
Exercise 12.1 Solution

We prove by contradiction. Consider that sequences ct, dt+1, and kt+1 satisfy
optimality conditions (12.1) to (12.8) but not the transversality condition (12.9).
If equation (12.9) doesn’t hold and given that dt+1 ≤ κqtkt+1, we have

lim
t→+∞

κqtkt+1 − dt+1

(1 + r)t
= θ > 0, (1)

which implies that for any ε > 0 (we choose a small enough value for ε so that
θ − ε > 0, say, ε = θ

2 ), there exists an integer T > 0, such that any t ≥ T ,

κqtkt+1 − dt+1

(1 + r)t
> θ − ε > 0 (2)

Therefore, for t ≥ T , the collateral constraints never bind,

µt = 0, (3)

Choose an alternative plan (use star * to denote variables under the new
plan) such that k∗t+1 = kt+1 for all t ≥ 0, and

c∗t =


ct, when t < T

ct + δ, when t = T

ct, when t > T

where δ > 0. This new plan clearly provides higher welfare compared to the old
plan.

We will show for some positive values of δ, the new plan is feasible. That
is, d∗t+1 derived from the budget constraint, will not violate the collateral con-
straint. Since when t < T , we already have d∗t+1 = dt+1 ≤ κqtkt+1 = κq∗t k

∗
t+1,

we only need to focus on the path of debt d∗t+1 for t ≥ T .
Denote ∆c∗t = c∗t − ct and ∆d∗t = d∗t − dt. We immediately obtain ∆c∗T = δ

from the construction of new path for consumption. Notice that, by the budget
constraint, the following equation holds

∆d∗t+1 = (1 + r)[∆c∗t + ∆d∗t ] (4)

Since ∆c∗T = δ, ∆d∗T = 0 and ∆c∗t = 0 for t > T , we get ∆d∗T+1 = δ(1 + r),
∆d∗T+2 = δ(1 + r)2, ... , ∆d∗T+j = δ(1 + r)j , ... , or equivalently, for any t ≥ T ,

∆d∗t+1 = δ(1 + r)t−T+1.
For any t ≥ T ,

d∗t+1 = ∆d∗t+1 + dt+1 = δ(1 + r)t−T+1 + dt+1

Recall that in equation (2),

dt+1 < κqtkt+1 − (1 + r)t(θ − ε).
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Combine the above two formulas to deliver

d∗t+1 = δ(1 + r)t−T+1 + dt+1 < κqtkt+1 − (1 + r)t[θ − ε− δ(1 + r)−T+1].

Finally, set θ − ε − δ(1 + r)−T+1 > 0, i.e., δ < (1 + r)T−1(θ − ε), then d∗t+1 <
κqtkt+1 = κq∗t k

∗
t+1 is satisfied.

In conclusion, with 0 < δ < (1 + r)T−1(θ − ε), the new plan is feasible and
associated with higher welfare. �
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Exercise 12.2 Solution

1. Derive the first-order conditions associated with the household’s
optimization problem.

Sol: The objective is

max
c1>0,c2>0,d2,k1

ln c1 + ln c2

s.t.
F (k) + d2 − d1 − c1 − q(k1 − k) = 0

F (k1)− d2 − c2 = 0

d2 ≤ κqk1
Denoting λ, η and µ as the Lagrangian multipliers of the above 3 constraints,

we write

max
c1>0,c2>0,d2,k1

ln c1+ln c2+λ[F (k)+d2−d1−c1−q(k1−k)]+η[F (k1)−d2−c2]+µ[κqk1−d2]

First order conditions are then given by

1

c1
= λ

1

c2
= η

λ− η − µ = 0

−λq + ηF ′(k1) + µκq = 0

F (k) + d2 − d1 − c1 − q(k1 − k) = 0

F (k1)− d2 − c2 = 0

µ(κqk1 − d2) = 0

µ ≥ 0

κqk1 ≥ d2
2. Assume that the aggregate stock of capital is fixed. Derive the
complete set of equilibrium conditions.

Sol: In equilibrium:
k1 = k

Therefore, we have the following equilibrium conditions for variables {c1 >
0, c2 > 0, d2, λ, η, µ, q}:

1

c1
= λ

1

c2
= η
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λ− η − µ = 0

−λq + ηF ′(k) + µκq = 0

F (k) + d2 − d1 − c1 = 0

F (k)− d2 − c2 = 0

µ(κqk − d2) = 0

µ ≥ 0

κqk ≥ d2
3. Characterize the range of initial debt positions, d1, for which the
collateral constraint does not bind in equilibrium.

Sol: Let µ = 0, we obtain λ = η thus c1 = c2. As c1 = F (k) + d2 − d1
and c2 = F (k) − d2, we derive d2 = d1

2 . In order to satisfy a slack collateral
constraint, it is required that

d2 ≤ κqk

Substituting capital price q and d2 into the above equation, we get

d1 ≤ 2κF ′(k)k

Note that consumption must be positive as well,

c1 = c2 = F (k)− d1
2
> 0

That is
d1 < 2F (k)

Recall that F (k) is concave, 0 < κ < 1 and if F (0) = 0, we know that when
k > 0,

κF ′(k)k < F ′(k)k < F (k).

In sum, d1 ≤ 2κF ′(k)k guarantees that an unconstrained equilibrium exists.
4. Find a sufficient condition on the initial level of debt d1, for which
the economy possesses multiple equilibria, in particular, at least one
equilibrium in which the collateral constraint binds and one equilib-
rium in which it does not.

Sol: Now we turn to binding collateral constraint. First,

µ = λ− η =
1

c1
− 1

c2
=

1

F (k) + d2 − d1
− 1

F (k)− d2

Second, by replacing λ, η and µ, the follwing equation holds,

q =
ηF ′(k)

λ− κµ
=

1
F (k)−d2

F ′(k)

1
F (k)+d2−d1

− κ( 1
F (k)+d2−d1

− 1
F (k)−d2

)

=
(F (k) + d2 − d1)F ′(k)

F (k)− d2 − κ(d1 − 2d2)
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It is a function of d2. When collateral constraint binds,

LHS = d2 = κq(d2)k = κ
(F (k) + d2 − d1)F ′(k)

F (k)− d2 − κ(d1 − 2d2)
k = RHS

Take both sides as functions of d2. The left hand side is the 45 degree line and
RHS(d1

2 ) = κF ′(k)k > d1

2 .
Assume the intersection of RHS(d2) with the x-axis is point d, since the

function is continuous, we only need to impose that d > 0, which says

d = d1 − F (k) > 0

or
d1 > F (k)

It is easy to check that d = d1 − F (k) < d1

2 , given the condition d1 <
2κF ′(k)k in question 3. Therefore, the condition we need is

F (k) < d1 < 2κF ′(k)k

Notice the above requires κ > 1
2 given that F (k) renders concavity.

