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Optimal Coding for the Binary Deletion Channel
With Small Deletion Probability

Yashodhan Kanoria, Student Member, IEEE, and Andrea Montanari, Senior Member, IEEE

Abstract—The binary deletion channel is the simplest point-to-
point communication channel that models lack of synchronization.
Input bits are deleted independently with probability , and when
they are not deleted, they are not affected by the channel. Despite
significant effort, little is known about the capacity of this channel
and even less about optimal coding schemes. In this paper, we de-
velop a new systematic approach to this problem, by demonstrating
that capacity can be computed in a series expansion for small dele-
tion probability. We compute three leading terms of this expan-
sion, and find an input distribution that achieves capacity up to this
order. This constitutes the first optimal random coding result for
the deletion channel. The key idea employed is the following: We
understand perfectly the deletion channel with deletion probability

. It has capacity 1 and the optimal input distribution is iid
Bernoulli . It is natural to expect that the channel with small
deletion probabilities has a capacity that varies smoothly with ,
and that the optimal input distribution is obtained by smoothly
perturbing the iid Bernoulli process. Our results show that
this is indeed the case.

Index Terms—Capacity achieving code, channel capacity, dele-
tion channel, series expansion.

I. INTRODUCTION

T HE binary deletion channel accepts bits as inputs, and
deletes each transmitted bit independently with proba-

bility . Computing or providing systematic approximations to
its capacity is one of the outstanding problems in information
theory [1]. An important motivation comes from the need to
understand synchronization errors and optimal ways to cope
with them.
In this paper, we suggest a new approach. We demonstrate

that capacity can be computed in a series expansion for small
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deletion probability, by computing the first two orders of such
an expansion. Our main result is the following.
Theorem I.1: Let be the capacity of the deletion channel

with deletion probability . Then, for small and any ,

(1)

where

Here, is the binary entropy function, i.e.,
.

Further, the binary stationary source defined by the prop-
erty that the times at which it switches from 0 to 1 or vice
versa form a renewal process with holding time distribution

, achieves rate within
of capacity.
Given a binary sequence, we will call “runs" its maximal

blocks of contiguous 0s or 1s. We shall refer to binary sources
such that the switch times form a renewal process as sources
(or processes) with iid runs. The “rate" of a given binary source
is the maximum rate at which information can be transmitted
through the deletion channel using input sequences distributed
as the source. A formal definition is provided later (see Defini-
tion II.3). Logarithms denoted by here (and in the rest of the
paper) are understood to be in base 2.
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A few remarks on Theorem I.1 are in order.
Bounds versus asymptotic expansions: The proof of Theorem

I.1 consists in establishing upper and lower bounds on capacity
that match up to quadratic order in . However, we explicitly
evaluating the constants in the error terms, and hence, (1) does
not provide either an upper or a lower bound at . It would
be very interesting to obtain explicit expressions for these con-
stants. Although technically daunting, we do not see any con-
ceptual obstacle to such a calculation.
While (1) is only asymptotically exact as , it pro-

vide useful guidance in designing concrete coding schemes. If
a coding scheme aims at achieving capacity for small , its rate
should match (1) up to higher order terms. This test can be very
stringent. In particular, our proof of Theorem I.1 implies the fol-
lowing.
Remark I.2: There exists such that for any

no coding scheme such that the empirical distribution of code-
words is given by a Markov process [2] or a hidden Markov
process with state space of bounded cardinality can achieve ca-
pacity.
Indeed Markov processes or hidden Markov processes have

run-length distribution that is exponential or sum of exponen-
tials, thus not matching the distribution . Our proof, in fact,
establishes that the rate achieved by Markov processes is
below capacity (Theorem VI.1 states this for first-order Markov
processes). Notice that the best previous bounds could not rule
out the hypothesis the Markov sources are capacity achieving.
Optimal coding schemes: Theorem I.1 shows that the sta-

tionary process consisting of iid runs with the specified run-
length distribution, achieves a rate to within of ca-
pacity. In particular, a random codebook that achieves this rate
is given as follows. For blocklength , and rate , generate
codewords independently. Each codeword , has iid
run lengths , with . (We refer to Section IV
for further details.) Decoding can be performed by maximum
likelihood.
Notice that this is not a practical coding scheme in terms en-

coding and decoding complexity. However, as often in informa-
tion theory, it can provide useful intuition toward the construc-
tion of a practical scheme.
Why ?: The regime appears to be particularly

appealing for the methods developed here. On one hand, the
case is trivial, and hence, one can hope to accurately ap-
proximate the capacity in a neighborhood of this limit case. On
the other, synchronization errors are infrequent in many applica-
tions, in natural correspondence with the regime under consid-
eration. For instance, the deletion channel in the regime
has bearing on the problem of file synchronization. This con-
nection has been explored in recent work [3], building on the
conference version of this paper [14].
Higher order terms: Finally, asymptotic expansions as the

one studied here allow to isolate different sources of uncertainty,
and order them by their impact for small . As clarified by the
proof of Theorem I.1, the term in (1) is due to the
occurrence of a single deletion in a run or a small sequence of
runs, and hence, to the uncertainty about its location. An optimal
scheme has to cope with this uncertainty optimally.

Computing further terms in the capacity expansion (1) reveals
additional structure. For instance, at the moment we cannot dis-
prove the hypothesis that a source with iid runs achieves ca-
pacity over an interval . However, we suspect that com-
puting the next, and , terms in the expansion will
solve in negative sense this question.
A related open question is whether the small series is ab-

solutely convergent up to some radius . If this was the
case, the small expansion would provide a systematic way to
address the capacity problem for all . See Section VI
for further comments.
The underlying philosophy of this study is that whenever ca-

pacity of a channel is known for a specific value of the channel
parameter, and the corresponding optimal input distribution is
unique and well characterized, it should be possible to compute
an asymptotic expansion around that value. In the present con-
text, the special channel is the perfect channel, i.e., the deletion
channel with deletion probability . The corresponding
input distribution is the iid Bernoulli process. Similar ap-
proaches have been successful in other contexts, e.g., hidden
Markov chains and related channels [4].

A. Related Work

Dobrushin [5] proved a coding theorem for the deletion
channel, and other channels with synchronization errors. He
showed that the maximum rate of reliable communication is
given by the maximal mutual information per bit, and proved
that this can be achieved through a random coding scheme.
This characterization has so far found limited use in proving
concrete estimates. An important exception is provided by the
work of Kirsch and Drinea [6] who use the Dobrushin coding
theorem to prove lower bounds on the capacity of channels
with deletions and duplications. We will also use the Dobrushin
theorem in a crucial way, although most of our effort will be
devoted to proving upper bounds on the capacity.
Several capacity bounds have been developed, starting with

achievability results by Gallager [7], which have been signif-
icantly improved in recent years [2], [8]–[10]. Diggavi and
Grossglauser [8], [9] suggested codebooks with memory for the
deletion channel, in particular Markovian codebooks. Drinea,
Kirsch, and Mitzenmacher [2], [6] improved lower bounds
using better decoders, and also considered codebooks with iid
run lengths. However, numerical results were again restricted
to the special case of first-order Markov inputs, with the best
first-order Markov process being estimated numerically. An
upper bound on capacity is proved in [13] by optimizing
communication rate over an augmented channel over input
distributions with iid runs. The augmented channel essentially
sends a synchronization symbol at the end of each run in the
input. The optimal input for the augmented channel is quite
different from the optimal input for the deletion channel, since
sending short runs does not cause synchronization difficulties
in the augmented channel.
A trivial upper bound to the capacity of the deletion channel

is , the capacity of the corresponding erasure channel. It has
been proved that, in fact, as [10]. The
papers [11]–[13] improve the upper bound in this limit obtaining
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. However, determining the
asymptotic behavior in this limit [i.e., finding a constant such
that ] is an open problem. The au-
thors in [11] and [13] obtained upper bounds for general deletion
probabilities, using various augmented channels. When applied
to the small regime, none of the known upper bounds actually
captures the correct behavior as stated in (1). A simple calcula-
tion shows that the first upper bound in [13] has asymptotics of

. Another work [11] shows that
as . The recent survey by Mitzenmacher [1] provides a
useful entry point to this literature.
Against this backdrop, our study proves that random code-

books with iid runs are optimal for small deletion probability
up to corrections of order . We thus provide the first
rigorous justification for the use of iid run lengths. We further
determine analytically the optimal distribution of the runs for
small . As a byproduct of our analysis, we are able to char-
acterize the performance of first-order Markov inputs analyti-
cally, and find that such inputs are suboptimal by terms.
In asymptotic sense (for small ),Markovian inputs are no better
than an iid Bernoulli input (cf., Section VI).
An earlier version of this paper was presented at the IEEE In-

ternational Symposium on Information Theory 2010 [14]. That
paper determined the and terms in the expan-
sion, namely , and proved
that this rate is achievable by iid Bernoulli input. Concur-
rent work by Kalai, Mitzenmacher, and Sudan [15], presented at
the same conference, established that
using a very different counting argument. As should be clear
from the proof in this paper, proving Theorem I.1 is signifi-
cantly more challenging than proving the results in [14] and[15].
We undertook this challenge because computing the term
leads to new insights in the capacity achieving codebook.
1) On one hand, [14] and [15] provided limited coding
insights, for two reasons. First of all, it is unsurprising
(and follows from earlier bounds) that, as ,
Bernoulli achieves capacity, a continuity argument
being sufficient. Second, Markovian codebooks (hence,
a fortiori Bernoulli codebooks) were already well
studied before these works.

