g

0(x) 6= 0 around I which

is a small neighborhood of c, then lim
x!c

f(x)
g(x) = lim

x!c

f

0(x)
g

0(x)
Apply it to the following:

lim
K!+1

Y

K

= lim
K!1

@Y

@K

@K

@K

= lim
K!1

@Y

@K

= 0 (12)

The last equality comes from Inada conditions.
Note that by CRS (constant returns to scale)

lim
K!+1

Y

K

= lim
K!+1

F (1,
L

K

,A) = F (1, 0, A) (13)

which leads to

F (1, 0, A) = 0 (14)
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And F (L, 0, A) = L ⇤ F (1, 0, A) = 0 follows immediately. Similarly, one can prove that
F (0, K,A) = 0 as well.

Examples A constant elasticity of substitution (CES) production function

Y = F (K,L) = (aK
��1
� + bL

��1
� )

�

��1 (15)

where a � 0, b � and � � 0 are constants. � = � d ln(L/K)
d ln(F

L

/F

K

) , where F

K

and F

L

are partial
derivatives.

• When � ! +1, Y = aK + bL, perfect substitutability

• When � ! 0, Y = min{K,L}, perfect complementarity, Leontief. When Y =
F (K,L) = [(aK)

��1
� + (bL)

��1
� ]

�

��1 , and � ! 0, we have Y = min{aK, bL}. Note
the slight di↵erence.

• When � = 1, Y = K

↵

L

1�↵ with ↵ = a

a+b

, Cobb-Douglas.

We can use L’ Hôpital’s Rule to show when � ! 0 and � ! 1 , we are approaching
Leontief production function and Cobb-Douglas production function respectively.

2.2 Constant Returns to Scale and Zero Profit

Euler Theorem Suppose f : RM ! R is continuously di↵erentiable and homogeneous
of degree ↵, i.e.

8x 2 RM

, f(�x) = �

↵

f(x) (16)

then
MX

i=1

@f(x)

@x

i

x

i

= ↵f(x) (17)

Proof. Di↵erentiate both sides of equation (11) with respective to � and set � = 1.
For a constant returns to scale production function F (K,L,A), we know ↵ = 1. Apply

Euler Theorem,
F

K

K + F

L

L = F (18)

A profit maximization firm takes input price R and W and output price P as given and first
order conditions are PF

K

= R and PF

L

= W . Therefore, RK +WL = PF , or firms’ profit
PF � RK �WL = 0. Note the implicit assumption is that firms are price takers of input
and output.

One may wonder that in investment theory, firms are price takers but they do have profits.
The reason is that in investment theory we study, firms are capital good owners themselves
(so they don’t rent capital), and they start with a capital stock K0 > 0.

2.3 Technological Progress

2.3.1 Three Production Function Forms

Three forms of production functions:

4



• Hicks neutral: Y = A

t

F (K,L);

• Harrod neutral: Y = F (K,A

t

L);

• Solow neutral: Y = F (A
t

K,L).

Cobb-Douglas production function can be written as all of the above three forms.

2.3.2 What Form of Technological Progress?

Suppose there is a production function:

Y

t

= F (K
t

, L

t

, A

t

), (19)

if

• F exhibits constant returns to scale in K and L

• Resource constraint: K̇
t

= Y

t

� C

t

� �K

t

and saving rate is constant s

• Labor grows at a constant rate L̇

t

L

t

= n

• Capital stock grows at a constant rate K̇

t

K

t

= �

K

then the production function must be labor augmenting, i.e. Harrod neutral
Proof.

From the resource constraint
K̇

t

K

t

= s

Y

t

K

t

� � (20)

Since the left hand side is a constant �
K

, we immediately conclude that Y

K

is a constant.

Y

t

= F (B
t

K

t

, A

t

L

t

) (21)

Note when B

t

and A

t

grow at the same rate, we will go to Hicks neutral case by CRS,
therefore, this form includes all three possible production function forms.

We additionally assume that technology will grow at a constant rate. Assume that Ḃ

t

B

t

= z

and Ȧ

t

A

t

= x. Without loss of generality, we let B0 = 1 and A0 = 1 so that B

t

= e

zt and
A

t

= e

xt. Then

Y

t

K

t

=
F (B

t

K

t

, A

t

L

t

)

K

t

= F (B
t

, A

t

L

t

K

t

) = B

t

F (1,
A

t

B

t

L

t

K

t

) = e

zt

F (1, e(x�z)t Lt

K

t

) (22)

Since labor grows at a constant rate n and capital grows at a constant rate of �
K

(again, for
simplicity assume L0 = 1 and K0 = 1), we get

Y

t

K

t

= e

zt

F (1, e(x�z+n��

K

)t) (23)
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Define '(·) = F (1, ·) to obtain

Y

t

K

t

= e

zt

'(e(x�z+n��

K

)t) (24)

We have proved that Y

t

K

t

is a constant, and now we discuss two scenarios:
1). If x� z+n� �

K

= 0 thus x = �

K

�n, we need to have z = 0, which means A
t

grows
at a constant rate and B

t

is a constant . So the production function is labor augmenting.

2). If x� z + n� �

K

6= 0, we still need to have @[ezt'(e(x�z+n��

K

)t)]
@t

= 0 which implies

'

0(�)�

'(�)
=

�z

n+ x� z � �

K

(25)

where � = e

(x�z+n��

K

)t. Notice that we need to require n+ x� z � �

K

is non-zero here.
Solve the above di↵erential equation to reach

'(�) = constant · �1�↵ (26)

where ↵ is a constant. Substitute back to the production function to finally write out

F (B
t

K

t

, A

t

L

t

) = B

t

K

t

· F (1,
A

t

L

t

B

t

K

t

) = B

t

K

t

(
A

t

L

t

B

t

K

t

)1�↵ = constant ·K↵

t

(L
t

e

⌫t)1�↵ (27)

where ⌫ = z↵+x(1�↵)
1�↵

. This Cobb-Douglas production function also belongs to labor aug-
menting production function.

We then conclude that production function takes the labor augmenting form.
Remark. We can use other ways to prove the labor augmenting production function.

First, since Y/K is constant and K grows at a constant rate of �
K

, Y will also grow at a
constant rate �

Y

and �

Y

= �

K

. At time 0 (pick up an arbitrary time T should work as well),
the production function is

Y0 = F (K0, L0, A0) (28)

Multiply both sides by e

�

K

t, we obtain

e

�

K

t

Y0 = F (e�K t

K0, e
�

K

t

L0, A0) (29)

Y

t

= F (K
t

, e

(g
K

�n)t
L

t

, A0) (30)

Denote Ā

t

= e

(g
K

�n)t and re-write

Y

t

= F (K
t

, e

(�
K

�n)t
L

t

, A0) = F (K
t

, Ā

t

L

t

, A0) = F̄ (K
t

, Ā

t

L

t

) (31)

where Ā

t

= e

(�
K

�n)t. The above F̄ (K
t

, Ā

t

L

t

) is already a labor augmenting production
function.
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2.3.3 Kaldor Facts

Kaldor facts about growth:

• Per capita output Y

L

grows over time, and its growth rate doesn’t tend to diminish.

• Physical capital per worker K

L

grows over time

• Return of capital R keeps nearly constant

• Ratio of physical capital to output K

Y

keeps nearly constant

• Labor share WL

Y

and capital share RK

Y

are nearly constant

• The growth rate of output per worker di↵ers substantially across countries
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Growth Model with Exogenous Saving Rate

Macroeconomic Analysis Recitation 4

Yang Jiao⇤

1 Extensions of Solow-Swan Model
1.1 Solow-Swan Model with Technology Progress

Now we introduce technology progress as well. Assume we have a neoclassical production
function Y = F (K

t

, A
t

L
t

), where technology A
t

grows at a constant rate �
A

and labor L
t

grows at n. All else equal as in the Solow-Swan model we studied in class.

Ȧ
t

A
t

= �
A

(1)

L̇
t

L
t

= n (2)

Define lowercase letter variable x
t

= Xt
AtLt

where X = Y,K.

y
t

=
Y
t

A
t

L
t

= F (k
t

, 1) = f(k
t

) (3)

The last equality is just a definition of f(·).
Capital accumulation equation

K̇
t

= I
t

� �K
t

= sY
t

� �K
t

(4)

Divide both sides by K
t

to obtain
K̇

t

K
t

= s
Y
t

K
t

+ � (5)

First,
Y
t

K
t

=
y
t

k
t

=
f(k

t

)

k
t

(6)

Second,

k
t

=
K

t

A
t

L
t

! k̇
t

k
t

=
K̇

t

K
t

� Ȧ
t

A
t

� L̇
t

L
t

(7)

⇤
Please email me if you find errors or typos to yj2279@columbia.edu. All comments and suggestions are

welcome and appreciated.

1



! K̇
t

K
t

=
k̇
t

k
t

+ �
A

+ n (8)

Substitute equation (6) and (8) to equation (5) to get

k̇
t

k
t

= s
f(k

t

)

k
t

� (� + n+ �
A

) (9)

Note the interpretation of k
t

or y
t

is no longer per capita variables. k
t

A
t

and y
t

A
t

are
per capita terms instead.

1.2 A Model with Poverty Trap (for your reference)

Suppose the economy has access to two possible technologies,

Y
A

= AK↵L1�↵ (10)

Y
B

= BK↵L1�↵ � bL (11)

where B > A, and b > 0.
In per capita terms, the production functions become

y
A

= Ak↵ (12)

y
B

= Bk↵ � b (13)

The economy will compare and decide which technology to use and it will depend on
the level of k. There is a level of capital k̃ = ( b

B�A

)1/↵ such that when k > k̃, the economy

chooses technology B to produce, otherwise when k  k̃, the economy chooses technology A
.

From the Solow-Swan model, we have

k̇

k
= sf(k)/k � (n+ �) (14)

Here f(k) = Ak↵ when k  k̃, and f(k) = Bk↵ � b when k > k̃.
It is easy to draw sf(k)/k when k  k̃, since it is strictly decreasing. However, when

k > k̃, function h(k) := sf(k)/k = Bk↵�1 � b

k

may not be a monotonic function. There is a

cuto↵ k̄ = ( b

B(1�↵))
1
↵ such that when k < k̄, h(k) is decreasing in k, and when k � k̄, h(k)

is increasing in k.
If k̄ > k̃, sf(k)/k will first decrease then increase and finally decrease. To determine the

steady state, we also need to plot a horizontal line n + �. One particularly interesting case
is shown in Figure 1. There are three steady states. And two of them are stable. It means
the initial level k0 matters for the long run steady state. A country with very little k0 will
end up with a steady state of lower output per capita (poverty trap).
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If k̄  k̃, sf(k)/k will always decrease with k. There is only one stable steady state. See
Figure 2.

1.3 A Model with Physical Capital K and Human Capital H (for
your reference)

Now we introduce both physical capital and human capital into the Slow-Swan model.
Let’s assume a Cobb-Douglas production function:

Y
t

= K↵

t

H⌘

t

(A
t

L
t

)1�↵�⌘

where A
t

is technology which grows at rate �
A

and L
t

is labor force which grows at rate n.
Parameters satisfy 0 < ↵ + ⌘ < 1.

Divide both sides by A
t

L
t

:

y
t

= k↵

t

h⌘

t

There are two possible ways to introduce exogenous saving rates. 1) exogenous saving
rate s for the sum of physical capital and human capital, and the economy will decide how
to allocate between physical capital and human capital 2) exogenous saving rates s

k

and s
h

for physical capital and human capital respectively.
For the first case, the law of motion of the sum of physical and human capital is

k̇ + ḣ = sk↵h⌘ � (� + n+ �
A

)(k + h)

Additionally, households allocate between human capital and physical capital so that the
marginal returns are equalized:

MPK � � = MPH � �

That is ↵h = ⌘k. Substitute back to the law of motion equation to eliminate h, we can
get

k̇ = s(
⌘⌘↵1�⌘

↵ + ⌘
)k↵+⌘ � (� + n+ �

A

)k

For the second case, the law of motions of physical and human capital are

k̇ = s
k

k↵h⌘ � (� + n+ �
A

)k

ḣ = s
h

k↵h⌘ � (� + n+ �
A

)h

Notice that in the second case, we cannot impose the condition that MPK� � = MPH� �.
This is because, once we have exogenous saving rates for both physical and human capital,
then given k0, h0, the path for k

t

and h
t

are pinned down by the two law of motions. There
is no freedom to adjust k

t

or h
t

to equalize marginal returns of physical and human capital.
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2 Golden Rule
In the Solow-Swan model, consumption is

c
t

= (1� s)f(k
t

) (15)

In the steady state k⇤ is a function of saving rate s and higher s leads to higher k⇤ thus
higher output per capita f(k⇤). However, higher saving rate also means smaller fraction of
output per capita will go to consumption. So there is a trade-o↵ here if one wants to achieve
higher consumption. The question is what value of saving rate s can deliver the highest
steady state consumption c⇤.

We want to maximize the following by choosing s

c⇤ = (1� s)f [k⇤(s)] (16)

In steady state, sf(k⇤) = (n+ �)k⇤, therefore, our objective is to maximize

c⇤ = (1� s)f [k⇤(s)] = f [k⇤(s)]� (n+ �)k⇤(s) (17)

First order condition:

{f 0[k⇤(s)]� (n+ �)}dk
⇤(s)

ds
= 0 (18)

As dk

⇤(s)
ds

> 0, we have
f 0[k⇤(s)] = (n+ �) (19)

Denote the corresponding k⇤ as k
gold

, saving rate s as s
gold

.

f 0(k
gold

) = n+ � (20)

Once we have k
gold

, we can use the relationship k⇤(s) to infer s
gold

.
Remark. With Cobb-Douglas production function (capital share ↵), the above condition

becomes
↵k↵�1

gold

= n+ � (21)

and we also know that in the Solow-Swan model, in steady state

sf(k
gold

) = (n+ �)k
gold

(22)

i.e.
sk↵

gold

= (n+ �)k
gold

(23)

Comparing equation (21) and (22) we conclude that s
gold

= ↵ for this special case.

3 Absolute and Conditional Convergence
3.1 Absolute Convergence

In the Solow-Swan model,
k̇

k
= s

f(k)

k
� (� + n) (24)
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So the growth rate k̇

k

depends on the level of k.

d( k̇
k

)

dk
= s

f 0(k)� kf(k)

k2
< 0 (25)

This implies higher the level of capital per capita, the slower the growth rate of capi-
tal per capita: poor countries should grow faster than rich countries. Note the underlying
assumption is that poor countries and rich countries share the similar characteristics (pa-
rameters). The hypothesis that poor countries tend to grow faster than rich ones without
conditioning on any other characteristics of economies is called absolute convergence (i.e. a
negative relationship between the level of output per capita and the growth rate of output
per capita).

In the data, when we have a broad set of countries (countries from both poor countries
and rich countries), the hypothesis in fact fails. While if we look at more homogeneous
groups, e.g. only OECD countries or states within U.S., evidence accepts the hypothesis
instead.

3.2 Conditional Convergence

Next we drop the assumption that countries share similar characteristics. We will proceed
with a simple example. Suppose two countries only di↵er in their saving rates. So they will
also di↵er in their steady state k⇤. The country with higher saving rate will have higher k⇤.
Again the growth rate of capital per capita is

k̇

k
= s

f(k)

k
� (� + n) (26)

and in steady state

s
f(k⇤)

k⇤ = (� + n) (27)

Substitute equation (27) to equation (26) to eliminate s.

k̇

k
= (� + n)[

f(k)/k

f(k⇤)/k⇤ � 1] (28)

Assume the production function is in Cobb-Douglas form, then

k̇

k
= (� + n)[(

k

k⇤ )
↵�1 � 1] (29)

Then it is clear that the growth rate depends on the distance of k to steady state k⇤ ( k

k

⇤

matters). It becomes possible that a richer country can grow faster than a poorer country
as they have di↵erent steady states.