RHS(d2) = κ
d2 + F (k)− d1

(2κ− 1)d2 + F (k)− κd1
k =

κ

2κ− 1

(2κ− 1)d2 + (2κ− 1)(F (k)− d1)

(2κ− 1)d2 + F (k)− κd1
k

As (2κ − 1)(F (k) − d1) − (F (k) − κd1) = (κ − 1)(2F (k) − d1) < 0, it means
RHS(d2) is an increasing function of d2. So RHS(d2) must cross the 45 degree
line once and the corresponding d∗2 has to be less than d1

2 and greater than d,
so c2 = F (k)− d2 > 0 and c1 = F (k) + d2 − d1 = d2 − d < 0.

In conclusion, a sufficient condition to this question is

F (k) < d1 < 2κF ′(k)k

(which implicitly requires κ > 1
2 .)
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Exercise 12.3

A (bubble-free) competitive equilibrium is a set of sequences ct > 0.dt+1, µt ≥ 0
and qt ≥ 0 satisfying

d0 =

+∞∑
t=0

yt − ct
(1 + r)t

(1)

ct + dt = yt +
dt+1

1 + r
(2)

1

ct
[

1

β(1 + r)
− µt
β

] =
1

ct+1
(3)

qt
ct

[1 − κµt] =
β

ct+1
[qt+1 + α

yt+1

k
] (4)

µt(κqtk − dt+1) = 0 (5)

dt+1 ≤ κqtk (6)

lim
t→∞

(1 + r)−tqt = 0 (7)

with d0 given and the exogenous sequences At and yt = Atk
α.

The Steady State

At = A for all t. Then the output is also constant yt = y = Akα. In steady
state ct = c∗ > 0, dt+1 = d∗, and µt = µ∗ ≥ 0 and qt = q∗ ≥ 0. Equation (3)
implies µ∗ = 1

1+r − β, then equation (4) becomes qt = β
1−κµ∗ (qt+1 + α yk ). In

steady state capital price is

q∗ =
βα yk

1 − β − κµ∗

In order to guarantee the above is positive, we need to impose 1− β− κµ∗ > 0,

i.e. κ < (1−β)(1+r)
1−β(1+r) .

The sequential budget constraint equation (2) gives

c∗ = y − r

1 + r
d∗.

Going back to equation (1), we obtain

d∗ = d0.

Since the debt position is constant, the current account satisfies

ca∗ = 0.
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On the other hand, the trade balance is

tb∗ = y − c∗ =
r

1 + r
d∗.

The natural debt limit requires c∗ > 0, therefore,

d0 <
1 + r

r
y

The collateral constraint has to be binding since µ∗ > 0, so

d0 = κq∗k = κ
βα yk

1 − β − κµ∗
k = κ

βαy

1 − β − κµ∗

This steady state requires fairly strong parameter choices (including an
equality.)

Non-existence of the Unconstrained Equilibrium

We now turn to a case where the collateral constraint never binds, so µ∗ = 0.
Equation (3) implies

ct+1 = β(1 + r)ct

The above relationship, combining with the lifetime budget constraint equa-
tion (1) pins down

c0 = (1 − β)

(
1 + r

r
y − d0

)
thus

ct = [β(1 + r)]tc0

which follows a decreasing path. Capital price, derived from equation (4), is

qt =
1

1 + r
[qt+1 + α

y

k
].

Notice that 1
1+r < 1 (if r > 0), so the unique stationary solution is

qt = q∗ =
αy/k

r

The dynamics of debt is given by equation (2):

dt+1 = (1 + r)(ct − yt + dt)

= (1 + r)
(
[β(1 + r)]tc0 − y + dt

)
Divide both sides by (1 + r)t+1 to obtain

dt+1

(1 + r)t+1
=

dt
(1 + r)t

+ βtc0 −
y

(1 + r)t
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The solution to the above is

dt
(1 + r)t

= d0 +

t∑
k=0

[βk−1c0 −
y

(1 + r)k−1
],

that is,

dt+1 = (1 + r)t+1

{
d0 +

1 − βt+1

1 − β
c0 −

[
1 + r

r
− 1 + r

r

(
1

1 + r

)t+1
]
y

}

=
1 + r

r
y − [β(1 + r)]t+1c0.

Debt is an increasing path. This result is intuitive: with β(1 + r) < 1, the
representative agent would like to consume early, accumulating external debt.
Alternatively, one can get the formula of dt+1 by employing

ct = (1 − β)(
1 + r

r
y − dt).

The trade balance is
tbt = y − ct

which is an increasing function of time t and the current account is

cat = tbt − r
dt

1 + r

In addition, the natural debt limit demands

d0 <
1 + r

r
y

To discipline the collateral constraint so that it is not binding, the following has
to hold for any t ≥ 0,

dt+1 < κq∗k.

In fact, we know that lim
t→∞

dt+1 = 1+r
r y, the condition turns to

1 + r

r
y < κq∗k.

which can be simplified to
1 + r < κα

However, when κ < 1 and α < 1 and r > 0, the above condition cannot
hold. We conclude that the unconstrained equilibrium doesn’t exist.
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Exercise 9.1

Given tradable consumption cT , the demand schedule of nontradables is given
by

A2(cT , cN )

A1(cT , cN )
=
pN

pT
= p (1)

1

We have

∂p

∂cN
=
A22(cT , cN )A1(cT , cN )−A12(cT , cN )A2(cT , cN )

A2
1(cT , cN )

Since the aggregator is assumed to be increasing and concave, we know

A1, A2 ≥ 0 (2)

A22 ≤ 0 (3)

By the linearly homogeneous property, we obtain

A = cTA1 + cNA2 → A1 =
A− cNA2

cT

Take derivative w.r.t cN to get

A12 =
A2 −A2 − cNA22

cT
= −c

N

cT
A22 ≥ 0 (4)

Finally, we arrive at

∂p

∂cN
=
A22A1 −A12A2

A2
1

≤ 0 (5)

which implies that the demand schedule of non-tradables is downward sloping.

2

Taking derivative w.r.t cT in equation (1), the following has to hold

∂p

∂cT
=
A21(cT , cN )A1(cT , cN )−A11(cT , cN )A2(cT , cN )

A1(cT , cN )2

Similar to the above question, the assumption about the consumption aggregator
guarantees that

A1, A2 ≥ 0

A11 ≤ 0 (6)

A21 ≥ 0 (7)
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Therefore

∂p

∂cT
=
A21A1 −A11A2

A2
1

≥ 0 (8)

In other words, the demand schedule shifts up and to the right when cT increases.

3

A2 =
1

2

√
cT

cN

A1 =
1

2

√
cN

cT

p =
A2

A1
=
cT

cN
(9)

4

A2 =
[
a
(
cT
)1− 1

ξ + (1− a)
(
cN
)1− 1

ξ

] 1

1− 1
ξ

−1
(1− a)

(
cN
)− 1

ξ

A2 =
[
a
(
cT
)1− 1

ξ + (1− a)
(
cN
)1− 1

ξ

] 1

1− 1
ξ

−1
a
(
cT
)− 1

ξ

p =
A2

A1
=

1− a
a

(
cT

cN

) 1
ξ

(10)

which leads to

d ln
(
cT

cN

)
d ln p

= ξ

So ξ is the elasticity of subsititution between tradable goods and nontradable
goods.

