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Abstract

In the school choice market, where scarce public school seats are assigned to students, a key
operational issue is how to reassign seats that are vacated after an initial round of centralized
assignment. Practical solutions to the reassignment problem must be simple to implement,
truthful and efficient while also alleviating costly student movement between schools.

We propose and axiomatically justify a class of reassignment mechanisms, the Permuted
Lottery Deferred Acceptance (PLDA) mechanisms. Our mechanisms generalize the commonly
used Deferred Acceptance (DA) school choice mechanism to a two-round setting and retain
its desirable incentive and efficiency properties. School choice systems typically run DA with
a lottery number assigned to each student to break ties in school priorities. We show that
under natural conditions on demand, the second round tie-breaking lottery can be correlated
arbitrarily with that of the first round without affecting allocative welfare, and reversing the
lottery order between rounds minimizes reassignment among all PLDA mechanisms. Empirical
investigations based on data from NYC high school admissions support our theoretical findings.

Keywords: dynamic matching, matching markets, school choice, deferred acceptance, tie-breaking,
cancellations, reassignments.

1 Introduction

In public school systems throughout the United States, students submit preferences over the schools

for which they are eligible for admission. As this occurs fairly early in the school year, students

typically do not know their options outside of the public school system when submitting their

preferences. Consequently, a significant fraction of students who are allotted a seat in a public

school eventually do not use it, leading to considerable inefficiency. In the NYC public high school

system, over 80,000 students are assigned to public school each year in March, and about 10% of

these students choose to not attend a public school in September, possibly opting instead to attend
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a private or charter school.1 Schools find out about many of the vacated seats only after classes

begin, when students do not show up to class; such seats are reassigned in an ad hoc manner by the

schools using decentralized procedures that can run months into the school year. A well-designed

reassignment process, run after students learn about their outside options, could lead to significant

gains in overall welfare. Yet no systematic way of reassigning students to unused seats has been

proposed in the literature. Our goal is to design an explicit reassignment mechanism run at a late

stage of the matching process that efficiently reassigns students to vacated seats.

During the past fifteen years, insights from matching theory have informed the design of school

choice programs in cities around the world. The formal study of this mechanism design approach

to school choice originated in a paper of Abdulkadiroglu and Sönmez (2003). They formulated

a model in which students have strict preferences over a finite set of schools, each with a given

capacity, and each school partitions the set of students into priority groups. There is now a

vast and growing literature that explores many aspects of school choice systems and informs how

they are designed in practice. However, most models considered in this literature are essentially

static. Incorporating dynamic considerations in designing assignment mechanisms, such as students

learning new information at an intermediate time, is an important aspect that has only recently

started to be addressed. Our work provides some initial theoretical results in this area and suggests

that simple adaptations of one-shot mechanisms can work well in a more general setting.

We consider a two-round model of school assignment with finitely many schools. Students learn

their outside option after the first-round assignment, and vacate seats which can be reassigned.

In the first round, schools have weak priorities over students, and students submit strict ordinal

preferences over schools. Students receive a first-round assignment based on these preferences via

Deferred Acceptance with Single Tie-Breaking (DA-STB), a variant of the standard Deferred Accep-

tance mechanism (DA) where ties in school preferences are broken via a single lottery ordering

across all schools. Afterwards, students learn their outside options (such as admission to a private

school), and may no longer be interested in the seat allotted to them. In the second round, students

are invited to submit new ordinal preferences over schools, reflecting changes in their preferences

induced by learning their outside options. The goal is to reassign students so that the resulting as-

signment is efficient and the two-round mechanism is strategy-proof and does not penalize students

for participating in the second round. As a significant fraction of seats available for reassignment

1In the 2004–2005 school year, 9.22% of a total of 81,884 students dropped out of the public school system after
the first round. Numbers for 2005–2006 and 2006–2007 are similar.
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are vacated only after the start of the school year, a key additional goal is to ensure that the

reassignment process minimizes the number of students who need to be reassigned.

We introduce a class of reassignment mechanisms with desirable properties: the permuted

lottery deferred acceptance (PLDA) mechanisms. PLDA mechanisms compute a first-round as-

signment by running DA-STB, and then a second-round assignment by running DA-STB with a

permuted lottery. In the second round, each school first prioritizes students who were assigned to

it in the first round, which guarantees each student a second-round assignment that she prefers

to her first-round assignment, then prioritizes students according to their initial priorities at the

school, and finally breaks ties at all schools via a permutation of the (first-round) lottery numbers.

Our proposed PLDA mechanisms are based on school choice mechanisms currently implemented in

the main round of assignment, and can be implemented either as centralized PLDAs, which run a

centralized second round with updated preferences, or as decentralized PLDAs, which run a decen-

tralized second round via a waitlist system that closely mirrors current reassignment processes.

Our key insight is that the mechanism designer can design the correlation between tie-breaking

lotteries to achieve operational goals. In particular, reversing the lottery between rounds minimizes

reassignment without sacrificing student welfare. Our main theoretical result is that under an

intuitive order condition, all PLDAs produce the same distribution over the final assignment, and

reversing tie-breaking lotteries between rounds implements the centralized Reverse Lottery DA

(RLDA), which minimizes the number of reassigned students. We axiomatically justify PLDA

mechanisms: absent school priorities, PLDAs are equivalent to the class of mechanisms that are

two-round strategy-proof while satisfying natural efficiency requirements and symmetry properties.

In a setting where all students agree on a ranking of schools and there are no priorities our

results are very intuitive. By reversing the lottery, we move a few students many schools up

their preference list rather than many students a few schools up, thereby eliminating unnecessary

cascades of reassignment (see Figure 1). Suprisingly, however, our theoretical result holds in a

general setting with heterogeneous student preferences and arbitrary priorities at schools. The

order condition can be interpreted as aggregate student preferences resulting in the same order of

popularity of schools in the two rounds. Our results show that if student preferences and school

priorities produce such agreement in aggregate demand across the two rounds, then reversing the

lottery between rounds preserves ex ante allocative efficiency and minimizes reassignment.

We empirically assess the performance of RLDA using data from the New York City public high
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Figure 1: Running DA with a reversed lottery eliminates the cascade of reassignments.

There are 6 students with identical preferences over schools, and 6 schools each with a single priority group.

All students prefer schools in the order s1 � s2 � · · · � s6. The student assigned to school s1 in the first

round leaves after the first round; otherwise all students find all schools acceptable in both rounds. Running

DA with the same tie-breaking lottery reassigns each student to the school one better on her preference list,

whereas reversing the tie-breaking lottery reassigns only the student initially assigned to s6.

school system. We first investigate a class of centralized PLDAs that includes RLDA, rerunning

DA using the original lottery order (termed Forward Lottery Deferred Acceptance or FLDA),

and rerunning DA using an independent random lottery. We find all these mechanisms provide

similar allocative efficiency, but RLDA reduces the number of reassigned students significantly.

For instance, in the NYC data set from 2004–2005, we find that FLDA results in about 7,800

reassignments and RLDA results in about 3,400 reassignments out of a total of about 74,000

students who remained in the public school system, i.e. fewer than half the number of reassignments

under FLDA. The gains become even more marked if we compare with current practice: RLDA

results in fewer than 40% of the 8,600 reassignments under decentralized FLDA with waitlists.2

To better evaluate the currently used waitlist systems, we also empirically explore the perfor-

mance of decentralized FLDA and RLDA as a function of the time available to clear the market.

We find that the timing of information revelation can greatly impact both allocative efficiency and

congestion. If congestion is caused by students taking time to vacate previously assigned seats

(see Figure 1), then reversing the lottery increases allocative efficiency during the early stages of

reassignment and decreases congestion. However, if congestion is caused by students taking time

to decide on waitlist offers, these findings are reversed. In both cases, for reasonable timescales the

welfare gains from centralizing the system and reducing congestion can be substantial.
2A decentralized version of FLDA is used in most cities and in NYC kindergarten admissions.
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Organization of the paper. We outline current practice in school admissions in Section 1.1

and related literature in Section 1.2. In Section 2 we describe our model, our proposed PLDA

mechanisms and their properties. Section 3 presents our main results, and Section 4 provides

intuition and a flavor of our analysis via a special case of our model. We provide empirical results

in Section 5, and conclude in Section 6.

1.1 Current Practice

Schools systems in cities across the US use similar centralized processes for admissions to public

schools. Students seeking admission to a school submit their preferences over schools to a central

authority by December through March, for admission starting the subsequent fall. Each school may

have priority classes of students, such as priority for students who live in the neighborhood, siblings

of students already enrolled at that school, or students from low-income families. An assignment

of seats to students is produced using the student-proposing Deferred Acceptance algorithm with

single-tiebreaking. Students must register in their assigned school by April or early May.

In March and April students are also admitted to private and charter school via processes run

concurrently with the public school assignment process. This results in an attrition rate of about

8-10% of the seats assigned in the main round of public school admissions. Some schools account for

this attrition by making “over offers” in the first round and accepting more students than they have

seats for (Szuflita, b). However, such oversubscription of students is usually conservative (Szuflita,

b), due to hard constraints on space and teacher capacity.3 As a result, most schools have unused

seats at the end of the first round that can be reassigned. In addition, most public schools find

out about many of these vacant seats only after the start of the school year, as they cannot require

deposits or other forms of commitment from students before the start of the school year.

Reassignments in most school choice systems are performed using a decentralized waitlist sy-

stem.4 Students are put on waitlists for all schools that they ranked above their first-round assig-

nment, and ordered by first-round priorities (after tie-breaking). Students who do not register by

the deadline are presumed to be uninterested and their seats are offered to waitlisted students in

sequence, with more seats becoming available over time as students receive new offers from outside

3Capacity constraints are binding in most schools. Most states impose maximum class sizes and fund schools based
on enrollment after the first 2-3 weeks of classes, which incentivizes schools to enroll as many students as permissible.

4We describe the decentralized reassignment processes currently used in New York kindergarten, Boston, Washing-
ton DC, Denver, Seattle, New Orleans, and Chicago. A similar process was also used in NYC high school admissions
until a few years ago, when the system abandoned reassignments entirely, anecdotally due to the excessive logistical
difficulties created by market congestion.
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the system or are reassigned via waitlists to other public school seats. Students offered seats by the

waitlist system usually have just under a week to make a decision, and are only bound by the final

offer they choose to accept.5 Overall, this typically results in a “huge slow round robin” (Szuflita,

a) of reassignment that continues all summer until after classes begin, and in some cities (e.g. NYC

kindergarten, Boston, and Washington DC) up to several months after the start of the school year.

Our proposed class of mechanisms generalize these waitlist systems as follows. Waitlists are

PLDA mechanisms where 1) the second round is implemented in a decentralized fashion as infor-

mation about vacated seats propagates through the system, and 2) the tie-breaking lotteries used

in the two rouns are the same. We show that permuting the tie-breaking lottery numbers before

creating waitlists provides a class of reassignment mechanisms that, given sufficient time, result in

similar allocative efficiency while providing flexibility for optimizing other objectives.

1.2 Related Work

The mechanism design approach to school choice was first formulated by Balinski and Sönmez (1999)

and Abdulkadiroglu and Sönmez (2003). Since then, academics have worked closely with school

authorities to redesign school choice systems to increase student welfare.6 A significant portion of

the literature has focused on providing solutions for a single round of centralized school assignment;

see e.g. Pathak (2011) and Abdulkadiroglu and Sönmez (2011) for recent surveys. Many of these

works provide axiomatic justifications for two canonical mechanisms, Deferred Acceptance Gale

and Shapley (1962) and Top Trading Cycles (TTC), and their variants, in terms of their desira-

ble properties. We provide a similar framework for the reassignment problem by proposing and

characterizing PLDA mechanisms by their incentive and efficiency properties.

There is a growing operations literature on designing the school choice process to optimize

quantitative objectives. Ashlagi and Shi (2014) consider how to improve community cohesion in

school choice by correlating the lotteries of students in the same community, and Ashlagi and Shi

(2015) show how to maximize welfare given busing cost constraints. Several papers also explore how

school districts can use rules for breaking ties in school priorities as policy levers. Arnosti (2015),

Ashlagi and Nikzad (2016) and Ashlagi et al. (2015) show that DA-STB assigns more students to

5Students who have accepted an offer off the waitlist of one school are allowed to accept offers off the waitlists of
other schools. Since registration for one school automatically cancels the student’s previous registrations, this would
automatically release the seat the student accepted from the first school to other students on the waitlist.

6See e.g. Abdulkadiroglu et al. (2005a) and Abdulkadiroglu et al. (2005b) for an overview of the redesigns in New
York City (2003) and Boston (2005) respectively. These were followed by New Orleans (2012), Denver (2012), and
Washington DC (2013), among others. See Abdulkadiroglu et al. (2015) for welfare analysis of the changes in NYC.
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one of their top k schools (for small k) compared to DA using independent lotteries at different

schools, and Abdulkadiroglu et al. (2009) empirically compare these tie-breaking rules. Erdil and

Ergin (2008) also exploit indifferences to improve allocative efficiency. We explore the design of

tie-breaking rules in the reassignment setting and correlate tie-breaking across rounds.

There is also a vast literature on dynamic matching and reassignments. The reassignment of

donated organs has been extensively studied in work on kidney exchange (see, e.g. Roth et al.,

2004; Anderson et al., 2015, 2017; Ashlagi et al., 2017). Reassignments due to cancellations also

arise in online assignment settings such as kidney transplantation (e.g., see Zenios, 1999; Su and

Zenios, 2006) and public housing allocation (e.g., see Kaplan, 1987; Arnosti and Shi, 2017). An

important difference is that these are online settings where agents and objects arrive over time

and are matched on an ongoing basis. In such settings matches are typically irrevocable, and so

optimal assignment policies account for typical cancellation and arrival statistics and optimize for

agents arriving in the future (e.g., see Dickerson and Sandholm, 2015). In our setting the matching

for the entire system is coordinated in time, and we improve welfare by controlling both the initial

assignment and subsequent reassignment of objects among the same set of agents.