Therefore, in order to account for the di↵erence in these two countries’ growth rate, one
has to look at both the current level of k

t

and the steady state level k⇤ which depends on
country characteristics, i.e. country characteristics matter. After controlling variables that
proxy for di↵erences in steady state positions, we can get a significantly negative relationship
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between per capita growth rate and the log of initial real per capita GDP. In short, data
supports the conditional convergence hypothesis.

4 The Speed of Convergence
We have discussed roughly about the speed of convergence. Now we formally define this

concept speed of convergence as

� = �@(k̇/k)

@logk
(30)

We assume that countries are near to their steady state (in order to use approximations).
We will also adopt Cobb-Douglas production function.

k̇

k
= sAk↵�1 � (� + n+ �

A

) = sAe(↵�1)log(k) � (� + n+ �
A

) (31)

Around the steady state

�⇤ = �@(k̇/k)

@logk
|
k

⇤ = �@(sAe(↵�1)logk � (� + n+ �
A

))

@logk
|
k

⇤ = (1� ↵)sAk⇤↵�1 (32)

Recall that with technology progress in steady state sAk⇤↵�1 = � + n+ �
A

.

�⇤ = (1� ↵)(� + n+ �) (33)

The above procedures are equivalent (the same thing) to first log-linearize the right hand
side of equation (31) and take the coe�cient directly

k̇

k
= sAk↵�1�(�+n) ⇡ �@(sAe(↵�1)logk � (� + n+ �

A

))

@logk
|
k

⇤(logk�logk⇤) = ��⇤(logk�logk⇤)

(34)
Remark. A more general form of log-linearization is the following. Assume we want to

log-linearize a multivariate function y = f(x1, ..., xn

) around x⇤.

y = f(x1, ..., xn

) = f(elog(x1), ..., elog(xn)) (35)

Define z
i

= log(x
i

), then the first order approximation is

y = f(x1, ..., xn

) = f(ez1 , ..., ezn) ⇡
nX

i=1

@f

@x
i

|
x

⇤ ·ez⇤i ·(z
i

�z⇤
i

) =
nX

i=1

@f

@x
i

|
x

⇤ ·x⇤
i

·[log(x
i

)�log(x⇤
i

)]

(36)
Notice for the left hand side, we didn’t do any thing. In the future (the second half of

this semester), we will do log-linearization on both sides. We are interested in the percentage
deviation of variables from its steady state. You can ignore the following now.

y = f(x1, ..., xn

) (37)
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Then

log(y)� log(y⇤) =
nX

i=1

@f

@xi
|
x

⇤

f(x⇤
1, ..., x

⇤
n

)
· x⇤

i

· [log(x
i

)� log(x⇤
i

)] (38)

We will come back to this later in the second half of the semester.

5 Some Measurement Notes
5.1 Capital Stock Measurement

Perpetual Inventory Method (PIM) is so far perhaps the most popular way to compute
gross capital stock. In discrete time, capital accumulation is

K
t+1 = (1� �)K

t

+ I
t

(39)

! K
t

=
+1X

i=0

(1� �)iI
t�(i+1) (40)

But unfortunately in the data, we don’t have an infinite series of investment.

K
t

= (1� �)t�1K0 +
t�1X

i=0

(1� �)iI
t�(i+1) (41)

How to get the initial capital stock K0?
In neoclassical growth model, under balanced growth path (constant growth rate)

g
GDP

= g
K

=
K

t

�K
t�1

K
t�1

=
I
t

K
t�1

� � (42)

Therefore,

K0 =
I1

g
GDP

+ �
(43)

But the economy may not be on a balanced growth path, we can use g
I

instead of g
GDP

,
it is still an approximation anyway.

K0 =
I1

g
I

+ �
(44)

To obtain g
I

, we can choose a three-year average or more years’ average.

5.2 Growth Accounting

Assume the production function is

Y
t

= A
t

K↵

t

L1�↵

t

(45)

7



Define

SR
t

=
Y
t

K↵

t

L1�↵

t

(46)

Then we get the data of SR.

˙SR
t

SR
t

=
Ẏ
t

Y
t

� ↵
K̇

t

K
t

� (1� ↵)
L̇
t

L
t

(47)

sr
t

=
˙

SRt
SRt

is the Solow residual: the growth of output that cannot be accounted by the
growth of capital and labor.

Ẏ
t

Y
t

= sr
t

+ ↵
K̇

t

K
t

+ (1� ↵)
L̇
t

L
t

(48)

or write it in discrete time

Y
t

� Y
t�1

Y
t�1

=
SR

t

� SR
t�1

SR
t�1

+ ↵
K

t

�K
t�1

K
t�1

+ (1� ↵)
L
t

� L
t�1

L
t�1

(49)

This equation can be used to find out the sources of a particular economy’s economic
growth. Alwyn Young (1995, QJE) uses this method (not exactly the same, e.g. they use
a more complicated production function and take human capital into account as well etc.,
but the main idea is similar) to show that the East Asian growth miracles are largely due to

capital accumulation K̇t
Kt

and increasing labor force participation L̇t
Lt
.
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Endogenous Growth Models

Macroeconomic Analysis Recitation 5

Yang Jiao⇤

1 A Congestion Model
In class, we learned a growth model with government spending. In that model, production

function is Yi = AL1�↵
i K↵

i G
1�↵, where G is government spending. In this setup, government

spending is a public good. However, in reality, many government spending is not, such
as highways. Now we introduce a congestion model with a continuum of firms, where the
production function for firm i 2 [0, 1] is

Yi = AK↵
i L

1�↵
i f(G/K) (1)

where G is government spending and K is aggregate capital: K =
R 1

0 Kidi. We assume that
f satisfies f 0 > 0 and f 00 < 0.

1.1 Decentralized Economy

Firms’ problem is static as before

max
Kit,Lit

AK↵
itL

1�↵
it f(G/K)� wtLit �RtKit (2)

F.O.C.s are
↵AK↵�1

it L1�↵
it f(G/K) = Rt (3)

(1� ↵)AK↵
itL

�↵
it f(G/K) = wt (4)

In equilibrium L =
R 1

0 Lidi as well, and all firms are symmetric, so Lit = L, Kit = K for
i 2 [0, 1].

In per capita terms:
↵Ak↵�1

t f(gt/kt) = Rt (5)

(1� ↵)Ak↵t f(gt/kt) = wt (6)

Households’ problem is quite standard as in Ramsey model,

⇤
Please email me if you find errors or typos to yj2279@columbia.edu. All comments and suggestions are

welcome and appreciated.
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max
at,ct

Z +1

0

e�(⇢�n)t c
1�✓
t � 1

1� ✓
dt (7)

s.t.
ȧt = rtat + wt � ct � nat � ⌧t (8)

lim
t!+1

e�rtat � 0 (9)

with a0 > 0 given. ⌧t is a lump sum tax in per capita term ⌧t =
Tt
Lt
.

Set up the Hamiltonian

H = e�(⇢�n)t c
1�✓
t � 1

1� ✓
+ �t(rtat + wt � ct � nat � ⌧t) (10)

F.O.C.s are
e�(⇢�n)tc�✓t � �t = 0 (11)

� �̇t = �t(rt � n) (12)

lim
t!+1

�tat = 0 (13)

Therefore,
ċt
ct

=
1

✓
(rt � ⇢) (14)

The rate of return from investing in risk free bond is rt and the rate of return from
investing in physical capital is Rt � �. By no arbitrage condition, they are equal

rt = Rt � � (15)

Market clearing condition gives

at = kt + bt (16)

and bt = 0.
Balanced government budget:

Gt = Tt (17)

or in per capita term
gt = ⌧t (18)

We conclude that equation (14) and (15) gives the Euler equation is

ċt
ct

=
1

✓
(↵Ak↵�1

t f(gt/kt)� � � ⇢) (19)

The law of motion of capital comes from equation (3)(4)(8)(15)

k̇t = Ak↵t f(gt/kt)� ct � (n+ �)kt � gt (20)
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which is in fact the resource constraint for the economy.
Notice we haven’t chosen the sequence of gt yet to maximize household utility. That’s

going to be a complicated problem. Perhaps what we can do is to let the government set a
constant g and compare steady states to choose an optimal fiscal policy g. For simplicity,
let’s just take gt as exogenous policy.

We are interested in whether the above decentralization problem is socially optimal or if
not e�cient, is there too much or too little capital in the decentralized economy.

1.2 Social Planner

Social planner maximizes household utility subject to resource constraint.

max
at,ct

Z +1

0

e�(⇢�n)t c
1�✓
t � 1

1� ✓
dt (21)

s.t. resource constraint

k̇t = Ak↵�1
t f(gt/kt)� ct � (n+ �)kt � gt (22)

From F.O.C.s, we derive Euler equation

ċt
ct

=
1

✓
(↵Ak↵�1

t [f(gt/kt)�
gt
kt
f 0(

gt
kt
)]� � � ⇢) (23)

What we find is that the decentralized case doesn’t have the same formula of the Euler
equation as that of the social planner’s problem. The externality comes from the fact that
each individual firm doesn’t consider their capital choice’s congestion e↵ect on other firms,
so they over employ capital: a traditional Tragedy of Commons problem.

To have a rough idea why we think decentralized case will over accumulate capital, we
can assume a common steady state policy g for these two cases. Then we compare the steady
state k, which comes from the Euler equation. For decentralized case, in steady state

↵Ak↵�1f(g/k) = � + ⇢

For social planner, in steady state

↵Ak↵�1f(g/k) =
g

k
f 0(g/k) + � + ⇢ > � + ⇢

Comparing the above two equations, it is easy to verify that decentralized case have higher
steady state k.

Remark. We deliberately choose a lump sum tax in order not to impose additional
externality so that we can isolate the aformentioned externality which firms don’t internize.

2 A Constant R&D Cost Model (Social Planner)
In class, you have learned how to solve a constant R&D cost model in the decentralized

case. Now we move to social planner’s problem and see whether there is any ine�ciency
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that needs to be corrected in the decentralized economy.
The social planner’s problem is to

max
Ct,Nt,Xt

Z +1

0

C1�✓
t � 1

1� ✓
dt (24)

s.t. resource constraint
AL1�↵NtX

↵
t = Ct + ⌘Ṅt +NtXt (25)

Re-write the resource constraint as

Ṅt =
1

⌘
(AL1�↵NtX

↵
t � Ct �NtXt) (26)

The corresponding Hamiltonian is

H = e�⇢t
C1�✓

t � 1

1� ✓
+ �t

1

⌘
(AL1�↵NtX

↵
t � Ct �NtXt) (27)

First order conditions are

HC = e�⇢tC�✓
t � �t

⌘
= 0 (28)

HX = AL1�↵Nt↵X
↵�1
t �Nt = 0 (29)

HN = �t
1

⌘
(AL1�↵X↵

t �Xt) = ��̇t (30)

We obtain

� �̇t
�t

=
1

⌘
(AL1�↵X↵

t �Xt) =
1

⌘

✓
A

1
1�↵L↵

1
1�↵ (

1

↵
� 1)

◆
. (31)

And finally
Ċt

Ct
=

1

✓
(� �̇t
�t

� ⇢) =
1

✓


1

⌘

✓
A

1
1�↵L↵

1
1�↵ (

1

↵
� 1)

◆
� ⇢

�
(32)

Notice that in order to fully solve the model, one needs to use consumption growth rate
equation (32) and also the resource constraint equation (26) to pin down the dynamics of
Nt and initial C0, given N0.

The consumption growth rate in the social planner case is higher than that of the decen-
tralized economy case which you came across in class. The reason is that in the decentralized
case R&D firms have monopoly power, so they under-produce. In order to achieve e�ciency,
one can subsidize R&D firms or final good firms. However, although subsidizing R&D cost
can deliver the same growth rate of consumption as in the social planner case, the level of
consumption (that is C0) is not optimal. Intuitively, the monopoly power of R&D firms has
not been corrected yet (given the number of intermediate good firms Nt). One can check by
employing equation (32) and equation (26).
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3 A Rising Cost of R&D model (Decentralized Econ-

omy)
In class, we learned a expanding variety model of growth with constant R&D cost. Now

let’s turn to a setting with increasing cost of R&D: ⌘0(N) > 0. Specifically, let’s assume
that

⌘(N) = �N� (33)

Free entry condition says
Vt = ⌘(Nt) = �N�

t (34)

Remark. Free entry condition above holds only when there is positive entry. In general, it
should be a complementary slackness condition Ṅt[⌘(Nt)� Vt] = 0, Ṅt � 0 and ⌘(Nt) � Vt.
So if Ṅt is strictly greater than 0, we will have ⌘(Nt) = Vt.

Interest rate is

rt =
⇡ + V̇t

Vt
=

⇡

�N�
t

+ �
Ṅt

Nt
(35)

Households’ problem is Z +1

0

e�⇢t
c1�✓t � 1

1� ✓
dt (36)

s.t.
ȧt = wtL+ rtat � Ct (37)

The Euler equation from the above households’ problem is

Ċt

Ct
=

1

✓
(rt � ⇢) =

1

✓
(
⇡

�N�
t

+ �
Ṅt

Nt
� ⇢) (38)

where we have substituted rt from equation (35).
When � = 0, we go back to the case where innovation cost is constant, and this equation

alone can tell us the growth rate of Ct. However, now we have to deal with the dynamics of
Nt as well.

Note in this model, the asset held by households is the market value of all firms a =
⌘ ·N . Cobb-Douglas final good production function means wL = (1� ↵)Y . Plug these two
equations and also equation (35) into equation (37) to generate

⌘(Nt)Ṅt = Nt⇡ + (1� ↵)Yt � Ct (39)

Since Y = AL1�↵PN
j=1 X

↵
j , Xj = A

1
1�↵↵

2
1�↵L and ⇡ = LA

1
1�↵ 1�↵

↵ ↵
2

1�↵ = LA
1

1�↵ (↵ �
↵2)↵

2↵
1�↵ (One can check that by some manipulation, we can express the above as ⌘Ṅt =

Yt � Ct �NtXt which is in fact the resource constraint), we obtain

⌘(Nt)Ṅt = Nt⇡ + (1� ↵)Yt � Ct = (1� ↵2)A
1

1�↵↵
2↵
1�↵LNt � Ct (40)
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That is
Ṅt

Nt
=
 

�
N��

t � Ct

�
N�(1+�)

t (41)

with  = (1� ↵2)A
1

1�↵↵
2↵
1�↵L

Substitute equation (41) to equation (38) to yield

Ċt

Ct
=

1

✓
(rt � ⇢) =

1

✓
(
⇡

�
N��

t + �
 

�
N��

t � �
Ct

�
N�(1+�)

t � ⇢) (42)

Equation (41) and (42) define a di↵erential equation system.
To sum up, the main procedure is, first we start from Euler equation and households’

budget constraint, and then we try to substitute variables except Ct and Nt.
We then display the phase diagram. See Figure 1. Nm = ( ⇡+� 

⇢�(1+�))
1/� and N⇤ = ( ⇡⇢�)

1/�.
Notice Nm > N⇤ because of  > ⇡.