Exercise 9.2

Welfare when there is no interest rate change is simply given by

V =
1

1− β
ln yT (11)

Suppose the interest rate r has an unanticipated decrease to r at time t = 0
and reverts back to r afterwards. We will discuss two scenarios respectively:
downward nominal wage rigidity and flexible wage.
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• In the case of downward nominal wage rigidity, we have the following:
for t = 0,

cT0 = yT
(

1

1 + r
+

r

1 + r

)
(12)

cN0 = 1 (13)

h0 = 1

and for t ≥ 1

cTt = yT
(

1

1 + r
+

r

1 + r

1 + r

1 + r

)
(14)

cNt =

(
1 + r

1 + r

)α
(15)

ht =
1 + r

1 + r

Welfare under downward rigidity is given by

Vrig =

∞∑
t=0

βt
(
ln cTt + ln cNt

)
= ln yT

(
1

1 + r
+

r

1 + r

)
+ ln (1) +

β

1− β
ln yT

(
1

1 + r
+

r

1 + r

1 + r

1 + r

)
+

β

1− β
ln

(
1 + r

1 + r

)α
=

1

1− β
ln yT + ln

(
1

1 + r
+

r

1 + r

)
+

β

1− β
ln

(
1

1 + r
+

r

1 + r

1 + r

1 + r

)
+

αβ

1− β
ln

(
1 + r

1 + r

)
The welfare change compared to the no interest rate shock result is

∆rig = Vrig−V = ln

(
1

1 + r
+

r

1 + r

)
+

β

1− β
ln

(
1

1 + r
+

r

1 + r

1 + r

1 + r

)
+

αβ

1− β
ln

(
1 + r

1 + r

)
(16)

Take derivative w.r.t to r

∂∆rig

∂r
=

(
1− 1 + r

1 + r

)
1

1 + r + r (1 + r)
+
α

r

1

1 + r

=
1

1 + r + r (1 + r)

[
r (r − r) + α (1 + r + r (1 + r))

r (1 + r)

]
(17)

The condition for it to be positive is that
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α >
r (r − r)

1 + r + r (1 + r)
(18)

Note that for r around a small neighborhood of r, the above can be easily
satisfied. Therefore, it is going to be welfare decreeasing with the interest
rate shock under downward nominal wage rigidity.

• While in the case of flexible wage. For time t = 0,

cT0 = yT
(

1

1 + r
+

r

1 + r

)
(19)

cN0 = 1 (20)

h0 = 1

and for t ≥ 1

cTt = yT
(

1

1 + r
+

r

1 + r

1 + r

1 + r

)
(21)

cNt = 1 (22)

ht = 1

Welfare under flexible wage is given by

Vfle =

∞∑
t=0

βt
(
ln cTt + ln cNt

)
= ln yT

(
1

1 + r
+

r

1 + r

)
+ ln (1) +

β

1− β
ln yT

(
1

1 + r
+

r

1 + r

1 + r

1 + r

)
+

β

1− β
ln 1

=
1

1− β
ln yT + ln

(
1

1 + r
+

r

1 + r

)
+

β

1− β
ln

(
1

1 + r
+

r

1 + r

1 + r

1 + r

)
(23)

The welfare change compared to no interest rate shock result is

∆fle = Vfle − V = ln

(
1

1 + r
+

r

1 + r

)
+

β

1− β
ln

(
1

1 + r
+

r

1 + r

1 + r

1 + r

)
(24)
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Take derivative w.r.t to r

∂∆fle

∂r
=

(
βr

1− β
− 1 + r

1 + r

)
1

1 + r + r (1 + r)

=

(
1− 1 + r

1 + r

)
1

1 + r + r (1 + r)
(25)

< 0

We conclude that when r < r, the flexible wage setting is always welfare-
improving.

• The intuition behind the above results is as follows. With downward
nominal wage rigidity, when interest rate drops, individuals expand con-
sumption in tradables and thus demand for non-tradables. This pushes up
nominal wage, but when interest rate reverts back, they decrease their de-
mand for non-tradables, but firms find that they cannot cut down nominal
wages due to the downward nominal wage rigidity, and have to cut employ-
ment. The involuntary unemployment leads to a drop in production (so is
consumption) of non-tradables. There are pecuniary externalities (or de-
mand externalities) here. Individuals don’t take into account the fact that
their expansion in consumption upon good shock is putting the economy
in a high nominal wage, which will later cause involuntary unemployment.

Exercise 9.3

Now assume the nominal wage is rigid in both directions. The equilibrium is
characterized by the following conditions:

cTt
cNt

= pt

cTt (1 + β)rt = cTt+1

cTt + dt =
dt+1

1 + rt
+ yTt

cNt = hαt

pt =
wt

α(hdt )
α−1

ht ≤ h̄ = 1
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ht = min{hdt , 1}

Under full wage rigidity, for any t

wt = αyT

Thanks to the property of separability of tradables and non-tradables, the
path for tradables’ consumption will not change: for t = 0

cT0 = yT
(

1

1 + r
+

r

1 + r

)
(26)

and for t ≥ 1

cTt = yT
(

1

1 + r
+

r

1 + r

1 + r

1 + r

)
(27)

Therefore, for t = 0
h0 = 1 (28)

and for t ≥ 1

ht =
1

1 + r
+

r

1 + r

1 + r

1 + r
(29)

Note that when t ≥ 1 full wage rigidity case gives higher employment
than the downward nominal wage case thus higher non-tradables consumption.
Therefore, full nominal wage rigidity delivers higher welfare. The intuition is
that downward wage rigidity makes the system adjustable when there’s positive
movement, while not fully adjustable in response to negative movements (since
wage can’t decrease as needed). Full wage rigidity helps restrict temporary wage
increase upon a good shock, so when interest rate reverts back it won’t be as
bad as in the case when there was wage increase in previous period in terms of
employment (thus consumption in nontradables).
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Exercise 9.12

1

With downward nominal wage rigidity, the family of optimal exchange rate
policy is

εt ≥ γ
wt−1
ω(cTt )

where

ω(cTt ) =
A2(cTt , Ft(h̄))

A1(cTt , Ft(h̄))
F ′t (h̄)

It will deliver full employment.
With economy starting from the full-employment steady state, the family of

full employment exchange rate policy under downward wage rigidity is written
as

εt ≥ γ
A2(cTt−1, Ft−1(h̄))

A1(cTt−1, Ft−1(h̄))

(
A2(cTt , Ft(h̄))

A1(cTt , Ft(h̄))

)−1
F ′t−1(h̄)

F ′t (h̄)
(1)

Similar to downward nominal wage rigidity, under downward price rigidity,
the family of optimal exchange rate policy is

εt ≥ γp
pt−1
ρ(cTt )

where

ρ(cTt ) =
A2(cTt , F (h̄))

A1(cTt , F (h̄))

With economy starting from the full-employment steady state, the family of full
employment exchange rate policy under downward wage rigidity is written as

εt ≥ γp
A2(cTt−1, Ft−1(h̄))

A1(cTt−1, Ft−1(h̄))

(
A2(cTt , Ft(h̄))

A1(cTt , Ft(h̄))

)−1
(2)

When Ft(h) = Ft−1(h) and γ = γp, the two families of optimal exchange
rate policies are the same.