Another relevant strand in the reassignment literature is the work of Abdulkadiroglu and Sönmez

(1999) on house allocation models with housing endowments. Our second round can be thought

of as school seat allocation where some agents already own a seat and we wish to reassign seats to

reach an efficient assignment. There are also a growing number of papers that consider a dynamic

model for school admissions (e.g., see Compte and Jehiel, 2008; Combe et al., 2016). A critical

distinction between these works and ours is that in our model, the initial endowment is determined

endogenously by preferences, and so we propose reassignment mechanisms that are impervious to

students manipulating their first-round endowment to improve their final assignment.

A number of recent papers, such as those by Dur (2012), Kadam and Kotowski (2014) and

Pereyra (2013), focus on the strategic issues in dynamic reassignment. These works develop solution

concepts in finite markets with specific cross-period constraints and propose DA-like mechanisms

that implement them. In recent complementary work Narita (2016) analyzes preference data from

NYC school choice, observes that a significant fraction of preferences are permuted after the initial

match, and proposes a modified version of DA with desirable properties in this setting. We similarly

propose PLDA mechanisms for their desirable incentive and efficiency properties. In addition, our

large market and consistency assumptions allow us to uncover considerable structure in the problem
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and provide conditions under which we can optimize over the entire class of PLDA mechanisms.

Our work also has some connections to the queueing literature. The class of mechanisms that

emerges in our setting involves choosing a permutation of the initial lottery order, and we find that

the reverse lottery minimizes reassignment within this class. This is similar to choosing a service

policy in a queueing system (e.g. FIFO, LIFO, SRPT etc.) in order to minimize cost functions

(see, e.g. Lee and Srinivasan, 1989). “Work-conserving” service policies can result in identical

throughput but different expected waiting times, and we similarly find that PLDA mechanisms

may have identical allocative efficiency but different numbers of reassignments. Our continuum

model parallels fluid limits and deterministic models employed in queueing (Whitt, 2002), revenue

management (Talluri and Van Ryzin, 2006), and other contexts in operations management.

2 Model

2.1 Definitions and Notation

We consider the problem of assigning a set of students Λ to seats in a finite set of schools S =

{s1, . . . , sN}. Each student can attend at most one school. There is a continuum7 of students with

an associated measure η: for any (measurable) subset A ⊆ Λ, we use η(A) to denote the mass of

students in A. The outside option is sN+1 /∈ S. The capacities of the schools are q1, . . . , qN ∈ R+,

and qN+1 =∞. A set of students of η-measure at most qi can be assigned to school si.

Each student submits a strict preference ordering over her acceptable schools, and each school

partitions eligible students into priority groups. Each student has a type θ = (�θ, �̂θ, pθ) that

encapsulates both her preferences and school priorities. The student’s first- and second-round

preferences, respectively �θ and �̂θ, are strict ordinal preferences over S ∪ {sN+1}, and schools

before (after) sN+1 in the ordering are acceptable (unacceptable). We think of sN+1 as the best

guaranteed outside option available to the student, with the understanding that it can “improve”

from the first to the second round, e.g., because a new private school offer comes in. The student’s

priority class pθ encodes her priority pθi at each school si. Each school si has ni priority groups.

We assume that schools prefer higher priority groups, students ineligible for school si have priority

7Our continuum model can be viewed as a two-round version of the model introduced by Azevedo and Leshno
(2016). Continuum models have been used in a number of papers on school choice; see Agarwal and Somaini (2014),
Ashlagi and Shi (2014), and Azevedo and Leshno (2016). Intuitively, one can think of the continuum model as
a reasonable approximation of the discrete model in Appendix B when the number of students is large, although
establishing a formal relationship between the discrete and continuum models is beyond the scope of our paper.
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pi = −1, and that pi ∈ {−1, 0, 1, . . . , ni − 1}. Eligibility and priority groups are exogenously

determined and publicly known. Each student λ = (θλ, L(λ)) ∈ Λ also has a first-round lottery

number L(λ) ∈ [0, 1]. We sometimes use the notation (�λ, �̂λ, pλ) as a less cumbersome alternative

to (�θλ , �̂θ
λ

, pθ
λ
). Let Θ be the set of all student types, so that Λ = Θ × [0, 1] denotes the set of

students. For each θ ∈ Θ let ζ(θ) = η({θ} × [0, 1]) be the measure of all students with type θ.

We assume that all students have consistent preferences, defined as follows.

Definition 1. Preferences (�, �̂) are consistent if the second-round preferences �̂ are obtained

from � via truncation, i.e.: (1) schools do not become acceptable only in the second round, ∀si ∈ S

si�̂sN+1 implies si � sN+1; and (2) the relative ranking of schools is unchanged across rounds,

∀si, sj ∈ S if si�̂sN+1 and si�̂sj then si � sj. Type θ is consistent if (�θ, �̂θ) are consistent.

Assumption 1 (Consistent preferences). If ζ(θ) > 0 then the type θ is consistent.

Assumption 2 (Full support). For all consistent types θ ∈ Θ it holds that ζ(θ) > 0.

Consistency is required to meaningfully define strategy-proofness in our two-round setting, as

we require truthful reporting in the first round to be optimal for both the student’s first- and

second-round assignments. We use the full support assumption only to characterize our proposed

mechanisms (Theorem 3) and do not need it for our positive results (Theorems 1 and 2). We also

assume that the first-round lottery numbers are drawn independently and uniformly from [0, 1] and

do not depend on preferences, i.e. ∀θ ∈ Θ and 0 ≤ a ≤ b ≤ 1, η ({θ} × (a, b)) = (b− a)ζ(θ).8

An assignment µ : Λ → S specifies the school that each student is assigned to. For any

assignment µ, we let µ(λ) denote the school to which student λ is assigned, and in a slight abuse

of notation, we let µ(si) denote the set of students assigned to school si. We assume that µ(si) is

η-measurable and that the assignment is feasible, i.e., η(µ(si)) ≤ qi for all si ∈ S and if µ(λ) = si

then pλi ≥ 0. We let µ and µ̂ denote the first- and second-round assignments respectively.

Timeline. Students report first-round preferences �. The mechanism designer obtains a first-

round assignment µ by running DA-STB with lottery L and announces µ and L. Students then

observe their outside options and update their preferences to �̂. Finally, students report their

second-round preference �̂, and the mechanism designer obtains a second-round assignment µ̂ by

running a reassignment mechanism M and announces µ̂. We illustrate the timeline in Figure 2.

Informational Assumptions. Eligibility and priorities are exogenously determined and publicly

known. The mechanism is publicly announced before preferences are submitted. Before first-round

8This can be justified via an axiomatization of the kind obtained by Al-Najjar (2004).
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Student outside
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leading to updated

student preferences

�̂

Students report

second-round

preferences �̂

Mechanism computes

second-round assig-

nment µ̂ using reas-

signment mechanism

M

First round, DA Second round, M

Figure 2: Timeline of the two-round mechanism design problem

reporting, each student knows her first-round preferences, and that her second-round preferences

will be obtained from these preferences via truncation. Each student has imperfect information

regarding her own second-round preferences (i.e., the point of truncation) at that stage, and believes

with positive probability her preferences in both rounds will be identical.9 We assume students

know the distribution η over student types and lotteries (an assumption we need only for our

characterization result, Theorem 3). Each student is assumed to learn her lottery number after

the first round, as in practice students are often permitted to inquire about their position in each

school’s waitlist; our results hold even if students do not learn their lottery numbers.

Definition 2. A student λ ∈ Λ is a reassigned student if she is assigned to a different school in

S in the second round than in the first round. That is, λ is a reassigned student under reassignment

µ̂ if µ(λ) 6= µ̂(λ) and10 µ(λ) 6= sN+1, µ̂(λ) 6= sN+1.

The majority of reassignments happen around the start of the school year, a time when they are

costly for schools and students alike. Hence, in addition to providing an efficient final assignment,

we also want to reduce congestion by minimizing the number of reassigned students.

2.2 Mechanisms

A mechanism is a function that maps the realization of first-round lotteries L, school priorities p,

and students’ first-round preference reports � into an assignment µ. A reassignment mechanism

is a function that maps the realization of first-round lotteries L, first-round assignment µ, school

priorities p, and students’ second-round reports �̂ into a second-round assignment11 µ̂. A two-

9This ensures that students will report their full first-round preferences in the first round, instead of truncating
in the first round based on their beliefs about their second-round preferences.

10Several alternative definitions of reassigned students—such as counting students who are initially unassigned and
end up at a school in S, and/or counting initially assigned students who end up unassigned—could also be considered.
We note that our results continue to hold for all these alternative definitions.

11Here we make the restriction that the second-round assignment depends on the first-round reports only indirectly,
through the first-round assignment µ. We believe that this is a reasonable restriction, given that the second round

10



round mechanism obtained from a reassignment mechanism M is a two-round mechanism where

the first-round mechanism is DA-STB (see Definition 3), and the second-round mechanism is M .

In the first round, seats are assigned according to the student-optimal Deferred Acceptance

(DA) algorithm with single tie-breaking (STB) as follows. A single lottery ordering of the students

L is used to resolve ties in the priority groups at all schools, resulting in an instance of the two-sided

matching problem with strict preferences and priorities. In each step of DA, unassigned students

apply to their most-preferred school that has not yet rejected them. A school with a capacity of q

tentatively accepts the q highest-ranked eligible applicants (according to its priority ranking of the

students after breaking all ties) and rejects any remaining applicants. The algorithm runs until

there are no new student applications, at which point it terminates and assigns each student to her

tentatively assigned school seat. The strict student preferences, weak school priorities, and the use

of DA-STB mirror current practice in many school choice systems, such as those in New York City,

Chicago, and Denver (see, e.g., Abdulkadiroglu and Sönmez, 2003).

Deferred Acceptance can also be formally defined in terms of admissions scores and cutoffs.

Definition 3 (Deferred Acceptance (Azevedo and Leshno, 2016)). The Deferred Acceptance me-

chanism with single tie-breaking (DA-STB) is a function DAη

(
(�λ, pλ)λ∈Λ, L

)
mapping student

preferences, priorities and lottery numbers into an assignment µ, defined by a vector of cutoffs

C ∈ RN
+ as follows. Each student λ is given a score rλi = pλi + L(λ) at school si and assigned to

her most-preferred school as per her preferences, among those where her score exceeds the cutoff:

µ(λ) = max
�λ

({si ∈ S : rλi ≥ Ci} ∪ {sN+1}). (1)

Moreover, C is market-clearing, namely
η(µ(si)) ≤ qi for all si ∈ S, with equality if Ci > 0. (2)

Azevedo and Leshno (2016) showed that the set of assignments satisfying equations (1) and

(2) forms a non-empty complete lattice, and typically consists of a single uniquely determined

assignment.12 This unique assignment in the continuum further corresponds to the scaling limit of

the set of stable matches obtained in finite markets as the number of students grows (with school

capacities growing proportionally). Throughout this paper, in the (knife-edge) case where there

are multiple assignments satisfying Definition 3, we pick the student-optimal matching.

Given cutoffs {Ci}Ni=1, we will also find it helpful to define for each priority class π the cutoffs

within the priority class at each school Cπ,i ∈ [0, 1] by Cπ,i = 0 if Ci ≤ πi, Cπ,i = 1 if Ci ≥ πi + 1,

occurs a significant period of time after the first round, and the mechanism should come across as fair to the students.
12If the demand function is continuously differentiable in the cutoffs, the assignment is unique. For an arbitrary

demand function, the resulting assignment is unique for all but a measure zero set of capacity vectors.
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and Cπ,i = Ci−πi otherwise. Thus, Cπ,i is the lowest lottery number a student in the priority class

π can have and still be able to attend school si.

We now turn to the mechanism design problem. We emphasize that we consider only two-round

mechanisms whose first round mechanism is the currently used DA-STB, i.e., the only freedom

afforded the planner is the design of the reassignment mechanism. We propose the following class

of two-round mechanisms. Intuitively, these mechanisms run DA-STB twice, once in each round.

They explicitly correlate the lotteries used in the two rounds via a permutation P , and in the

second round give each student top priority in the school she was assigned to in the first round to

guarantee that each student receives a (weakly) better assignment.

Definition 4 (Permuted Lottery Deferred Acceptance (PLDA) mechanisms). Let P : [0, 1]→ [0, 1]

be a measure-preserving bijection. Let L be the realization of first-round lottery numbers, and let µ be

the first-round assignment obtained by running DA with lottery L. Define a new economy η̂, where to

each student λ ∈ Λ with priority vector pλ, and first-round lottery and assignment L(λ) = l, µ(λ) =

si, we: (1) assign a lottery number P (l); and (2) give top second-round priority p̂λi = ni at their

first-round assignment si and unchanged priority p̂λj = pλj at all other schools sj 6= si. PLDA(P )

is the two-round mechanism obtained using the reassignment mechanism DAη̂

(
(�̂λ, p̂λ)λ∈Λ, P ◦L

)
.

We use ĈPπ,i to denote the second-round cutoff for priority class π in school i under PLDA(P ).

We highlight two particular PLDA mechanisms. The RLDA (reverse lottery) mechanism uses

the reverse permutation R(x) = 1−x; and the FLDA (forward lottery) mechanism, which preserves

the original lottery order, uses the identity permutation F (x) = x. By default, school districts often

use a decentralized version of the FLDA mechanism, implemented via waitlists. In this paper, we

provide evidence that supports using the centralized RLDA mechanism in a school system like that

in NYC, where a large proportion of vacated seats are revealed close to or after the start of the

school year, and where reassignments are costly for both students and the school administration.

The PLDA mechanisms are an attractive class of two-round assignment mechanisms for a num-

ber of reasons. They are intuitive to understand and simple to implement in systems already using

DA. (A decentralized implementation would be even simpler to integrate with current practice; the

currently used waitlist mechanism for reassignments can be retained with the simple modification of

permuting the lottery numbers just before waitlists are constructed.) In addition, we will show that

the PLDA mechanisms have desirable incentive and efficiency properties, which we now describe.