In this rising cost of R&D setting, there is no long run growth. While with constant
R&D cost, we do have long run growth.

6





Suggested Solution-Problem Set 1

Yang Jiao⇤

1 Cobb Douglas Technology
a).

1. Constant returns to scale

F (�K,�L,A) = A(�K)↵(�L)1�↵ = �AK↵L1�� = �F (K,L,A)

2. Positive marginal product and diminishing marginal returns

FK = ↵AK↵�1L1�↵ > 0

FL = (1� ↵)AK↵L�↵ > 0

FKK = ↵(↵� 1)AK↵�2L1�↵ < 0

FLL = �↵(1� ↵)AK↵L�↵�1 < 0

Some books also list the negative semi-definite requirement for Hessian matrix. One can
check Cobb-Douglas production function satisfies this property as well since

FKKFLL � F 2
KL = 0

3. Inada conditions:

lim
K!0

FK = lim
K!0

↵AK↵�1L1�↵ = 1

lim
L!0

FL = lim
L!0

(1� ↵)AK↵L�↵ = 1

lim
K!1

FK = lim
K!1

↵AK↵�1L1�↵ = 0

lim
L!1

FL = lim
L!1

(1� ↵)AK↵L�↵ = 0

b).

⇤
Please email me if you find errors or typos to yj2279@columbia.edu

1



Set up the Hamiltonian:

H = e�rt(AK↵
t L

1�↵
t � wtLt � It) + �t(It � �Kt)

Then the first order conditions are:

HL = 0 : wt = (1� ↵)AK↵
t L

�↵
t

HI = 0 : �t = e�rt

HK = 0 : ��̇t = e�rt↵AK↵�1
t L1�↵

t � �t�

TV C : lim
t!1

�tKt = 0

From �t = e�rt, we have �̇t = �re�rt. Combine with the above equation HK = 0, we get

r + � = ↵AK↵�1
t L1�↵

t

Therefore, given that labor supply is fixed Lt = L, capital is

Kt = (
↵A

r + �
)

1
1�↵L

c).
Define qt = ert�t, so �t = e�rtqt ! �̇t = e�rt(q̇t � rqt). Then the first order conditions are:

HL = 0 : wt = (1� ↵)AK↵
t L

�↵
t

HI = 0 : qt = 1

HK = 0 : �(q̇t � rqt) = ↵AK↵�1
t L1�↵

t � qt�

TV C : lim
t!1

e�rtqtKt = 0

We then have the same formula for capital

Kt = (
↵A

r + �
)

1
1�↵L

d). See Figure 1
e). See Figure 2

f). See Figure 3. But change of I = �K = (↵A�1�↵

r+�
)

1
1�↵ becomes ambiguous after time t0

since it is not a monotonic function of �.
g). The same as f) except that the jump happens at time t1.

2 Accelerator Theory of Investment
a).

FK = ↵
Yt

Kt

= r + �

2



We can express K as a function of Y

Kt =
↵Yt

r + �

b).

! K̇t =
↵Ẏt

r + �

It is consistent with the accelerator theory of investment. Higher growth in output will lead
to higher growth in capital stock which in turn pushes up output growth.

c).
Yes. Within neoclassical production function (and we also assume it is continuously di↵er-
entiable), it is still true.

We first introduce one mathematical property. If F (K,L,A) is homogeneous of degree �
in (K,L), then FK and FL are homogeneous of degree � � 1 in (K,L). The following is the
proof:

F (�K,�L,A) = ��F (K,L,A)

Di↵erentiate both sides with respect to K:

�FK(�K,�L,A) = ��FK(K,L,A)

! FK(�K,�L,A) = ���1FK(K,L,A)

The fact that F (K,L,A) is a neoclassical production function implies � = 1, then FK is
homogeneous of degree 0. Employing this property, since FK(K,L,A) = r + �, we will also
have FK(

K
L
, 1, A) = r + � which shows a relationship between K

L
and r + �, A. Additionally,

because of FKK < 0, we know Kt
Lt

will be a monotonic function of r+�. Note Kt
Lt

is also going
to be a function of A. Denote this function as h(·, ·).

Kt

Lt

= h(A, r + �)

Also Yt = F (Kt, Lt, A) = KtF (1, Lt
Kt
, A) = KtF [1, h�1(A, r+ �), A]. That is, we still have

Kt and Yt are proportional thus they satisfy the accelerator theory of investment.

3 Q-Theory Without Learning-by-Doing
a).

Set up the Hamiltonian:

H = e�rt[F (Kt, Lt)� wtLt � It(1 + '(It))] + �t(It � �Kt)

First order conditions are
FL = wt

1 + '+ I'0 = �te
rt

3



��̇t = e�rtFK � ��t

lim
t!1

�tKt = 0

b).
Current value qt = ert�t. Re-write the first order conditions:

FL = wt

1 + '+ I'0 = qt (1)

rqt � q̇t = FK � �qt

lim
t!1

e�rtqtKt = 0

c).
Equation (1) establishes a relationship between I and q: I = h(q) with h(1) = 0. The two
di↵erential equations we have here are:

K̇t = It � �Kt = h(qt)� �Kt

q̇t = (r + �)qt � FK

Set K̇t = 0 and q̇t = 0 respectively.

h(q) = �K

(r + �)q = FK

See Figure 4 for the phase diagram.
d).

The steady state q⇤ is the solution of

(r + �)q = FK(
h(q)

�
, L)

q⇤ > 1 since h(q⇤) = �K⇤ > 0 and h(1) = 0, h(·) is an increasing function.
e).

See Figure 4 as well for the dynamics after the interest rate shock. It will shift down
q̇ = 0 scehdule. The steady state q⇤ will be smaller. This is because a positive interest rate
shock will raise the opportunity cost of investment (or equivalently to say, the future is more
heavily discounted), therefore, firms will dis-invest, leading to less capital stock in steady
state. Then firms only need to replace less capital by new investment. The less demand for
new investment will drive down capital price (here it is shadow price q⇤).

4 The Baby Boom
i).

Equaton (a) is the demand function for housing. Higher rents lead to lower housing demand.
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Equation (b) is a no-arbitrage condition. Returns from investing in housing market is equal
to the return from investing in the risk free bond. Equation (c) is the law of motion of
housing stock: increase in the housing stock equals newly build housing minus depreciation
of existing housing stock.

ii).

From equation (c):
Ḣ = '(P )N � �H

! Ḣ

N
= '(P )� �

H

N
(2)

Because of h = H
N
, we can get ḣ = Ḣ

N
� ṄH

N2 = Ḣ
N
�nh. Substitute it back to equation (2):

ḣ = '(P )� (� + n)h

Equation (b) tells us
Ṗ = rP �R(h)

See Figure 5 for the phase diagram.
iii).

See Figure 5 for the dynamics.
The intuition is in year 1960, due to the expectation that in the future housing demand

will shift up, house price goes up and firms build more houses. When the baby boom arrives,
per capita housing will be dragged down (new houses are built but slower than population
growth, since they understand this baby boom will not last forever). However, when the
baby boom retires, per capita housing stock will go up again. And as a result of this demand
decrease, prices will also go down.

iv).
Once the baby boom retires, from the phase diagram, we know that prices will go down from
2006. In fact, housing prices start to drop earlier than 2006. However, intuitively, it may
drop faster after 2006.

5 Housing Rent Controls
i).

See Figure 6 for the dynamics. Prices will drop, because buying houses to rent is going to
be less profitable.

ii).
Both price and quantity will decline. The rent control will decrease the demand for investing
in buying houses since this investment becomes less profitable.

iii).
Suppose poor people rent houses. Therefore, they care about both rental rate R(h) and the
available supply of h. Initially, rent control will benefit them since housing stock does not
change immediately after the policy but rental price will drop. However, in the long run, the
market adjusts its supply of housing stock, which will increase the rental price. Since the
quantity of housing (demand needs to equal supply) enters into poor people’s utility function,

5



the decrease in the available housing stock in the market may hurt them eventually. That
is although they would like to consume more housing under cheaper rental price, the supply
of housing may be depressed by the rental control policy.

6 Diminishing or Increasing Returns to Learning-by-

Doing
i).ii).iii).

If the firm does not split, the total cost of installing I is I'( I
K� ). If we split the firm into N

identical parts (N � 2), the total cost of installing I is

NX

n=1

I

N
'(

I/N

(K/N)�
) = I'(

I

K�
N��1)

If � < 1, I'( I
K�N

��1) < I'( I
K� ), so the firm wants to split itself. In fact, the larger N

is, the lower cost of installing new investment.
If � = 1, I'( I

K�N
��1) = I'( I

K� ), so the firm is indi↵erent
If � > 1, I'( I

K�N
��1) > I'( I

K� ), so the firm doesn’t want to split.
iv).

Set up the Hamiltonian

H = e�rt[F (Kt, Lt)� wtLt � It(1 + '(
It

K�
t

))] + �tIt

First order conditions are
FL = wt

�t = e�rt[1 + '(
It

K�
t

) +
It

K�
t

'0(
It

K�
t

)]

��̇t = e�rt[FK + �
I2t

K�+1
t

'0(
It

K�
t

)]

TV C : lim
t!1

�tKt = 0

Re-write the above with current shadow price qt:

FL = wt

qt = 1 + '(
It

K�
t

) +
It

K�
t

'0(
It

K�
t

) (3)

rqt � q̇t = FK + �
I2t

K�+1
t

'0(
It

K�
t

)

TV C : lim
t!1

e�rtqtKt = 0
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Equation (3) defines a relationship between q and I
K� :

It

K�
t

= h(qt)

with h(1) = 0
Finally, we write down the system of di↵erential equations

K̇t = K�h(qt)

q̇t = rqt � FK � �
h(qt)2

K1��
t

'0(h(qt))

K̇t = 0 is a flat schedule. As with q̇t = 0, one can show that dq
dK

|(K⇤,q⇤) =
FKK(K⇤,L)

r
< 0.

Qualitatively, the phase diagram (around the steady state) does not depend on whether
� is larger, equal or smaller than 1. See Figure 7 for the phase diagram.

7 Housing
Please refer to your recitation note 2.
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Suggested Solution-Problem Set 2

Yang Jiao⇤

1 Increasing Savings Rate
a).

k̇

t

k

t

= s

f(k
t

)

k

t

� (� + n)

With Cobb-Douglas production function as specified in the question

k̇

t

k

t

= sAk

↵�1

t

� (� + n)

b).
See Figure 1. There are two stable steady states.

c).
In steady state

k̇

k

= sAk

↵�1 � (� + n) = 0

Then

k

⇤ = (
� + n

sA

)
1

↵�1

Substitute the corresponding values to yield k

⇤ = 400.
d). Substitute the corresponding values to yield k

⇤ = 4900.
e). After receiving the donation, the economy’s capital stock is still below 1000, therefore,

the economy will return to the low steady state.
f). After receiving the donation, the economy’s capital stock is above 1000, therefore,

the economy will converge to the high steady state gradually.
g). Small donations may not be able to push the economy out of their trap since the

economy may need to have a large initial capital stock to converge to a higher steady state.

2 Diminishing Population Growth Rate
a).

k̇

t

k

t

= sAk

↵�1

t

� (� + n) =
2p
k

t

� (0.08 + n)

⇤
Please email me if you find errors or typos to yj2279@columbia.edu
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b).c)
See Figure 2. There are two steady states.

d).e)
In steady state

2p
k

� (0.08 + n) = 0

When k < 200, n = 0.12, we have k⇤ = 100, and y = A

p
k

⇤ = 100. When k  200, n = 0.02,
we have k

⇤ = 400, and y = A

p
k

⇤ = 200.
f).

The donation is not able to lift the economy to cross k = 200, therefore, the economy will
return to the low steady state.

g).
The donation is able to lift the economy to cross k = 200, therefore, the economy will
converge to the high steady state.

3 Harrod-Domar
a).

See Figure 3.
b).

y = min{Ak,B}

c).

y/k = min{A,B/k}

d).

k̇ = smin{Ak,B}� �k

e).

k̇

k

= smin{A, B
k

}� �

f).
See Figure 4. The problem is that there is an excess of capital since in steady state k⇤

>

B

A

,
which means Ak⇤

> B. Notice that this economy’s production function is in Leontif form.
In order to produce y = B, the economy doesn’t need to use so much capital. It is going to
be a waste of capital.

g).
See Figure 5.

k̇

k

= smin{A, B
k

}� �  sA� � < 0

The economy will gradually converge to k

⇤ = 0.
h).

2



See Figure 6. When initially k

0

� B

A

, the economy will converge to k

⇤ = B

A

. Otherwise, when
k

0

<

B

A

, the economy will stay there.
i).

Yes, In f), there is excess of capital for production. In g), the steady state delivers 0 capital
per capita. In h), steady states are not stable and the economy doesn’t reach its potential
capacity except the point k⇤ = B

A

.

4 Inada Or Diminishing Returns
a).

Yes, since

F (�K,�L) = A�K +B(�K)1/2(�L)1/2 = �[AK +BK

1/2

L

1/2] = �F (K,L)

b).
Yes, because

@F

@K

= A+
1

2
BK

� 1
2
L

1
2
> 0

@

2

F

@K

2

= �1

4
BK

� 3
2
L

1
2
< 0

c).
No. When K ! 1, we get @F

@K

! A 6= 0
d).

No, since Inada conditions are not fully satisfied.
e).

y = Ak +B

p
k

f).

k̇

k

= s

Ak +B

p
k

k

� (� + n) = s(A+
Bp
k

)� (� + n)

g).
See Figure 7. There is one stable steady state, and there is no long run growth.

h).
See Figure 8. There is long run growth and in the long run, growth rate converges to
sA� � � n.

i).
sA� (n+ �) = 0.2 > 0, the growth rate will converge to 0.2.

j).
No. Let Y = AK +BL, and sA < n+ �, then the long run growth rate is zero. (Notice this
production function doesn’t satisfy Inada conditions.)

k).
No. See h). Although diminishing returns to capital is satisfied, we have long run growth.
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5 Convexities in the Production Function
Please refer to your recitation note 4: a model with poverty trap. Make sure to move up

and down of the n+ � line to discuss all possible cases.
The e↵ective production function is not concave. Large enough donations are possible to

drag the economy out of the trap.

6 Convergence in Solow-Swan with Physical and Hu-
man Capital

a).

�

k

= sk

↵�1 � (� + n) = se

(↵�1)log(k) � (� + n)

b).
Since y = k

↵, we obtain

�

y

= ↵�

k

= ↵se

(↵�1)log(k) � ↵(� + n) = ↵se

↵�1
↵ log(y) � ↵(� + n)

c).
Do the first order approximation.

�

y

⇡ 0 + ↵s

↵� 1

↵

e

↵�1
↵ logy

⇤
(log y � log y⇤) = (↵� 1)(n+ �)(log y � log y⇤)

The speed of convergence is �⇤ = � @�y

@ log y

= (1� ↵)(n+ �)
d).