2

Exchange rate which stabilizes nominal wage is

εt =
WtA1(cTt , Ft(h̄))

F ′t (h̄)A2(cTt , Ft(h̄))

(
Wt−1A1(cTt−1, Ft−1(h̄))

F ′t−1(h̄)A2(cTt−1, Ft−1(h̄))

)−1
=

W−1A1(cTt , Ft(h̄))

F ′t (h̄)A2(cTt , Ft(h̄))

(
W−1A1(cTt−1, Ft−1(h̄))

F ′t−1(h̄)A2(cTt−1, Ft−1(h̄))

)−1
=

A1(cTt , Ft(h̄))

A2(cTt , Ft(h̄))

A2(cTt−1, Ft−1(h̄))

A1(cTt−1, Ft−1(h̄))

F ′t−1(h̄)

F ′t (h̄)
(3)
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It is included in the family of optimal exchange rate policies.
Similarly, exchange rate that stabilizes nominal price is

εt =
PtA1(cTt , Ft(h̄))

A2(cTt , Ft(h̄))

(
Pt−1A1(cTt−1, Ft−1(h̄))

A2(cTt−1, Ft−1(h̄))

)−1
=

P−1A1(cTt , Ft(h̄))

A2(cTt , Ft(h̄))

(
P−1A1(cTt−1, Ft−1(h̄))

A2(cTt−1, Ft−1(h̄))

)−1
=

A1(cTt , Ft(h̄))

A2(cTt , Ft(h̄))

A2(cTt−1, Ft−1(h̄))

A1(cTt−1, Ft−1(h̄))
(4)

It is included in the family of optimal exchange rate policies.
When Ft(h) = Ft−1(h), stabilizing nominal wage is equivalent to stabilizing

nominal price.

3

Suppose there is productivity shock, then Ft(h) 6= Ft−1(h), from the above, we
see that the two families of optimal exchange rate policies are not the same and
stabilizing nominal wage is not equivalent to stabilizing nominal price.

Exercise 9.13

From the question, we obtain:
exogenouse tradable goods: yT1 = 10 and yT2 = 13.2
exogenouse domestic interest rate: r = 0.1
fixed exchange rate: ξ1 = ξ2 = 1
foreign price of tradable goods: PT∗1 = PT∗2 = 1
initial wage: W0 = 8.25
labor supply: h̄ = 1
production function: yNt = hαt α = 0.75

The optimization problem of households can be written as

max
CT1 ,C

N
1 ,C

T
2 ,C

N
2 ,d2,h1,h2

lnCT1 + lnCN1 + lnCT2 + lnCN2

subject to the budget constraints

ξ1C
T
1 + PN1 C

N
1 = ξ1y

T
1 +W1h1 + Φ1 + ξ1

d2
1 + r

ξ2C
T
2 + PN2 C

N
2 + ξ2d2 = ξ2y

T
2 +W2h2 + Φ2

Denoting λ1 and λ2 the Lagrangian multiplier of the above two constraints,
we get the first-order conditions:
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1

CT1
= λ1

1

CN1
= λ1p1

1

CT2
= λ2

1

CN2
= λ2p2

λ1
1 + r

= λ2

CT1 + p1C
N
1 = yT1 + w1h1 + Φ1 +

d2
1 + r

CT2 + p2C
N
2 + d2 = yT2 + w2h2 + Φ2

The optimization problem of firm can be written as

max
hdt

Φt = PNt
(
hdt
)α −Wth

d
t

which gives us

Wt = PNt α
(
hdt
)α−1

Equivalently,

w1 = p1α
(
hd1
)α−1

w2 = p2α
(
hd2
)α−1

Finally, market clearing conditions of nontradables:

CNt = (ht)
α

Equilibrium characterization

3



1

CT1
= λ1 (5)

1

CT2
= λ2 (6)

λ1 = (1 + r)λ2 (7)

CT1 = yT1 +
d2

1 + r
(8)

CT2 + d2 = yT2 (9)

CT1
CN1

= p1 (10)

CT2
CN2

= p2 (11)

CN1 = hα1 (12)

CN2 = hα2 (13)

w1 = p1α
(
hd1
)α−1

(14)

w2 = p2α
(
hd2
)α−1

(15)

h1 ≤ h̄ = 1 (16)

h2 ≤ h̄ = 1 (17)

h1 = min{hd1, 1} (18)

h2 = min{hd2, 1} (19)

w1 ≥ w0 (20)

w2 ≥ w1 (21)

(wt − wt−1)
(
ht − h̄

)
= 0 for t = 1, 2 (22)

(1)

Equilibrium levels of consumption of tradables can be solved using the first five
conditions, or equivalently

CT2 = (1 + r)CT1

CT1 = yT1 +
d2

1 + r

CT2 + d2 = yT2

which gives

d2 = 1.1

CT1 = 11 (23)

CT2 = 12.1 (24)

4



and trade balance

tb1 = y1 − CT1 = −1 (25)

tb2 = y2 − CT2 = 1.1 (26)

(2)

Consider the rest of F.O.C.s and we can derive

CT1
hα1

= p1

CT2
hα2

= p2

w1 = p1α
(
hd1
)α−1

w2 = p2α
(
hd2
)α−1

h1 ≤ h̄ = 1

h2 ≤ h̄ = 1

h1 = min{hd1, 1}
h2 = min{hd2, 1}
w1 ≥ w0

w2 ≥ w1

(wt − wt−1)
(
ht − h̄

)
= 0 for t = 1, 2

For period 1, assume h1 = hd1 < 1 = h̄, then

w1 =
CT1
hα1

α (h1)
α−1

=
CT1
h1

α

> αCT1 = 8.25 = w0

which leads to a contradition against the last slackness condition.
Hence it must be true that

h1 = 1 (27)

CN1 = 1 (28)

p1 = 11 (29)

w1 = 8.25 (30)

For period 2, assume h2 = hd2 < 1, then
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w2 =
CT2
hα2

α (h2)
α−1

=
CT2
h2

α

> αCT2 = 9.075 > w0

which aso leads to a contradition against the slackness condition.
Therefore, it must be true that

h2 = 1 (31)

CN2 = 1 (32)

p2 = 12.1 (33)

w2 = 9.075 (34)

(3)

Now study the case that the country interest rate increases to r = 0.32.
First, tradable goods consumption and trade balance in two periods are given

by

d2 = 0

CT1 = 10 (35)

CT2 = 13.2 (36)

tb1 = 0 (37)

tb2 = 0 (38)

It can be easily verified that the economy cannot be at full employment in
period 1, i.e. hd1 = h1 < 1. Then we have

w1 = w0 = 8.25 (39)

h1 = α
CT1
w1

=
10

11
(40)

CN1 =

(
10

11

)0.75

≈ 0.93 (41)

p1 =
CT1
hα1

= 10

(
10

11

)−0.75
≈ 10.74 (42)

It can also be easily verified that the economy should be at full employment
in period 2, i.e. hd2 = h2 = 1. Then we have

6



h2 = 1 (43)

CN2 = 1 (44)

p2 = 13.2 (45)

w2 = 9.9 (46)

In summary, downward wage rigidity is binding in period 1 but it is slack in
period 2.