2) On the other, this paper presents a codebook (iid runs with
explicitly given run-length distribution ) that was not
known before, and achieves capacity to the desired order.

B. Numerical Illustration of Results

We can numerically evaluate the expression in (1) (dropping
the error term) to obtain estimates of capacity for small deletion
probabilities.

The values of are presented in Table I and Fig. 1. We
compare with the best known numerical lower bounds [2] and
upper bounds [11], [13].
We stress here that is neither an upper nor a lower bound

on capacity. It is an estimate based on taking the leading terms
of the asymptotic expansion of capacity for small , and is ex-
pected to be accurate for small values of . Indeed, we see that

TABLE I
TABLE SHOWING BEST KNOWN NUMERICAL BOUNDS ON CAPACITY
(FROM [2], [11], and [13]) COMPARED WITH OUR ESTIMATE

BASED ON THE SMALL EXPANSION

Fig. 1. Plot showing best known numerical bounds on capacity (from [2], [11],
and [13]) compared with our estimate based on the small expansion.

for larger than 0.4, our estimate exceeds the upper bound.
This simply indicates that we should not use as an estimate
for such large .

C. Notation

We borrow , , and notations from the computer
science literature. We define these as follows to fit our needs.
Let and . We say:
1) , if there is a constant such that

for all .
2) , if there is a constant such that

for all .
3) , if there are constants such that

for all .
Throughout this paper, we adhere to the convention that the
aforementioned constants should not depend on the pro-
cesses etc., under consideration, if there are such pro-
cesses.

D. Outline of the Paper

Section II contains the basic definitions and results neces-
sary for our approach to estimating the capacity of the deletion
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channel. We show that it is sufficient to consider stationary er-
godic input sources, and define their corresponding rate (mutual
information per bit). Capacity is obtained by maximizing this
quantity over stationary processes. In Section III, we present an
informal argument that contains the basic intuition leading to
our main result (see Theorem I.1), and allows us to correctly
guess the optimal input distribution. Section IV states a small
number of core lemmas, and shows that they imply Theorem I.1.
Finally, Section V states several technical results (proved in Ap-
pendix) and uses them to prove the core lemmas. We conclude
with a short discussion, including open problems, in Section VI.

II. PRELIMINARIES

For the reader’s convenience, we restate here some known
results that we will use extensively, along with some definitions
and auxiliary lemmas.
Consider a sequence of channels , where al-

lows exactly inputs bits, and deletes each bit independently
with probability . The output of for input is a binary
vector denoted by . The length of is a binomial
random variable. We want to find maximum rate at which we
can send information over this sequence of channels with van-
ishingly small error probability.
The following characterization follows from [5].
Theorem II.1: Let

(2)

Then, the following limit exists

(3)

and is equal to the capacity of the deletion channel.
Note that in (2), we know that is

achieved since is a continuous function on a
compact (the set of possible input distributions ).
A further useful remark [5, Th. 5] is that, in computing ca-

pacity, we can assume to be consecutive coor-
dinates of a stationary ergodic process. We denote by the class
of stationary and ergodic processes that take binary values. This
result of Dobrushin is restated formally below.
Lemma II.2: Let be a stationary and ergodic

process, with taking values in . Then, the limit
exists and

We use the following natural definition of the rate achieved
by a stationary ergodic process.
Definition II.3: For stationary and ergodic , we call

the rate achieved by .
Proofs of Theorem II.1 and Lemma II.2 are provided in

Appendix for the convenience of the reader.
Given a stationary process , it is convenient to consider it

from the point of view of a “uniformly random" block/run. In-
tuitively, this corresponds to choosing a large integer and se-
lecting as reference point the beginning of a uniformly random
block in . Notice that this approach naturally dis-
counts longer blocks for finite . While such a procedure can

be made rigorous by taking the limit , it is more conve-
nient to make use of the notion of Palm measure from the theory
of point processes [17], [18], which is, in this case, particularly
easy to define. To a binary source , we can associate in a bi-
jective way a subset of times , by letting if and only
if is the first bit of a run. The Palm measure is then the
distribution of conditional on the event . We refer to
Appendix for further details.
We denote by the length of the block starting at 1 under the

Palmmeasure, and denote by its distribution. As an example,
if is the iid Bernoulli process, we have where

. We will also call the block-perspective run-
length distribution or simply the run-length distribution, and let

be its average. Let be the length of the block containing bit
in the stationary process . A standard calculation [17], [18]

yields . Since is a well defined
and almost surely finite (by ergodicity), we necessarily have

.
In our main result, Theorem I.1, a special role is played by

processes such that the associated switch times form a sta-
tionary renewal process. We will refer to such an as a process
with iid runs.

III. INTUITION BEHIND THE MAIN THEOREM

In this section, we provide a heuristic/nonrigorous explana-
tion for our main result. The aim is to build intuition and mo-
tivate our approach, without getting bogged down with the nu-
merous technical difficulties that arise. In fact, we focus here
on heuristically deriving the optimal input process , and do
not actually obtain the quadratic term of the capacity expansion.
We find by computing various quantities to leading order and
using the following observation (cf., Remark IV.2).

A. Key Observation

The process that achieves capacity for small should be
“close" to the Bernoulli process, since must be
close to 1.
We have

(4)

Let be a binary vector containing a one at position if and
only if is deleted from the input vector. We can write

But is a function of , leading to
, where we used the fact that

is iid Bernoulli( ), independent of . It follows that

(5)

The term represents ambiguity in the location
of deletions, given the input and output strings. Now, since is
small, we expect that most deletions occur in “isolation," i.e.,
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far away from other deletions. Make the (incorrect) assump-
tion that all deletions occur such that no three consecutive runs
have more than one deletion in total. In this case, we can un-
ambiguously associate runs in with runs in . Ambiguity in
the location of a deletion occurs if and only if a deletion oc-
curs in a run of length . In this case, each of locations is
equally likely for the deletion, leading to a contribution of
to . Now, a run of length should suffer a dele-
tion with . Thus, we expect

We know that is close to 1, implying is close to 2
and is close to . This leads to

(6)

Consider . Now, if the input is drawn from a sta-
tionary process , we expect the output to also be a
segment of some stationary process . (It turns out that this
is the case.) Moreover, we expect that the channel output has

bits, leading to . De-
note the run-length distribution in by . Define

. Let denote the length of a random run drawn
according to . It is not hard to see that

with equality if and only if consists of iid runs, which occurs
if and only if consists of iid runs. Define . An
explicit calculation yields . We
know that is close to 1, implying is close to 2 and

is small. Thus,

Notice that an iid Bernoulli input results in an iid
Bernoulli output from the deletion channel. The fol-
lowing is made precise in Lemma V.9: Let be the “distance"
between and . Then, a short calculation tells us that the
distance between and should be . In other
words and are very nearly equal to each other.
So we obtain, to leading order,

(7)

with (approximate) equality if and only if consists of iid runs.

Putting (4)–(7) together, we have

Since this (approximate) upper bound on depends on
input only through , we choose consisting of iid runs so
that (approximate) equality holds.
We expect to be close to . A Taylor expansion gives

(8)

Thus, we want to maximize

subject to , in order to achieve the largest pos-
sible . A simple calculation tells us that the maximizing
distribution is .