Any reassignment mechanism that takes away a student’s initial assignment against her will is
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impractical. Thus, we require our mechanism to respect first-round guarantees:

Definition 5. A two-round mechanism (or a second-round assignment µ̂) respects guarantees

if every student (weakly) prefers her second-round assignment to her first-round assignment, that

is, µ̂(λ)�̂λµ(λ) for every λ ∈ Λ.

One of the reasons for the success of DA in practice is that it respects priorities: if a student

is not assigned to a school she wants, it is because that school is filled with students with higher

priority at that school. This leads to the following natural requirement in our two-round context:

Definition 6. A two-round mechanism (or a second-round assignment µ̂) respects priorities

(subject to guarantees) if ∀si ∈ S, every eligible student λ ∈ Λ such that si �̂λ µ̂(λ), and every

student λ′ such that µ̂(λ′) = si 6= µ(λ′) it holds that λ′ is eligible for si and pλ
′
i ≥ pλi .

Thus, our definition of respecting priorities (subject to guarantees) requires that every student

who was upgraded to a school s in the second-round must have a (weakly) higher priority at that

school than every eligible student λ who prefers s to her second-round assignment.

We now turn to incentive properties. In the school choice problem it is reasonable to assume

that students will be strategic in how they interact with the mechanism at each stage. Hence, it

is desirable that whenever a student (with consistent preferences) reports preferences, conditional

on everything that has happened up to that point, it is a dominant strategy for her to report

truthfully. To describe the properties formally, we start by fixing an arbitrary profile of first and

second round preferences (�−λ, �̂−λ) for all the students other than student λ. For any preference

report of student λ in the first round she will receive an assignment that is probabilistic because of

the tie-breaking lottery; then, after observing her first-round assignment and lottery number and

her updated outside option, she can submit a second-round preference report, based on which her

final assignment is computed. This leads to two natural notions of strategy-proofness.

Definition 7. A two-round mechanism is strongly strategy-proof if for each student λ (with

consistent preferences) truthful reporting is a dominant strategy, i.e., for each realization of lottery

numbers (including her own lottery number) and profile of first- and second-round reported prefe-

rences of the students other than λ, reporting her preferences truthfully in each of the two rounds

is a best response for student λ.

Our definition of strong strategy-proofness is rather demanding: it requires that no student be

able to manipulate the mechanism even if she has full knowledge of the first and second round
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preferences of all other students and the lottery numbers. We shall also consider a weaker version

of strategy-proofness that applies when a manipulating student does not know the lottery number

realizations when she submits her first-round preference report and learns all lottery numbers only

after the end of the first round. In that case, each student views her first-round assignment as a

probability vector; her second-round assignment is also random, but is a deterministic function of

the first-round outcome, the second-round reports, and the first-round lottery numbers. We make

precise the notion of a successful manipulation in this setting as follows.

Definition 8. A two-round mechanism is weakly strategy-proof if the following conditions hold:

• Knowing the specific realization of first-round assignments (and lottery numbers) and the

second round preferences of the students other than λ, it is optimal for student λ to submit

her second-round preference truthfully, given what the other students do;

• For each student λ (with consistent preferences), and for each profile of first- and second-

round preferences of the students other than λ, the probability that student λ is assigned to

one of her top k schools in the second round is maximized when she reports truthfully in the

first round (assuming truthful reporting in the second round), for each k = 1, 2, . . . , N .

In other words, in each stage of the dynamic game, the outcome from truthful reporting sto-

chastically dominates the outcomes of all other strategies. We emphasize that the uncertainty in

the first-round assignment is solely due to the lottery numbers, which students initially do not

know.

Note that a two-round mechanism that uses the first-round assignment as the initial endowment

for a mechanism like top trading cycles in the second round will not be two-round strategy-proof,

because students can benefit from manipulating their first-round reports to obtain a more popular

initial assignment that they could use to their advantage in the second round.

Finally, we discuss some efficiency properties. To be efficient, clearly a mechanism should not

leave unused any seats that are desired by students.

Definition 9. A two-round mechanism is non-wasteful if no student is assigned to a school she

is eligible for that she prefers less than a school not at capacity; that is, for each student λ ∈ Λ and

schools si, sj, if µ̂(λ) = si and sj�̂λsi and pλj ≥ 0, then η(µ̂(sj)) = qj.

It is also desirable for a two-round mechanism to be Pareto efficient. We do not want any

students to be able to improve their utility by swapping probability shares in second-round as-
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signments. However, we also require that our reassignment mechanism respect guarantees and

priorities (see Definitions 5 and 6), which is incompatible with Pareto efficiency even in a static,

one-round setting.13 This motivates the following definitions. Consider a second-round assign-

ment µ̂. A Pareto-improving cycle is an ordered set of types (θ1, θ2, . . . , θm) ∈ Θm, sets of students

(Λ1,Λ2, . . . ,Λm) ∈ Λm, and schools (s̃1, s̃2, . . . , s̃m) ∈ Sm, such that η(Λi) > 0 and s̃i+1�̂θi s̃i (where

we define s̃m+1 = s̃1), for all i, and such that for each i, θλ = θi, µ̂(λ) = s̃i for all λ ∈ Λi.

Let p̂ be the second-round priorities obtained by giving each student λ a top second-round

priority p̂λi = ni at their first-round assignment µ(λ) = si (if si ∈ S) and unchanged priority

p̂λj = pλj at all other schools sj 6= si. We say that a Pareto-improving cycle (in a second-round

assignment) respects (second-round) priorities if p̂θis̃i+1
≥ p̂θi+1

s̃i+1
for all i (where we define θm+1 = θ1).

Definition 10. A two-round mechanism is constrained Pareto efficient if the second-round

assignment has no Pareto-improving cycles that respect second-round priorities.

We remark that this is the same notion of efficiency that is satisfied by static, single-round

DA-STB (Definition 3) — the resulting assignment has no Pareto-improving cycles that respect

priorities. In other words, the constrained Pareto efficiency requirement is informally to be “as

efficient as static DA”. We also note here that as a result of the requirement to respect second

round priorities, Pareto improving cycles considered must include only reassigned students.

Finally, for equity purposes, it is desirable that a mechanism be anonymous.

Definition 11. A two-round mechanism is anonymous if students with the same first-round

assignment and the same first- and second-round preference reports have the same distribution over

second-round assignments.

We show that PLDA mechanisms satisfy all the aforementioned properties.

Proposition 1. Suppose student preferences are consistent. Then PLDA mechanisms respect gua-

rantees and priorities, and are strongly two-round strategy-proof, non-wasteful, constrained Pareto

efficient, and anonymous.

We will show in Section 3.1 that in a setting without priorities, the PLDA mechanisms are the

only mechanisms that satisfy all these properties (and some additional technical requirements),

even if we only require weak strategy-proofness (Theorem 3).

13When schools have strict preferences, an assignment respects priorities if and only if it is stable, and it is well
known that in two-sided matching markets with strict preferences, there exist preference structures for which every
stable assignment can be Pareto improved (Erdil and Ergin, 2008).
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Finally, it is simple to show that the natural counterparts to PLDA mechanisms in a discrete

setting (with a finite number of students) respect guarantees and priorities, and are non-wasteful,

constrained Pareto efficient, and anonymous. We make these claims formal in Appendix B and

also provide an informal argument that the discrete PLDA mechanisms are also approximately

strategy-proof when the number of students is large.

3 Main Results

In this section, we will show that the defining characteristic of a PLDA mechanism—the permuta-

tion of lotteries between the two rounds—can be chosen to achieve desired operational goals. We

first provide an intuitive order condition, and show that under this condition, all PLDA mecha-

nisms give the same ex ante allocative efficiency. Thus when the primitives of the market satisfy

the order condition, it is possible to pursue secondary operational goals without sacrificing alloca-

tive efficiency. Next, in the context of reassigning school seats at the start of the school year, we

consider the specific problem of minimizing reassignment, and show that when the order condition

is satisfied, reversing the lottery minimizes reassignment among all centralized PLDA mechanisms.

In Section 5, we empirically demonstrate using data from NYC public high schools that reversing

the lottery minimizes reassignment (amongst a subclass of centralized PLDA mechanisms) and does

not significantly affect allocative efficiency, even when the order condition does not hold exactly.

Our results suggest that centralized RLDA is a good choice of mechanism when the primary goal

is to minimize reassignments while providing a second-round assignment with high allocative ef-

ficiency. In Section 3.1 we provide an axiomatic justification for PLDA mechanisms, and later in

Section 6 we discuss how the choice of lottery permutation can be used to achieve other operational

goals, such as maximizing the number of students with improved assignments.

We begin by defining the order condition, which we will need to state our main results.

Definition 12. The order condition holds on a set of primitives (S, q,Λ, η) if for every priority

class π, the first- and second-round school cutoffs under RLDA within that priority class are in the

same order, i.e., for all si, sj ∈ S,

Cπ,i > Cπ,j ⇒ ĈRπ,i ≥ ĈRπ,j .

We emphasize that the order condition is a condition on the market primitives, namely, school

capacities and priorities and student preferences (though checking whether it holds involves investi-

gating the output of RLDA). We may interpret the order condition as an indication that the relative
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demand for the schools is consistent between the two rounds. Informally speaking, it means that

the revelation of the outside options does not change the order in which schools are overdemanded.

One important setting where the order condition holds is the case of uniform dropouts and a single

priority type. In this setting, each student independently with probability ρ either remains in the

system and retains her first-round preferences in the second round, or drops out of the system

entirely; student first-round preferences and school capacities are arbitrary. We establish the order

condition and provide direct proofs of several of our theoretical results for this setting in Section 4,

in order to give a flavor of the arguments employed to establish our results in the general setting.

To compare the allocative efficiency of different mechanisms, we define type-equivalence of as-

signments. In words, two second-round assignments are type-equivalent if the masses of different

student types θ assigned to each school are the same across the two assignments.

Definition 13. Two second-round assignments µ̂ and µ̂′ are said to be type-equivalent if

η({λ ∈ Λ : θλ = θ, µ̂(λ) = si}) = η({λ ∈ Λ : θλ = θ, µ̂′(λ) = si}) ∀θ ∈ Θ and si ∈ S.

In our continuum model, if two two-round mechanisms produce type-equivalent second-round

assignments we may equivalently interpret them as providing each individual student of type θ with

the same ex ante distribution (before lottery numbers are assigned) over assignments.

Our first main result is the surprising finding that all PLDAs are allocatively equivalent.

Theorem 1 (Order condition implies type-equivalence). If the order condition (Definition 12)

holds, all PLDA mechanisms produce type-equivalent second-round assignments.

Thus, if the order condition holds, the measure of students of type θ ∈ Θ assigned to each school

in the second round is independent of the the permutation P . We remark that type equivalence does

not imply an equal (or similar) amount of reassignment (e.g., see Figure 1), as type-equivalence

depends only on the second-round assignment, while reassignment (Definition 2) measures the

difference between the first- and second-round assignments. This brings us to our second result.

Theorem 2 (Reverse lottery minimizes reassignment). If all PLDA mechanisms produce type-

equivalent second-round assignments, then RLDA minimizes the measure of reassigned students

among PLDA mechanisms.

Proof of Theorem 2. Fix θ = (�θ, �̂θ, pθ) ∈ Θ and si ∈ S. We show that, among all type equivalent

mechanisms, RLDA minimizes the measure of students with type θ who were reassigned to si, as

it never reassigns both a student of type θ into a school si and another student of type θ out of si.
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Formally, for every permutation P , let the measures of students with type θ leaving and entering

school si in the second round under PLDA(P ) be denoted by `P = η({λ ∈ Λ : θλ = θ, µ(λ) =

si, µ̂
P (λ) 6= si}) and eP = η({λ ∈ Λ : θλ = θ, µ(λ) 6= si, µ̂

P (λ) = si}) respectively. Due to type-

equivalence, there is a constant c, independent of P , such that `P = eP − c. We will show that

eR ≤ eP for all permutations P , specifically by showing that either `R = 0 and eR = c, or eR = 0.

If both eR > 0 and `R > 0, then students of type θ who entered si in the second round of RLDA

had worse first- and second-round lottery numbers than students who left si in the second round

of RLDA, which contradicts the reversal of the lottery. Formally, suppose eR > 0 and `R > 0. If

sN+1�̂θsi then eR = 0, so we may assume si�̂θsN+1. Since eR > 0, there exists some student λ ∈ Λ

with type θλ = θ for whom si = µ̂R(λ)�̂θµ(λ). Since `R > 0, there exists λ′ ∈ Λ with type θλ
′

= θ

for whom sj = µ̂R(λ′)�̂θµ(λ′) = si. By consistency, we have si �θ µ(λ), and therefore λ wished

to be assigned to µ(λ′) in the first round and hence L(λ′) > L(λ). Note that since si�̂θsN+1, it

follows that sj�̂θsi�̂θsN+1. Now, since λ′ received a better second-round assignment under RLDA

than λ and both λ and λ′ were reassigned under RLDA, it follows that R(L(λ′)) > R(L(λ)), which

is a contradiction. Since eP = `P + c ≥ c and eP ≥ 0 this completes the proof.

Our results present a strong case for using the centralized RLDA mechanism when the main

goals are to achieve allocative efficiency and minimize the number of reassigned students. Theorems

1 and 2 show that when the order condition holds, centralized RLDA is unequivocally optimal in

the class of PLDA mechanisms, since all PLDA mechanisms give type-equivalent assignmentsand

centralized RLDA minimizes the number of reassigned students. In addition, we remark that the

order condition can be checked easily by running RLDA (e.g., on historical data).14

Next, we give examples of when the order condition holds and does not hold, and illustrate the

resulting implications for type-equivalence. We illustrate these in Figure 3.

Example 1. There are N = 2 schools, each with a single priority group. School s1 has lower

capacity and is initially more overdemanded. Student preferences are such that when all students

who want only s2 drop out the order condition holds, and when all students who want only s1 drop

out, then s2 becomes more overdemanded under RLDA and the order condition does not hold.