The intuition is as follows. Thanks to the separability of utility function, we
can easily show that the dynamics of tradable goods become steeper after an
increase in interest rate. In other words, households have more incentives to save
by reducing tradables consumption in period 1. The less tradables consumption
means a less demand for nontradables in period one, which forces firm to cut
employmnet, simply because they cannot cut nominal wage as restricted by
downward nominal wage rigidity. But in period 2, due to the increase in tradable
good consumption, the demand for non-tradables increases, which drives up
market equilibrium wage and makes the downward wage rigidity not binding
any more. Thus, the economy reaches full employment in period 2.

(4)

Consider a devaluation to achieve full employment in both periods. Rewrite all
the relevant conditions below after imposing h1 = h2 = 1

CT1 = p1

CT2 = p2

w1 = p1α

w2 = p2α

W2 ≥ W1 ≥W0

Therefore, we have the solution that

p1 = 10 (47)

p2 = 13.2 (48)

w1 = 7.5 (49)

w2 = 9.9 (50)

Note that w = W
ξ by definition, hence we have

ξ1
ξ0

=
w0

w1

W1

W0
≥ w0

w1
= 1.1 (51)

ξ2
ξ1

=
w1

w2

W2

W1
≥ w1

w2
≈ 0.76 (52)
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In sum, the minimum gross devaluation rate in period 1 is 1.1, while the
minimum gross devaluation in period 2 is about 0.76.

(5)

The less constrained Ramsey problem is written as follows

max lnCT1 + lnhα1 + lnCT2 + lnhα2

subject to

CT1 = yT1 +
d2

1 + r
(53)

CT2 + d2 = yT2 (54)

w1 = α
CT1
h1

(55)

w2 = α
CT2
h2

(56)

W2 ≥ W1 ≥W0 (57)

h1, h2 ≤ h̄ (58)

The solution to the less constrained problem is given by (check several possi-
bilities and compare: 1). W1 = W0, W2 = W1; 2). W1 = W0, W2 > W1; 3).
W1 > W0, W2 = W1; 4). W1 > W0, W2 > W1)

CT1 = CT2 = 11.38

h1 = h2 = 1

W1 = W2 = 8.535 > W0

Now we go back to Ramsey problem indexed by τ1. Using the following
condition we can solve for optimal τ1

1− τ1
1 + r

1

CT1
=

1

CT2

→ τ1 = −0.32 (59)

It is left to check that all the conditions stated in the original Ramsey
problem are satisfied by the solution above, which is trivial. In summary, if
τ1 = −0.32, which is a subsidy, the economy is Ramsey optimal and

8



h1 = h2 = 1 (60)

CN1 = CN2 = 1 (61)

W1 = W2 = 8.535 (62)

CT1 = CT2 = 11.38 (63)

Excercise 9.14

1

The optimality problem of the representative household is

max
cT ,cN ,d+1

E0

∞∑
t=0

βtU(A(cTt , c
N
t ))

subject to the budget constraint

cTt + ptc
N
t + dt = yTt + wtht + φt +

dt+1

1 + rt

The first-order conditions are shown below

pt =
A2(cTt , c

N
t )

A1(cTt , c
N
t )
→ pt =

1− a
a

(
cNt
cTt

)− 1
ξ

λt = U ′(At)A1(cTt , c
N
t )→ λt = aA−σt A

1
ξ

t (cTt )−
1
ξ

λt
1 + rt

= βEtλt+1

Given that ξ = 1
σ and β(1 + r) = 1 we have

λt = a(cTt )−
1
ξ

λt = Etλt+1

Therefore, the equilibrium process of tradables is characterized by(
cTt
)− 1

ξ = Et
(
cTt+1

)− 1
ξ (64)

Since ξ = 1
σ , the above problem is in fact separable and because there is

no uncertainty in tradable output and interest rate, one can drop the expecta-
tion operator. In addition, we use the assumption that d0 = 0, the tradable
consumption can then be shown to be

cTt = yT (65)
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2

εt =
ξt
ξt−1

≥ γ

[
A2(cTt−1, h̄)

A1(cTt−1, h̄)
F ′t−1(h̄)

] [
A2(cTt , h̄)

A1(cTt , h̄)
F ′t−1(h̄)

]−1
= γ

(
ezt−1−zt

)1− 1
ξ (66)

3

Demand curve:

pt =
1− a
a

(
cNt
cTt

)− 1
ξ

=
1− a
a

(
yT

ezthαt

) 1
ξ

(67)

Supply curve:

pt =
wt
αezt

h1−αt =
Wt/ξt
αezt

h1−αt (68)

Suppose the economy is at full employment at t = −1 and an increase in
productivity occurs, i.e. z0 > z−1, demand curve and supply curve both shift

downwards. Note that (ezt)
− 1
ξ < (ezt)

−1
as ξ < 1. Under peg, the shift in

suply curve is smaller than the shift in demand curve, leading to involuntary
unemployment. Under the optimal exchange rate policy, a devaluation should
decrease the domestic real wage such that the full employment is obtained again.

4

Following the result in part 2,

εt = γ
(
ezt−1−zt

)1− 1
ξ

ln εt =

(
1− 1

ξ

)
(zt−1 − zt) + ln γ (69)

The correlation between devaluation rate and productivity growth rate is

corr = E[(ln εt−E ln ε)(zt−zt−1)]
σln εtσzt−zt−1

= 1 > 0 (70)

As analyzed in part 3, when technology gets increased, household tends to
supply less labor while firm wants to hire more labor. The net effect is a decline
in labor in equilibrium. In order to induce full employment again, the economy
needs devaluation and further reduction of real wage so as to encourage firm’s
hiring of labor. Therefore, the correlation is positive.
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5

If ξ > 1, then 1
ξ − 1 < 0. In this case, the downward shift in the supply curve

exceeds that of demand curve, so that there will be more labor demand from
production side. Recall that it has been assumed that the domestic currency will
remain as strong as possible. Therefore, we could implement an appreciation
to increase the real wage and still achieve full employment. In other words, the
correlation is negative.

corr = E[(ln εt−E ln ε)(zt−zt−1)]
σln εtσzt−zt−1

= −1 < 0 (71)
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Exercise 10.1

Household Problem:

max
cTt ,c

N
t ,dt+1,hv

t ,l
v
t

∞∑
t=0

βtU(Ct, lt) =

∞∑
t=0

βt

[[
A(cTt , c

N
t )
]1−σ − 1

1− σ
+ ψ

(lvt )
1−θ − 1

1− θ

]
(1)

subject to

cTt + ptc
N
t + dt = (1− τt)(yTt + wth

v
t + φt) +

dt+1

1 + rt
(2)

hvt + lvt = h̄ (3)

dt+1 ≤ d̄ (4)

where A(cT , cN ) is the consumption bundle and τt is income tax rate.
Note that given the property of utility function, it is always true that vol-

untary leisure is positive and so

hvt < h̄ (5)

Firm Problem:

max
ht

φt = ptF (ht)− (1− st)wtht (6)

Labor Market:
Suppose firms cannot force workers to work, i.e.

ht ≤ hvt (7)

and nominal wage is downward rigid, i.e.