IV. PROOF OF THE MAIN THEOREM: OUTLINE

In this section, we provide the proof of Theorem I.1 after
stating the key lemmas involved. We defer the proof of the
lemmas to the next section. Sections V-A–E develop the tech-
nical machinery we use, and the proofs of the lemmas are in
Section V-F.
Given a (possibly infinite) binary sequence, a run of 0s (of

1s) is a maximal subsequence of consecutive 0s (1s), i.e., a sub-
sequence of 0s bordered by 1s (respectively, of 1s bordered by
0s). The first step consists of proving achievability by estimating

for a process having iid runs with appropriately chosen
distribution.
Lemma IV.1: Let be the process consisting of iid runs with

distribution . Then, for any
, we have

Lemma IV.1 is proved in Section V-F.
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TABLE II
EXAMPLE SHOWING HOW IS DIVIDED INTO SUPER RUNS

Lemma II.2 allows us to restrict our attention to stationary
ergodic processes in proving the converse. For a process , we
denote by its entropy rate. Define

(9)

A simple argument shows that this limit exists and is bounded
above by 1 for any stationary process and any , with

if and only if is the iid Bernoulli process.
In light of Lemma IV.1, we can restrict consideration to pro-

cesses satisfying whence
:

Remark IV.2: There exists such that for all
, if , we have and hence

also .
We define a “super run" next.
Definition IV.3: A super run consists of a maximal con-

tiguous sequence of runs such that all runs in the sequence after
the first one (on the left) have length one. In other words, each
super run is in one-to-one correspondence with a run of length
2 or larger. The super run includes that run plus (eventually)
one or more contiguous runs of length one.
We divide a realization of into super runs

. Here, is the super
run including the bit at position 1.
See Table II for an example showing division into super runs.

Denote by the set of all stationary ergodic processes and
by the set of stationary ergodic processes such that, with
probability one, no super run has length larger than .
Our next lemma tightens the constraint given by Remark IV.2

further for processes in .
Lemma IV.4: Consider any and constant . There

exists such that the following happens for any
. For any , if

then

We show an upper bound for the restricted class of processes
.
Lemma IV.5: For any , there exists and

such that the following happens. If , for any
,

Finally, we show a suitable reduction from the class to the
class .
Lemma IV.6: For any , there exists

such that the following happens for all , and all .

For any such that and for any
, there exists such that

(10)

(11)

Lemmas IV.4, IV.5, and IV.6 are proved in Section V-F.
The proof of Theorem I.1 follows from these lemmas with

Lemma IV.6 being used twice.
Proof of Theorem I.1: For the converse, we start with a

process such that . By Remark IV.2,
for any and . Use Lemma

IV.6, with , and . It follows that
for ,

We now use Lemma IV.4 on which yields
, and hence, by (11),

for small . Now, we can use Lemma IV.6 againwith ,
, . We obtain

Finally, using Lemma IV.5, we get the required upper bound on
. This completes the proof of the converse.
Constructing a codebook: As part of the proof of achiev-

ability in the channel coding theorem [5, Th. 1], Dobrushin in
fact establishes (also using previous work [16]) that given a se-
quence of input distributions such that

the following is true. Given any and for all
large enough, there exists a codebook with

, achieving error probability smaller than for
every codeword under maximum likelihood decoding. More-
over, this codebook is constructed (see [16]) simply by letting

, , where
are independent. Now, we have constructed

with the property

Moreover, sampling is easy, and can be achieved as
follows. First define

(12)

for a normalization constant. Then, sample and

set the first bits of all to 0, or all to 1 with equal proba-
bility. Assume, to be definite, that these first bits were set to
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0. Successively sample , , and set ,
, and so on until bits have been fixed.

The random codebook , thus, constructed achieves capacity
up to under maximum likelihood decoding.

V. PROOFS OF THE LEMMAS

In Section V-A, we show that, for any stationary ergodic
that achieves a rate close to capacity, the run-length distri-

bution must be close to the distributions obtained for the iid
Bernoulli process. In Section V-B, we suitably rewrite
the rate achieved by stationary ergodic process as the
sum of three terms. In Section V-C, we construct a modified
deletion process that allows accurate estimation of
in the small limit. Section V-D proves a key bound on
that leads directly to Lemma IV.4. Finally, in Section V-F, we
present proofs of the Lemmas quoted in Section IV using the
tools developed.
We will often write for the random vector

where the ’s are distributed according
to the process .

A. Characterization in Terms of Runs

Let the r.v. be the number of runs in . Let
be the run lengths ( being the length

of the intersection of the run containing with ).
It is clear that
(where one bit is needed to remove the ambiguity). By
ergodicity, almost surely as .
Also implies .
Further,

. If is the
entropy rate of the process , by taking the limit, it is
easy to deduce that

(13)

with equality if and only if is a process with iid runs with
common distribution .
We know that given , the probability distribution

with largest possible entropy is geometric with mean ,
i.e., for all , leading to

(14)

Here, we introduced the notation
for the binary entropy function.

Using this, we are able to obtain sharp bounds on and
.

Lemma V.1: There exists such that the following
occurs. For any and , if is such that

, we have

(15)

Proof: By (13) and (14), we have . By
Pinsker’s inequality , and there-
fore,

(16)

We deduce that for sufficiently small , we have
for all . Here, we need to obtain

that does not depend on , with being an arbitrarily chosen
real number in the interval . It follows that for

. Plugging back in (16), we have

(17)

for all .
Lemma V.2: There exists and such that the

following occurs for any and . For any
such that , we have

(18)

Proof: Let and recall that
. An explicit calculation yields

(19)

Now, by Pinsker’s inequality,

(20)

Combining Lemma V.1, (13), (19), and (20), we get the desired
result.
We now state a tighter bound on probabilities of large run

lengths. We will find this useful, for instance, to control the
number of bit flips in going from general to having
bounded run lengths.
Lemma V.3: There exists such that the following

occurs: Consider any , and define .
For all , if is such that , we have

(21)

Proof of Lemma V.3: Combining (13), Lemma V.1, and
(19), it follows that for small enough , we must have

(22)

to achieve . Now define .
Take . We have
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for sufficiently small , since . Thus,

where .
This yields,

(23)
It remains to show that the sum of terms from outside is not

too small. It is easy to see that

(24)
With a fixed sum constraint on , the smallest value
of is achieved when

(25)

Note that . It follows from (25) that

(26)

Further, from (24), for small , we have

(27)

since we know that , and hence, .
Combining (26) and (27), we have

(28)

The lemma follows by combining (23), (28), and
.
We use to denote the vector of lengths

of a randomly selected block of consecutive runs (a
“ -block"). Formally, is the vector of lengths
of the first runs starting from bit , under the Palm measure
introduced in Section II.
Corollary V.4: There exists such that the following

occurs: Consider any positive integer and any , and
define . For all , if is such that

, we have

(29)

Proof of Corollary V.4: Clearly occurs
only if at least one of the ’s is at least . Also, the distribution

has a marginal for each individual . We have

The result now follows from the first inequality in Lemma V.3.

Clearly, . We have

A stronger form of Lemma V.2 follows.

Lemma V.5: Let . For the
same and as in Lemma V.2, the following occurs.
Consider any positive integer and any . For all

, if is such that , we have

Proof of Lemma V.5: Repeat proof of Lemma V.2.
We now relate the run-length distribution in and in

(as ). For this, we first need a character-
ization of in terms of a stationary ergodic process. Let

be an iid Bernoulli( )
process, independent of . Construct as follows. Look at

. Delete bits corresponding to for
, the bits remaining are in order.