School capacities are given by q1 = 2, q2 = 5. There is measure 4 of each of the four types of

14We are not suggesting that the mechanism should involve checking the order condition and then using centralized
RLDA only if this condition is satisfied (based on the guarantee in Theorems 1 and 2). However, one could check
whether the order condition holds on historical data and accordingly decide whether to use the centralized RLDA
mechanism or not.
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first-round student preferences. Let θi denote the student type that finds only school si acceptable,

and let θi,j denote the type that finds both schools acceptable and prefers si to sj. (We will define the

second round preferences of each student type below; each type will either leave the system completely

or keep the same preferences.) If we run DA-STB, the first-round cutoffs are (C1, C2) =
(

3
4 ,

1
2

)
.

Suppose that all type θ2 students leave the system, and all students of other types stay in the

system and keep the same preferences as in the first round. This frees up 2 units at s2. Under

RLDA, the second-round cutoffs are
(
ĈR1 , Ĉ

R
2

)
=
(
1, 3

4

)
. In this case, the order condition holds

and FLDA and RLDA are type-equivalent. It is simple to verify that both FLDA and RLDA assigns

measure µ̂(s) of students of type (θ1, θ1,2, θ2,1) to school s, where

µ̂F = µ̂R = (µ̂(s1), µ̂(s2)) = ((1, 1, 0), (0, 2, 3)) .

Suppose that all type θ1 students leave the system, and all students of other types stay in the

system and keep the same preferences as in the first round. This frees up 1 unit at s1. Under

RLDA, no new students are assigned to s2, and the previously bottom-ranked (but now top-ranked)

measure 1 of students who find s1 acceptable are assigned to s1. Hence the second-round cutoffs are(
ĈR1 , Ĉ

R
2

)
=
(

7
8 , 1
)
. In this case, the order condition does not hold. Type equivalence also does not

hold, since the FLDA and RLDA assignments are

µ̂F = ((2, 0, 0), (1/3, 7/3, 7/3)) , µ̂R = ((1.5, 0.5, 0), (1, 2, 2)) .

3.1 Axiomatic Justification of PLDA Mechanisms

We have shown that PLDA mechanisms satisfy a number of desirable properties. Namely, PLDA

mechanisms respect guarantees and priorities, and are two-round strategy-proof (in a strong sense),

non-wasteful, constrained Pareto efficient, and anonymous. In this section, we show that in a setting

with a single priority class the PLDA mechanisms are the only mechanisms that satisfy all these

properties as well as two mild technical conditions on the symmetry of the mechanism, even when

we require only the weaker version of two-round strategy-proofness.

Definition 14. A two-round mechanism satisfies the averaging axiom if for every type θ and pair

of schools (s, s′) the randomization of the mechanism does not affect the measure of students with

type θ assigned to (s, s′) in the first and second rounds, respectively. That is, for all θ, s, s′, there

exists a constant cθ,s,s′ such that η({λ ∈ Λ : θλ = θ, µ(λ) = s, µ̂(λ) = s′}) = cθ,s,s′ w.p. 1.

Definition 15. A two-round mechanism is non-atomic if any single student changing her prefe-

rences has no effect on the assignment probabilities of other students.

Our characterization result is the following.
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Figure 3: In Example 1, FLDA and RLDA are type-equivalent when the order condition holds, and
give different assignments to students of every type when the order condition does not hold.

The initial economy and first-round assignment are depicted on the top left. On the right, we show the

second-round assignments under FLDA and RLDA when type θ2 students (who want only s2) drop out, and

when type θ1 students (who want only s1) drop out. Students toward the left have larger first round lottery

numbers. The patterned boxes above each column of students indicate the affordable sets for students in

that column. When students who want only s2 drop out, the order condition holds, and FLDA and RLDA

are type-equivalent. When students who want only s1 drop out, s2 becomes more overdemanded in RLDA,

and FLDA and RLDA give different ex ante assignments to students of every remaining type.

Theorem 3. Suppose that student preferences are consistent and student types have full support

(Assumptions 1 & 2). A non-atomic two-round assignment mechanism with first round DA-STB

respects guarantees and is: non-wasteful, (weakly) two-round strategy-proof; constrained Pareto

efficient; anonymous; and averaging, if and only if the second-round assignment is given by PLDA.

We remark that we require two-round strategy-proofness only for students whose true preference

type is consistent. This is because preference inconsistencies across rounds can lead to conflicts

between the desired first-round assignment with respect to first-round preferences and the desired

first-round guarantee with respect to second-round preferences, making it unclear how to even

define a best response. Moreover, it is reasonable to assume that students who are sophisticated

enough to strategize about misreporting in the first round in order to affect the guarantee structure

in the second round will also know their second-round preferences over schools in S (i.e., everything

except where they rank their outside option) at the beginning of the first round, and hence will

have consistent preferences.15 We remark also that the ‘only if’ direction of this result is the only

15One obvious objection is that students may also obtain extra utility from staying at a school between rounds,
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place where we require the full support assumption (Assumption 2).

The main focus of our result is the effect of cross-round constraints. By assumption, the first-

round mechanism is DA-STB. It is relatively straightforward to deduce that the second-round

mechanism also has to be DA-STB. Strategy-proofness in the second round, together with non-

wastefulness, respecting priorities and guarantees, and anonymity, constrain the second round to

be DA, with each student given a guarantee at the school she was assigned to in the first round, and

constrained Pareto efficiency forces the tiebreaking to be in the same order at all schools. The cross-

round constraints are more complicated, but can be understood using affordable sets. A student’s

affordable set is the set of schools that she can choose to attend, i.e., the first-round affordable set

is the set of schools for which she meets the first-round cutoff, and the affordable set is the set of

schools for which she meets the first- or second-round cutoff. The set of possible affordable sets is

uniquely determined by the order of cutoffs. By carefully using two-round strategy-proofness and

anonymity, we show that a student’s preference type does not affect the joint distribution over her

first-round affordable set and affordable set, and hence her second-round lottery is a permutation

of her first-round lottery that does not depend on her preference type.

Our result mirrors similar large market cutoff characterizations for single-round mechanisms by

Liu and Pycia (2016) and Ashlagi and Shi (2014), which show, in settings with a single and multiple

priority types respectively, that a mechanism is non-atomic, strategy-proof, symmetric, and efficient

(in each priority class) if and only if it can be implemented by lottery-plus-cutoff mechanisms, which

provide random lottery numbers to each student and admit them to their favorite school for which

they meet the admission cutoff. We obtain such a characterization in a two-round setting using the

fact that the mechanism respects guarantees and introducing an affordable set argument to isolate

the second round from the first. This simplification allows us to employ arguments similar to those

used in Liu and Pycia (2016) and Ashlagi and Shi (2014) to show that the first- and second-round

mechanisms can be individually characterized using lottery-plus-cutoff mechanisms.

or, equivalently, they may have a disutility for moving, creating inconsistent preferences where the school they are
assigned to in the first round becomes preferred to previously more desirable schools. We remark that Theorem 3
extends to the case of students whose preferences incorporate additional utility if they stay put, provided that the
utility is the same at every school for a given student or satisfies a similar non-crossing property.
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4 Intuition for Main Results

In this section, we provide some intuition for our main results, and furnish full proofs for a special

case of our model to give the interested reader a taste of the general proof techniques in a more

transparent setting. This section may be skipped at a first reading without loss of continuity.

We begin with some definitions and intuition for our general results. A key insight is that we

simplify analysis by shifting away from assignments, which depend on preferences, to considering

the schools that a student can attend, which are independent of her preferences. Specifically, if we

define the affordable set for each student as the set of schools for which she meets either the first-

or second-round cutoffs, then each student is assigned to her favorite school in her affordable set at

the end of the second round, and changing the student’s preferences does not change her affordable

set in our continuum model. Moreover, affordable sets and preferences uniquely determine demand.

The main technical idea that we use in establishing our main results is that the order condition

is equivalent to the following seemingly much more powerful “global” order condition.

Definition 16. We say that PLDA(P ) satisfies the local order condition on a set of primitives

(S, q,Λ, η) if, for every priority class π, the first- and second-round school cutoffs within that priority

class are in the same order under PLDA(P ). That is, for all si, sj ∈ S,

Cπ,i > Cπ,j ⇒ ĈPπ,i ≥ ĈPπ,j .

We say that the global order condition holds on a set of primitives (S, q,Λ, η) if:

1. (Consistency aross rounds) PLDA(P ) satisfies the local order condition on (S, q,Λ, η) ∀P ;

2. (Consistency aross permutations) For every priority class π, for all pairs of permutations

P, P ′ and schools si, sj ∈ S ∪ {sN+1}, it holds that ĈPπ,i > ĈPπ,j ⇒ ĈP
′

π,i ≥ ĈP
′

π,j.

In other words, the global order condition requires that all PLDA mechanisms result in the same

order of school cutoffs in both rounds. Surprisingly, if the cutoffs are in the same order in both

rounds under RLDA, then they are in the same order in both rounds under any PLDA.

Theorem 4. The order condition (Definition 12) holds for a set of primitives (S, q,Λ, η) if and

only if the global order condition holds for (S, q,Λ, η).

We provide some intuition as to why Theorem 4 holds by using the affordable set framework.

Under the reverse permutation, the sets of schools that enter a student’s affordable set in the first

and second rounds respectively are maximally misaligned. Hence, if the cutoff order is consistent
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across both rounds under the reverse permutation, then the cutoff order should also be consistent

across both rounds under any other permutation.

The affordable set framework also sheds some light on the power of the global order condition.

Fix a mechanism and suppose that the first- and second-round cutoffs are in the same order. Then

each student λ’s affordable set is of the form Xi = {si, si+1, . . . , sN} for some i = i(λ), where

schools are indexed in decreasing order of their cutoffs for the relevant priority group pθ
λ
, and the

probability that a student receives some affordable set is independent of her preferences. Moreover,

since affordable sets are nested X1 ⊇ X2 ⊇ · · · ⊇ XN , and since the lottery order is independent

of student types, the demand for schools is uniquely identified by the proportion of students whose

affordable set contains si for each i. When the global order condition holds, this is true for every

PLDA mechanism individually, which provides enough structure to induce type-equivalence.

We now introduce a special case of our model. For this special case, we will prove that the

order condition holds, and show that all PLDA mechanisms give type-equivalent assignments.

Definition 17. (Informal) A market satisfies uniform dropouts if there is exactly one priority

group at each school, students leave the system independently with some fixed probability ρ, and the

students who remain in the system retain their preferences.

Before formalizing the definition and results for this setting, we provide some intuition for why

the global order condition always holds under uniform dropouts. In the uniform dropouts model,

each student drops out of the system with probability ρ, e.g. due to leaving the city after the first

round for reasons that are independent of the school choice system. The second-round problem

can thus be viewed as a rescaled version of the first-round problem; in particular, the measure of

remaining students who were assigned to each school si in the first round is (1− ρ)qi, the measure

of students of each type θ assigned to each school is scaled down by 1 − ρ, the capacity of each

school is still qi, and the measure of students of each type θ who are still in the system is scaled

down by 1− ρ. Thus schools fill in the same order regardless of the choice of permutation.

Let us now formalize our definitions and results. Throughout the rest of this section, since

there are no priorities, we will let student types be defined either by θ = (�θ, �̂θ,1) or simply by

θ = (�θ, �̂θ). We define uniform dropouts with probability ρ by

ζ({θ = (�θ, �̂θ) ∈ Θ :�θ=�, �̂θ = sN+1 � . . .}) = ρζ({θ = (�θ, �̂θ) ∈ Θ :�θ=�}),

ζ({θ = (�θ, �̂θ) ∈ Θ :�θ=�, �̂θ =�}) = (1− ρ)ζ({θ = (�θ, �̂θ) ∈ Θ :�θ=�}) , (3)
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i.e. all students with probability ρ find the outside option sN+1 the most attractive in the second

round, and otherwise retain the same preferences in the second round.16

We show first that the global order condition (Definition 16) holds in the setting with uniform

dropouts. The high level steps and algebraic tools used in this proof are similar to those used to

show that the order condition is equivalent to the global order condition in our general framework

(Theorem 4), although the analysis in each step is greatly simplified. We provide some intuition as

to the differences in this section, and furnish the full proof of Theorem 4 in the Appendix.

Theorem 5. In any market with uniform dropouts (Definition 17), the global order condition

(Definition 16) holds.

Proof of Theorem 5. The main steps in the proof are as follows: (1) Assuming that every student’s

affordable set is Xi for some i, for every school sj , guess the proportion of students who should

receive an affordable set that contains sj . (2) Calculate the corresponding second-round cutoffs C̃j

for school sj . (3) Show that these cutoffs are in the same order as the first-round cutoffs. (4) Use

the fact that the cutoffs are in the same order to verify that the cutoffs are market-clearing, and

deduce that the constructed cutoffs are precisely the PLDA(P ) cutoffs.

Throughout this proof, we amend the second-round score of a student λ under PLDA(P ) to be

r̂λi = P (L(λ)) +1{L(λ)≥Ci}, meaning that we give each student a guarantee at any school for which

she met the cutoff in the first round. By consistency of preferences, it is easily seen that this has no

effect on the resulting assignment or cutoffs. Let the first-round cutoffs be C1, C2, . . . , CN , where

without loss of generality we index the schools such that C1 ≥ C2 ≥ · · · ≥ CN .

(1) In the setting with uniform dropouts, since the second-round problem is a rescaled version of

the first-round problem (with a (1− ρ) fraction of the original students remaining), we guess that

we want the proportion of students with an affordable set containing sj to be 1
1−ρ times the original

proportion. (In the general setting, we no longer have a rescaled problem and so we instead guess

that the proportion of students with each affordable set is the same as that under RLDA.)

(2) We translate this into cutoffs. Let fPi (x) = |{l : l ≥ Ci or P (l) ≥ x}| be the proportion of

students who receive school si in their (second-round) affordable set with the amended second-

round scores under permutation P if the first- and second-round cutoffs are Ci and x respectively.

Notice that fi(x) is non-increasing for all i, fi(0) = 1, fi(1) = 1 − Ci, and if i < j then fi(x) ≤
16We remark that there is a well-known technical measurability issue w.r.t. a continuum of random variables, and

that this issue can be handled; see, for example, Al-Najjar (2004).
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fj(x) for all x ∈ [0, 1]. Let the cutoff C̃Pi ∈ [0, 1] be the minimal cutoff satisfying the equation

fi(C̃
P
i ) = 1

1−ρ(1 − Ci), and let C̃Pi = 0 if Ci < ρ. (In the general setting the cutoffs are defined

using the same functions fPi (·) with the proportions being equal to those that arise under RLDA,

as mentioned in step (1) above.)