Wt ≥ γWt−1 → wt ≥ γwt−1 (8)

(hvt − ht) (wt − γwt−1) = 0 (9)

Equation (8) says if firm’s demand for labor is strictly lower than the supply,
the wage rigidity is binding.
Nontradables Market Clearing:

F (ht) = cNt (10)

Government Budget:

stwtht = τt(y
T
t + wth

v
t + φt) (11)

Competitive Equilibrium:
We are now ready to write all the optimality conditions below

1



cTt + dt = yTt +
dt+1

1 + rt
(12)

pt =
A2

(
cTt , F (ht)

)
A1

(
cTt , F (ht)

) (13)

pt = (1− st)
wt

F ′(ht)
(14)

ψ
(
h̄− hvt

)−θ
= λt(1− τt)wt (15)

ht ≤ hvt (16)

wt ≥ γwt−1 (17)

dt+1 ≤ d̄ (18)

λt = U1

(
A(cTt , F (ht)

)
A1

(
cTt , F (ht)

)
(19)

λt
1 + rt

= βEtλt+1 + µt (20)

µt ≥ 0 (21)

µt(dt+1 − d̄) = 0 (22)

(hvt − ht) (wt − γwt−1) = 0 (23)

stwtht = τt(y
T
t + wtht + φt) (24)

Pareto optimal allocation

max
cTt ,lt,ht,dt+1

∞∑
t=0

βtU(Ct, lt) =

∞∑
t=0

βt

[[
A(cTt , F (ht))

]1−σ − 1

1− σ
+ ψ

(lt)
1−θ − 1

1− θ

]
(25)

subject to

lt + ht = h̄ (26)

cTt + dt = yTt +
dt+1

1 + rt
(27)

dt+1 ≤ d̄ (28)

The optimality condition to planner’s problem is given by
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cTt + dt = yTt +
dt+1

1 + rt
(29)

ψ
(
h̄− ht

)−θ
= U1

(
A(cTt , F (ht)

)
A2

(
cTt , F (ht)

)
F ′(ht) (30)

dt+1 ≤ d̄ (31)

λt = U1

(
A(cTt , F (ht)

)
A1

(
cTt , F (ht)

)
(32)

λt
1 + rt

= βEtλt+1 + µt (33)

µt ≥ 0 (34)

µt(dt+1 − d̄) = 0 (35)

Consider a policy maker who wishes to set the income tax and wage sub-
sidy to achieve Pareto optimality. The optimization problem faced by this policy
maker is to maximize (1) subject to (12) - (24). To see that the Ramsey-optimal
policy supports the Pareto optimal allocation, we transform the optimality con-
ditions under competitive equilibrium into the following:

cTt + dt = yTt +
dt+1

1 + rt
(36)

pt =
A2

(
cTt , F (ht)

)
A1

(
cTt , F (ht)

) (37)

pt = (1− st)
wt

F ′(ht)
(38)

ψ
(
h̄− hvt

)−θ
= U1

(
A(cTt , F (ht)

)
A2

(
cTt , F (ht)

) 1− τt
1− st

F ′(ht)(39)

ht ≤ hvt (40)

wt ≥ γwt−1 (41)

dt+1 ≤ d̄ (42)

λt = U1

(
A(cTt , F (ht)

)
A1

(
cTt , F (ht)

)
(43)

λt
1 + rt

= βEtλt+1 + µt (44)

µt ≥ 0 (45)

µt(dt+1 − d̄) = 0 (46)

(hvt − ht) (wt − γwt−1) = 0 (47)

stwtht = τt(y
T
t + wtht + φt) (48)

Equations (36), (42)-(46) are identical to (29), (31)-(35). Now set pt to
satisfy (37), wt = γwt−1, and then st to satisfy (38), τt to satisfy (48). Note
τt < st. Therefore, from (39), we know that hvt > ht, which satisfies (4). The
above procedures replicate Pareto optimal allocation.
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Exercise 10.2

The policy tool is the combination of lump-sum taxes and external debt. Ex-
change rate is fixed.
Household Problem:

max

∞∑
t=0

βtU
(
A(cTt , c

N
t )
)

(49)

subject to budget constraint

cTt + ptc
N
t = yTt + wtht + φt + Tt (50)

where Tt is the transfer denominated in foreign currency.
Since household is restricted from borrowing, its problem is equivalent to

maximize utility period by period.
Firm Problem:

max
ht

φt = ptF (ht)− wtht (51)

Labor Market:
ht ≤ h̄ (52)

wt ≥ γwt−1 (53)

(
h̄− ht

)
(wt − γwt−1) = 0 (54)

Nontradables Market:

F (ht) = cNt (55)

Government Budget:

dt+1

1 + rt
= dt + Tt (56)

dt+1 ≤ d̄ (57)

where dt+1 is the external debt position demoninated in foreign currency.
Competitive Equilibrium

We are now ready to write all the optimality conditions below
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cTt = yTt + Tt (58)

pt =
A2

(
cTt , F (ht)

)
A1

(
cTt , F (ht)

) (59)

pt =
wt

F ′(ht)
(60)

wt ≥ γwt−1 (61)

ht ≤ h̄ (62)

µ ≥ 0 (63)

dt+1 ≤ d̄ (64)

µt
(
dt+1 − d̄

)
= 0 (65)(

h̄− ht
)

(wt − γwt−1) = 0 (66)

dt+1

1 + rt
= dt + Tt (67)

Consider a policy maker who wishes to set transfer and external debt to
obtain Pareto optimality. After simple rearrangement, this policy maker is to
maximize household utility subject to (58)-(67).

Eqm(1):

cTt + dt = yTt +
dt+1

1 + rt
(68)

A2

(
cTt , F (ht)

)
A1

(
cTt , F (ht)

)F ′(ht) = wt (69)

wt ≥ γwt−1 (70)

ht ≤ h̄ (71)

µ ≥ 0 (72)

dt+1 ≤ d̄ (73)

µt
(
dt+1 − d̄

)
= 0 (74)(

h̄− ht
)

(wt − γwt−1) = 0 (75)

We already know that Ramsey optimal capital control problem described in
section 10.3 is characterized by the following conditions.

Eqm(2):
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cTt + dt = yTt +
dt+1

1 + rt
(76)

A2

(
cTt , F (ht)

)
A1

(
cTt , F (ht)

)F ′(ht) = wt (77)

wt ≥ γwt−1 (78)

ht ≤ h̄ (79)

dt+1 ≤ d̄ (80)(
h̄− ht

)
(wt − γwt−1) = 0 (81)

λt = U ′
(
A(cTt , F (ht))

)
A1(cTt , F (ht)) (82)

λt(1− τdt )

1 + rt
= βEtλt+1 + µt (83)

µt ≥ 0 (84)

µt
(
dt+1 − d̄

)
= 0 (85)

The solutions to Eqm(1) and Eqm(2) are also the solution to the less-
constrained problem of Ramsey capital control policy studied in section 10.3
(note we can drop the complementary slackness condition by contradiction).
Thus, the equilibrium real allocation in this setting is identical to the one ob-
tained in section 10.3 under Ramsey optimal control policy.