Similarly, in delete bits corresponding
to for , the bits remaining are

in order.
Proposition V.6: The process is stationary and ergodic for

any stationary ergodic .
Proof of Proposition V.6: A time shift by a constant in

corresponds to a time shift by a random amount in . The
random shift in depends only on the and is, hence, indepen-
dent of . Also, is independent identically distributed. Thus,
stationarity of implies stationarity of .
Notice on the other hand that are not jointly stationary.
The channel output is then where

. It is easy to check that

[cf., (9)]. We will, henceforth, use instead of the more
cumbersome notation .
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Let denote the block perspective run-length distribution
for . Denote by the block perspective distribution for
-blocks in . Lemmas V.1–V.5 and Corollary V.4 hold for any
stationary ergodic process, hence, they hold true if we replace

with .
In proving the upper bound, it turns out that we are able to

establish a bound of for and small ,
but no corresponding bound for . Next, we establish that
if is close to 1, this leads to tight control over the tail for

. This is a corollary of Lemma V.3.
Lemma V.7: There exists such that the following

occurs: Consider any , and define .
For all , if , we have

Note that refers to the block length distribution of , not .
Proof of Lemma V.7: Consider a run of length in

. With probability at least , the runs bordering do
not disappear due to deletions. Independently, with probability

at least half the bits of survive
deletion. Thus, for small , with probability at least , leads
to a run of length at least in . Moreover, runs can only
disappear in going from to . It follows that

From Lemma V.3 applied to , we know that

The result follows.
Corollary V.8: There exists such that the following

occurs: Consider any positive integer and , and define
. For all , if , we have

Proof of Corollary V.8: Analogous to proof of Corollary
V.4.
Consider being iid Bernoulli . Clearly, this corre-

sponds to also iid Bernoulli . Hence, each has the same
run-length distribution . This happens
irrespective of the deletion probability . Now suppose is
not iid Bernoulli but approximately so, in the sense that

close to 1. The next lemma establishes, that in this case
also, the run-length distribution of is very close to that of ,
for small run lengths and small .
Lemma V.9: There exists a function
and constants , such that the following

happens, for any , and .
i) For all , for all such that , and
all , we have

ii) For all and all such that , we
have

(30)

Proof of Lemma V.9: We adopt two conventions. First,
when we use the or the notation, the constant in-
volved does not depend on the particular under consid-
eration. Second, we use “typical" in this proof to refer to events
having a probability , for some . Thus, an event
with probability is not typical, but an event with probability

is typical.
We ignore boundary effects due to runs at the beginning and

end.
First, we estimate the factor due to disappearance of runs in

moving from in . Define

We have almost sure convergence of this ratio to a constant
value due to ergodicity.
Runs disappear typically due to runs of length 1 being deleted,

and the runs at each end being fused with each other (i.e., neither
of them is deleted). Such an event reduces the number of runs
by 2. Nontypical run deletions lead to a correction factor that is

. Hence, the expected number of runs in per run in
is . It follows from a limiting argument
that

(31)

In this proof, we make use of the following implication of
Lemma V.5.

(32)

We immediately have , and hence,
.

Consider . Blocks of length 1 in typically arise due
to blocks in of length 1 or 2. In case of a block of length 1, we
require that it is not deleted, and also that bordering blocks are
not deleted. Consider a randomly selected run in (Formally,
we pick a run uniformly at random in , and then, take the
limit ). The run has length with probability .
Define
1) no bordering block of length 1. We have

;
2) one bordering block of length 1. We have

;
3) two bordering blocks of length 1.We have

.
Probabilities were estimated using ,

and
, and their immediate consequences

, and
. We made use of (32).
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Probability of arising from block of length 1 is

Probability of arising from a block of length 2 is
, using (32). It follows that

as required.
Now consider for . Typical modes

of creation of such a run in are:
1) run of length in that goes through unchanged;
2) two runs in being fused due to the length 1 run between
them being deleted. Fused runs have no deletions. They
have bits in total;

3) run of length in that suffers exactly one deletion.
Bordering runs do not disappear.

For mode 1, we define events as aforementioned.
Probability estimates are:
1) ,
2) ,
3) ,
using (32) as we did for . Thus, probability of creation
from randomly selected run via mode 1 is

for any , since .
The probability of a random set of three consecutive runs

being such that the middle run has length 1 and bordering runs
have total length is using (32) and

for small enough . Probability of the
middle run being deleted and the other two runs being left in-
tact, along with bordering runs of this set of three runs not being
deleted, is . Thus, probability of creation via mode 2
is .
It is easy to check that the probability of mode 3 working on

a randomly selected run is .
Combining, we have

This completes the proof of (i).

For (ii), simply note that

It follows from (31) that

(33)

for some . Equation (30) follows using Lemma V.2 to
bound .
Let us emphasize that and do not depend at all on
, whereas does not depend on in the aforementioned

lemma. Analogous comments apply to the remaining lemmas
in this section.
As before, we are able to generalize this result to blocks of

consecutive runs.
Lemma V.10: There exist a function

and a constant such that the following happens, for any
, and .

For all , for all integers and such
that , and all such that ,
we have

Proof of Lemma V.10: Similar to proof of Lemma V.9(i).
We use (32) again, and make use of
to deduce that for small enough .
In proving the lower bound, we have ,

but no corresponding bound for . The next lemma allows
us to get tight control over the tail of .
Lemma V.11: For any , there exists
and such that the following occurs: Consider any

, and define . For all ,
if , we have

Proof of Lemma V.11: From Lemma V.9(ii), we know that

(34)

Recall . Using Lemma V.9(i), we deduce

(35)

From Lemma V.3, we know that

(36)

Note that and do not depend on .
Combining (34)–(36), and using , we arrive at the de-

sired result.
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Define . We show, using
Lemma V.10, that if is close to 1, then one can bound
the distance between and .
Lemma V.12: There exists a function
and constants , such that the following

happens, for any , and .
i) For all , all sources such that

and , and all integers and
such that , we have

(37)

(38)

ii) For all , all sources such that
and , we have

(39)

(40)

Proof of Lemma V.12: By Lemma V.5 applied to , we
know that

Using Lemma V.10, we have for , for any integer
and such that .

Thus, we obtain (37), using for small .
Also, note that we can deduce

(41)

for small enough . We repeat the proof of Lemma V.9(i) (or
Lemma V.10), using (37) instead of (32) to obtain (38). This
completes the proof of (i).
For (ii), we proceed as follows to prove (39) and (40). In the

proof of Lemma V.9(ii), we deduced that
(this is (33) with the constant renamed).

Using (41) to bound , we obtain (40). From Lemma V.1
applied to , we know that . Equation
(39) follows.
The next lemma assures us that if , then very few

runs in are much longer than . In fact, we show that
decays exponentially in .

Lemma V.13: There exists such that, for all
, the following occurs: Consider any such that

. Then, for all such that the product
is an integer, we have

Proof of Lemma V.13: Associate each run in with the run
in from which its first bit came. Consider any run in . If
it gives rise to a run in of length , then we know that the
runs were all deleted (since

). This occurs with probability at most .
Further, for each run in , there are . This
implies

From Lemmas V.1 and V.9(ii), we know that
and for small enough . Plugging into the
aforementioned equation yields the desired result.
Next, we prove some analogous results for super runs, cf.,

Definition IV.3, that we also need.
We denote by the length of the first run in a random

super run and by the total length of the remaining runs of
the same super run. More precisely, we repeat here the construc-
tion of Section II, and define a new Palm measure, , which
is the measure of conditional on being the first bit of a
super run. Then, the length of the first run of this super
run, and is the residual length of the same super run, always
under the Palm measure . Here, “rep" indicates “repeated"
with being the number of repeated bits and “alt" indicates
“alternating" with being the number of alternating bits. We
denote the type of a random super run by and
the length by . We need versions of Lemmas
V.3 and V.7 for super runs.
Define . It is easy to see that

(42)

We denote by the distribution of . Define

, this being the distribution for the iid Bernoulli
process . We denote by the distribution of in . Clearly,

Lemma V.14: There exists such that the following
occurs. For any and , if is such that

, we have

Proof of Lemma V.14: We make use of (42). Maximizing
for fixed , it is not hard to deduce that

(43)

with equality if and only if consists of iid super runs with
where . Now,

using (42), , and (43), we know that we must
have . Now, we have . Further, it is
easy to check that achieves its unique global and local max-
imum at 4, increasing monotonically before that and decreasing
monotonically after that. It follows that for any fixed , for
small enough , we must have . It then follows from
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Taylor’s theorem that , so that we must
have for , where .
Lemma V.15: There exists such that the following

occurs: Consider any , and define .
For all , if is such that , we have

Proof of Lemma V.15: An explicit calculation yields

The proof now mirrors the proof of Lemma V.3, making use of
Lemma V.14 in place of Lemma V.1.
Let the distribution of super-run lengths in , and

denote the mean length of a super run in .
Lemma V.16: There exists such that the following

occurs: Consider any , and define .
For all , if and , we
have

Note that refers to the super-run-length distribution of , not
.
Proof of Lemma V.16: It is easy to see that

is the asymptotic fraction of bits in
that are part of super runs of length at least . Similarly,

is the asymptotic fraction of bits in
that are part of super runs of length at least .
We argue that . Consider any bit at position

in that is part of a super run with length . Consider a
contiguous substring of that includes of length exactly .
Clearly such a substring exists. The probability that it does not
undergo any deletion is at least for small enough
. Further, if this substring does not undergo any deletion, then
all bits in this substring are part of the same super run in ,
which must, therefore, have length at least . It follows that bit
is part of a super run of length at least in with probability

at least 0.9. Thus, we have proved . From Lemma
V.14, it follows that and for small enough
. Putting these facts together leads to the result.

where we have made use of Lemma V.15 applied to .
Corollary V.17: There exists such that the following

occurs: Consider any positive integer , any , and define
. For all , if and

, we have

Proof of Corollary V.17: Analogous to proof of
Corollary V.4.