(3) We now show that the cutoffs C̃ are in the right order. Suppose that i < j. If C̃Pi = 0

then Cj ≤ Ci ≤ ρ and so C̃Pj = 0 ≤ C̃Pi as required. Hence we may assume that C̃Pi , C̃
P
j > 0.

In this case, since fj(·) is non-increasing and C̃Pj is minimal, we can deduce that C̃Pj ≤ C̃Pi if

fj

(
C̃Pj

)
≥ fj

(
C̃Pi

)
. It remains to establish the latter. Using the definition of fj and fi, we have

fj

(
C̃Pi

)
= fi

(
C̃Pi

)
+
∣∣∣{l : l ∈ [Cj , Ci), P (l) < C̃Pi

}∣∣∣
≤ 1

1− ρ
(1− Ci) + (Ci − Cj) ≤

1

1− ρ
(1− Cj) = fj

(
C̃Pj

)
,

where both inequalities hold since Cj ≤ Ci. It follows that C̃Pi ≥ C̃Pj , as required. (In the general

setting, since we cannot give closed form expressions for the proportions fi

(
C̃Pi

)
in terms of the

cutoffs Ci, this step requires using the intermediate value theorem and an inductive argument.)

(4) We now show that C̃P is the set of market-clearing DA cutoffs for the second round of PLDA(P ).

Note that γi = Ci−1−Ci is the proportion of students whose first-round affordable set is Xi (where

C0 = 1). Since dropouts are uniform at random, this is the proportion of such students out of the

total number of remaining students both before and after dropouts.

Consider first the case C̃Pi > 0. Now fi

(
C̃Pi

)
is the proportion of students whose second-round

affordable set contains si, and since C1 ≥ C2 ≥ · · · ≥ CN and C̃P1 ≥ C̃P2 ≥ · · · ≥ C̃PN , it follows that

the affordable sets are nested. Hence the proportion of students (of those remaining after students

drop out) whose second-round affordable set is Xi is given by (where f0(·) ≡ 1)

γPi = fi

(
C̃Pi

)
− fi−1

(
C̃Pi−1

)
=
Ci−1 − Ci

1− ρ
=

γi
1− ρ

.

For each θ = (�,�) and set of schools S, let Dθ(S) be the maximal school in S under �, and let

θ′ = (�, �̂) be the student type consistent with θ that finds all schools unacceptable in the second

round. Then a set of students of measure∑
j≤i

∑
θ∈Θ:Dθ(Xj)=i

γPj ζ(θ) =
∑
j≤i

γj
∑

θ∈Θ:Dθ(Xj)=i

ζ(θ)

1− ρ
=
∑
j≤i

γj
∑

θ∈Θ:Dθ(Xj)=i

ζ(θ) + ζ(θ′)

choose to go to school si in the second round under the second-round cutoffs C̃P . We observe

that the expression on the right gives the measure of the set of students who choose to go to school

si in the first round under first-round cutoffs C.

In the case where C̃Pi = 0 the above expressions give upper bounds on the measure of the set

of students who choose to go to school si in the second round under the second-round cutoffs C̃P .
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Since C are market-clearing cutoffs, and C̃Pi > 0⇒ CPi > 0, it follows that C̃P are market-clearing

cutoffs too. We have shown that in PLDA(P ), the second-round cutoffs are exactly the constructed

cutoffs C̃P and they satisfy C̃P1 ≥ · · · ≥ C̃PN , and so the global order condition holds.

The general proof of Theorem 4 uses the cutoffs for RLDA in steps (1) and (2) above to guess

the proportion of students who receive an affordable set that contains sj , and requires that each

student priority type be carefully accounted for. However, the general structure of the proof is

similar, and the tools used are straightforward generalizations of those used in the proof above.

Under uniform dropouts all PLDA mechanisms give type-equivalent assignments.

Proposition 2. In any market with uniform dropouts (Definition 17), all PLDA mechanisms

produce type-equivalent assignments.

Proof. The proposition follows immedately from the fact that the proportion γPi of students whose

second-round affordable set is Xi does not depend on P .

Specifically, consider first the case when all schools reach capacity in the second round of PLDA.

We showed in the proof of Theorem 5 that for all i and all student types θ, the proportion of students

of type θ with affordable set Xi in the second round under PLDA(P ) is given by γPi = γi
1−ρ , where

γi is the proportion of students of type θ with affordable set Xi in the first round. It follows that

all PLDAs are “type-equivalent” to each other because they are type-equivalent to the first-round

assignment in the following sense. For each preference order �, let �̃ be the preferences obtained

from � by making the outside option the most desirable, i.e., sN+1�̃ · · · . Then

η({λ ∈ Λ : θλ = (�,�), µ̂P (λ) = si}) =
1

1− ρ
η({λ ∈ Λ : θλ = (�,�), µ(λ) = si})

= η({λ ∈ Λ : θλ ∈ {(�,�), (�, �̃)}, µ(λ) = si}),

where the second equality holds since students stay in the system uniformly-at-random with

probability 1 − ρ. Under uniform dropouts this holds for all student types that remain in the

system, and so it follows that µ̂P is type-equivalent to µ̂P
′

for all permutations P, P ′.

When some school does not reach capacity in the second round, we can show by induction on

the number of such schools that all PLDAs are type-equivalent to RLDA.

Remark. Most of the results of this section extend to the following generalization of the

uniform dropouts setting. A market satisfies uniform dropouts with inertia if there is exactly one

priority group at each school, students leave the system independently with some fixed probability
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ρ, remain and wish to stay at their first round assignment with some fixed probability ρ′ (have

‘inertia’), and otherwise remain and retain their first round preferences.17 It can be shown that in

such a market, the global order condition always holds, and RLDA minimizes reassignment amongst

all type-equivalent allocations. Moreover, if all students are assigned in the first round, it can also

be shown that PLDA mechanisms produce type-equivalent allocations.

5 Empirical Analysis of PLDA Mechanisms

In this section, we use data from the New York City (NYC) high school choice system to simulate

and evaluate the performance of centralized PLDA mechanisms under different permutations P .

The simulations indicate that our theoretical results are real-world relevant. Different choices of

P are found to yield similar allocative efficiency: the number of students assigned to their k-th

choice for each rank k, as well as the number of students remaining unassigned, are similar for

different permutations P . At the same time, the difference in the number of reassigned students is

significant and is minimized under RLDA.

Motivated by current practice, we also simulate decentralized versions of FLDA and RLDA.

In a version where students take time to vacate previously assigned seats, reversing the lottery

increases allocative efficiency during the early stages of reassignment and decreases the number of

reassignments at every stage. However, in a version where students take time to decide on offers

from the waitlist, the efficiency comparisons are reversed.18 In both versions both FLDA and RLDA

took tens of stages to converge. Our simulations suggest that decentralized waitlist mechanisms

can achieve some of the efficiency gains of a centralized mechanism but incur significant congestion

costs, and the effects of reversing the tie-breaking order before constructing waitlists will depend

on the specific time and informational constraints of the market.

5.1 Data

We use data from the high school admissions process in NYC for the academic years 2004–2005,

2005–2006, and 2006–2007, as follows.

17This market is slightly beyond the scope of our general model, as the type of the student now also has to encode
second-round preferences that depend on the first-round assignment, namely whether they have inertia.

18This is due to a phenomenon that occurs when the second round is decentralized (not captured by our theoretical
model), where under the reverse lottery the students with the worst lottery in the first round increase the waiting
time for other students in the second round by increase the waiting time for other students in the second round by
considering multiple offers off the waitlist that they eventually decline.
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First-round preferences. In our simulation, we take the first-round preferences � of every

student to be the preferences they submitted in the main round of admissions. The algorithm

used in practice is essentially strategy-proof (see Abdulkadiroglu et al., 2005a), justifying our

assumption that reported preferences are true preferences.19

Second-round preferences. In our simulation, students either drop out of the system entirely

in the second round or maintain the same preferences. Students are considered to drop out if the

data does not record them as attending any public high school in NYC the following year (this was

the case for about 9% of the students each year).20

School capacities and priorites. Each school’s capacity is set to the number of students assigned

to it in the first-round assignment in the data. This is a lower bound on the true capacity, but lets

us compute the final assignment under PLDA with the true capacities, since the occupancy of each

school with vacant seats decreases across rounds in our setting. School priorities over students are

obtained directly from the data. (We obtain similar results in simulations with no school priorities.)

5.2 Simulations

In a setting with a finite number of students, DA-STB uses an iterative process of student applica-

tion and school tentative acceptance to assign students according to student preferences and school

preference rankings after tie-breaking, as described in Section 2.2. PLDA mechanisms are reassig-

nment mechanisms that run DA-STB with modified school preferences p̂ in the second round: for

each school si, students λ ∈ Λ for whom µ(λ) = si are given additional priority ni at school si to

produce updated priorities p̂, and ties within the updated priority groups p̂ are broken according

to the permuted lottery P ◦ L (in favor of the student with the larger permuted lottery number).

Centralized PLDA. We first consider the following family of centralized PLDA mechanisms,

parameterized by a single parameter α that smoothly interpolates between RLDA and FLDA. Each

student λ receives a uniform i.i.d. first-round lottery number L(λ) (a normal variable with mean 0

and variance 1), which generates a uniformly random lottery order.21 The second-round ‘permuted

19The algorithm is not completely strategy-proof, since students may rank no more than 12 schools. However,
only a very small percentage of students rank 12 schools. Another issue is that there is some empirical evidence that
students do not report their true preferences even in school choice systems with strategy-proof mechanisms; see, e.g.,
Hassidim et al. (2015) and Narita (2016).

20For a minority of the students (9.2%− 10.45%), attendance in the following year could not be determined by our
data, and hence we assume they drop out randomly at a rate equal to the dropout rate for the rest of the students
(8.9%− 9.2%).

21School preferences are then generated by considering students in the lexicographical ordering first in terms of
priority, then by lottery number. We may equivalently renormalize the set of realized lottery numbers to lie in the

28



lottery’ of λ is given by αL(λ) + L̃(λ), where L̃(λ) is a new i.i.d. normal variable with mean 0

and variance 1, and α is identical for all the students. RLDA corresponds to α = −∞ and FLDA

corresponds to α =∞. For a fixed real α, every realization of second-round scores corresponds to

some permutation of first-round lottery numbers, with α roughly capturing the correlation of the

second-round order with that of the first round. We quote averages across simulations.

Decentralized PLDA. In order to evaluate the performance of waitlist systems, we also ran

simulations using two versions of decentralized PLDA with second rounds run in multiple “stages”:

Version 1. At stage `, school si has residual capacity q̃`i equal to the number of students previously

assigned to school si who rejected school si in the previous stage (and q̃1
i is the number of students

assigned to school si in the first round who dropped out of the system). Each school si proposes to

the top q̃`i students on their waitlist (including students who dropped out) and removes them from

the waitlist, students who dropped out reject all offers, and all remaining students are (tentatively)

assigned to their favorite school that offered them a seat in the first round or in the second round

thus far and reject the rest. The stages of reassignment continue until there are no new proposals.

Version 2. At stage `, school si has residual capacity q̃`i equal to the number of students previously

assigned to school si who rejected school si in the previous stage (and q̃`1 is the number of students

assigned to school si in the first round who dropped out of the system). We run DA-STB on the

residual economy where each school si has capacity q̃`i and each student only finds schools strictly

better than their current assignment acceptable.22 This results in some students being reassigned

and new residual capacities for stage `+ 1, equal to the sum of the number of unfilled seats at the

end of stage ` and the number of students who left the school due to an upgrade in stage `. The

stages of reassignment continue until there are no new proposals.

Version 1 of the decentralized PLDA mechanisms mirrors a decentralized process where students

take time to make decisions. However, it does so in a rather naive fashion by assuming that students

take the same amount of time to accept an offer, to reject an offer, or to inform a school that they

were previously assigned to that they have been assigned to a different school. Version 2 captures a

decentralized process where students also take time to both make and communicate decisions, but

take much longer to tell schools that they were previously assigned to that they have been assigned

to a different school. Accordingly the efficiency outcomes at a given stage of version 2 dominate

interval [0, 1] before computing scores.
22We provide results using school-proposing DA, as this more closely mirrors the structure of waitlist systems.

Results using student-proposing DA were similar.
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Figure 4: Number of reassigned students versus α. The number of reassigned students under the
extreme values of α, namely, α =∞ (FLDA) and α = −∞ (RLDA), are shown via dotted lines.

those of version 1 at the same stage, as more information is communicated during each stage.

Version 2 simulations a setting where the main driver behind congestion is chains of student

reassignment. Version 2 is more realistic in settings where schools are the primary drivers behind

updated information, since a school is much more likely to ask for decisions from students who are

undecided about an offer from the school rather than from students who have already accepted

an offer from the school. In many school districts information about previously assigned students

being reassigned to other schools is processed centrally, and it is also reasonable to assume that this

would occur on a slower timescale than rejections of offers. In practice we expect that the dynamics

of waitlist systems would lie somewhere on the spectrum between these two extreme versions of

decentralized PLDA.

5.3 Results

The results of our centralized PLDA computational experiments based on 2004–2005 NYC high

school admissions data appear in Table 1 and Figure 4. Results for 2005–2006 and 2006–2007 were

similar. Figure 4 shows that the mean number of reassignments is minimized at α = −∞ (RLDA)

and increases with α, which is consistent with our theoretical result in Theorem 2. The mean

number of reassignments is as large as 7,800 under FLDA compared to just 3,400 under RLDA.