Substitute numbers to yield �

⇤ = 0.077
e).

k̇

k

= s

k

Ak

↵�1

h

⌘ � (� + n)

ḣ

h

= s

h

Ak

↵

h

⌘�1 � (� + n)

f).
y = k

↵

h

⌘ implies
ẏ

y

= ↵

k̇

k

+ ⌘

ḣ

h

(1)

From e), we implement the log-linearization

�

k

⇡ 0 + (↵� 1)s
k

Ak

⇤↵�1

h

⇤⌘[log k � log k⇤] + ⌘s

k

Ak

⇤↵�1

h

⇤⌘[log h� log h⇤]

�

h

⇡ 0 + ↵s

h

Ak

⇤↵
h

⇤⌘�1[log k � log k⇤] + (⌘ � 1)s
h

Ak

⇤↵
h

⇤⌘�1[log h� log h⇤]

Substitute steady state properties s
k

Ak

⇤↵�1

h

⇤⌘ = n+ �, Ak⇤↵
h

⇤⌘�1 = n+ � to the above
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two equations. And then go back to equation (1):

�

y

= ↵(↵+⌘�1)(n+�)(log k�log k⇤)+⌘(↵+⌘�1)(n+�)(log h�log h⇤) = (↵+⌘�1)(n+�)(log y�log y⇤)

So the speed of convergence is

�

⇤ = (1� ↵� ⌘)(n+ �) = 0.022

See the textbook page 59, � is around 0.015 to 0.03 in the data. The above number
fits well with the data. However, if you doesn’t account for human capital, as in d), you
probably get a too small speed of convergence compared to the data.

g).
In order to find �̂, we will run a cross section (di↵erent countries) regression of ẏ

y

on y

0

,
where each observation includes a country’s initial log(y

0

) and a country’s average growth
rate ẏ

y

through years.
Possible econometric issues: 1) Omitted variables issue: one needs to control for country

heterogeneity in order to avoid biased estimates of speed of convergence. 2)Measurement
error: e.g. measurement error in y, and y appears on both sides of the regression ( ẏ

y

on

the left and log y
0

on the right, estimate (X 0
X)�1

X

0
y will be biased if we have correlated

measurement error for X and y ). It will bias the estimate. 3) Reverse causality: higher
growth leads to higher level of log(y

0

), which will make the estimate of � downward biased
4)One can also cover the importance of accounting for human capital in the discussion.
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Suggested Solution-Problem Set 3

Yang Jiao⇤

1 Increasing Savings Rate

a).

Set up the Hamiltonian

H = e�⇢t c
1�✓
t � 1

1� ✓
+ �t(Akt � ct � �kt)

F.O.C.s are
e�⇢tc�✓

t = �t

��̇t = (A� �)�t

�TkT = 0

b).

The first two conditions imply
ċt
ct

=
A� � � ⇢

✓

The budget constraint is
k̇t = (A� �)kt � ct

See Figure 1 for phase diagram.
c).

Solving the two equations in b), we have

ct = c0e
A���⇢

✓ t

kt =
c0

A� � � 1
✓ (A� � � ⇢)

e
A���⇢

✓ t +  e(A��)t

We have k0 and kT = 0 to determine c0 and  .

k0 =
c0

A� � � 1
✓ (A� � � ⇢)

+  

c0
A� � � 1

✓ (A� � � ⇢)
e

A���⇢
✓ T +  e(A��)T = 0

⇤
Please email me if you find errors or typos to yj2279@columbia.edu
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Then the solution to c0 is

c0 =
1
✓ (A� � � ⇢)� (A� �)

e[
1
✓ (A���⇢)�(A��)]T � 1

k0

 = (1 +
1

e[
1
✓ (A���⇢)�(A��)]T � 1

)k0

No matter whether A� � > 1
✓ (A� � � ⇢) or A� � < 1

✓ (A� � � ⇢), c0 is decreasing in T .
When A increases, c0 will decrease, so that the econoy can take more time to finally reach

the vertical axis.
Now assume A� � > 1

✓ (A� �� ⇢) = �c which is consistent with the assumption in class.
d). When T ! 1, we get c0 ! [A� � � 1

✓ (A� � � ⇢)]k0,  ! 0, and kt ! ct
A����c

, we
go to the AK model with permanent consumption growth.

2 Spending and Taxes in the Neoclassical Model

i).

Set up the Hamiltonian

H = e�(⇢�n)t c
1�✓
t � 1

1� ✓
+ �t((1� ⌧y)Ak

↵
t � ⌧L � ct � (� + n)kt + ⌫t)

F.O.C.s are
e�(⇢�n)tc�✓

t = �t

��̇t = ((1� ⌧y)↵Ak
↵�1
t � � � n)�t

lim
t!1

�tkt = 0

ii)

The first two equations above give

ċt
ct

=
1

✓
[(1� ⌧y)↵Ak

↵�1
t � ⇢� �)]

Additionally, the budget constraint is

k̇t = (1� ⌧y)Ak
↵
t � ⌧L � ct � (n+ �)kt + ⌫t

Set ċt = 0 and k̇t = 0 to obtain the two loci

ct = (1� ⌧y)Ak
↵
t � ⌧L � (� + n)kt + ⌫t

kt = (
⇢+ �

(1� ⌧y)A
)

1
↵�1

See Figure 2 for phase diagram.
iii).

Both loci will shift. See Figure 3 for dynamics.
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iv).

k̇ = 0 schedule will shift down. See Figure 4 for dynamics.
v).

If the government rebates taxes, the law of motion of capital is

k̇t = Ak↵
t � ct � (� + n)kt

Change in tax rates will not a↵ect k̇t = 0 line. The reason is that now when rebating taxes,
the aggregate resource constraint will not be a↵ected by taxes.

So repeat iii), we find that only ċt = 0 line shift leftward now. Repeat iv), both loci will
not shift.

3 Bicycles

a).

k̇t = Ak↵
t � ct � bt � nkt

b).

Set up the Hamiltonian

H = e�(⇢�n)t (c
�
t b

1��
t )1�✓ � 1

1� ✓
dt+ �t(Ak

↵
t � bt � ct � (� + n)kt + ⌫t)

F.O.C.s are
e�(⇢�n)t�(c�t b

1��
t )�✓c��1

t b1��
t = �t

e�(⇢�n)t(1� �)(c�t b
1��
t )�✓c�t b

��
t = �t

��̇t = (↵Ak↵�1
t � n)�t

lim
t!1

�tkt = 0

c).

ct
bt

=
�

1� �

d).

ċt
ct

=
1

✓
(↵Ak↵�1

t � ⇢)

e).

Use result from c) to eliminate bt in the capital accumulation equation to yield

k̇t = Ak↵
t � ct

�
� nkt

f).

3



Let ċt = 0 and k̇t = 0 respectively:

k = (
⇢

↵A
)

1
↵�1

c = �(Ak↵ � nk)

See Figure 5 for phase diagram. There is no long run growth because of the diminishing
returns to scale of capital.

g).

The Euler equation now shows
ḃt
bt

=
ċt
ct

=
1

✓
(A� ⇢)

When A > ⇢, there is long run growth.
h).

k̇t = Ak↵
t (1� ⌧)� ct � nkt

i).

H = e�(⇢�n)t (c
�
t b

1��
t )1�✓ � 1

1� ✓
dt+ �t((1� ⌧)Ak↵

t � ct � (� + n)kt + ⌫t)

F.O.C.s are
e�(⇢�n)t�(c�t b

1��
t )�✓c��1

t b1��
t = �t

��̇t = (↵(1� ⌧)Ak↵�1
t � n)�t

lim
t!1

�tkt = 0

j).

bt = ⌧Ak↵
t

l).

The act ensures the choice of bicycles to be consistent with the optimal allocation between
ct and bt without government policy.

m).

ċt
ct

=
1

✓
(↵(1� ⌧)Ak↵�1

t � ⇢)

k̇t = Ak↵
t � ct

�
� nkt

Now compare with the case without government policy, we have an additional (1� ⌧) in
the Euler Equation.

n).

The aformentioned new tax term will shift ċt = 0 to the left. See Figure 6. We won’t have
long run growth due to the diminishing returns to capital, either.

o).

As long as A(1 � ⌧) > ⇢, we still have long run growth. But the constant growth rate is

4



smaller due to the tax.
p).

No. Tax here is distortionary and welfare is decreased. The case without government policy
is in fact equivalent to the social planner problem thus achieves the highest welfare.

q).

The same as in a). Therefore, r).s).t).u). follow as well.
v).

The proportional tax distorts people’s behavior of saving.

4 Growth and Externalities

i).

↵K↵�1L1�↵K̂⌘ = r + �

↵(1� ↵)K↵L�↵K̂⌘ = w

ii).

H = e�⇢t c
1�✓
t � 1

1� ✓
+ �t(rtat � wt � ct)

First order conditions are
�t = e�⇢tc�✓

t

��̇t = rt�t

lim
t!1

�tat = 0

iii).

From a), k = ↵w
(1�↵)(�+r) .

Euler equation
ċt
ct

=
1

✓
[↵L⌘k⌘+↵�1 � � � ⇢]

k̇t = k↵+⌘
t L⌘ � ct � �kt

iv).

See Figure 7. There is a steady state which is saddle path stable.
v).

Follow the saddle path to track the dynamics. The growth rate in the long run is 0.
vi).

Not really. The whole economy still display diminishing returns to scale of capital.
vii).

The ċt = 0 schedule will shift rightward while k̇t = 0 will shift up. So both k⇤ and c⇤ go up
as ⌘ increases.

viii).

5



k⇤ and c⇤ go to infinity as ↵ + ⌘ approaches 1.
ix).

Firms don’t internalize the externality of their investment on other firms, therefore, they
in fact underinvest relative to the optimal solution.

One can show that the social planner’s problem gives the following Euler equation

ċt
ct

=
1

✓
[(↵ + ⌘)L⌘ � � � ⇢] =

1

✓
[L⌘ � � � ⇢] >

1

✓
[↵L⌘ � � � ⇢]

Therefore, social planner is going to enjoy a strictly higher growth rate.
Therefore, a subsidy on capital is possible to achieve the optimality. Impose a propor-

tional subsidy ⌧t on capital.

↵
Yt

Kt
+ ⌧t = rt + �

Let ⌧t = ⌘ Yt
Kt
, then

(↵ + ⌘)
Yt

Kt
= rt + �

which is the social planner’s first order condition for K. Therefore, this capital subsidy can
implement the social planner solution.
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Suggested Solution-Problem Set 4

Yang Jiao⇤

1 Human Capital
a).

Define z = k + h and set up the Hamiltonian

H = e�(⇢�n)t c
1�✓
t � 1

1� ✓
+ �t(Ak

↵
t (zt � kt)

�h̄t
µ � (� + n)zt � ct)

F.O.C.s are
e�(⇢�n)tc�✓t = �t

↵Atk
↵�1
t (zt � kt)

�h̄t
µ
= �Atk

↵
t (zt � kt)

��1h̄t
µ

��̇t = (�Atk
↵
t (zt � kt)

��1h̄t
µ � � � n)�t

lim
t!1

�tzt = 0

Substitute zt by kt + ht of the above conditions:

e�(⇢�n)tc�✓t = �t

↵ht = �kt

��̇t = (�Atk
↵
t h

��1
t h̄t

µ � � � n)�t

lim
t!1

�t(kt + ht) = 0

b).
There is a typo in the question. k should be h.

From a), we have Euler equation

ċt
ct

=
1

✓
[A�(

�

↵
)µ+��1k↵+�+µ�1

t � ⇢� �]

and law of motion of capital

(1 + �/↵)k̇t = (
�

↵
)µ+�Ak↵+��µ

t � (� + n)(1 + �/↵)kt � ct

Since ↵ + � + µ < 1, we will have a steady state and the long run growth rate is 0.

⇤
Please email me if you find errors or typos to yj2279@columbia.edu
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c).
See Figure 1.

d). First let h̄ = h and z = k + h. Then set up the Hamiltonian

H = e�(⇢�n)t c
1�✓
t � 1

1� ✓
+ �t(Ak

↵
t (zt � kt)

�+µ � (� + n)zt � ct)

Derive F.O.C.s and substitute z by k + h to yield:

e�(⇢�n)tc�✓t = �t

↵ht = (� + µ)kt

��̇t = ((� + µ)Atk
↵
t h

�+µ�1
t � � � n)�t

lim
t!1

�t(kt + ht) = 0

We have Euler equation

ċt
ct

=
1

✓
[A(� + µ)(

� + µ

↵
)µ+��1k↵+�+µ�1

t � ⇢� �]

and law of motion of capital

(1 + (� + µ)/↵)k̇t = (
� + µ

↵
)µ+�Ak↵+��µ

t � (� + n)(1 + (� + µ)/↵)kt � ct

The social planner problem is not the same as the decentralized case. And one can check
that social planner gives higher steady state consumption and capital.

e).
In decentralized case,

ċt
ct

=
1

✓
[A�(

�

↵
)µ+��1 � ⇢� �]

which is the growth rate.
f).

For social planner,
ċt
ct

=
1

✓
[A(� + µ)(

� + µ

↵
)µ+��1 � ⇢� �]

which displays higher growth rate than the decentralized case.

2 R&D Model with Intermediate Capital Goods
a).

maxAL1�↵
NX

j=1

k↵jt � wtL�
NX

j=1

Rjtkjt

F.O.C.s are

wt = (1� ↵)
Yt

L

2



Rjt = ↵AL1�↵k↵�1
jt

b)
Set up the Hamiltonian

H = e�rt(↵AL1�↵k↵jt � ✓Ijt) + µjtIjt

F.O.C.s
e�rt✓ = µjt

�µ̇jt = e�rt↵2AL1�↵k↵�1
jt

c).
qjt = ertµjt, so qt = ✓.

d).

k⇤
jt = (

↵2AL1�↵

r✓
)

1
1�↵

So rental rate is also constant by the second equation in a)

R⇤
jt =

r✓

↵

e).
If ⌘  V , firms will invest in R&D. When there is positive entry of R&D, ⌘ = V . Since k
is a constant, we know that I = k̇ = 0.

V = �✓k⇤ +

Z 1

0

e�rtR⇤k⇤dt = A1/(1�↵)Lr�1/(1�↵)✓�↵/(1�↵)↵2/(1�↵)(1/↵� 1)

and V = ⌘.
Note up to now, we implicitly assume interest rate rt is a constant and we will verify

later.
f).

Assume the CIES parameter is � (to distinguish from the above ✓).

Z +1

0

e�⇢t
c1��t � 1

1� ✓
dt (1)

s.t.
ȧt = wtL+ rtat � Ct (2)

g).h).
It is quite standard. I directly write down the Euler equation

Ċt/Ct =
1

�
(r � ⇢) =

1

�
[
AL1�↵✓�↵↵2(1/↵� 1)1�↵

⌘1�↵
� ⇢]

i).
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Z +1

0

e�⇢t
c1��t � 1

1� ✓
dt (3)

s.t.

⌘Ṅt + Ct = AL1�↵
NtX

j=1

k↵jt �
NtX

j=1

✓Ijt

k̇jt = Ijt

Set up the Hamiltonian

e�⇢t
C1��

t � 1

1� ✓
dt+ �t

1

⌘
(AL1�↵

NtX

j=1

k↵jt �
NtX

j=1

✓Ijt � Ct) +
NtX

j=1

µjtIjt

F.O.C.s w.r.t. C, I, k and N :
�t
⌘

= e�⇢tC��
t

�t
⌘
✓ = µjt

�µ̇jt = �t
1

⌘
↵AL1�↵k↵�1

jt

��̇t =
AL1�↵

⌘
k↵jt�t �

�t
⌘
✓Ijt + µjtIjt

Combine the second and third equation to generate �̇t
�t
.

kjt = A1/(1�↵)L↵1/(1�↵)✓�1/(1�↵)[
˙��t
�t

]�1/(1�↵)

For the fourth equation of the F.O.C.s above, notice the last two terms on the right hand
side cancel out. Therefore,

˙��t
�t

=
AL1�↵

⌘
k↵jt

The above two equations pin down �̇t
�t

and kjt.