TABLE III
PROCEDURE FOR GENERATING
AND GIVEN AND

(ADAPTED FROM [6, Fig. 1])

B. Rate Achieved by a Process

We make use of an approach similar to that of Kirsch and
Drinea [6] to evaluate for a stationary ergodic process
that may be used to generate an input for the deletion channel.
A fundamental difference is that [6] only considers processes
with iid runs. Our analysis is instead general. This enables us
to obtain tight upper and lower bounds (up to ), hence,
leading to an estimate for the channel capacity.
We depart from the notation of Kirsch and Drinea, retaining
for the th bit of , and using to denote the th run

in . Denote by the lengths of runs in
(where is a nondecreasing function of for any fixed
). Let the th run consist of ’s, where . For

instance, if the first run consists of 0s, then .
We use to denote the concatenation of runs in that

led to , with the first run in contributing at least one
bit [if the run is completely deleted, then it is part of ].

is an exception. This is made precise in Table III, which is
essentially the same as [6, Fig. 1], barring changes in notation.
We call runs in the parent runs of the run .
We define as the vector of , where denotes

the number of bits. Let the total number of runs in be
. Thus,

Note that consists of an odd number of runs for
.
We write

(44)
which is analogous to the identity

used in [6], but more convenient
for our proof.
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Let be an integer random variable having the distribution
, i.e., the distribution of run length in . It is easy to see that

holds, similar to (13). It turns out that this suffices for our upper
bound (cf., Lemma IV.4).
Consider the second term in (44). Let denote the -bit

binary vector that indicates which bit locations in have suf-
fered deletions. We have

(45)

We study by constructing an appropriate
modified deletion process in Section V-C
Consider the third term in (44). From [6], we know that

Here, denotes the string obtained by concate-
nating , without separation marks, and anal-
ogously for . Roughly, single deletions do not
lead to ambiguity in if and are known.
Thus, this term is . It turns out, we can get a good estimate
for this term by computing it for the iid Bernoulli case.
Lemma V.18: For any , there exists ,

and such that for all the following occurs:
Consider any such that and

for some . Then

(46)
where

Note that with , we obtain .
The proof of Lemma V.18 is quite technical and uses a

so-called “perturbed" deletion process1 (cf., Section V-C). We
defer it to Appendix.
Lemma V.19: For any , there exists

such that if and , then

for all .

1The perturbed deletion process is constructed using a different modification
to the deletion process.

The proof of this lemma is fairly straightforward.
Proof of Lemma V.19: An explicit calculation yields

where is the run-length dis-
tribution corresponding to the iid Bernoulli half process
(cf., proof of Lemma V.2). We know .
It follows that

(47)

Using Lemma V.12(ii), we have ,
leading to

and, in particular, for small . Hence, substituting into
(47) and using the lower bound , we have

. Explicit calculation gives
. The result follows by plugging into

(47).

C. Modified Deletion Process

We want to get a handle on the term . The
main difficulty in achieving this is that a fixed run in can
arise in many ways from parent runs, via a countable infinity
of different deletion “patterns." For example, consider that a
run in may have any odd number of parent runs. Moreover,
a countable infinity of these deletion patterns “contribute" to

.
However, we expect that deletions are typically well sepa-

rated at small deletion probabilities, and as a result, there are
only a few dominant “types" of deletion patterns that influ-
ence the leading order terms in . Deletions
that “act" in isolation from other deletions should contribute
an order term: for instance, a positive fraction of runs in
should have a length 4, and with probability of order , they
should shrink to runs of length 3 in due to one deletion. Each
time this occurs, there are four (equally likely) candidate po-
sitions at which the one deletion occurred, contributing
to . Similarly, pairs of “nearby" deletions (for
instance, in the same run of ) should contribute a term of
order . We should be able to ignore instances of more than
two deletions occurring in close proximity, since (intuitively)
they should have a contribution of on .
We formalize this intuition by constructing a suitable mod-

ified deletion process that allows us to focus on the dominant
deletion patterns in our estimate of this term.We bound the error
in our estimate due to our modification of the deletion process,
leading to an estimate of that is exact up to
order .
We restrict attention to . Denote by the th run

in (where the run including bit 1 is labeled ). has length
. Recall that the deletion process is an iid Bernoulli( )

process, independent of , with being the -bit vector that
contains a 1 if and only if the corresponding bit in is deleted
by the channel . We define an auxiliary sequence of chan-
nels whose output -denoted by – is obtained by
modifying the deletion channel output: contains all bits
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TABLE IV
EXAMPLE SHOWING HOW IS CONSTRUCTED

present in and some of the deleted bits in addition.
Specifically, whenever there are three or more deletions in a
single run under , the run suffers no deletions in .
Formally, we construct this sequence of channels when the

input is a stationary process as follows. For all integers ,
define:

Binary process that is zero throughout except if
contains 3 or more deletions, in which case if
and only if and .

Define by

if s.t. ,
otherwise.

Finally, define (where is componentwise
sum modulo 2). The output of the channel is simply defined
by deleting from those bits whose positions correspond to 1s
in . We define for the modified deletion process in the
same way as . The sequence of channels are defined
by , and the coupled sequence of channels are defined by
. We emphasize that is a function of .
Note that if , then , and hence, . Thus,
is obtained by flipping the 1s in that also correspond to

1s in . If , i.e., , we will say that a
deletion is reversed at position . See Table IV for an example:
The deletions in run are reversed because there are three
of them, whereas the deletions in runs , , and are not
affected.
It is not hard to see that the process is stationary. (In fact

are jointly stationary.) Define ,
where is arbitrary.
The expected number of deletions reversed due to a run with

length is bounded above by

(48)

using and .
We know that each run has length at least 1. Thus, we have

the following.
Fact V.20: For arbitrary stationary process , the probability
of a reversed deletion at an arbitrary position is bounded as

.
Now for . If

, Lemmas V.3 and V.7
yield . Combining, we deduce:

Fact V.21: For any , there exists and
such that for any the following occurs: Consider

any such that . Then,
we have .
Note that holds for rele-

vant processes (see Lemma IV.4), justifying our aforemen-
tioned assumption.
The next proposition follows immediately from Facts V.20

and V.21.
Proposition V.22: For any , there exists

and such that for any the following occurs:
Consider any such that
. Then, we have .
We now analyze the modified deletion process with the aim of

estimating . Notice that for any run , either
all deletions in are reversed (in which case we say that
suffers deletion reversal), or none of the deletions are reversed
(in which case we say that is unaffected by reversal). It fol-
lows that

(49)

where consists of the substring of corresponding to
. As before, when we study in the

limit , the terms corresponding to and can
be neglected, and we can perform the calculation by considering
the stationary processes , , and .
Recall the definition of the parent runs of a run

for from Section V-B. Consider the possibilities for how
many runs contains, and the resultant ambiguity (or not)
in the position of deletions (under ) in the parent run(s):

Single parent run: Let the parent run be . The parent run
should not disappear;2 by definition it should contribute at
least one bit to . The run should not disappear
(else it is also a parent). can suffer , or 2 deletions
(else we have a deletion pattern not allowed under ). The
cases of 1 or 2 deletions lead to ambiguity in the location
of deletions.
Note that if disappears, then also disappears
(else are also parents of ), and so on.
Combination of Three Parent Runs: Let the parent runs be

, and . We know that and did
not disappear and has disappeared, by definition of

(cf., Table III). If and suffer no deletions,
this leads to no ambiguity in the location of deletions. Am-
biguity can arise in case and suffer between one
and four deletions in total.
Note that if disappears, then also disappears,
and so on.
Combination of Parent Runs, for :
Let the parent runs be . The runs

must disappear and does
not disappear. The runs must
suffer between one and deletions in total for
ambiguity to arise in the location of deletions.