Excercise 10.3

Consider pre-determined consumption tax as a policy tool. Again exchange rate
is fixed.

Household Problem:

max
cTt ,c

N
t ,dt+1

∞∑
t=0

βtU
(
A(cTt , c

N
t )
)

(86)

subject to budget constraint

(1 + τ ct )
(
cTt + ptc

N
t

)
+ dt = yTt + wtht + φt +

dt+1

1 + rt
+ Tt (87)

dt+1 ≤ d̄ (88)

Firm Problem:

max
ht

φt = ptF (ht)− wtht (89)

Labor Market: Downward wage rigidity must be satisfied and labor supply
cannot exceed the upper bound
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ht ≤ h̄ (90)

wt ≥ γwt−1 (91)

(
h̄− ht

)
(wt − γwt−1) = 0 (92)

Nontradables Market:

F (ht) = cNt (93)

Government Budget:

Tt = τ ct
(
cTt + ptc

N
t

)
(94)

where Tt is the transfer to household denominated in foreign currency.
Competitive Equilibrium:
We are now ready to write and simplify all the optimality conditions below. It
is worth noticing that Ramsey allocation calls for µt = 0 and dt+1 < d̄, hence
we can impose this fact directly. We also write the multiplier λt as a function
nontradables and labor.

Eqm(1):

cTt + dt = yTt +
dt+1

1 + rt
(95)

A2

(
cTt , F (ht)

)
A1

(
cTt , F (ht)

)F ′(ht) = wt (96)

ht ≤ h̄ (97)

wt ≥ γwt−1 (98)

dt+1 ≤ d̄ (99)

λt = U ′(A(cTt , F (ht)))A1(cTt , F (ht)) (100)

1

1 + rt

1 + τ ct+1

1 + τ ct
λt = Etβλt+1 + µt (101)

µt ≥ 0 (102)

µt(dt+1 − d̄) = 0 (103)(
h̄− ht

)
(wt − γwt−1) = 0 (104)

(105)

We already know that Ramsey optimal capital control problem described in
section 10.3 is characterized by the following conditions

Eqm(2):
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cTt + dt = yTt +
dt+1

1 + rt
(106)

A2

(
cTt , F (ht)

)
A1

(
cTt , F (ht)

)F ′(ht) = wt (107)

ht ≤ h̄ (108)

wt ≥ γwt−1 (109)

dt+1 ≤ d̄ (110)

λt = U ′(A(cTt , F (ht)))A1(cTt , F (ht)) (111)

1

1 + rt
(1− τdt )λt = Etβλt+1 + µt (112)

µt ≥ 0 (113)

µt(dt+1 − d̄) = 0 (114)(
h̄− ht

)
(wt − γwt−1) = 0 (115)

(116)

Comparing the optimal conditions under two equilibria, it is obvious that
we can set

1− τdt =
1 + τ ct+1

1 + τ ct
→

τ ct+1 =
(
1− τdt

)
(1 + τ ct )− 1 (117)

By comparing the two sets of equilibrium conditons, the Ramsey consump-
tion tax above is able to replicate solution to optimal capital control problem.
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Exercise 13.3

Now the maximization problem is to

max
{c(ε),d(ε)}

∫ εH

εL

u(c(ε))π(ε)dε

subject to
c(ε) = ȳ + ε− d(ε)∫

d(ε)π(ε)dε = 0

d(ε) ≤ min{d(ε), k}

The last constraint is equivalent to

d(ε) ≤ k

Since the problem is exactly the same as in section 13.3.3, the analysis there
goes through.

Exercise 13.4

We consider the case that 0 < α(ȳ + εH) < εH , which means α
1−α ȳ < εH .

The optimal contract is to

max
{c(ε),d(ε)}

∫ εH

εL

u(c(ε))π(ε)dε

subject to
c(ε) = ȳ + ε− d(ε)∫

d(ε)π(ε)dε = 0

d(ε) ≤ α(ȳ + ε)

The Lagrangian associated with the above problem can be written as:

L =

∫ εH

εL
{u(ȳ + ε− d(ε)) + λd(ε) + γ(ε)[α(ȳ + ε)− d(ε)]}π(ε)dε

when the incentive-compatibility constraint does not bind, the argument still
holds as before, we would have γ(ε) vanishes in the first order condition and that
d(ε) takes the form of d(ε) = d̄+ ε and consumption is a constant c(ε) = ȳ − d̄.

Then we can prove that if the IC constraint is binding for some ε′, then it is
binding for all ε′′ > ε′. We prove by contradiction. Let ε′′ ∈ (ε′, εH ]. Suppose,
the IC constraint is binding for ε′, so that d(ε′) = α(ȳ + ε′), but is not binding
for ε′′, so that d(ε′′) < α(ȳ + ε′′). Then

c(ε′′) = ȳ + ε′′ − d(ε′′) > (1− α)(ȳ + ε′′) > (1− α)(ȳ + ε′) = c(ε′)
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We obtain u′(c(ε′′)) < u′(c(ε′)) and thus γ(ε′′) > γ(ε′) ≥ 0. But since IC
constraint is not binding for ε′′, we must have γ(ε′′) = 0, which is a contradiction.
So there is a cutoff ε̄ such that

d(ε) =

{
d̄+ ε, ε < ε̄

α(ȳ + ε), ε > ε̄

We will further show that

1. d̄ > 0

2. d(ε̄) = d̄+ ε̄ = α(ȳ + ε̄)

If the contract is indeed continuous, which means the second condition is satis-
fied, then

0 =

∫ ε̄

εL
(d̄+ ε)π(ε)dε+

∫ εH

ε̄

α(ȳ + ε)π(ε)dε

=

∫ ε̄

εL
(d̄+ ε)π(ε)dε+

∫ εH

ε̄

α(ȳ + ε̄)π(ε)dε+

∫ εH

ε̄

α(ε− ε̄)π(ε)dε

= d̄− (1− α)

∫ εH

ε̄

(ε− ε̄)π(ε)dε

This gives d̄ > 0, then we move on to show continuity.

The optimal contract sets ε̄ and d̄ to maximize∫ ε̄

εL
u(ȳ − d̄)π(ε)dε+

∫ εH

ε̄

u((1− α)(ȳ + ε))π(ε)dε

subject to ∫ ε̄

εL
(d̄+ ε)π(ε)dε+

∫ εH

ε̄

α(ȳ + ε)π(ε)dε = 0

Differentiate the objective function with respect to ε̄ and d̄ and set the result
equal to 0 to get

−u′(ȳ − d̄)F (ε̄)dd̄+ u(ȳ − d̄)π(ε̄)dε̄− u((1− α)(ȳ + ε̄))π(ε̄)dε̄ = 0

Differentiate the constraint to arrive at

F (ε̄)dd̄+ (d̄+ ε̄)π(ε̄)dε̄− α(ȳ + ε̄)π(ε̄)dε̄ = 0

Combining the two gives

u′(ȳ − d̄)(d̄+ ε̄− α(ȳ + ε̄)) + [u(ȳ − d̄)− u((1− α)(ȳ + ε̄))] = 0

Apparently d̄+ ε̄ = α(ȳ + ε̄) satisfies the above condition.
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Finally, we check the participation constraint by replacing d̄ by α(ȳ+ ε̄)− ε̄

0 = α(ȳ + ε̄)− ε̄− (1− α)

∫ εH

ε̄

(ε− ε̄)π(ε)dε

α

1− α
ȳ =

∫ ε̄

εL
(ε̄− ε)π(ε)dε

The left hand side ranges from 0 to εH when ε̄ goes from εL to εH . Note we
have restricted α

1−α ȳ < εH . By continuity, there is an ε̄ that equates left hand
side with right hand side.