˙��t
�t

= AL1�↵↵↵✓�↵/⌘1�↵

The first equation of F.O.C.s still give us the growthr rate of consumption

Ċt/Ct =
1

�
[

˙��t
�t

� ⇢] =
1

�
[AL1�↵↵↵✓�↵/⌘1�↵ � ⇢]
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It is larger than the decentralized case, since ↵↵ > ↵↵↵(1� ↵)1�↵ = ↵2(1�↵
↵

1�↵
)

j).
Subsidy to the monopolistic R&D firms’ production.

k).
No. Because the marginal cost and marginal benefit of these monopolistic firms are still not
equalized. There is still under provision of R&D firms’ good.

3 R&D and the Human Component of Research
a).

⇢ is subjective discount factor. ✓ is the inverse of the elasticity of intertemporal substitution.
b).

Set up the Hamiltonian

H = e�⇢t
c1�✓t � 1

1� ✓
dt+ �t(rtat + wt � ct)

F.O.C.s are
�t = e�⇢tc�✓t

� �̇t
�t

= rt

c).

maxYt �
NtX

j=1

pjtxjt � wtLt

F.O.C.s are

wt = (1� ↵)
Yt

Lt

pjt = ↵AL1�↵
t x↵�1

jt

d).

max
pj

pjxj � xj

where pj = ↵AL1�↵x↵�1
j .

The solution is standard constant markup pj = 1/↵ and xj = ↵2/(1�↵)A1/(1�↵)L, profit
⇡j = (1/↵� 1)↵2/(1�↵)A1/(1�↵)L.

e).

Yt = AL1�↵
NtX

j=1

x↵j = A1/(1�↵)↵2↵/(1�↵)LNt
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Labor share is a constant fraction of final output

wtL = (1� ↵)Yt

thus
wt = (1� ↵)A1/(1�↵)↵2↵/(1�↵)Nt

f).
If firm value ⇡j

R1
t

e�
R s
0 rududs > wt�, there will be new R&D entry until they are equalized.

g).
Free entry condition Vt = ⇡j

R1
t

e�
R s
0 rududs = wt�

h).
In the market asset Lat = �wtNt. No arbitrage condition means

rt =
⇡j + V̇t

Vt

=
⇡j
�wt

+
Ṅt

Nt

It is not constant.
i).

From households problem, we still have Euler equation

ċt
ct

=
1

✓
(rt � ⇢) =

1

✓
(
⇡j
�wt

+
Ṅt

Nt

� ⇢)

Then we substitute wt from e). to the above equation.

ċt
ct

=
1

✓
(rt � ⇢) =

1

✓
(

⇡j
�(1� ↵)A1/(1�↵)↵2↵/(1�↵)N

�1
t +

Ṅt

Nt

� ⇢)

Another equation comes from

ȧt = rtat + wt � ct

i.e.
ȧt/at = rt + wt/at � ct/at

Since we have Lat = �wtNt, and then take rt from h). and wt from e)., we will have
another equation with only ct and Nt.

2Ṅt/Nt = [
⇡j

�(1� ↵)A1/(1�↵)↵2↵/(1�↵) +L/�]N�1
t + Ṅt/Nt � ct

L

�(1� ↵)A1/(1�↵)↵2↵/(1�↵)N
�2
t

i.e.

Ṅt/Nt = [
⇡j

�(1� ↵)A1/(1�↵)↵2↵/(1�↵) + L/�]N�1
t � ct

L

�(1� ↵)A1/(1�↵)↵2↵/(1�↵)N
�2
t

6



Substitute the above back to the Euler equation

ċt
ct

=
1

✓
(rt � ⇢) =

1

✓
(

⇡j
�(1� ↵)A1/(1�↵)↵2↵/(1�↵)N

�1
t + [

⇡j
�(1� ↵)A1/(1�↵)↵2↵/(1�↵) +

L/�]N�1
t � ct

L

�(1� ↵)A1/(1�↵)↵2↵/(1�↵)N
�2
t � ⇢)

Let Ṅt = 0, ċt = 0, one can get a solution (N⇤, c⇤) > 0, which means there is a non-trivial
steady state. Therefore, there is no long run growth.

The intuition is as the economy grows, wage also grows, which increases the cost of R&D.
This rising R&D cost will drag down the growth rate.

j).
It is not optimal. There is monopoly power of R&D firms. The policy to correct this
distortion is to subsidize the production of intermediate inputs to resolve the under provision
problem of these firms.

Alternative R&D Cost: Remember there is a linear relationship between w and N ,
see e). Now the cost to R&D would be w�/N , which is again a constant. In this case, we
will have long run growth as the standard model we learned in class.

4 Public Services, Public Investment and Growth
A.i.).

The marginal cost of government spending should be the marginal benefit of the government
spending.

MPG = 1

i.e.
(1� ↵)y/g = 1 ! ⌧ = g/y = 1� ↵

A.ii.).
In decentralized case, the proportional tax distorts firms behavior. While social planner
internalizes this distortion, individual firms don’t.

B.i.).
⇢ is subjective discount factor. ✓ is the inverse of the elasticity of intertemporal substitution.
A larger ⇢ means agents weigh less of the future consumption. A larger ✓ means a larger
incentive to smooth consumption across time.

To make ✓ = 1 well defined and correspond to log-utility.
B.ii.).iii).iv). v).

(I solve the problem by picking up c, k, g and ⌧ , otherwise, the problem seems very compli-
cated. If one can only pick up c, k, g, then one cannot combine the two constraints.)

Define zt = gt + kt. Sum the two budget constraint to get

żt = Ak↵t h
1�↵
t � ct � �zt

(Why can we combine the two constraints when we are allowed to pick up ⌧t? Intuitively, if
one can adjust ⌧t, that means one can freely transform physical capital to public service or the
reverse. More formally and strictly, first, combining the two constraints to one constraint will
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for sure deliver higher welfare. Second, one can pick up ⌧ finally such that ⌧t =
ġt+�gt

yt
where

the right hand side variables are given by the solution with combining the two constraints,
which means the economy can in fact achieve the solution with combining the two constraints,
given below. Then we conclude the solution is equivalent by using one combined constraint
or with two constraints once we are allowed to pick up ⌧t.)

Setup the Hamiltonian

H = e�⇢t
c1�✓t � 1

1� ✓
+ �t[Ak

↵
t (zt � kt)

1�↵ � ct � �zt]

F.O.C.s
e�⇢tc�✓t = �t

↵Ak↵�1
t (zt � kt)

1�↵ = (1� ↵)Ak↵t (zt � kt)
�↵

� �̇t
�t

= (1� ↵)Ak↵t (zt � kt)
�↵ � �

and TVC.
Solving the above to yield ↵gt = (1� ↵)kt and Euler equation

ċt
ct

=
1

✓
[(1� ↵)1�↵↵↵A� � � ⇢]

There is long run growth. The economy will immediately jump to ↵g0 = (1 � ↵)k0 and
we have a constant growth rate from that point on. After the earthquake, the growth rate
remains but starts from a lower level since consumption is proportional to capital stock.

C.i.).ii).iii).iv).v).vi)
There may be di↵erent interpretations about what this question means. Here is my under-
standing. If you have better interpretation, please let me know.

Write down the constraints first

k̇t = ⌧̄tyt � ct � �kt = (1� ⌧t)
1�↵g�⌘t Ak↵t g

1�↵
t � ct � �kt (4)

ġt = ⌧̃tyt � �gt = ⌧t(
gt
kt
)↵Ak↵t g

1�↵
t � �gt (5)

where ⌧̄ = (1� ⌧)1�↵g�⌘. We solve the equilibrium by choosing ct, kt, gt, ⌧t.
Setup the Hamiltonian for the social planner:

H = e�⇢t
c1�✓t � 1

1� ✓
+ �t[(1� ⌧t)

1�↵g�⌘t Ak↵t g
1�↵
t � ct � �kt] + µt[⌧t(

gt
kt
)↵Ak↵t g

1�↵
t � �gt]

First order conditions are:
ċt
ct

=
1

✓
(� �̇t
�t

� ⇢) (6)
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H⌧ = 0 = �t(1� ↵)(1� ⌧t)
�↵(�1)Ak↵t g

1�↵�⌘
t + µtAgt (7)

Hk = ��̇t = �t
�
↵(1� ⌧t)

1�↵Ak↵�1
t g1�↵�⌘t � �

�
(8)

Hg = �µ̇t = �t(1� ↵� ⌘)(1� ⌧t)
1�↵Ak↵t g

1�↵�⌘
t + µt(⌧tA� �) (9)

In equation (9), substitute �t by using equation (7) to obtain

� µ̇t

µt

=
1� ↵� ⌘

1� ↵
(1� ⌧t)A+ ⌧tA� � (10)

In steady state, ⌧t is a constant. Therefore, µt grows at a constant rate in steady state.
ġt
gt
= ⌧tA� � is also a constant. One can guess that in steady state ⌧A = � so that there

is a steady state value of gt = g⇤. Then equation (4), (6) and (8) give a steady state for c⇤

and k⇤, just as a standard Ramsey model. Note that equation (6) and (8) already show that

in steady state � �̇t
�t

= ⇢. Go back to equation (7), we know in steady state

� �̇t
�t

= � µ̇t

µt

That is, parameter values have to satisfy

⇢ =
1� ↵� ⌘

1� ↵
(1� ⌧)A+ ⌧A� �

where ⌧ = �
A
.

But suppose 1�↵�⌘
1�↵ (1� ⌧)A+ ⌧A > ⇢+ �, then from the above, we see that cannot have

a steady state featuring c⇤, k⇤, g⇤ and ⌧ ⇤. We conclude that in steady state gt grows at a
constant rate not equal to 0.

Equation (4), (6) and (8) e↵ectively describe a standard Ramsey model with constant
growth rate of technology.

k̇t = (1� ⌧)1�↵g1�↵�⌘t Ak↵t � ct � �kt (11)

ċt
ct

=
1

✓
(� �̇t
�t

� ⇢) (12)

� �̇t
�t

= ↵(1� ⌧)1�↵Ag1�↵�⌘t k↵�1
t � � (13)

Define B⇤
t = g

1�↵�⌘
1�↵

t , which will grow at a constant rate � = 1�↵�⌘
1�↵ (⌧A� �). Denote variable

x̂t =
xt

B⇤
t
. The above system can be re-written as

˙̂
kt = (1� ⌧)1�↵Ak̂↵t � ĉt � (� + �)k̂t (14)

˙̂ct
ĉt

+ � =
1

✓
(↵(1� ⌧)1�↵Ak̂↵�1

t � ⇢� �) (15)
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Therefore, k̂t and ĉt will display a constant steady state while ct and kt grow at a rate of �.
In order to nail down steady state ⌧ , one only needs to go back to equation (7), which

says the growth rate of �tBt is equal to the growth rate of µtgt.
The model will display transitional dynamics. After an earthquake, the economy will

gradually accumulate capital (in terms of k̂t) by reducing consumption. (Intuitively, tax
rate should also decrease in order to quickly recover physical capital stock.)

5 Two Sector Growth
a).

max

Z 1

0

e�⇢t
c1�✓t � 1

1� ✓
dt

s.t.
ct = A(utkt)

↵k̂ t

k̇t = B(1� ut)kt � (n+ �)kt

b).
Set up the Hamiltonian

H = e�⇢t
c1�✓t � 1

1� ✓
+ µt[A(utkt)

↵k̂ t � ct] + �t[B(1� ut)kt � �kt]

F.O.C.s
µt = e�⇢tc�✓t

µt↵A(utkt)
↵�1ktk̂

 
t = �tBkt

��̇t = �tB(1� ut) + µtA↵(utkt)
↵�1k̂ t ut � ��t

and TVC
lim
t!1

�tkt = 0

c).
The steady state growth rate of ut should be 0 because ut 2 [0, 1], so it cannot have long
run growth rate, i.e. ut has a steady state value u⇤.

In equilibrium k̂ = k, so

ct = A(utkt)
↵k̂ t = A(utkt)

↵k t

Since ut = u⇤ in steady state,
The growth rate

ċt/ct = (↵ +  )k̇t/kt

When ↵ +  = 1, they are identical.
d).
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From F.O.C.s in b), we get

ċt/ct =
1

✓
[�µ̇t/µt � ⇢]

When ↵ +  = 1, we obtain from the third equation in the F.O.C.s:

� �̇t
�t

= B(1� u⇤) + A↵u⇤↵µt

�t
� �

Since �t grows at a constant rate in steady state, then µt/�t has to be a constant from
the equation above, which means they have the same growth rate.

e).
Denote x = µt

�t
, so the growth rate of consumption

�c = ċt/ct =
1

✓
[�µ̇t/µt � ⇢] =

1

✓
[��̇t/�t � ⇢] =

1

✓
{[B(1� u⇤) + A↵u⇤↵x� �]� ⇢}

Notice that the law of motion of capital in fact gives the steady state growth rate of the
economy.

�k = B(1� u⇤)� �

f).
Additionally, the second equation of F.O.C.s in b) tells us

x =
B

↵Au⇤↵�1

Substitute the above to the �c equation and let �c = �k to finally solve u⇤.

u⇤ =
⇢

B

And growth rate of consumption and capital follow.
g).

Social planner takes the externality into consideration. The solution steps are similar to the
above.

Check that the growth rate of social planner should be larger than the decentralized case.

6 Human Capital and Adjustment Costs
a).

max
IK ,IH ,H,K

Z +1

0

e�rt[AK↵H⌘ � IK � IH(1 + ')]dt

s.t.
K̇t = IKt � �KKt

Ḣt = IHt � �HHt

11



lim
t!1

e�rtK � 0

lim
t!1

e�rtH � 0

b).
Set up the Hamiltonian

H = e�rt[AK↵H⌘ � IK � IH � ⇣

2

I2H
H

] + �(IK � �KK) + µ(IH � �HH)

F.O.C.s are
e�rt = �t

e�rt(1 + ⇣
IHt

Ht

) = µt

��̇t = e�rt↵AK↵�1
t H⌘

t � �t�K

�µ̇t = e�rt⌘AK↵
t H

⌘�1
t � µt�H + e�rt ⇣

2

I2Ht

H2
t

and TVC
lim
t!1

�tKt = 0

lim
t!1

µtHt = 0

c).
The current shadow value of physical capital is pt = �te

�rt = 1. Then the relationship
between K and H follows from the third equation of F.O.C.s.

K = (
↵A

r + �K
)

1
1�↵H

⌘
1�↵

t

The current value of human capital is qt = 1+ ⇣ IHt

Ht
. By eliminating K, we also have the

following law of motion of qt,

q̇t = (r + �H)qt � ⌘AK↵
t H

⌘�1
t � ⇣

2

I2Ht

H2
t

= (r + �H)qt � ⌘A(
↵A

r + �K
)

1
1�↵H

↵+⌘�1
1�↵

t � ⇣

2
(
qt � 1

⇣
)2

d).

↵ + ⌘ < 1, it is saddle path stable. See Figure 2.
e).f).g).