2We emphasize that we are referring here to deletions under .
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Define

and so on.
The following lemma shows the utility of the modified dele-

tion process. We obtain this result by adding the contributions
of the cases enumerated earlier.
Lemma V.23: There exists such that for any

the following occurs: Consider any . Then,

(50)

where

(51)

The proof of Lemma V.23 is quite technical.
Proof of Lemma V.23: We make use of (49) and the fact

that is stationary and ergodic. Consider a randomly chosen
run in .We associate with if
is the first run in . Denote by the length of for
any integer . We add contributions from the three possibilities
of how arose under :

1) From a single parent run: Define

Clearly, is exactly the event we are interested in here. We
will restrict attention to a subset of and the prove that we are
missing a very small contribution. Define

Consider . For this event, one of the following must
occur.
1) Run disappears under but not under . For this,
we need at least three deletions in run . A simple
calculation shows that this occurs with probability less than

.
2) Run disappears under as well. In this case,
also disappears under . Thus, we need and

both to disappear under which occurs with probability at
most . Moreover, we require at least one deletion in
(probability less than ). Thus, the overall probability
is bounded above by .

3) Run disappears under but not under . For this,
we need at least three deletions in run . This occurs
with probability less than .

Thus, . The largest
possible value of for a particular occur-
rence of is . Thus, the
additive error introduced by restricting to in our estimate of

is

(52)

where we have made use of Proposition A.1.
Partition into two events:

(53)

(54)

Let be the contribution of to ,
be the contribution of and be the contribution of .
Then, we have

(55)

1) One deletion in :
Consider . The contribution of a particular occurrence
is . Now

(56)

We have, for ,

since probability that of length greater than 1 disap-
pears is bounded above by and similarly for . It
follows that

Similarly, we get
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and

and

Combining, we arrive at the following contribution of
to :

(57)

with

(58)

We have normalized by to move from a per run con-
tribution to a per bit contribution.
It is easy to infer

(59)

from (58).
2) Two deletions in :
Consider . If , then entropy contribution is

. We have, for ,

It follows that

leading to

Combining, we arrive at the following contribution to
:

(60)

with

(61)

Plugging (57) and (60) into (55), we obtain our desired esti-
mate on the contribution of the event ,

where is bounded using (52), (59), and
(61) as

(62)

2) From a combination of three parent runs: Define

We are interested in the contribution due to occurrence of event
.
Again, we will restrict attention to a subset of and the

prove that we are missing a very small contribution. Define

Similar to our analysis for Case 1, we can show that



6208 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 10, OCTOBER 2013

The largest possible value of for a partic-
ular occurrence of is

since and can suffer at most four deletions in total
under . Thus, the additive error introduced by restricting to
in our estimate of is

(63)

Now,
. From Proposition A.1,
, also , and so

on. Plugging into (63), we arrive at

(64)

Now, we further restrict to a subset of . Define

Consider the event . This can occur due to one of the
following.
1) More than one deletion in : This occurs with
probability at most (since we also need

to disappear).
2) :Now the probability that disappears is at
most . Thus, the probability of

.
It follows from union bound that

. As before, the largest possible value
of for a particular occurrence of
is . Thus, the additive error introduced by
restricting to in estimating the contribution of is

Now, we use and
Proposition A.1 to obtain

(65)

Denoting by the contribution of , and the contribu-
tion of , we have

(66)

We consider two cases in estimating :
1) .

The value of for a particular occur-
rence is . We have

2) .
The value of for a particular occur-
rence is since should not disappear. We have

Combining the two cases, we arrive at the following estimate:

(67)

where

Again, we use and
Proposition A.1 to obtain

(68)

Finally, we plug (67) into (66) to obtain

where . Using (64), (65), and (68), we
obtain

(69)
3) From a combination of five parent runs: Define
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We have since
and must disappear. Also, the largest possible value of

for a particular occurrence is

since each run can suffer at most two deletions under . Thus,
the contribution of is , where

(70)

where we have used
and Proposition A.1.

From a combination of parent runs for :
Define

We need runs to disappear, and this occurs with probability
at most . The largest possible value of
for a particular occurrence is

since no run has length ex-
ceeding . Thus, the contribution of is bounded above
by . Summing, we find that the overall
contribution of is bounded as

(71)
for small enough .
Finally, we obtain

where . Rearranging gives (50), whereas
(51) follows for small enough from (62), (69), (70), and (71)
and the fact that no run has length exceeding .
Making use of the estimates of derived in

Section V-A, we obtain the following corollary of Lemma
V.23.
Corollary V.24: For any , there exists

and such that for any the following occurs:
Consider any such that and

for some . Then

where . Recall that

Note that with , we obtain from
Corollary V.24.

Proof of Corollary V.24: We prove the corollary assuming
. The proof assuming is analo-

gous.
It follows from Fact V.21 that if , then [cf.,

(51)] is bounded as for
small enough , for some .
Consider . We separately analyze the first

terms of the sum. We use Lemma V.12(i)
[see (37)] to deduce that

(72)

for small enough . Next, we use Lemma V.7 to deduce that

(73)

for small enough . Finally, Lemma V.12(ii) tells us that

Combining with (72) and (73), it follows that

where , for small enough
.
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Other terms in (50) can be similarly analyzed. The result fol-
lows.
We need to show that our estimate for the modified deletion

process is also a good estimate for original deletion process. The
following simple fact helps us do this:
Fact V.25: Suppose , and are random variables with

the property that is a deterministic function of and , and
also is a deterministic function of and . (Denote this
property by .) Then

Proof: We have .
Similarly, .
It is not hard to see that

Using Fact V.25, we obtain

(74)

Combining (74) with Corollary V.24, we obtain an estimate
for the second term in (44). For future convenience, we form an
estimate in terms of instead of , using Lemma V.12
to make the switch.
Corollary V.26: For any , there exists

and such that for any the following occurs:
Define . Consider any such that

and . Then

where . Recall .
Proof of Corollary V.26: We prove the corollary assuming

. The proof assuming is analo-
gous.
By definition, is independent of , so

, where is the binary entropy func-
tion. We have, for ,

with . It follows from Corol-
lary V.24, with , that

(75)

with . From Proposition V.22, we know
that . It follows that , and hence,

. Simple calculus gives

(76)

. Using Lemma V.12(i) [see (38)] and Lemma V.7,
we obtain

(77)

where for small enough . Using Lemma
V.12(ii)[see(40)] and (from Lemma V.1), we obtain

(78)

Also, it follows from (LemmaV.1 applied
to ) and elementary calculus that

(79)

where . Here, we have used Lemma V.3 (applied
to ) to bound .
Plugging (76)–(79) into (75), we obtain the result.

D. Self-Improving Bound on

Our next lemma constitutes a “self-improving" bound on the
closeness of to 1 and leads directly to Lemma IV.4.
Lemma V.27: There exists a function

such that the following happens for any , and constants
and . For any and any

such that

and , we have
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Proof: From (44) and (45), we have

(80)

Using (74) and Proposition V.22, we have

It follows from and our assumed lower bound
on , that for some . Using Corollary
V.24, from Lemma V.12(ii), and Lemmas
V.12(i) and V.7 to control , we have

where .
Lemma V.18 gives

We used here .
Plugging back into (80), we obtain

The result follows from the assumption on .

E. Auxiliary Lemmas for the Lower Bound

Lemma V.28: Recall is the process consisting of iid runs
with distribution (cf.,
Lemma IV.1). There exists such that, for any ,
we have the following: For any integer and any , we have

Proof: Without loss of generality, suppose . Also,
suppose that it is the th consecutive 1 to occur. Now, since the
runs’ starting points form a renewal process under , we have

Routine calculus yields

where for some . In comparison,
.

Case I ( ): In this case, we have
with and

with , for sufficiently small . The result fol-
lows.
Case II ( ): In this case,

, where provided
is small enough. It follows that

The result follows.

Lemma V.29: Let be the run-length distribution of
corresponding to input . Then, there exists (same as in
Lemma V.28) such that, for any , we have

for all .
Proof: Consider a realization of the deletion process, i.e.,
for some fixed (recall that a 1 indicates that

a deletion occurred at that location). Suppose that bit comes
from bit in the input. (In particular, this means
and . The location is uniquely determined by .)
From Lemma V.28, we know that for any , we have

for . Summing over the bits in where takes
the value 1 (indicating that those bits are deleted), we obtain

where is the realized deletion process (with ). Finally,
summing over possible realizations of , we obtain

Now think of sampling a realization of , one bit at a time.
Every time a bit is sampled, it ends the current run with prob-
ability at least 0.45, using the aforementioned inequality. This
gives , implying the result.