Allocative efficiency appears not to vary much across values of α: the number of students recei-

ving at least their k-th choice for each 1 ≤ k ≤ 12, as well as the number of unassigned students,
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α Reassignments Unassigned k = 1 k ≤ 2 k ≤ 3
# % % % %

Round 1 (No Reassignment) 0 9.31 50.14 64.14 72.44
Round 2

FLDA: ∞ 7797 5.89 55.41 69.85 78.03
8.00 7606 5.90 55.40 69.85 78.02
6.00 7512 5.90 55.40 69.85 78.03
4.00 7325 5.89 55.38 69.84 78.02
2.00 6863 5.89 55.33 69.81 78.02
0.00 5220 5.87 54.96 69.65 77.97

-2.00 3686 5.81 54.52 69.37 77.82
-4.00 3480 5.79 54.47 69.33 77.78
-6.00 3433 5.79 54.46 69.32 77.77
-8.00 3416 5.79 54.45 69.31 77.77

RLDA: −∞ 3391 5.79 54.45 69.30 77.75

Table 1: Centralized PLDA simulation results: 2004–2005 NYC high school admissions.

We show the mean percentage of students remaining unassigned or getting at least their kth choice, averaged

across 100 realizations for each value of α. All percentages are out of the total number of students remaining

in the second round. The data contained 81,884 students, 74,366 students remaining in the second round,

and 652 schools. The percentage of students who dropped out was 9.18%. The variation in the number of

reassignments across realizations was only about 100 students.

vary by less than 1% of the total number of students. There is a slight trade-off between alloca-

tive efficiency due to reassignment and allocative efficiency from assigning previously unassigned

students, with the percentage of unassigned students and percentage of students obtaining their

top choice both decreasing in α by about 0.1% and 1% of students respectively.23 We further find

that for most students, the likelihoods of getting one of their top k choices under FLDA and under

RLDA are very close to each other. (For instance, for 87% of students, these likelihoods differ by

less than 3% for all k.) This is consistent with what we would expect based on our theoretical

finding of type-equivalence (Theorem 1) of the final assignment under different PLDA mechanisms.

The results of our decentralized PLDA computation experiments appear in Table 2. When

implementing PLDAs in a decentralized fashion, our measures of congestion can be more nuanced.

We let a reassignment be a movement of a student from a school in S to a different school in

S, possibly during an interim stage of the second round, and let a temporary reassignment be a

movement of a student from a school in S ∪ {sN+1} to a different school in S that is not their final

assignment. We will also be interested in the number of stages it takes to clear the market.

In the first version of decentralized PLDAs, FLDA reassigns more students than RLDA but far

23Intuitively, prioritizing students with lower lotteries both decreases the number of unassigned students and
decreases allocative efficiency by artificially increasing the constraints from providing first-round guarantees.
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α Reassignments Unassigned k = 1 k ≤ 2 k ≤ 3
# total (# temporary) % % % %

Round 1 (No Reassignments) 0 9.31 50.14 64.17 72.45

Round 2 FLDA, Version 1

Stage 1 3461 (447) 7.89 52.68 66.62 74.47
Stage 2 2126 (206) 7.04 53.93 68.03 76.14
Stage 3 1258 (80) 6.55 54.60 68.83 76.96
Stage 4 727 (30) 6.27 54.97 69.28 77.42
Stage 5 425 (11) 6.11 55.18 69.53 77.68

Total (Stage ≈ 17) 8590 (780) 5.87 55.46 69.87 78.05

Round 2 RLDA, Version 1

Stage 1 1004 (835) 7.85 51.38 65.70 74.09
Stage 2 1077 (577) 7.18 52.24 66.72 75.15
Stage 3 838 (369) 6.78 52.82 67.39 75.83
Stage 4 640 (234) 6.52 53.23 67.86 76.30
Stage 9 180 (24) 5.97 54.22 69.02 77.45

Total (Stage ≈ 33) 5818(2419) 5.79 54.51 69.37 77.80

Round 2 FLDA, Version 2

Stage 1 4139 (457) 7.62 53.21 67.14 75.21
Stage 2 2333 (166) 6.69 54.50 68.66 76.75
Stage 3 1137 (42) 6.24 55.06 69.35 77.48
Stage 4 511 (9) 6.03 55.30 69.65 77.80

Total (Stage ≈ 12) 8503 (677) 5.89 55.47 69.87 78.04

Round 2 RLDA, Version 2

Stage 1 2863 (199) 6.15 54.14 68.85 77.24
Stage 2 489 (17) 5.88 54.38 69.16 77.58
Stage 3 165 (2) 5.82 54.46 69.26 77.69
Stage 4 63 (0) 5.79 54.49 69.30 77.73

Total (Stage ≈ 9) 3624 (220) 5.79 54.51 69.33 77.76

Table 2: Decentralized PLDA simulation results: 2004–2005 NYC high school admissions.

We show the mean number of reassignments (number of movements of a student from a school in S to a

different school in S) as well as the mean number of temporary reassignments (number of movements of a

student from a school in S ∪ {sN+1} to a school in S that is not their final assignment) in parentheses. We

also show mean percentage of students remaining unassigned, or getting at least their kth choice. All figures

are averaged across 100 realizations for each value of α, and all percentages are out of the total number of

students remaining in the second round. The data contained 81,884 students, 74,366 students remaining in

the second round, and 652 schools.

outperforms RLDA in terms of minimizing congestion and maximizing efficiency. FLDA takes on

average 17 stages to converges, while RLDA requires 33. FLDA performs 780 temporary transfers

while RLDA performs 2420, creating much more unnecessary congestion. FLDA takes 2 and 5

stages to achieve 50% and 90% respectively of the total increase in number of students assigned to

their top school, whereas RLDA takes 3 and 9 stages respectively. FLDA also dominates RLDA in

terms of the number of students assigned to one of their top k choices in the first ` stages, for all

k and all `, and the percentage of unassigned students in the first ` stages for almost all small `.
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In the second version of decentralized PLDAs, FLDA still reassigns more students and now

achieves less allocative efficiency than RLDA during the initial stages of reassignment. RLDA has

fewer unassigned students by stage ` than FLDA for all `. RLDA also dominates FLDA in terms of

the number of students assigned to one of their top k choices in the first 2 stages, and achieves most

of its allocative efficiency by the second stage, improving the allocative efficiency by fewer than 100

students from that point onwards. In the limit FLDA is still slightly more efficient than RLDA,

and so for large ` FLDA achieves higher allocative welfare than RLDA after ` stages. However

FLDA also requires more stages to converge, taking on average 12 stages compared to 9 for RLDA.

Our empirical findings have mixed implications for implementing decentralized waitlists. Our

clearest finding is the benefit of centralization in reducing congestion. In most school districts

students are given up to a week to make decisions. If students take this long both to reject

undesirable offers and to vacate previously assigned seats, our simulations on NYC data suggest

that in the best case the market could take at least 4 months to clear. Even if students make

quick decisions, if it takes them a week to vacate their previously assigned seats, our simulations

suggest that the market would take at least 2 months to clear. In both cases the congestion

costs are prohibitive. If, despite these congestion costs, a school district wishes to implement

decentralized waitlists, our results suggest that the optimal permutation for the second-round

lottery for constructing waitlists will depend on the informational constraints in the market.

5.4 Strategy-proofness of PLDA

One of the aspects of the DA mechanism that makes it successful in school choice in practice is

that it is strategy-proof. While we have shown that PLDA mechanisms are two-round strategy-

proof in a continuum setting, it is natural to ask to what extent PLDA mechanisms are two-round

strategy-proof in practice. We provide a numerical upper bound on the incentives to deviate from

truthful reporting using computational experiments based on 2004–2005 NYC high school data, and

find that on average a negligible proportion of students (< 0.01%) could benefit from misreporting

within their consideration set of programs. Specifically, 0.8% of sampled students could misreport

in a potentially beneficial manner in at least one of 100 sampled lotteries, and no students could

benefit in more than 3 of 100 sampled lotteries from misreporting. Moreover for 99.8% of lotteries

the proportion of students who could successfully manipulate their report is at most 1%.24

24These upper bounds were computed as follows. Approximately 2700 students were sampled, and RLDA was run
for each of these students using 100 different sampled lotteries. For a given student, let S be the set of schools that
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6 Proposals & Discussion

Summary of findings. We have proposed the PLDA mechanisms as a class of reassignment me-

chanisms with desirable incentive and efficiency properties. These mechanisms can be implemented

with a centralized second round at the start of the school year, or with a decentralized second round

via waitlists, and a suitable implementation can be chosen depending on the timing of informa-

tion arrival and subsequent congestion in the market. Moreover, the key defining characteristic of

the mechanisms in this class, the permutation used to correlate the tie-breaking lotteries between

rounds, can be used to optimize various objectives. We propose implementing centralized RLDA

at the start of the school year, as both in our theory and in simulations on data this allows us to

maintain efficiency while eliminating the congestion caused by sequentially reassigning students,

and minimizes the number of reassignments required to reach an efficient assignment.

RLDA is practical. Reversing the lottery between rounds is simple to understand and imple-

ment. It also has the nice property of being equitable in an intuitive manner, as students who

receive a poor draw of the lottery in the first round are prioritized in the second round. This may

make RLDA more palatable to students than other PLDA mechanisms. Indeed, Random Hall, an

MIT dorm, uses a mechanism for assigning rooms that resembles the reverse lottery mechanism

we have proposed. Freshmen rooms are assigned using serial dictatorship. At the end of the year

(after seniors leave), students can claim the rooms vacated by the seniors using serial dictatorship

where the initial lottery numbers (from their first match) are reversed.25

Optimizing other objectives. Our results suggest that PLDA mechanisms are an attractive

class of mechanisms in more general settings, and the choice of PLDA mechanism will vary with

the policy goal. If, for instance, it were viewed as more equitable to allow more students to receive

(possibly small) improvements to their first-round assignment, implementing FLDA optimizes this.

Our type-equivalence result (Theorem 1) shows that when the relative overdemand for schools stays

the same this choice can be made without sacrificing allocative efficiency.

were a part of the student’s first round preferences in the data. We allowed the student to unilaterally misreport in
the first round, reporting at most one school from S in the first round instead of their true preferences. We then
counted the number of such students who by doing so could either (1) change their first-round assignment (for the
worse) but second-round assignment for the better, or (2) create a rejection cycle. This provides a provable upper
bound on the number of students who can benefit from misreporting (and possibly reordering) a subset of S in the
first round. We omit the formal details in the interest of space.

25The MIT Random Hall matching is more complicated, because sophomores and juniors can also claim the vacated
rooms, but the lottery only gets reversed at the end of freshman year. Afterward, if a sophomore switches room, her
priority drops to the last place of the queue.
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Discussion of axiomatic characterization. Our characterization for PLDA mechanisms (The-

orem 3) does not incorporate priorities. In a model with priorities, we find that natural extensions

of our axioms continue to describe PLDA mechanisms, but also include undesirable generalizations

of PLDA mechanisms. Specifically, suppose that we add an axiom requiring that for each school s,

the probability that a student who reports a top choice of s then receives it in the first or second

round is independent of their priority at other schools. This new set of axioms describes a class of

mechanisms that strictly includes the PLDA mechanisms. Characterizing the class of mechanisms

satisfying these axioms in the richer setting with school priorities remains an open question. It may

also be possible to characterize PLDA mechanisms in a setting with priorities using a different set

of axioms. We leave both questions for future research.

Finite markets. It is natural to ask what implications our results have for finite markets. Aze-

vedo and Leshno (2016) have shown that if a sequence of (large) discrete economies converges to

some limiting continuum economy with a unique stable matching (defined via cutoffs), then the

stable matchings of the discrete economies converge to the stable matching of the continuum. This

suggests that our theoretical results should approximately hold for large discrete economies. As

an example, we provide a heuristic argument for why PLDA mechanisms satisfy the “strategy-

proofness in the large” condition defined by Azevedo and Budish (2013). By definition, PLDA

mechanisms satisfy the efficiency and anonymity requirements in finite markets as well. In the se-

cond round it is clearly a dominant strategy to be truthful, and, intuitively, for a student to benefit

from a first-round manipulation, her report should affect the second-round cutoffs in a manner

that gives her a second-round assignment she would not have received otherwise. If the market is

large enough, the cutoffs will converge to their limiting values, and the probability that she could

benefit from such a manipulation would be negligible. (Indeed, in simulations on NYC high school

data, we find that the average proportion of students who can successfully manipulate their report

is < 0.01%, see Section 5.4.) A similar argument suggests that an approximate version of our

characterization result (Theorem 3) should hold for finite markets with no priorities. Our type-

equivalence result (Theorem 1) and result showing that RLDA minimizes transfers (Theorem 2)

should also be approximately valid in the large market limit.26

26Specifically, consider a sequence of markets of increasing size. If the global order condition holds in the continuum
limit, this should lead to approximate type-equivalence under all PLDAs and to RLDA approximately minimizing
transfers among PLDAs in the finite markets as market size grows. Moreover, if the order condition holds, then
in large finite economies and for every permutation P , the set of students who violate a local order condition on
PLDA(P ) will be small relative to the size of the market.
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Inconsistent preferences. Another natural question is how to deal with inconsistent student

preferences. Narita (2016) observed that in the current reapplication process in the NYC public

school system, although only about 7% of students reapplied, about 70% of these reapplicants re-

ported second-round preferences that were inconsistent with their first-round reported preferences.

Note that PLDAs allow students to report inconsistent preferences in the second round. We believe

that some of our insights remain valid if a small fraction of students have an idiosyncratic change in

preferences, or if a small number of new students enter in the second round. However, new effects

may emerge if students have arbitrarily different preferences in the two rounds. In such settings,

strategy-proofness is no longer well defined, it can be shown that the order condition is no longer

sufficient to guarantee type-equivalence and optimality of RLDA, and the relative efficiency of the

PLDA mechanisms will depend on the details of school supply and student demand.