To describe the behavior of variables, it is recommended to track the dynamics on the phase
diagram and also plot time series for each variable of interest, starting from the steady state.
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The Neoclassical Growth Model

Macroeconomic Analysis Recitation 6

Yang Jiao∗

1 Log-linearization
The idea of log-linearization is to look at the percentage change (log-change) of a vari-

able in response to other variables in terms of percentage change as well around a small
neighborhood of some state (usually steady state).

y = f(x1, ..., xn) (1)

Then first order expansion is

log(y)− log(y∗) =
n∑
i=1

∂f
∂xi
|x∗

f(x∗1, ..., x
∗
n)
· x∗i · [log(xi)− log(x∗i )] (2)

Denote log-change as x̂ = log(x)− log(x∗), the above becomes

ŷ =
n∑
i=1

∂f
∂xi
|x∗

f(x∗1, ..., x
∗
n)
· x∗i · x̂i

Note the coefficient
∂f
∂xi
|x∗

f(x∗1,...,x
∗
n)
· x∗i = ∂ log f

∂ log xi
|x∗ is in fact elasticity.

Useful formulas to remember (derived based on the equation above)

â = 0,where a is a constant.

âx = x̂,where a is a constant.

x̂y = x̂+ ŷ

x̂α = αx̂,where α is a constant.

x̂+ y =
x∗

x∗ + y∗
x̂+

y∗

x∗ + y∗
ŷ

x̂− y =
x∗

x∗ − y∗
x̂− y∗

x∗ − y∗
ŷ

∗Please email me if you find errors or typos to yj2279@columbia.edu. All comments and suggestions are
welcome and appreciated.
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Examples
(1) Neoclassical production function Yt = AtK

α
t N

1−α
t :

Ŷt = Ât + αK̂t + (1− α)N̂t

(2) Resource constraint Yt = Ct + It:

Ŷt =
C∗

Y ∗
Ĉt +

I∗

Y ∗
Ît

(3) Capital accumulation: Kt+1 = (1− δ)Kt + It:

K̂t+1 =
(1− δ)K∗

K∗
K̂t +

I∗

K∗
Ît

That is
K̂t+1 = (1− δ)K̂t + δÎt

(4) Consumption Euler equation: C−σt = βRtC
−σ
t+1:

−σĈt = R̂t − σĈt+1

which implies

Ĉt+1 − Ĉt =
1

σ
R̂t

where the left hand side is consumption growth rate. Since gross interest rate R̂t = 1 + rt,
then logRt − logR∗ = log(1 + rt)− log(1 + r∗) = rt − r∗. Therefore,

Ĉt+1 − Ĉt =
1

σ
(rt − r∗)

2 Neoclassical Growth Model
In this section, we will learn to use log-linearization in a simple neoclassical growth model

without uncertainty. In contrast with what we learned in the first half semester in continuous
time where labor is fixed, now we study in discrete time framework and introduce endogenous
labor supply.

2.1 Model Setup

The problem is setup as the following social planner problem:

max
{Ct,Lt,Yt,It,Kt+1,Nt}

+∞∑
t=0

βtu(Ct, Lt)

s.t.
Lt +Nt = 1

Ct + It = Yt
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Kt+1 = (1− δ)Kt + It

Yt = F (Kt, Nt)

0 ≤ Lt, Nt ≤ 1;Ct > 0;Kt+1 ≥ 0

given K0.
Utility is an increasing function of consumption Ct and leisure Lt. The first constraint is

the allocation of aggregate time (which is normalized to 1) between leisure and work. The
second constraint is resource constraint. The third constraint is capital accumulation. The
fourth constraint is production function which shall be neoclassical.

By substituting yt, It, Ct and Lt, the above problem can be re-written as

max
{Kt+1,Nt}

+∞∑
t=0

βtu(F (Kt, Nt) + (1− δ)Kt −Kt+1, 1−Nt)

First order conditions w.r.t. Kt+1 and Nt give the following equilibrium conditions:

− uc(Ct, 1−Nt) + β (uc(Ct+1, 1−Nt+1)[Fk(Kt+1, Nt+1) + 1− δ]) = 0 (3)

− ul(Ct, 1−Nt) + uc(Ct, 1−Nt)Fn(Kt, Nt) = 0 (4)

where
Ct = F (Kt, Nt) + (1− δ)Kt −Kt+1 (5)

The transversality condition is

lim
T→+∞

βTuc(CT , 1−NT )KT+1 = 0 (6)

Equation (3) is similar to Euler equation in a decentralized economy except that Rt

is substituted by Fk(Kt+1, Nt+1) + 1 − δ. It captures the intertemporal tradeoff between
consuming today and invest in the capital good for consumption tomorrow. Equation (4) is
a static tradeoff between consumption good or leisure, where Fn(Kt, Nt) is the opportunity
cost of enjoying leisure instead of produce. Equation (5) is just resource constraint. Finally,
the transversality condition will guarantee the economy is on the saddle path.

2.2 Steady State

In steady state, Ct, It, Yt, Kt+1, Nt, Lt are all constants. Use * to denote steady state
variables. From equation (3),(4) and (5), we obtain

Fk(K
∗, N∗) =

1

β
− 1 + δ

Fn(K∗, N∗) =
ul(C

∗, 1−N∗)
uc(C∗, 1−N∗)

C∗ + δK∗ = F (K∗, N∗)

3



Those three equations uniquely pin down C∗, K∗, N∗. As with other steady state variables
I∗, Y ∗, L∗, they are just functions of C∗, K∗, N∗.

2.3 Log-linearization

2.3.1 Equation (3)

For equation (3), rewrite it as

uc(Ct, 1−Nt) = β (uc(Ct+1, 1−Nt+1)[Fk(Kt+1, Nt+1) + 1− δ])

Then we get

ξccĈt + ξcl1̂−Nt = ξccĈt+1 + ξcl ̂1−Nt+1 +
1/β − 1 + δ

1/β
[ηknN̂t+1 + ηkkK̂t+1]

where ξab is the elasticity of marginal utility of a with respect to b, evaluated at steady state
(a,b=c or l) and ηab is the elasticity of marginal product of a with respect to b, evaluated

at steady state (a,b=k or n). For instance, ηkn = ∂ logFk(K,N)
∂ logN

|(K∗,N∗). Recall why we have
elasticity in the log-linearization.

We can derive further for the above equation to

ξccĈt − ξcl
N∗

1−N∗
N̂t = ξccĈt+1 − ξcl

N∗

1−N∗
N̂t+1 + [1− β(1− δ)][ηknN̂t+1 + ηkkK̂t+1] (7)

2.3.2 Equation (4)

We then rewrite equation (4) as

Fn(Kt, Nt) =
ul(Ct, 1−Nt)

uc(Ct, 1−Nt)

which means
ηnkK̂t + ηnnN̂t = ξlcĈt + ξll1̂−Nt − ξccĈt − ξcl1̂−Nt

that is

ηnkK̂t + ηnnN̂t = ξlcĈt − ξll
N∗

1−N∗
N̂t − ξccĈt + ξcl

N∗

1−N∗
N̂t (8)

Notice that the above equation is all about time t variables. This result is not surprising as
it is derived from a static labor supply choice problem.

2.3.3 Equation (5)

Equation (5) is resource constraint

Ct +Kt+1 − (1− δ)Kt = F (Kt, Nt)

4



Log-linearizing both sides, we obtain

C∗

Y ∗
Ĉt +

K∗

Y ∗
K̂t+1 −

(1− δ)K∗

Y ∗
K̂t = αLK̂t + αKN̂t

where αK = ∂ logF (K,N)
∂ logK

|(K∗,N∗) and αL = ∂ logF (K,N)
∂ logN

|(K∗,N∗). One can show under constant

returns to scale for F (K,N), we have αK + αL = 1. Denote α = αK . sc = C∗

Y ∗ and
si = I∗

Y ∗ = δK∗

Y ∗ . The above equation is equivalent to the following

scĈt +
si
δ
K̂t+1 −

(1− δ)si
δ

K̂t = (1− α)K̂t + αN̂t (9)

2.3.4 First Order Linear System

These three equations contain three variables Ĉ, N̂ , K̂. We also have initial condition K̂0

and the transversality condition. Note in equation (8), there are only time t variables, so we
can substitute N̂t (and also N̂t+1) in equation (7) and (9) by using equation (8). Then we
are left with only variables Ĉ and K̂. It is a linear system, we can write a first order system(

K̂t+1

Ĉt+1

)
= W

(
K̂t

Ĉt

)
(10)

given K̂0 and TVC has to be satisfied.
Do a decomposition of matrix W : W = PΛP−1, where

Λ =

(
λ1 0
0 λ2

)
(11)

One can find usually one eigenvalue satisfies |λ1| > 1 and the other eigenvalue satisfies
|λ2| < 1 (this is not always true, but in this model, most of the time, you will find so).

Then multiply both sides of equation (11) by P−1:

P−1
(
K̂t+1

Ĉt+1

)
=

(
λ1 0
0 λ2

)
P−1

(
K̂t

Ĉt

)
Define (

K̃t

C̃t

)
= P−1

(
K̂t

Ĉt

)
.

We arrive at (
K̃t+1

C̃t+1

)
=

(
λ1 0
0 λ2

)(
K̃t

C̃t

)
=

(
λt+1
1 0
0 λt+1

2

)(
K̃0

C̃0

)
Note that |λ1| > 1, in order to guarantee that TVC is not violated. We must require

K̃0 = 0. From the definition of K̃0, we know it is a linear combination of K̂0 and Ĉ0. Denote
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K̃0 = a1K̂0 + a2Ĉ0. Then we get the decision rule:

Ĉ0 = −a1
a2
K̂0

This logic applies to any time t ≥ 0, so

Ĉt = −a1
a2
K̂t

As with K̂t+1, since K̂t+1 = w11K̂t + w12Ĉt and we already have Ĉt = −a1
a2
K̂t, then we get

the decision rule of K̂t+1 as a function of K̂t. The whole transitional dynamics is solved now:
it corresponds to the saddle path similar to what we learned in the first half of the semester.

Another quick way to get the solution follows undetermined coefficients procedure. We
understand we are trying to solve a linear system so the solution has to satisfy the form
K̂t+1 = φ1K̂t and Ĉt = φ2K̂2 then we plug these two formulas to equation (10) to obtain(

φ1

φ2φ1

)
K̂t =

(
w11 + w12φ2

w21 + w22φ2

)
K̂t

Lastly, comparing coefficients and pick up the solution which satisfies TVC. In order to
return to steady state in order not to violate TVC, we will in fact pick up the solution with
|φ1| < 1.
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The Real Business Cycle Model

Macroeconomic Analysis Recitation 7

Yang Jiao∗

1 Balanced Growth Preferences
Before we move to real business cycle models, we first would like to know what kind of

preferences on consumption and leisure (or hours worked) are consistent with long run growth
facts, despite that we aim at short run fluctuations. Recall that we proved in recitation 3
that under certain conditions, production function has to be labor-augmented form. We
denote the neoclassical production function as Yt = H(Kt, XtNt), where Kt is capital, Nt is
labor and Xt is labor productivity. Suppose growth rate of capital stock γK is equal to the
growth rate of labor productivity γX and Nt is a constant. Then it is easy to verify that
γY = γC = γX = γI = γK , denoted as γ. Now we will try to derive the functional form for
preference u(C,L).

First, the following Euler equation should hold

uc(Ct, Lt)

uc(Ct+1, Lt+1)
= β(1 + rt) (1)

where rt is the interest rate. It satisfies the following equation

rt = Hk(Kt, NtXt)− δ

Note that H is constant returns to scale, so Hk and Hn are both homogeneous of degree
0. As Kt grows at rate γ and NtXt also grows at rate γ, we know that rt is a constant.
Therefore, rewrite the Euler equation as

uc(Ct, L) = β(1 + r)uc((1 + γ)Ct, L) (2)

Take derivative with respect to Ct, we arrive at

ucc(Ct, L) = β(1 + r)ucc((1 + γ)Ct, L)(1 + γ) (3)

Divide equation (3)∗Ct by equation (2), we get

ucc(Ct, L)Ct
uc(Ct, L)

=
ucc(Ct+1, L)Ct+1

uc(Ct+1, L)
.

∗Please email me if you find errors or typos to yj2279@columbia.edu. All comments and suggestions are
welcome and appreciated.
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It implies that ucc(C,L)C
uc(C,L)

is a constant, that is

ucc(C,L)C

uc(C,L)
= −σ (4)

where σ represents a constant number.
Secondly, wage Wt = XtHn(Kt, XtNt) grows at rate γ as well. Since Ct also grows at

rate γ, we conclude that Wt = aCt, where a is a constant number. Labor supply decision
gives the following

Wt =
ul(Ct, L)

uc(Ct, L)

Then
ul(Ct, L) = aCtuc(Ct, L) (5)

Take derivative with respect to Ct:

ucl(Ct, L) = auc(Ct, L) + Ctaucc(Ct, L) (6)

Divide equation (6)∗Ct by equation (5), we get

ucl(Ct, L)Ct
ul(Ct, L)

= 1 +
ucc(Ct, L)Ct
uc(Ct, L)

It implies that
ucl(C,L)C

ul(C,L)
= 1− σ (7)

Combining equation (4) and (7) to get the following King-Plosser-Rebelo preferences

u(C,L) =

{
C1−σ

1−σ v(L) σ 6= 1

logC + v(L) σ = 1

2 Balanced Growth Preferences and Hours Worked
Given that we have King-Plosser-Rebelo preferences, which satisfies long run growth

facts, we also would like to ask whether they are also able to capture short run fluctuations.
Consider a representative worker’s problem

max
Ct,Lt,at+1

E0

+∞∑
t=0

βtu(Ct, Lt)

s.t. budget constraint
Ct + At+1 = Wt(1− Lt) + (1 + rt)At

where At is asset and rt is return on asset. Note that we have used total hours of a worker
is normalized to 1. Denoting λt as the Lagrangian multiplier of the budget constraint, one
can derive the following

uc(Ct, Lt) = λt

2



and
ul(Ct, Lt)

uc(Ct, Lt)
= Wt

These two equations deliver
ul(Ct, Lt) = λtWt

For instance, if we use the following BGP preference

u(C,L) = logCt − γ
ε

1 + ε
(1− Lt)1+

1
ε

with ε > 0, the labor supply equation becomes

Nt = 1− Lt = W ε
t λ

ε
t

In a recession, usually hours worked drop a lot. The above equation shows that there
are two forces that can determine hours worked. One is wage, if wage goes down, hours
worked goes down (substitution effect). The other is related to consumption, if consumption
goes down, that is λt goes up, hours worked increases (income effect). The second force
offsets part of hours worked drop, so this BGP preferences can hardly generate realistic
hours worked fluctuations as in the data. GHH preferences are often used in business cycle
studies to address this problem:

u(Ct, Nt) = U(Ct − v(Nt))

One can check that GHH preferences eliminate income effect so that labor supply only moves
with wage. Admittedly, this is not a perfect way to capture labor market dynamics because
in the data real wage doesn’t move much, so even if we are only left with substitution effect
of labor supply, we are not able to generate very volatile hours worked. We will move to
search and match models in the future to address how to generate more volatile labor market
response (by capturing unemployment dynamics as in the data, hours worked dynamics are
largely driven by extensive margin instead of intensive margin.)