F. Proofs of Lemmas IV.1, IV.4, IV.5, and IV.6

We first prove Lemma IV.6, followed by Lemmas IV.1, IV.4,
and IV.5.

Proof of Lemma IV.6: We construct from as
follows: Suppose a super run starts at and continues until

. We flip one or both of and such that
the super run ends at . (It is easy to verify that this can
always be done. If multiple different choices work, then pick an
arbitrary one.) The density of flipped bits in is upper bounded
by

(81)

The expected fraction of bits in the channel output
that have been flipped relative to (output of the
same channel realization with different input) is also at most .
Let be the binary vector having the same length
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as , with a 1 wherever the corresponding bit in is flipped
relative to , and 0s elsewhere. The expected fraction of 1s in
is at most . Therefore,

(82)

Recall Fact V.25. Notice that , whence

(83)

Further, form a Markov chain, and ,
are deterministic functions of . Hence, .
Similarly, . Therefore, [the second step is
analogous to (83)]

(84)
It follows from Lemma V.16 and
that for sufficiently small . Hence,

for , for some .
Now (82) and (83) gives (10), whereas (11) follows by com-
bining (82)–(84) to bound .

Proof of Lemma IV.1: We first make some preliminary
observations. Direct calculation using (19) and (8)3 leads to

, and .
From Lemma V.9(ii), we deduce .
Since consists of independent runs, the same is true for
. Hence, recalling the notation , we have

Define . It follows from Lemma V.29 that
, leading to

(85)

Now, from Lemma V.9(i), we know that

(86)

for .
Taylor’s theorem yields

Now, , so

, using Lemma V.29 and
our choice of . Thus, the first term in the aforementioned Taylor

3The approximation error in (8) can be easily controlled for .

expansion can be ignored. Using (86) for the second term, we
obtain

(87)

Plugging back into (85) and using , we
obtain

(88)

We construct from by flipping a few
bits as in the proof of Lemma IV.6. Using (81), the frac-
tion of flipped bits, both in and in , is at most

.
Proceeding as in the proof of Lemma IV.6, cf., (82) and (84),
we have

(89)

For each bit that is flipped, the number of runs in can change
by at most 2, and the number of runs of a particular length can
change by at most 3. It follows that

and, for any positive integer ,

We then deduce from the above that

and for any ,

where is the distribution of runs under . From (86), it
follows that for ,

(90)



KANORIA AND MONTANARI: OPTIMAL CODING FOR THE BINARY DELETION CHANNEL WITH SMALL DELETION PROBABILITY 6213

We have
where . We use Corollary

V.26 and Lemma V.18 to arrive at

(91)

Combining (89)–(91), we obtain,

A calculation yields

(92)

Finally,

The result now follows by using the estimates in (88) and
(92).
We obtain

where

Proof of Lemma IV.4: Let .
Then must hold, else Lemma V.27 leads
to a contradiction. It follows that , hence the result.
We use here the fact that in Lemma V.27 does not depend

on .
Proof of Lemma IV.5: Fix . Consider any .

Assume

(If not, we are done, for small enough .)
By Lemma IV.4, we know that . Now,

we use Lemma V.19, Corollary V.26 and Lemma V.18 for the
three terms in (44), to arrive at

(93)

where and can be explicitly computed in terms of afore-
mentioned constants, and is independent of . The
precise value of these constants is irrelevant for the argument
below.
Since we know that , Lemma V.13 tells us that

the tail of is small. Define . We deduce that

for small enough . From elementary calculus, we obtain

(94)

From Lemma V.3, we deduce

(95)

Plugging the bounds in (94) and (95) into (93), we obtain

where is independent of .
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Now, we simply maximize the bound over “distributions"
satisfying , to arrive at an optimal

distribution

for , where is such that , and
. Note that has no dependence on the process

we started with.
It is easy to verify that

This leads to

We now have

(96)

for some . Again, calculus yields

We substitute into (96) to get the result.

VI. DISCUSSION

The previous best lower bounds on the capacity of the dele-
tion channel were derived using first-order Markov sources. In
contrast, we found that the optimal coding scheme for small
consists of independent runs with run-length distribution

This leads to the natural
question “How much “loss" do we incur if we are only allowed
to use an input distribution that is a first-order Markov source?"
The following theorem is fairly straightforward to prove

using the results we have derived. It provides an upper bound
on the rate achievable with a Markov source, and also a precise
analytical characterization of the optimal Markov source for
small .
Theorem VI.1: Fix any . Consider the class of first-order

Markov sources. There exists and , such
that for and any in this class,

holds for any , where

Denote the symmetric first-order Markov source with
for , by . We

have

Numerical evaluation yields and
. We have , im-

plying that the restriction to Markov sources leads to a rate
loss of bits per channel use, with respect to the
optimal coding scheme.
Remark VI.2: Lower bounds are derived in [2] using Markov

sources and “jigsaw" decoding. In this case, we can show (using
[6] and Lemma V.18) that the best achievable rate is

and that achieves this rate to within . Thus, the lower
bounds in [2] are off by , to leading
order.
Remark VI.3: The utility of our asymptotic analysis is con-

firmed by considering the prescription for the optimal Markov
source provided by Theorem VI.1. Drinea and Mitzenmacher
[2] optimized numerically over Markov sources obtaining, for
instance, for . Our analytical prediction
yields .
In comparison, we have shown that .

In fact, we conjecture that an even stronger bound holds.
Conjecture VI.4:
The reasoning behind this conjecture is as follows:We expect

the next order correction to the optimal input distribution to be
quadratic in . If is a “smooth" function of the input dis-
tribution, a change of order in the input distribution should
imply that decreases by an amount
below capacity.
Our work leaves several open questions.
1) Can the capacity be expanded as

for small ? If yes, is this series convergent? In other
words, is there a such that for all , the
infinite sum on the right has terms that decay exponentially
in magnitude? We expect that the answer to both these
questions is in the affirmative. We provide a very coarse
reasoning for this below.
The analysis carried out in this paper suggests that the op-
timal input distribution for does not have “long
range dependence." In particular, we expect correlations
to decay exponentially in the distance between bits. Sup-
pose we are computing contribution to capacity due to
“clusters" of nearby deletions. These “clusters" should
correspond to deletions occurring within consec-
utive runs. This should give us a term with the error
being bounded by the probability of seeing dele-
tions in consecutive runs. This error should decay
exponentially in for , assuming our hypothesis on
correlation decay.
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2) What is the next order correction to the optimal input dis-
tribution? It appears that this correction should be of order
and should involve nontrivial dependence between the

run-length distribution of consecutive runs. It would be il-
luminating to shed light on the type of dependence that
would be most beneficial in terms of maximizing rate
achieved. Moreover, it appears that computing this correc-
tion heuristically may, in fact, be tractable, using some of
the estimates derived in this study.

3) Can the results here be generalized to nonbinary alphabet,
and to other channel models of insertions/deletions?

4) What about the deletion channel in the large deletion prob-
ability regime, i.e., ? What is the best coding scheme
in this limit? It seems this limit may be harder to analyze
than the limit studied in the present work: for

, the channel capacity is 0 and there is no specific
coding scheme that we can modify continuously in order
to achieve good performance for close to 1. This is in
contrast to the case , where we know that the iid
Bernoulli input achieves capacity.

5) We did not compute explicitly the constants in the error
terms of our upper and lower bounds. As mentioned in
Section I, it would be interesting to compute them. This
would lead to improvements over existing upper and lower
bounds on capacity.