Exercise 13.5

The incentive compatibility constraint is

u(ȳ + ε)−m ≤ u(ȳ + ε− d(ε))

The maximization problem is to

max
c(ε),d(ε)

∫ εH

εL

u(c)π(ε)dε

subject to
c(ε) = ȳ + ε− d(ε)∫

d(ε)π(ε)dε = 0

u(ȳ + ε)−m ≤ u(ȳ + ε− d(ε))

The Lagrangian associated with the above problem can be written as:

L =

∫ εH

εL
{u(ȳ + ε− d(ε)) + λd(ε) + γ(ε)[u(ȳ + ε− d(ε)) +m− u(ȳ + ε)]}π(ε)dε

Still, it is easy to check when incentive compatibility constraint does not
bind, we would have γ(ε) vanishes in the first order condition and that d(ε)
takes the form of d(ε) = d̄+ ε and consumption is a constant c(ε) = ȳ − d̄.

We go on to prove that when IC constraint is not binding for some ε′, then
for all ε′′ < ε′, the IC constraint does not bind, either. This is also proved by
contradiction. Suppose we have ε′ does not bind, but ε′′ ∈ [εL, ε

′) and the IC
constraint is binding

u(ȳ + ε′)−m < u(ȳ + ε′ − d(ε′))

u(ȳ + ε′′)−m = u(ȳ + ε′′ − d(ε′′))

u(ȳ + ε′′)− u(ȳ + ε′′ − d(ε′′)) > u(ȳ + ε′)− u(ȳ + ε′ − d(ε′))
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We then have that

u(ȳ + ε′′ − d(ε′′))− u(ȳ + ε′ − d(ε′)) < u(ȳ + ε′′)− u(ȳ + ε′) < 0

That is,
u(c(ε′′)) < u(c(ε′)),

and then
u′(c(ε′′)) > u′(c(ε′)),

thus
γ(ε′′) < γ(ε′) = 0

which is a contradiction since γ(ε′′) ≥ 0.
Therefore, the optimal contract takes the form of a cutoff strategy

d(ε) =

{
d̄+ ε, ε < ε̄

ȳ + ε− u−1(u(ȳ + ε)−m), ε > ε̄

We will also show that

1. d̄ > 0

2. d(ε̄) = d̄+ ε̄ = ȳ + ε̄− u−1(u(ȳ + ε̄)−m)

If the contract is indeed continuous as stated in the second condition, then

0 =

∫ ε̄

εL
(d̄+ ε)π(ε)dε+

∫ εH

ε̄

(ȳ + ε− u−1(u(ȳ + ε)−m))π(ε)dε

=

∫ ε̄

εL
(d̄+ ε)π(ε)dε+

∫ εH

ε̄

(d̄+ ε+ u−1(u(ȳ + ε̄)−m)− u−1(u(ȳ + ε)−m))π(ε)d(ε)

= d̄+

∫ εH

ε̄

(u−1(u(ȳ + ε̄)−m)− u−1(u(ȳ + ε)−m))π(ε)dε

This proves that d̄ > 0 since u(·) is an increasing function. Then we proceed to
show continuity.

The optimal contract sets ε̄ and d̄ to maximize∫ ε̄

εL
u(ȳ − d̄)π(ε)dε+

∫ εH

ε̄

(u(ȳ + ε)−m)π(ε)dε

subject to

0 =

∫ ε̄

εL
(d̄+ ε)π(ε)dε+

∫ εH

ε̄

(ȳ + ε− u−1(u(ȳ + ε)−m))π(ε)dε
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Differentiating the objective function and the constraint shows

−u′(ȳ − d̄)F (ε̄)dd̄+ u(ȳ − d̄)π(ε̄)dε̄− (u(ȳ + ε̄)−m)π(ε̄)dε̄ = 0

(d̄+ ε̄)π(ε̄)dε̄− (ȳ + ε̄− u−1(u(ȳ + ε̄)−m))π(ε̄)dε̄+ F (ε̄)dd̄ = 0

Combining the above two equations, we would have

u′(ȳ − d̄)[(d̄+ ε̄)− (ȳ + ε̄− u−1(u(ȳ + ε̄)−m))] + u(ȳ − d̄)− (u(ȳ + ε̄)−m) = 0

Apparently, d̄+ ε̄ = ȳ + ε̄− u−1(u(ȳ + ε̄)−m) satisfies the above equation.

Finally, we go to check the IC constraint:

0 =

∫ ε̄

εL
(d̄+ ε)π(ε)dε+

∫ εH

ε̄

(ȳ + ε− u−1(u(ȳ + ε)−m))π(ε)dε

=

∫ ε̄

εL
(d̄+ ε)π(ε)dε+

∫ εH

ε̄

(d̄+ ε+ u−1(u(ȳ + ε̄)−m)− u−1(u(ȳ + ε)−m))π(ε)d(ε)

= d̄+

∫ εH

ε̄

(u−1(u(ȳ + ε̄)−m)− u−1(u(ȳ + ε)−m))π(ε)dε

= ȳ − u−1(u(ȳ + ε̄)−m) +

∫ εH

ε̄

(u−1(u(ȳ + ε̄)−m)− u−1(u(ȳ + ε)−m))π(ε)dε

Or equivalently,

ȳ = u−1(u(ȳ + ε̄)−m)−
∫ εH

ε̄

(u−1(u(ȳ + ε̄)−m)− u−1(u(ȳ + ε)−m))π(ε)dε

=

∫ ε̄

εL
(u−1(u(ȳ + ε̄)−m)π(ε)dε+

∫ εH

ε̄

u−1(u(ȳ + ε)−m))π(ε)dε

The right hand side is increasing in ε̄. When ε̄ = εL the right hand side is∫ εH
εL

u−1(u(ȳ + ε) −m))π(ε)dε <
∫ εH
εL

u−1(u(ȳ + ε − d(ε))π(ε)dε =
∫ εH
εL

(ȳ + ε −
d(ε)π(ε)dε = ȳ. When ε̄ = εH the right hand side is

∫ εH
εL

u−1(u(ȳ + εH) −
m))π(ε)dε =

∫ εH
εL

u−1(u(ȳ+εH−d(εH))π(ε)dε ≥
∫ εH
εL

u−1(u(ȳ+ε−d(ε))π(ε)dε =
ȳ. We have proved that the RHS monotonically increases from some value below
ȳ to some value above ȳ. By continuity, there is a level of ε̄ that will equate
both sides.
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