3 Balanced Growth Path
In this section, we will dive into how to deal with both long run growth and short run

dynamics. In addition to labor productivity growth, as in your problem set 2, I will also
include investment specific technology progress to keep the framework more general first:

Kt+1 = (1− δ)Kt + VtIt (8)

where Vt represents investment specific technology. The production function is Cobb-Douglas

Yt = AK1−α
t (XtNt)

α (9)

In a closed economy without government spending, the market clearing condition is

Yt = Ct + It (10)
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The social planner’s problem is

max
{Kt+1,Nt}

+∞∑
t=0

βtu(F (Kt, Nt) +
(1− δ)Kt −Kt+1

Vt
, 1−Nt)

given K0. First order conditions:

uc(Ct, 1−Nt)

Vt
= β

[
uc(Ct+1, 1−Nt+1)

(
(1− α)A(

Kt+1

Xt+1Nt+1

)−α +
1− δ
Vt+1

)]
(11)

ul(Ct, 1−Nt) = uc(Ct, 1−Nt)αA(
Kt

XtNt

)1−α (12)

where

Ct = AK1−α
t (XtNt)

α +
(1− δ)Kt −Kt+1

Vt
(13)

The first question we face is how to transform the non-stationary variables into stationary
variables. How to reasonable guess the growth rates? We still use γ to denote growth rate.
On the balanced growth path (short run dynamics shut down), equation (9) suggests

(1 + γY ) = (1 + γK)1−α(1 + γX)α.

Equation (8) can be written as
Kt+1

Kt

= 1− δ +
ItVt
Kt

which implies ItVt has to grow at the same rate as Kt, so

1 + γK = (1 + γI)(1 + γV )

and finally equation (10) tells that we can further guess

γY = γC = γI .

Solving the relationship between growth rates, we have

1 + γY = 1 + γC = 1 + γI = (1 + γX)(1 + γV )
1−α
α

and
1 + γK = (1 + γX)(1 + γV )

1
α

Therefore, define St = XtV
1−α
α

t and re-define variables

yt =
Yt
St
, ct =

Ct
St
, it =

It
St
, kt+1 =

Kt+1

St+1Vt+1

.

We can then verify these re-defined variables when plugged into equation (11) and (12)
indeed eliminate both growing terms Xt and Vt.

From now on, for simplicity, I will only keep Xt and disregard the growth of Vt. Equation
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(11), (12) and (13) will be transformed to

uc(ct, 1−Nt) = β(1 + γS)−σ(1 + γV )

[
uc(ct+1, 1−Nt+1)

(
(1− α)A(

kt+1

Nt+1

)−α + 1− δ
)]

ul(ct, 1−Nt) = uc(ct, 1−Nt)αA(
kt
Nt

)1−α

and
ct = Ak1−αt Nα

t + (1− δ)kt − (1 + γX)kt+1

where β(1 + γX)1−σ < 1 to make sure that lifetime utility is finite. Note that we have used
the fact that u(C,L) is King-Plosser-Rebelo preferences.

4 Stochastic TFP Shocks
In previous sections, we have investigated deterministic case. In that case, in the long

run, stationary variables reach their steady state. In order to explain short run business
cycles, we introduce uncertainty to the model. Specifically, technology At is no longer a
constant but instead an AR(1) process

logAt+1 − log Ā = ρ(logAt − log Ā) + εt+1

Define at = logAt − log Ā, then
at+1 = ρat + εt+1 (14)

We keep having constant growth rate of labor augmented technology

Xt+1

Xt

= 1 + γX

After introducing uncertainty, the objective function of a social planner needs to include
expectation operator:

max
{Kt+1,Nt}

E0

[
+∞∑
t=0

βtu(F (Kt, Nt) + (1− δ)Kt −Kt+1, 1−Nt)

]
Accordingly, our first order conditions should also carry with expectation operators. In
addition, TFP A is time varying now:

uc(Ct, 1−Nt) = βEt

[
uc(Ct+1, 1−Nt+1)

(
(1− α)At+1(

Kt+1

Xt+1Nt+1

)−α + 1− δ
)]

(15)

ul(Ct, 1−Nt) = uc(Ct, 1−Nt)αAt(
Kt

XtNt

)1−αXt (16)

and
Ct = AtK

1−α
t Nα

t + (1− δ)Kt −Kt+1 (17)

Use stationary variables ct = Ct
Xt
, kt+1 = Kt+1

Xt+1
to re-write the above
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uc(ct, 1−Nt) = β(1 + γS)−σEt

[
uc(ct+1, 1−Nt+1)

(
(1− α)At+1(

kt+1

Nt+1

)−α + 1− δ
)]

ul(ct, 1−Nt) = uc(ct, 1−Nt)αAt(
kt
Nt

)1−α

and
ct = Atk

1−α
t Nα

t + (1− δ)kt − (1 + γX)kt+1

Besides, remember we also need to write down exogenous TFP process:

at+1 = ρat + εt+1

We will still do log-linearization. The linear system is

ξccĉt−ξcl
N∗

1−N∗
N̂t = Et[ξccĉt+1−ξcl

N∗

1−N∗
N̂t+1+(1−β(1+γX)−σ(1−δ))(at+1+αN̂t+1−αk̂t+1)]

at + (1− α)k̂t − (1− α)N̂t = ξlcĉt − ξll
N∗

1−N∗
N̂t − ξccĉt + ξcl

N∗

1−N∗
N̂t

scĉt +
si(1 + γX)

δ + γX
k̂t+1 −

(1− δ)si
δ + γX

k̂t = at + (1− α)k̂t + αN̂t

and
at+1 = ρat + εt+1

Note once we have used log-linearization to get a linear system. It is enough for us to solve
the model by only using expectation of the exogenous process: Etat+1 = ρat. This will imply
that the covariance matrix of stochastic shocks (in our case, just σε) doesn’t enter policy
rules (certainty equivalence).

The dynamic system is reduced to the following after we eliminate N̂t by employing the
second equation.

Et

k̂t+1

at+1

ĉt+1

 = W

k̂tat
ĉt


where

W =

w11 w12 w13

0 ρ 0
w31 w32 w33


Do a decomposition of matrix W as W = PΛP−1, where

Λ =

λ1 0 0
0 λ2 0
0 0 λ3


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(Here it is for illustration purpose. It is not always true that W is diagonalizable. But one
can always do Jordan decomposition.) Suppose |λ1| > 1, |λ2| < 1 and |λ3| < 1 and definek̃tat

c̃t

 = P−1

k̂tat
ĉt

 .
We then obtain

Et

k̃t+1

at+1

c̃t+1

 =

λ1 0 0
0 λ2 0
0 0 λ3

k̃tat
c̃t


In order to satisfy TV C, it has to be the case that

k̃t = 0

Recall the definition of k̃t, we know k̃t = b1k̂t + b2at + b3ĉt = 0, where [b1, b2, b3] is the first
row of matrix P−1. The solution gives

ĉt = −b1
b3
k̂t −

b2
b3
ĉt.

Finally, it is easy to solve all other endogenous variables.
We can also use undetermined coefficients method by writing the solution as k̂t+1 =

φ11k̂t + φ12at and ĉt = φ21k̂t + φ22at such that[
φ11 φ12

φ21φ11 φ21φ12 + φ22ρ

] [
k̂t
at

]
=

[
w11 + w13φ21 w12 + w13φ22

w31 + w33φ21 w32 + w33φ22

] [
k̂t
at

]
Compare the left and right hand side to solve the coefficients. Pick up the solution that
satisfies TV C.
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Labor Market Search and the Real Business Cycle
Model

Macroeconomic Analysis Recitation 8

Yang Jiao∗

1 Introduction
In a standard RBC model, it is difficult to replicate large labor market volatility with

reasonable Frisch elasticity that is consistent with micro-level data. Moreover, in that model,
labor supply is voluntary, i.e. there is no involuntary unemployment. Labor market search
model is a popular way in the literature to study unemployment dynamics. We will introduce
it to the standard RBC model.

2 Labor Market Search Model without Capital
2.1 Households

The representative household’s problem is

max
Ct,St+1,Nt

E0

+∞∑
t=0

βt[logCt − γNt] (1)

subject to the budget constraint

Ct + qtSt+1 ≤ (qt + dt)St + wtNt (2)

and law of motion for employment

Nt = (1− ξ)Nt−1 + φt−1(1−Nt−1) (3)

where Ct is consumption, Nt labor supply.
St is the equity share households inherit from last period and they need to pick up their

demand of equity share St+1 in period t (the total supply is fixed and normalized to 1, so in
equilibrium St = 1). dt is the dividend payment per equity share in period t. qt is equity
price after dividend payment (qt + dt is equity price before dividend payment.) And wt is
wage.

∗Please email me if you find errors or typos to yj2279@columbia.edu. All comments and suggestions are
welcome and appreciated.
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ξ is a constant that represents the exogenous employment exit probability. φt is the
probability that an unemployment worker finds a job.

Denote λt as the Lagrangian multiplier for the budget constraint and V n
t as the La-

grangian multiplier for the employment dynamic equation (3). We obtain the following first
order conditions with respect to Ct, St+1 and Nt:

λt =
1

Ct

(4)

qtλt = βEt[λt+1(qt+1 + dt+1)] (5)

V n
t = −γ + λtwt + β(1− ξ − φt)EtV

n
t+1 (6)

Rewrite equation (5) as

qt = βEt
λt+1

λt
(dt+1 + qt+1) (7)

Iterate forward to arrive at

qt = Et

+∞∑
j=1

βj λt+j

λt
dt+j (8)

Or equivalently, stock price before dividend payment is

qt + dt = Et

+∞∑
j=0

βj λt+j

λt
dt+j (9)

That is, the equity price is the summation of discounted dividend payment. Firms’ objective
will be to maximize equity value of the firm.

2.2 Firms

Workers in the firm are divided into two departments. Ny
t workers are producing good,

while N r
t are recruiters.

The production function is in linear form.

Yt = AtN
y
t

where At is aggregate productivity.
Recall that we already derived that stock price (before dividend payment) in period 0 is

q0 + d0 = E0

+∞∑
t=0

βj λt
λ0
dt

Its value to equity holders in terms of utility is J0 = λ0(q0 + d0). Therefore, the objective
function of a firm is to maximize J0. Note that dt = AtN

y
t −wt(N

y
t +N r

t ). Therefore, firms’

2



problem is to

max
Ny

t ,N
r
t

J0 = E0

+∞∑
t=0

βtλt[AtN
y
t − wt(N

y
t +N r

t )] (10)

subject to
Ny

t +N r
t = (1− ξ)(Ny

t−1 +N r
t−1) + µt−1N

r
t−1 (11)

where ξ is the aformentioned employment exit probability. µt is the probability that a
recruiter can successfully match a new worker.

Denoting Jn
t as the Lagrangian multiplier for equation (11), we have the first order

conditions for Ny
t and Ny

t are:

Jn
t = λt(At − wt) + β(1− ξ)EtJ

n
t+1 (12)

Jn
t = −λtwt + β(1− ξ + µt)EtJ

n
t+1 (13)

Combining the above two equation to yield

λtAt = µtβEtJ
n
t+1 (14)

The economic interpretation of this equation is that firms allocate recruiters and production
workers such that the foregone production of a recruiter equals to the benefit of getting more
workers and higher expected future profits.

Substitute equation (14) into equation (13),

Jn
t = λt

(
(1 +

1− ξ
µt

)At − wt

)
(15)

2.3 Labor Market Search

In previouse sections, households take job finding probability φt as given and firms take
hiring rate µt as given. Now we start to gauge into how these two probabilities are deter-
mined.

Define recruiter-unemployment ratio as

θt =
N r

t

1−Nt

.

Assume that µt depends only on θt, so µt = µ(θt). The total measure of unemployed
individuals hired by firms in period t is then N r

t µ(θt). Therefore, the probability for an
unemployment individual to find a job is

Nr
t

1−Nt
µ(θt), i.e.

φt = φ(θt) = θtµ(θt)

2.4 Wage Determination

It remains to find a way to nail down wage. There are a range of wages which make both
firms and workers obtain positive surplus. After By assuming Nash bargaining between firms
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and workers to divide the joint surplus from the relationship:

V n
t = ζ(Jn

t + V n
t ) (16)

Jn
t = (1− ζ)(Jn

t + V n
t ) (17)

where 0 ≤ ζ ≤ 1 is the bargaining weight for worker. Jn
t + V n

t is the total surplus from a
match.

2.5 Market Clearing Conditions

Labor market: Nt = N r
t +Ny

t

Asset market: St = 1
Goods Market: Ct = Yt

2.6 Competitive Equilibrium

A competitive equilibrium is defined as a set of sequences {Yt, Nt, V
n
t , J

n
t , θt} with 0 <

Nt, θt < 1 that satisfy
Yt = (1 + θt)AtNt − Atθt

Nt+1 = (1− ξ)Nt + φ(θt)(1−Nt)

Jn
t =

1

Yt

(
(1 +

1− ξ
φ(θt)

θt)At − wt

)
Atθt
Yt

= φ(θt)βEtJ
n
t+1

V n
t = −γ +

wt

Yt
+ β(1− ξt − φ(θt))EtV

n
t+1

ζJn
t = (1− ζ)V n

t

given exogenous At and initial N0.
Define yt = Yt

At
and w̃t = wt

At
, and rewrite the system

yt = (1 + θt)Nt − θt

Nt+1 = (1− ξ)Nt + φ(θt)(1−Nt)

Jn
t =

1

yt

(
(1 +

1− ξ
φ(θt)

θt)− w̃t

)
θt
yt

= φ(θt)βEtJ
n
t+1

V n
t = −γ +

w̃t

yt
+ β(1− ξt − φ(θt))EtV

n
t+1

ζJn
t = (1− ζ)V n

t

We immediately see that the solution to labor market Nt is irrelevant with technology

4



shock At. Therefore, this model, TFP shock cannot generate labor market fluctuations at
all!

Later, we first introduce capital good, in that case technology will affect the accumulation
incentives for capital good and since there is no constant returns to scale to labor, labor
market will respond to TFP shock. However, real wage will increase if there is a technology
shock. The high wage makes firms not expand that much employment. Therefore, it is
still hard to generate realistic employment fluctuations. Furthermore, real wages are highly
procyclical, which is at odds with data.

In order to solve the high employment fluctuations puzzle, Hall(2005) and Hagedorn and
Manovskii(2008) try to moderate real wage response so that employment responses will be
large. The first paper relies on wage rigidity assumption and the second paper assigns little
bargaining power to workers.
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Monetary Theory: Flexible Price Models

Macroeconomic Analysis Recitation 9

Yang Jiao⇤

1 The Perils of Taylor Rule

(Exam 2016, Q2) An endowment economy is populated by a representative household
with money in utility preferences

U =
+1X

t=0

�t[logCt + �(mt)]

where 0 < � < 1, �00(m) < 0, limm!0 �
0(m) = +1 and limm!+1 �0(m) = 0. Ct is consump-

tion and mt =
Mt
Pt

is realmoney balance, where Mt is nominal money balance and Pt nominal
price level.

The representative household’s budget constraint is

Ct +mt + bt = Y +
(1 + it�1)bt�1 +mt�1

1 + ⇡t

+ tt

where Y is the endowment, bt is real holdings of nominal bond, it is the nominal interest rate,
tt =

Tt
Pt

is real lump-sum transfer from the government to the household and ⇡t is inflation
rate.

The government runs a balanced budget where they collect seigniorage tax and lump-sum
transfer to household:

mt �
mt�1

1 + ⇡t

= tt

The central bank sets money supply mt in order to target the nominal interest rate
according to

1 + it = ⇢(1 + ⇡t)

where function ⇢(·) is non-decreasing, ⇢(1) = ��1 and �⇢0(1) > 1.
Denoting �t as the Lagrangian multiplier, we obtain the following first order conditions:

1

Ct

= �t (1)

⇤
Please email me if you find errors or typos to yj2279@columbia.edu. All comments and suggestions are

welcome and appreciated.
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�0(mt) = �t � �
�t+1

1 + ⇡t+1
(2)

�t = �(1 + it)
�t+1

1 + ⇡t+1
(3)

From these conditions, the first observation is that nominal interest rate cannot be

negative. Combining equation (2) and (3), we see that if it < 0, then �0(mt) < 0, which
is contradictory to the assumption that more real balance gives higher utility. Intuitively, if
nominal interest rate is negative. The household can simply issue bond (whose gross return
is smaller than 1) and store money (whose gross return is 1 and in addition, it provides
utility) to arbitrage.

