A Simple Quantitative Model of Financial Crises in Open Economies

Yang Jiao

Columbia University

March, 2016

Motivation

Stylized facts from financial crises

- external borrowing interest rate rises
- firms under financial distress fire-sale asset: e.g., Schnabel and Shin (2004), Coval and Stafford (2007)
- resource misallocation intensified (MPK dispersion \uparrow): e.g., Sandleris and Wright (2011), Oberfield (2013)
 - misallocation accounts for more than half of measured aggregate TFP drop in Argentina 2001

Preview

What we do in the model

- financial crises driven only by external interest rate spike
- firms/banks who have high leverage bind financial constraints and fire-sale asset
- capital misallocation and endogenous output drop

Model - Households

- Endowment: W (natural resources e.g., oil)
- Dividend d from firms
- **Produce** by employing capital good: $y_h = Bk_h^{\alpha}$ with $0 < \alpha < 1$
 - interpretation: combination of households, and firms who do not expose to external debt
- Consumption given by

$$C = W + d + Bk_h^{\alpha} + q(k_h - k_h')$$

with q capital good price and use ' to denote next period variable

• Lifetime utility $\sum_{t=0}^{\infty} \beta^t U(C_t) = \sum_{t=0}^{\infty} \beta^t \frac{C_t^{1-\sigma}-1}{1-\sigma}$

Model - Firms

- "Firms" capture firms/banks who exposed to foreign debt in reality
- Firms' capital structure: external debt and domestic equity:

$$V(b, k_b, \tilde{s}) = \max_{b', d, k'_b} d + E[\beta \frac{\Lambda'}{\Lambda} V(b', k'_b, \tilde{s}')]$$

where \tilde{s} denotes aggregate state.

• Dividend payment $d = Ak_b^{\alpha} - b + \frac{b'}{R} - \frac{\xi}{2}b'^2 + q(k_b - k_b')$

Model - Firms

• Dividend **constraint** (equity issuance constraint when $\underline{d} = 0$)

$$d \geq \underline{d}Ak_b^{\alpha}$$

- ▶ Brav et al. (2005) managers' desire to avoid dividend cuts
- Upon interest rate spike, firms would like to cut dividend or raise equity but can not, so fire-sale to unconstrained sector
 - occasionally binding financial constraint: non-linear dynamics
 - misallocation of capital induces output drop
- Fixed capital supply $K = K_h + K_b$

Private Sector Equilibrium

- Only interest rate shock
- Variables $\{K_h', K_b', C, \Lambda, b', \mu, q, R\}$, where μ is LM of the dividend constraint

$$q = \beta E \left[\frac{\Lambda'}{\Lambda} (B\alpha K_h'^{\alpha-1} + q') \right]$$

$$q(1+\mu) = \beta E \left[\frac{\Lambda'}{\Lambda} \left[(A\alpha K_b'^{\alpha-1} + q')(1+\mu') - \underline{d}\mu' A\alpha K_b'^{\alpha-1} \right] \right]$$

$$K = K_h + K_b$$

$$C = W + AK_b^{\alpha} + BK_h^{\alpha} - b + \frac{b'}{R} - \frac{\xi}{2}b'^2$$

$$(1+\mu)(\frac{1}{R} - \xi b') = \beta E \left(\frac{\Lambda'}{\Lambda} (1+\mu') \right)$$

$$\mu(AK_b^{\alpha} - b + \frac{b'}{R} - \frac{\xi}{2}b'^2 + q[K_b - K_b'] - \underline{d}AK_b^{\alpha}) = 0, \mu \ge 0, d \ge \underline{d}AK_b^{\alpha}$$

 $\Lambda = C^{-\sigma}$

• Interest rate shocks: Regime 1, AR(1) process with low mean; Regime 2, very high interest rate to capture the "asymmetry" of interest rate process

Simulation - Parameter Values

• Regime 1: $\log R' - \mu_R = \rho(\log R - \mu_R) + \sigma_R \epsilon$, Regime 2: $\log R = \mu_R^H$. Regime switching: prob. p_{12} and p_{21}

Parameter	Value	
σ	2	
β	0.88	
$egin{array}{c} eta \ \xi \ W \end{array}$	0.03	
W	0.5	
Α	1	
В	0.8	
α	0.65	
K	1	
Grids for b	[-2.5, 1.35]	
Grids for k_b	[0.3, 0.7]	
μ_{R}	0.08	
ρ	0.7	
σ_R	0.01	
μ_R^H	0.2	
p_{12}	0.03	> 4 □ > 4 ≡ > 4
p_{21}	0.2	, ibr i E r i

Simulation -Compare $\underline{d}=0.83$ (Left) and $\underline{d}=-\infty$ (Right)

 precautionary debt position under financial friction: mean debt 0.9561 v.s. 0.9711

Simulation -Compare $\underline{d}=0.83$ (Left) and $\underline{d}=-\infty$ (Right)

misallocation and endogenous output drop

Simulation -Crisis Dynamics with $\underline{d} = 0.83$

• Crisis Definition: period t output is above or equal to mean of output, while t+5, output is 2% below mean. Average windows t-4 to t+10

Simulation -Crisis Dynamics with $\underline{d} = 0.83$

- here closed economy will not generate output loss as immune from external interest rate shock
- pecuniary externality through capital price *q*: scope for capital control or external leverage regulation

$$AK_b^{\alpha} - b + rac{b'}{R} - rac{\xi}{2}b'^2 + \mathbf{q}(K_b - K_b') \geq \underline{d}AK_b^{\alpha}$$

Conclusion

- Build up a simple model of financial crises in open economies
- Asset fire-sale of firms under high debt, upon interest rate spike
- Capital misallocation and endogenous output drop
- Future work: add collateral constraint to amplify misallocation; study government asset purchase policy, leverage regulation policy and dividend tax policy etc.