APPENDIX

Proof of Theorem II.1: This is just a reformulation of The-
orem 1 in [5], to which we add the remark ,
which is of independent interest. In order to prove this fact, con-
sider the channel , and let be its
input. The channel can be realized as follows. First the
input is passed through a channel that introduces dele-
tions independently in the two strings and and out-
puts where is a marker.
Then, the marker is removed.
This construction proves that is physically degraded

with respect to , whence

Here, the last inequality follows from the fact that is
the product of two independent channels, and hence, the mutual
information is maximized by a product input distribution.
Therefore, the sequence is subadditive, and the

claim follows from Fekete’s lemma.
Proof of Lemma II.2: This is essentially [5, Th. 5]. The

proof is provided for the convenience of the reader. Take
any stationary , and let . Notice that

form a Markov chain.
Define as in the proof of Theorem II.1. We, there-
fore, have

(the last identity follows by stationarity of ). Thus,
and the limit exists by Fekete’s lemma,

and is equal to .
Clearly, for all . Fix any . We will construct

a process such that

(97)

thus proving our claim.
Fix such that . Construct with iid blocks

of length with common distribution that achieves the
supremum in the definition of . In order to make this process
stationary, we make the first complete block to the right of the
position 0 start at position uniformly random in .
We call the position the offset. The resulting process is clearly
stationary and ergodic.
Now consider for some and

. The vector contains at least
complete blocks of size , call them
with . The block starts at position .
There will be further bits at the end, so
that .
We write for . Given the output , we define

, by
introducing synchronization symbols . There are at most

possibilities for given (corresponding to potential
placements of synchronization symbols). Therefore, we have

where we used the fact that the ’s are iid. Further

where the last term accounts for bits outside the blocks. We
conclude that

provided and . Since
, this in turn implies (97).

In this short appendix, we recall a few basic facts about Palm
measures. We refer to [17] and [18] for more substantial back-
ground.
For the sake of simplicity, we shall focus on the case of in-

terest to us, namely the one of point processes on the integer
line . The key intuition is that there is two important ways
to study such a process. The first one is to look at it from a
“uniformly random point" on the line: this is the stationary view.
The second is to look at it from a “uniformly random point" in
the process. Of course, these intuitions must be formulated dif-
ferently in order to be rigorous.
Formally, we consider a probability space together

with a random variable that takes values in subsets of the
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integer line, i.e., , .
The process is measurable when we endow with the
product sigma-algebra. Given , its shift by units to the
right is denoted by . We assume that is stationary, i.e.,
that is distributed as for each integer . In order to avoid
trivial cases, we further assume that is ergodic and nonempty.
Notice that, by stationarity, the quantity

(98)

is well defined and independent of . Further,
because is nonempty. The Palm measure is defined as
the conditional probability measure

(99)

This corresponds to the idea of looking at from one of the
points in . Obviously, under , almost surely and in
particular under , is not stationary.
The above defines on the basis of . It is often useful to

consider the reverse direction, i.e., construct from . To this
end, consider the random variable

(100)

In terms of the associated binary process , cf., Section II,
is the length of the run starting at 1. The distribution of is

. We then define a new probability measure through its
Radon–Nikodym derivative with respect to :

(101)

where denotes expectation with respect to . The measure
corresponds intuitively to the following procedure: choose a

“uniformly random" point on the line, and set the origin at the
first point on the left of . The aforementioned Radon–Nikodym
derivative corresponds to the fact that a uniformly random point
is more likely to fall in a large interval between consecutive
points of .
Finally, is constructed from by shifting the origin to a

uniformly random point between 0 and . In formulae,
for any measurable ,

(102)

with a uniformly random variable in .
Hence

(103)

As a sanity check, let us compute as defined by (98). To this
end, we let , and obtain, from (103),

In other words, as expected.
The proof of Lemma V.18 is quite intricate and requires us

to define a new modification to the deletion process in terms of
super runs.
Now, we define a new modification to the deletion process,

and we call the resulting process the perturbed deletion
process to avoid confusion with the modified deletion process
.
The input process is divided into super runs as

(cf., Definition IV.3). For all integers
, define:

Binary process that is
zero throughout except if

have three
or more deletions in total, in
which case if and
only if and .

Define by

if s.t. ,
otherwise.

Finally, define (where is componentwise
sum modulo 2). The output of the channel is simply defined by
deleting from those bits whose positions correspond to 1s
in . We define for the perturbed deletion process similarly
to .
We make use of the following fact:
Proposition A.1: Consider any integer . Let

be random variables, taking values in ,
that have the same marginal distribution, i.e.,
for , and arbitrary joint distribution. Let

be nondecreasing functions. Then,
we have

Proof of Proposition A.1: We prove the result for .
The proof can easily be extended to arbitrary .
We want to show that for random variables and , with

, and nondecreasing, nonnegative valued functions ,
we have
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Part I: Define
.

Claim: The class contains all nonnegative, nonde-
creasing functions .

Proof of Claim:
(i) We have .

(ii) If , then for any
.
This follows from linearity of expectation.
Define the class of “simple increasing functions"

(iii) It follows from (i) and (ii) that .
Now, it is not hard to see that for any nonnegative nonde-

creasing , we can find a monotone nondecreasing sequence of
functions such that . By the monotone con-
vergence theorem, we have

Combining with (iii), we infer that , proving our claim.
Part II: Define

.
From Part I, we infer that for all .

We now repeat the steps in the proof of the Claim in Part I, to
obtain the result “The class contains all nonnegative, non-
decreasing functions .” This completes our proof of the propo-
sition.

Lemma A.2: There exists such that for any
the following occurs: Consider any . Then

(104)

for some such that .

Proof of Lemma A.2: Using the chain rule, we obtain

Consider the term

Suppose the first bit in is part of super run . Let the
first run in be , with length . By the construction of
the perturbed deletion process, we know that and
cannot have more than two deletions in total.
Different cases may arise:
1) .
If , then we know that

. If not, then we know that
. In either case, .

2) .
It must be that . Again,

3) .
In this case, if or , then
we know that and . Suppose

. Now consider the possibility that
(this is the only alternative

to ). For this possibility to exist, the following
condition must hold

(Else, we would need more than two deletions in
, a contradiction.)

Note that in any case, there are at most two possibilities for
, so we have .

Let us understand better. Let include runs to the right of
, i.e., and .

Condition can arise, along with starting at if and
only if:
1) run does not disappear under ;
2) super runs undergo no more than two
deletions in total. Event ;

3) one of the following deletion patterns occur.
— (Only if ) The bit is deleted and one
deletion in . Event .

— The bits and are deleted. Event .
— The bits and are deleted. Event .
...

— The bits and are deleted. Event .
— The bit is deleted and one deletion in .
Event .

Define . It is easy to see that
, for ,

and . We know that exactly
one of these has occurred. leads to
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, whereas all other possibilities
lead to . It follows that if holds, and

,

Let be a uniformly random run (cf., Section II). The prob-
ability of seeing , exactly runs of unit length after
, and is

It is easy to see that . Also, the
conditional probability of not disappearing is in .
Thus, the expected contribution of to the sum is

where

We have used , and
, and that the conditional probability

of not disappearing is in . Now using Fact A.1,
we have , yielding

. The result follows.
Corollary A.3: For any , there exists ,

and such that for any the following occurs:
Consider any such that and

for some . Then,

(105)

for some such that .
Proof of Corollary A.3: We prove the corollary assuming

. The proof assuming is analo-
gous.
Consider the second summation in (104). Define

. Consider any term with , , .
Using Lemma V.12(i) ((37)), we have

for . Note that does not depend on . It
follows that

where .
We make use of Lemma V.16 to bound the error due to the

missed terms. Let be the length of the super run containing
the initial run of length . Clearly, . Let be the
length of the next super run to the right. Clearly, . Now

Also, and for any . It
follows that the missed terms contribute

to the sum, where we have used Lemma V.16 in the second
inequality.
Thus, we have established

with for . The first summation in
(104) can be similarly handled. Finally, Lemma V.12(ii) tells us
that for small enough . Putting the estimates
together yields the result.

Proof of Lemma V.18: We prove the lemma assuming
. The proof assuming is

analogous.
It is easy to verify that the right hand side of (105) is, in fact,

. We show that

(106)
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whence (46) follows using Corollary A.3.
Consider defined in our construction of the perturbed

deletion process. We define
constructed as follows: start from the first bit in and consider
bits sequentially
1) for each bit also present in , has a ;
2) for each bit not present in , has 0 if that bit 0 and a 1
if that bit is 1.

Clearly, the corresponding stationary process can also be de-
fined.
Recall Fact V.25. It is not hard to see that

It follows that

Let for arbitrary . The number
of deletions reversed in a random super run is at most

in expectation (sim-
ilar to (48)). Using Proposition A.1, this is bounded above by

. Since each super run has length at least one, it
follows that . Using Lemma V.16 and
w.p. 1, we find that for small enough . Hence,

. It follows that for
small enough .
Let for arbitrary . Then, . It

follows that for small enough
. Finally, we have

leading to the desired bound (106).
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