The market clearing condition says Ct = Y , therefore, by equation (1), we know �t is a
constant. Then equation (3) tells

1 + ⇡t+1 = �(1 + it) (4)

The interest rate rules are set by the central bank:

1 + it = ⇢(1 + ⇡t) (5)

The above two lead to
1 + ⇡t+1 = �⇢(1 + ⇡t)

First, ⇡⇤ = 0 is a steady state. But since it � 0, so ⇢(1 + ⇡t) � 1, we must have another
steady state, featuring deflation. See Figure 1. We can have at least two steady states.

Notice that the deflation steady state is stable while ⇡⇤ = 0 steady state is unstable.
This question illustrates by taking into account zero lower bound on nominal interest rate
and doing global analysis, instead of only log-linearizing around ⇡⇤ = 0 steady state, we can
get quite di↵erent solutions and dynamics!

2 Cash In Advance with Interest Rate Target

(Exam 2015, Q2) A representative household preferences on consumption Ct and hours
worked Ht are given by

U =
+1X

t=0

�t[logCt �
�

1 + 
H1+

t ]

subject to budget constraint

Mt +
Bt

1 +R
+

B̂t

1 + R̂t

= Mt�1 +Bt�1 + B̂t�1 +Wt�1Ht�1 � Pt�1Ct�1 + PtT

M0, B0, B̂0 given.

where Pt is price level, Mt is money, Wt is the nominal wage and T are lump-sum transfers
by the government. Bt is a one period government issued bond yielding R > 0. B̂t is a
one period privately issued bond and the interest rate is R̂t. Households face a Cash-in-

2



Advance constraint
PtCt  Mt

Competitive firms produce according to a linear technology

Yt = Ht

Government debt evolves according to

Bt

1 +R
= PtT +Bt�1 � (Mt �Mt�1)

In equilibrium, good market clears
Ct = Yt

and private debt
B̂t = 0

Denote mt =
Mt
Pt
, bt =

Bt
Pt
, wt =

Wt
Pt
, and ⇡t =

Pt
Pt�1

� 1. The household problem can be
written as

max
Ct,mt,Ht,bt,b̂t

+1X

t=0

�t[logCt �
�

1 + 
H1+

t ]

subject to

mt +
bt

1 +R
+

b̂t

1 + R̂t

=
mt�1 + bt�1 + b̂t�1 + wt�1Ht�1 � Ct�1

1 + ⇡t

+ T

Ct  mt

Note that households solve Ct, Ht for t � 0, and mt, bt, b̂t for t � 1 as m0, b0 and b̂0 are given
for individual household. Denote �t (t � 1) and ⇠t (t � 0) as Lagrangian multipliers of the
two constraint.

For t � 1, first order conditions are

Ct : �
�t+1

1 + ⇡t+1
+ ⇠t =

1

Ct

(6)

mt : �t = ⇠t + �
�t+1

1 + ⇡t+1
(7)

Ht : wt�
�t+1

1 + ⇡t+1
= �H

t (8)

bt :
�t

1 +R
= �

�t+1

1 + ⇡t+1
(9)

b̂t :
�t

1 + R̂t

= �
�t+1

1 + ⇡t+1
(10)

3



For t = 0, first order conditions are

C0 :
1

C0
= ⇠0 + �

�1

1 + ⇡1
(11)

H0 : �
w0

1 + ⇡1
= �H

0 (12)

Equation (7) and (9) give

⇠t =
R

1 +R
�t (13)

for t � 1.
Substitute equation (9) and (13) into equation (6) to get

�t =
1

Ct

(14)

for t � 1.
Equation (6) can be re-written as

�
H

t

wt

+ ⇠t =
1

Ct

(15)

by substituting into equation (8).
Equation (7) can be re-written as

1 = �(1 +R)
Ct

Ct+1

1

1 + ⇡t+1
(16)

Equation (8) can be re-written as

wt = (1 +R)�H
t Ct (17)

by substituting into equation (8) and (13).
Equation (10) implies

R̂t = R (18)

by comparing with equation (9).
Since �1 =

1
C1

from equation (14), we re-write equation (11) and (12):

1

C0
= ⇠0 + �

1

(1 + ⇡1)C1
(19)

�
w0

1 + ⇡1

1

C1
= �H

0 (20)

Finally, cash in advance constraint is always binding Ct = mt for t � 0.

4



Government debt evolves as

bt = (1 +R)(�mt + T +
bt�1 +mt�1

1 + ⇡t

)

Next we proceed to look at firms’ problem whose production function is

Yt = Ht.

Its profit maximization gives
wt = 1

Market clearing condition tells
Ct = Yt

Then equation (17) is simply

1 = (1 +R)�C1+
t (21)

The above gives

Ct = (
1

�(1 +R)
)

1
1+ = (

�

�
)

1
1+

for t � 1.
Case 1. Now suppose T = 0 and R = 1��

�
.

Due to the cash in advance constraint, we also have

mt = Ct = (
�

�
)

1
1+

for t � 1 and thus �t is also a constant. Equation (9) then pins down

⇡t+1 = �(1 +R)� 1 = 0

for t � 1.
Government debt evolution is

bt+1 =
bt
�
+ (

1� �

�
�R)(

�

�
)

1
1+ + (1 +R)T =

bt
�

In order to satisfy TVC, we have to pick up bt = 0, for t � 1. In particular, b1 = 0, which
implies

0 = b1 = (1 +R)(�m1 + T +
b0 +m0

1 + ⇡1
) = (1 +R)(�(

�

�
)

1
1+ + 0 +

B0 +M0

P0(1 + ⇡1
))

In addition, at time 0, equation (20) gives

�

1 + ⇡1
= �(

M0

P0
)C1

5



The above two equations have two unknowns P0 and ⇡1, so we are able to solve them:

P0 = [
�

�
M

0 (B0 +M0)]
1

1+

Case 2. Now suppose R = 1��
�

and

PtTt = �⇢Bt�1

with ⇢ > 0.
Then the evolution of government debt is

bt+1 =
1� ⇢

�
bt

We require 1�⇢
�

> 1, that is ⇢ < 1� �, so that we can immediately have

bt = 0

for all t � 1 in order to satisfy TVC. Note b1 = 0 is important to pin down the unique
equilibrium. Otherwise, we only have one equation for P0 and ⇡1 (from equation (20)),
which will lead to infinite solutions.
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Monetary Theory: Sticky Price Models

Macroeconomic Analysis Recitation 10

Yang Jiao∗

1 Dixit-Stiglitz Preference
The cost minimization problem for a consumer with Dixit-Stiglitz preference is

min
Cit

∫ 1

0

PitCitdi

s.t.

Ct = (

∫ 1

0

C
θ−1
θ

it )
θ
θ−1

This is in fact a static problem (and each period, households face this problem), so one
can omit all the time subscript here. Denote ψ as the Lagrange multiplier of the constraint.

First order condition is

Pi = ψ(

∫ 1

0

C
θ−1
θ

i )
θ
θ−1
−1C

− 1
θ

i

which will hold for any i ∈ [0, 1].

→ Ci
Cj

= (
Pi
Pj

)−θ

Rearrange the above equation to get

C
θ−1
θ

i = C
θ−1
θ

j P θ−1
j P 1−θ

i

→ P 1−θ
j C

θ−1
θ

i = C
θ−1
θ

j P 1−θ
i

→
∫ 1

0

P 1−θ
j dj · C

θ−1
θ

i =

∫ 1

0

C
θ−1
θ

j dj · P 1−θ
i

→ P 1−θ · C
θ−1
θ

i = C
θ−1
θ · P 1−θ

i

where price index P is defined as P = [
∫ 1

0
P 1−θ
j dj]

1
1−θ .

∗Please email me if you find errors or typos to yj2279@columbia.edu. All comments and suggestions are
welcome and appreciated.
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Therefore, the demand function for good i is

→ Ci = C(
Pi
P

)−θ

which leads to
→ PiCi = P 1−θ

i P θC

Integrate both sides from 0 to 1 to finally have the total expenditure∫ 1

0

PiCidi = PC

This final equation makes it clear why we call P as price index. For example, when we write
down the budget constraint for a household, instead of using

∫ 1

0
PitCitdi as the expenditure

on consumption, we can simply use PtCt.

2 Sticky Price: the Calvo Model
Each period with probability λ, a firm can adjust its price. The firm understands that

this price may stay in the future, so he takes into account today’s price’s effect on future
periods.

Suppose the firm sets price Pit at time t. With probability (1−λ), his price is still Pit at
time t + 1. With probability (1 − λ)2, his price is still Pit at time t + 2 ...With probability
(1 − λ)k, his price is still Pit at time t + k...That’s where the following summation comes
from. The firm chooses Pit to maximize the following:

max
Pi,t

+∞∑
k=0

(1− λ)kEt{
Mt,t+k

Pt+k
[Pi,t −MCi,t+k]Yi,t+k}

s.t.
Yi,t+k = Yt+k(Pit/Pt+k)

−θ

where [Pi,t −MCi,t+k]Yi,t+k is nominal profit. Mt,t+k is the stochastic discount factor.
The constraint is the demand function for firm i product.

Remark. This stochastic discount factor comes from households’ problem. Households
trade the firm’s stock shares. For example, consider the following household problem

max
Ct,ht,qi,t+1

Et

+∞∑
t=0

βt[logCt −
γε

1 + ε

∫ 1

0

h
1+1/ε
jt dj]

s.t.

PtCt+Bt+1+PtKt+1+PtTt+

∫ 1

0

qi,t+1(vit−dit)di ≤ Bt(1+it)+Kt(1+rt)Pt+

∫ 1

0

Wjthjtdj+

∫ 1

0

qitvitdi

where qi,t+1 is the share of stocks of firm i households buy. vit is firm i’s stock price before
paying dividends dit.

2



Denote Λt the Lagrange multiplier of the budget constraint. F.O.C. for Ct

1

Ct
= PtΛt

F.O.C. for qi,t+1

Λt(vit − dit) = βEt(Λt+1vi,t+1)

→
vit = dit + βEt(

Λt+1

Λt

vi,t+1)

Iterate forward to get

vit =
+∞∑
k=0

βkEt(
Λt+k

Λt

di,t+k)

Firm stock price is the discounted dividends of the firm. Now substitute Λt to have

vit =
+∞∑
k=0

Et(β
k PtCt
Pt+kCt+k

di,t+k) = Pt

+∞∑
k=0

Et(β
k Ct
Pt+kCt+k

di,t+k)

Define Mt,t+k = βk Ct
Ct+k

, then

vit
Pt

=
+∞∑
k=0

Et(
Mt,t+k

Pt+k
di,t+k)

Firms should maximize its stock price (firm value for equity holders).
What is di,t+k for each firm? Its nominal profits in each period. Then check the above is

your firm maximiazation objective for the Calvo model (up to the consideration of changing
price probability).

In equilibrium, stock shares should be qit = 1(100%), then we can see that all dividends∫ 1

0
ditdi go to households.

�
First order condition of the Calvo firm is (substitute the constraint into the objective

function):
+∞∑
k=0

(1− λ)kEt{
Mt,t+k

Pt+k
[(1− θ) +

θ

Pit
MCi,t+k]Yi,t+k} = 0

i.e.
+∞∑
k=0

(1− λ)kEt{
Mt,t+k

Pt+k
Yi,t+k[Pit −

θ

θ − 1
MCi,t+k]} = 0 (1)

→

Pit =

θ
θ−1

∑+∞
k=0(1− λ)kEt{Mt,t+k

Pt+k
Yi,t+kMCi,t+k}∑+∞

k=0(1− λ)kEt{Mt,t+k

Pt+k
Yi,t+k}

3



Log-linearize the above equation to get (apply several formulas of log-linearization)

pit =
+∞∑
k=0

(1− λ)kβk MC∗

P ∗ Y
∗(mt,t+k + yi,t+k +mci,t+k − pt+k)∑+∞
s=0(1− λ)sβsMC∗

P ∗ Y ∗
−

+∞∑
k=0

(1− λ)kβk Y
∗

P ∗ (mt,t+k + yi,t+k − pt+k)∑+∞
s=0(1− λ)sβs Y

∗

P ∗

i.e.

pit = [1− β(1− λ)]
+∞∑
k=0

[β(1− λ)]kEtmci,t+k

Notice under flexible price, price p∗i,t+k = mci,t+k. Therefore,

pit = [1− β(1− λ)]
+∞∑
k=0

[β(1− λ)]kEt(p
∗
i,t+k)

Substitute t by t− j, where j = 0, 1, 2, ...:

pi,t−j = [1− β(1− λ)]
+∞∑
k=0

[β(1− λ)]kEt−j(p
∗
i,t−j+k)

We can ignore index i, since each firm is subject to the same shock,

pt(j) = [1− β(1− λ)]
+∞∑
k=0

[β(1− λ)]kEt−j(p
∗
t−j+k) (2)

At time t, we know in the economy, λ firms set price at time t with price pt(0), λ(1− λ)
firms set price at time t with price pt(1), λ(1− λ)2 firms set price at time t with price pt(2),
etc. Hence

pt =

∫ 1

0

pitdi = λ
+∞∑
j=0

(1− λ)jpt(j)

which implies
pt = λpt(0) + (1− λ)pt−1 (3)

Equation (2) implies

pt(0) = [1− β(1− λ)]p∗t + β(1− λ)Et[Et+1(pt+1(0))]

i.e.
pt(0) = [1− β(1− λ)]p∗t + β(1− λ)Et(pt+1(0)) (4)

Combine equation (3) and (4) to eliminate pt(0):

(1− λ)πt + λpt = λ[1− β(1− λ)]p∗t + β(1− λ)Et[(1− λ)πt+1 + λpt+1]

4



Substitute flexible price p∗t = pt + αyt to the above equation:

πt = βEt(πt+1) + κyt

where κ = [1−β(1−λ)]αλ
1−λ .

Though Calvo model is a tractable and widespread used model in macro literature, there
are many drawbacks of Calvo model compared with data.

• Natural Rate property

In steady state:

π = βπ + κy → y =
(1− β)π

κ

It is a non-vertical long run phillip curve, which means you can use long run high
inflation to achieve high real output. In the long run, we would like monetary policy
to be neutral.

• Accelerationist Problem A simple example to illustrate why change in inflation and
real output are negatively correlated by the Calvo model: suppose that the
government announces a disinflation πt+1 < πt(caused by contractionary monetary
shocks), recall that β ≈ 1 the Phillips curve is

πt = Etπt+1 + κyt

→
πt − πt+1 = κyt > 0

That is the Calvo model predicts that the correlation between change in inflation and
output is negative.

This is at odds with data.

Remark. Acceleration phenomenon means the positive correlation between real out-
put and change in inflation in the data, i.e. when real output is high, inflation tends
to rise.

• Non Hump-Shape

Iterate forward the Phillips Curve:

πt = κ
+∞∑
k=0

βkEt(yt+k)

When the economy gets hit by a negative shock to aggregate demand, and the shock
dies out gradually. Real output also dies out gradually. Then the above Phillips curve
would predict a non-hump shaped path for inflation. This result is not in line with
empirical evidence, where the response of inflation to monetary shocks tends to be
hump-shaped.
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