More than two rounds. Finally, what insights do our results provide for when assignment is

done in three or more rounds? For instance, one could consider mechanisms under which the lottery

is reversed (or permuted) after a certain number of rounds and thereafter remains fixed. At what

stage should the lottery be reversed? Clearly, there are many other mechanisms that are reasonable

for this problem, and we leave a more comprehensive study of this question for future work.
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Online Appendix

A List of Notation

A.1 Model

• S = {s1, . . . , sN}: schools

• sN+1: outside option

• qi: capacity of school i

• Λ = Θ× [0, 1]: set (continuum) of students

• η: measure over Λ

• θ = (�θ, �̂θ, pθ): student types

• Θ: space of student types θ

• ζ(θ): measure of students with type θ

• L: student lottery numbers

• ni: the number of priority groups at school si

A.2 Mechanisms

• P : permutation

• µ: first-round assignment

• µ̂: second-round assignment

• µ̂P : second-round assignment from PLDA with permutation P

• C: first-round cutoffs

• Ĉ
P

: second-round cutoffs from PLDA with permutation P

• Cπ: first-round cutoffs restricted to priority class π

• Ĉ
P
π : second-round cutoffs from PLDA with permutation P restricted to priority class π
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A.3 Proof of Theorem 2

• `P = η({λ ∈ Λ : θλ = θ, µ(λ) = si, µ̂P (λ) 6= si}): the measure of students with type θ leaving

school si in the second round under PLDA with permutation P

• eP = η({λ ∈ Λ : θλ = θ, µ(λ) 6= si, µ̂P (λ) = si}): the measure of students with type θ entering

school si in the second round under PLDA with permutation P

A.4 Proofs for Uniform Dropouts (Section 4)

• ρ: probability that a student drops out

• C̃: constructed second-round cutoffs

• fPi (x): proportion of students with si in their affordable set with permutation P and first-

and second-round cutoffs (Ci, x)

• γPi : the fraction of students whose affordable set in the second round of PLDA with permu-

tation P is Xi

A.5 Notation in the Appendix

• r̂λi = P (L(λ)) + ni1{L(λ)≥Ci} + pλi 1{L(λ)<Ci}: the amended second-round score of student λ

under PLDA

• Xi = {si, . . . , sN+1}: schools (weakly) after si in the cutoff ordering

• γi: the proportion of students whose first-round affordable set is Xi

A.6 Proof of Theorems 1 and 4

• βi,j = η({λ ∈ Λ : argmax�̂λ Xj = si}): the measure of students who, when their set of

affordable schools is Xj , will choose si

• Eλ(C): the set of schools affordable for type λ in the first round under PLDA with permu-

tation P

• Êλ(ĈP ): the set of schools affordable for type λ in the second round under PLDA with

permutation P

• γPi = η({λ ∈ Λ : ÊλP (ĈP ) = Xi}): the fraction of students whose affordable set in the second

round of PLDA with permutation P is Xi

• qπ: restricted capacity vector for priority class π

• Λπ: set of students with priority class π
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• ηπ: restriction of η to students with priority class π

• Eπ = (S, qπ,Λπ, ηπ): restricted primitives for priority class π

• sσπ(i): i-th school under second-round overdemand ordering for Eπ

• C̃P : second-round cutoffs defined for PLDA with the amended second-round scores from the

RLDA cutoffs ĈR

• C̃P
π : second-round cutoffs defined for PLDA on Eπ with the amended second-round scores

from the RLDA cutoffs ĈR

• n̂: smallest index of a school affordable to everyone

A.7 Proof of Theorem 3

• sσ(i): i-th school under second-round overdemand ordering in a non-atomic mechanism M

satisfying axioms (1)–(5)

• X̃i = {sσ(i), sσ(i+1), . . . , sσ(N+1)}: schools (weakly) after sσ(i) in the second-round overdemand

ordering

• γi,j : proportion of students under the constructed PLSM whose first-round affordable set was

Xi and whose second-round affordable set was X̃j

• i(S′) = max{j : sj ∈ S′}: the maximum index of a school in S′

• Iji = [Ci, Cj ]: the first-round scores that give students first-round affordable sets

{Xj+1, Xj+2, . . . , Xi}

• ρθ(I, S′): the proportion of students with type θ who, under the mechanism M , have a

first-round score in the interval I and are assigned to a school in S′ in the second round

B PLDA for a Discrete Set of Students

In this section we formally define and show how to implement PLDA mechanisms in a discrete

setting with a finite number of students, and prove that they retain almost all the desired incentive

and efficiency properties discussed in Section 2.2.

B.1 Discrete Model

A finite set Λ = {1, 2, . . . , n} of students are to be assigned to a set S = {s1, . . . , sN} of schools.

Each student can attend at most one school. As in the continuum model, for every school si ∈ S,

let qi ∈ N+ be the capacity of school si, i.e., the number of students the school can accommodate.

Let sN+1 6∈ S denote the outside option, and assume qN+1 = ∞. For each set of students A ⊆ Λ

3



we let η(A) = |A| be the number of students in the set. As in the continuum model, each student

λ = (θλ, L(λ)) ∈ Λ has a type θλ = (�λ, �̂λ, pλ) and a first-round lottery number L(λ) ∈ [0, 1],

which encode both student preferences and school priorities. The first-round lottery numbers L(λ)

are i.i.d. random variables drawn uniformly from [0, 1] and do not depend on preferences. These

random lottery numbers L generate a uniformly random permutation of the students based on the

order of their lottery numbers.

An assignment µ : Λ→ S specifies the school that each student is assigned to. For an assignment

µ, we let µ(λ) denote the school to which student λ is assigned, and in a slight abuse of notation,

we let µ(si) denote the set of students assigned to school si. As in the continuum model, we say

that a student λ ∈ Λ is a reassigned student if she is assigned to a school in S in the second round

that is different to her first-round assignment.

B.2 PLDA Mechanisms & Their Properties

We now formally define PLDA mechanisms in a setting with a finite number of students. In order

to do so, we use the algorithmic description of DA and extend it to a two-round setting. This also

provides a clear way to implement PLDA mechanisms in practice.

We first reproduce the celebrated and widely deployed DA algorithm, and then proceed to define

PLDAs.

Definition 18. The Deferred Acceptance algorithm with single tie-breaking is a function DA
(
(�λ

, pλ)λ∈Λ, L
)

mapping the student preferences in the first round, priorities and lottery numbers into

an assignment µ constructed as follows. In each step, unassigned students apply to their most-

preferred school that has not yet rejected them. A school with a capacity of q tentatively accepts its

q highest-ranked applicants, ranked according to its priority ranking of the students with ties broken

by giving preference to higher lottery numbers L (or tentatively accepts all applicants, if fewer than

q have applied), and rejects any remaining applicants, and the algorithm moves on to the next step.

The algorithm runs until there are no new student applications, at which point it terminates and

assigns each student to her tentatively assigned school seat.

Definition 19 (Permuted Lottery Deferred Acceptance (PLDA) mechanisms). Let P be a permu-

tation of Λ. Let L be the realization of first-round lottery numbers, and let µ be the first-round

assignment obtained by running DA with lottery L. The permuted lottery deferred acceptance

mechanism associated with P (PLDA(P )) is the mechanism that then computes a second-round

assignment µ̂P by running DA on the same set of students Λ but with student preferences �̂, a

modified lottery P ◦ L, and modified priorities p̂ that give each student top priority at the school

she was assigned to in the first round. Specifically, each school si’s priorities �̂i are defined by lex-

icographically ordering the students first by whether they were assigned to si in the first round, and

then according to pi. PLDA(P ) is the two-round mechanism obtained from using the reassignment

mechanism DA
(
(�̂λ, p̂λ)λ∈Λ, P ◦ L

)
.

We now formally define desirable properties from Section 2.2 in our discrete model. We remark
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that the definitions of respecting guarantees, strategy-proofness and anonymity do not reference

school capacities and so carry over immediately. Similarly, the definitions for respecting priorities,

non-wastefulness and constrained Pareto efficiency do not require non-atomicity and so our defini-

tion of η ensures that they also carry over. For completeness, we rewrite these properties without

reference to η.

Definition 20. A two-round mechanism M respects priorities (subject to guarantees) if (i)

for every school si ∈ S and student λ ∈ Λ who prefers si to her assigned school si �̂λ µ̂(λ), we

have |µ̂(si)| = qi, and (ii) for all students λ′ such that µ̂(λ′) = si 6= µ(λ′), we have pλ
′
i ≥ pλi .

Definition 21. A two-round mechanism is non-wasteful if no student is denied a seat at a school

that has vacant seats; that is, for each student λ ∈ Λ and school si, if si�̂λµ̂(λ), then |µ̂(si)| = qi.

Let µ̂ be a second-round assignment. A Pareto-improving cycle is an ordered set of students

(λ1, λ2, . . . , λm) ∈ Λm and schools (s̃1, s̃2, . . . , s̃m) ∈ Sm such that s̃i+1�̂is̃i (where �̂i denotes the

second-round preferences of student λi, and we define s̃m+1 = s̃1), and µ̂(λi) = s̃i for all i.

Let p̂ be the second-round priorities obtained by giving each student λ a top second-round

priority p̂λi = ni at their first-round assignment µ(λ) = si (if si ∈ S) and unchanged priority

p̂λj = pλj at all other schools sj 6= si. We say that a Pareto-improving cycle (in a second-round

assignment) respects (second-round) priorities if p̂λis̃i+1
≥ p̂λi+1

s̃i+1
for all i (where we define λm+1 = λ1).

Definition 22. A two-round mechanism is constrained Pareto efficient if the second-round

assignment has no Pareto-improving cycles that respect second-round priorities.

In a setting with a finite number of students, PLDA mechanisms exactly satisfy all these pro-

perties except for strategy-proofness.

Proposition 3. Suppose student preferences are consistent. Then PLDA mechanisms respect gua-

rantees and priorities, and are non-wasteful, constrained Pareto efficient, and anonymous.

Proof. The proofs of all these properties are almost identical to those in the continuum setting.

As an illustration, we prove that PLDA is constrained Pareto efficient in the discrete setting by

using the fact that both rounds use single tie-breaking and the output is stable with respect to the

second-round priorities p̂.

Fix a Pareto-improving cycle C. Since λi is assigned a seat at a school si when she prefers

si+1 = µ(λi+1), by the stability of DA she must either be in a strictly worse priority group than

λi+1 at school si+1, or in the same priority group but have a worse lottery number. If C respects

(second-round) priorities, then it must hold that for all i that students λi and λi+1 are in the same

priority group at school si+1 and λi has a worse lottery number than λi+1. But since this holds

for all i, single tie-breaking implies that we obtain a cycle of lottery numbers, which provides the

necessary contradiction.
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Proposition 3 states that in a setting with a finite number of students, PLDA mechanisms

satisfy all our desired properties except for strategy-proofness. The following example illustrates

that in a setting with a finite number of students, PLDA mechanisms may not satisfy two-round

strategy-proofness. The intuition is that without non-atomicity, students are able to manipulate the

first-round assignments of other students to change the guarantees, and hence change the second-

round stability structure. In some cases in small markets, students are able to change the set of

stable outcomes to benefit themselves.

Example 2 (PLDA with finite number of students is not strategy-proof.). Consider a setting with

N = 2 schools and n = 4 students. Each school has capacity 1 and a single priority class. For

readability, we let ∅ denote the outside option, ∅ = sN+1 = s3. The students have the following

preferences:

1. s1 �1 ∅ �1 s2 and ∅ �̂1 s1 �̂1s2,

2. s1 �2 s2 �2 ∅, second-round preferences identical,

3. s2 �3 s1 �3 ∅, second-round preferences identical,

4. s2 �4 ∅ �4 s1, second-round preferences identical.

We show that the two-round mechanism where the second round is the reverse lottery deferred

acceptance mechanism is not strategy-proof.

Consider the lottery that yields L(1) > L(2) > L(3) > L(4). If the students report truthfully,

the first-round assignment and second-round reassignment are

µ(Λ) = (µ(1), µ(2), µ(3), µ(4)) = (s1, s2, ∅, ∅), and

µ̂(Λ) = (µ̂(1), µ̂(2), µ̂(3), µ̂(4)) = (∅, s2, s1, ∅)

respectively. However, consider what happens if student 2 says that only school 1 is acceptable to

her by reporting preferences �r, �̂r
given by s1�r∅�rs2 and s1�̂r∅�̂r

s2. Then

µ(Λ) = (s1, ∅, s2, ∅), µ̂(A) = (∅, s1, s2, ∅),

which is a strictly beneficial change for student 2 in the second round (and, in fact, weakly beneficial

for all students).

Note that this reassignment was not stable in the second round when students reported truthfully,

since, in that case, school s2 had second-round priorities p2
2 > p4

2 > p3
2 > p1

2 and so school s2 and

student 4 formed a blocking pair. In other words, for this particular realization of lottery numbers,

student 2 is able to select a beneficial second-round assignment µ̂ that was previously unstable by

changing student 3’s first-round assignment so that student 4 cannot block µ̂.

In addition, the second-round outcome for student 2 under misreporting stochastically dominates

her outcome from truthful reporting, when all other students report truthfully and the randomness
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is due the first-round lottery order. For if the lottery order is L(1) > L(2) > L(3) > L(4) then

student 2 can change her second-round assignment from s2 to s1 by reporting s2 as unacceptable,

and this is the only lottery order for which student 2 receives a second-round assignment of s2

under truthful reporting.27 Moreover, for any lottery order where student 2 received s1 in the first

or second round under truthful reporting, she also received s1 in the same round by misreporting.28

Hence the second-round assignment student 2 receives by misreporting stochastically dominates the

assignment she would have received under truthful reporting. This violates strategy-proofness.

This example shows that, as noted in Section 6, PLDA mechanisms are not two-round strategy-

proof in the finite setting. However, there are convergence results in the literature that suggest

that PLDA mechanisms are almost two-round strategy-proof in large markets. We conjecture that

the proportion of students who are able to successfully manipulate PLDA mechanisms decreases

polynomially in the size of the market; a formal proof of such a result is beyond the scope of this

paper.

Moreover, we believe that students will be unlikely to try to misreport under the PLDA mecha-

nisms.29 This is because, as Example 2 illustrates, successful manipulations require that students

strategically change their first-round assignment and correctly anticipate that this changes the set

of second-round stable assignments to their benefit. Such deviations are very difficult to plan and

require sophisticated strategizing and detailed information about other students’ preferences.

C Proofs

We begin with some general notation and definitions. Let µ be the initial assignment under DA-

STB, and let P be a permutation. We say that a school si reaches capacity under a mechanism

with output assignment µ if η(µ(si)) = qi.

We re-index the schools in S ∪ {sN+1} so that Ci ≥ Ci+1. Moreover, we assume that this

indexing is done such that if the order condition is satisfied, then ĈPi ≥ ĈPi+1 (where the cutoffs

ĈP are as defined by PLDA(P )) holds simultaneously for all permutations P .

Recall that in DA each student is given a score rλi = pλi + L(λ), and in PLDA(P ) this leads to

a second-round score r̂λi = p̂λi + P (L(λ)) = P (L(λ)) + ni1{µ(λ)=si} + pλi 1{µ(λ) 6=si}. Throughout the

Appendix, for convenience, we slightly change the second-round score of a student λ under PLDA

with permutation P to be r̂λi = P (L(λ)) + ni1{L(λ)≥Ci} + pλi 1{L(λ)<Ci}, meaning that we give each

student a guarantee at any school for which she met the cutoff in the first round. By consistency

of preferences, it is easily seen that this has no effect on the resulting assignment or cutoffs.

27This is because if L(λ) > L(2) for λ = 3, 4 then student λ is assigned to school s2 and stays there in both
rounds, if L(2) > L(1), L(3), L(4) then student 2 is assigned to school s1 and stays there in both rounds, and finally
if L(1) > L(2) > L(4) > L(3) then student 2 is assigned to s1 in the second round.

28This is because any stable matching in which student 2 is assigned s1 remains stable after student 2 truncates.
Indeed, student 2 is not part of any unstable pair, as she got her first choice, and any unstable pair not involving
student 2 remains unstable under the true preferences, as only student 2 changes her preferences.

29as compared to the currently used DA mechanism.

7



We say that a student can afford a school in a round if her score in that round is at least as

large as the school’s cutoff in that round. We say that the set of schools a student can afford in

the second round (with her amended second-round score) is her affordable set.

Throughout the Appendix, we let Xi = {si, . . . , sN+1} be the set of schools at least as affordable

as school si, and we let γi be the proportion of students whose first-round affordable set is Xi.

C.1 Proof of Proposition 1

Fix a permutation P and some PLDA with permutation P . We show that this particular PLDA

satisfies all the desired properties. Let η be a distribution of students, and let ĈP be the second-

round cutoffs corresponding to the assignment given by the PLDA for this distribution of student

types.

PLDA respects guarantees because fewer students are guaranteed at each school than the ca-

pacity of the school. PLDA is non-wasteful because the second round terminates with a stable

matching where all schools find all students acceptable, which is non-wasteful.

We now show that the PLDA mechanism is strongly two-round strategy-proof. Since students

are non-atomic, no student can change the cutoffs ĈP by changing her first- or second-round

reports. Hence it is a dominant strategy for all students to report truthfully in the second round.

Moreover, for any student of type λ, the only difference between having a first-round guarantee at

a school si and having no first-round guarantee is that in the former case, r̂λi increases by ni − pλi .

This means that having a guarantee at a school si changes the student’s second-round assignment

in the following way. She receives a seat in school si whereas without the guarantee she would

have received a seat in some school sj that she reported preferring less to si, and her second-round

assignment is unchanged otherwise. Therefore, students want their first-round guarantee to be

the best under their second-round preferences, and so it is a dominant strategy for students with

consistent preferences to report truthfully in the first round.

PLDA is constrained Pareto efficient, since we use single tie-breaking and the output is the

student-optimal stable matching with respect to the updated second-round priorities p̂.

This is easily seen via the cutoff characterization. Let the second-round cutoffs be P̂ , where

overloading notation we let P̂i denote the cutoff for school s̃i. Fix a Pareto-improving cycle

(Θm,Λm, Sm). Without loss of generality we may assume that p̂λs̃i +L(λ) ≥ Pi for all λ ∈ Λi, since

the set of students for whom this is not true has measure 0. Moreover, since all students λ ∈ Λi pre-

fer school s̃i+1 to their assigned school µ̂ (λ) = s̃i, without loss of generality we may also assume that

p̂λs̃i+1
+L(λ) < Pi+1 for all λ ∈ Λi, since the set of students for whom this is not true has measure 0.

This means that for all λi ∈ Λi and λi+1 ∈ Λi+1 it holds that p̂λis̃i+1
+L(λi) < Pi+1 ≤ p̂λi+1

s̃i+1
+L(λi+1),

and so p̂λis̃i+1
≤ p̂λi+1

s̃i+1
.

Suppose for the sake of contradiction that the cycle (Θm,Λm, Sm) respects second-round priori-

ties. Then for each λi ∈ Λi and λi+1 ∈ Λi+1 it holds that p̂λis̃i+1
≥ p̂λi+1

s̃i+1
, and so L (λi) > L (λi+1). But

since this holds for all i we obtain a cycle of lottery numbers L (λ1) > L (λ2) > · · · > L (λm) > L (λ1)
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for all λi ∈ Λi, which provides the necessary contradiction.

C.2 Proof of Theorem 1

We first prove Theorem 1 in the case where all schools have one priority group. We then show

that if the order condition holds, all PLDA mechanisms assign the same number of seats at a given

school si to students of a given priority class π. Hence, by restricting to the set of students with

priority class π, we can reduce the general problem to the case where all schools have one priority

group. This shows that all PLDA mechanisms produce type-equivalent assignments.

Lemma 1. Assume that each school has a single priority group, p = 1. If the order condition

holds, all PLDA mechanisms produce type-equivalent assignments.

Proof. Let P be a permutation.

Assume that the order condition holds. By Theorem 4, we may assume that the global order

condition holds. Hence the schools in S∪{sN+1} can be indexed so that Ci ≥ Ci+1 and ĈPi ≥ ĈPi+1

for all permutations P (simultaneously).

We first present the relevant notation that will be used in this proof. We are interested in sets

of schools of the form Xi = {si, . . . , sN+1}. Let

βi,j = η({λ ∈ Λ : si is the most desirable school in Xj with respect to �̂λ})

be the measure of the students who, when their set of affordable schools is Xj , will choose si (when

following their second-round preferences). Note that βi,j = 0 for all j > i.

Let Eλ(C) and ÊλP (ĈP ) be the sets of schools affordable for type λ in the first and second round,

respectively, when running PLDA with lottery P . Note that for each student λ ∈ Λ, there exists

some i such that Eλ(C) = Xi, and since the order condition is satisfied, there exists some j ≤ i

such that ÊλP (ĈP ) = Xj . The fact that ÊλP (ĈP ) = Xj for some j is a result of the order condition:

students’ amended second-round scores guarantee that Eλ(C) ⊆ ÊλP (ĈP ) (every school affordable

in the first round is guaranteed in the second) and hence that j ≤ i. Let γPi = η({λ ∈ Λ : ÊλP (ĈP ) =

Xi}) be the fraction of students whose affordable set in the second round of PLDA with permutation

P is30 Xi. We note that by definition of PLDA, η({λ ∈ Λ : θλ = θ, ÊλP (ĈP ) = Xi}) = ζ({θ})γPi ;

that is, the students whose affordable sets are Xi “break proportionally” into types. For a school

i, this means that the measure of students assigned to si is therefore
∑

j≤i βi,jγ
P
j .

Let P ′ be another permutation, and define γP
′

i similarly. We will prove by induction that

there exist PLDA(P ′) cutoffs ĈP ′ such that γP
′

i = γPi for all si ∈ S ∪ {sN+1}. Note that by the

proportional breaking into types of γPi and γP
′

i , this will imply type-equivalence.

Assume that the PLDA(P ′) cutoffs ĈP ′ are chosen such that γP
′

j = γPj for all j < i, and i

is maximal such that this is true. Then we have that
∑

j≤i−1 βi,jγ
P
j =

∑
j≤i−1 βi,jγ

P ′
j . Assume

30Note that η(Λ) = 1, as η is a probability distribution over Λ.
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w.l.o.g. that γPi > γP
′

i . It follows that qi ≥
∑

j≤i βi,jγ
P
j ≥

∑
j≤i βi,jγ

P ′
j , where the first inequality

follows since si cannot be filled beyond capacity. If the second inequality is strict, then under

P ′, si is not full, and therefore ĈP
′

i = 0. However, this means that all students can afford si

under P ′, and therefore γP
′

i = 1 −
∑

j<i γ
P ′
j = 1 −

∑
j<i γ

P
j ≥ γPi , a contradiction. If the second

inequality is an equality, then βi,i = 0 and no students demand school i under the given affordable

set structure. It follows that we can define the cutoff ĈP
′

i such that γP
′

i = γPi . This provides the

required contradiction, completing the proof.

Now consider when schools have possibly more than one priority group. We show that if the

order condition holds, then all PLDA mechanisms assign the same measure of students of a given

priority type to a given school. It is not at all obvious that such a result should hold, since priority

types and student preferences may be correlated, and the relative proportions of students of each

priority type assigned to each school can vary widely. Nonetheless, the order condition (specifically,

the equivalent global order condition) imposes enough structure so that any given priority type is

treated symmetrically across different PLDA mechanisms.

Theorem 6. If the order condition holds, then for all priority classes π and schools si all PLDA

mechanisms assign the same measure of students of priority class π to school si.

Proof. Fix a permutation P . By Theorem 4, we may assume that the global order condition holds.

We show that PLDA(P ) assigns the same measure of students of each priority type to each

school si as RLDA. The idea will be to define cutoffs on priority-type-specific economies, and show

that these cutoffs are the same as the PLDA cutoffs. However, since cutoffs are not necessarily

unique in the two-round setting, care needs to be taken to make sure that the individual choices

for priority-type-specific cutoffs are consistent across priority types.

The proof runs as follows. We first define an economy Eπ for each priority class π that gives only

as many seats as are assigned to students of priority class π under RLDA. We then invoke the global

order condition and Theorems 4 and 1 to show that all PLDA mechanisms are type-equivalent on

each Eπ. We also use the global order condition to argue that it is sufficient to consider affordable

sets, and also to select “minimal” cutoffs. Then we construct cutoffs CPπ,i using the economies Eπ
and show that they are (almost) independent of priority type. Finally, we show that this means

that CPπ,i also define PLDA cutoffs for the large economy E and conclude that PLDA(P ) assigns

the same measure of students of each priority type to each school si as RLDA.

(1) Defining little economies Eπ for each priority type.

Fix a priority class π. Let qπ be a restricted capacity vector, where qπ,i is the measure of students

of priority class π assigned to school si under RLDA. Let Λπ be the set of students λ such that

pλ = π, and let ηπ be the restriction of the distribution η to Λπ. Let Eπ denote the primitives

(S, qπ,Λπ, ηπ). Recall that ĈR are the second-round cutoffs for RLDA on E . It follows from the

definition of Eπ that ĈR
π are also the second-round cutoffs for RLDA on Eπ.

Let C̃P
π be the second-round cutoffs of PLDA(P ) on Eπ. We show that the cutoffs C̃P

π defined

10



for the little economy are the same as the consistent second-round cutoffs ĈP
π for PLDA with

permutation P for the large economy E , that is, C̃P
π = ĈP

π .

(2) Implications of the global order condition.

We have assumed that the global order condition holds.

This has a number of implications for PLDA mechanisms run on the little economies Eπ. For

all p, the local order condition holds for RLDA on Eπ. Hence, by Theorem 4, the little economies

Eπ each satisfy the order condition. Moreover, by Theorem 1, all PLDA mechanisms produce type-

equivalent assignments when run on Eπ. Finally, if we can show that for every permutation P ,

PLDA(P ) assigns the same measure of students of each priority type π to each school si (namely

(qπ)i) as RLDA, then E satisfies the global order condition if and only if for all p the little economy

Eπ satisfies the global order condition.

The global order condition also allows us to determine aggregate student demand from the

proportions of students who have each school in their affordable set. In general, if affordable sets

break proportionally across types, and if for each subset of schools S′ ⊆ S we know the proportion

of students whose affordable set is S′, then we can determine aggregate student demand. The

global order condition implies that for any pair of permutations P, P ′, the affordable sets from both

rounds are nested in the same order under both permutations. In other words, for each priority

class π there exists a permutation σπ such that the affordable set of any student in any round of any

PLDA mechanism is of the form {sσπ(i), sσπ(i+1), . . . , sσπ(N), sN+1}. Hence when the global order

condition holds, to determine the proportion of students whose affordable set is S′, it is sufficient

to know the proportion of students who have each school in their affordable set.

Another more subtle implication of the global order condition is the following. In the second

round of PLDA, for each permutation P and school si there will generically be an interval that

ĈPi can lie in and still be market-clearing. The intuition is that there will be large empty intervals

corresponding to students who had school si in their first-round affordable set, and whose second-

round lottery changed accordingly. When the global order condition holds, we can without loss of

generality assume that as many as possible of the cutoffs for a given priority type are 0 or 1, and

the global order condition will still hold.

Formally, for cutoffs C we can equivalently define priority-type-specific cutoffs Cπ,i = (bCi −
πic)+. Note the cutoffs Cπ are consistent across priority types, namely: (1) Cutoffs match for two

priority types with the same priority group at a school, πi = π′i ⇒ Cπ,i = Cπ′,i and Ĉπ,i = Ĉπ′,i;

and (2) There is at most one marginal priority group at each school, Cπ,i, Cπ′,i ∈ (0, 1) ⇒ πi = π′i.

Moreover, if cutoffs Cπ are consistent across priority types, then there exist cutoffs C from which

they arise.

Suppose that we set as many as possible of the priority-type-specific cutoffs ĈPπ to be extremal;

i.e., we let ĈPπ,i be 1 if no students have si in their affordable set, and let ĈPπ,i be minimal otherwise.

We show that under this new definition, Cπ, Ĉ
P
π satisfies the local order condition consistently with

all other PLDAs.
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Specifically, let

fPπ,i(x) = |{l : l ≥ Cπ,i or P (l) ≥ x}|

be the proportion of students of priority class π who have school si in their affordable set if the

first- and second-round cutoffs are Cπ,i and x respectively. Notice that f is decreasing in x. Define

cutoffs C̃Pπ as follows. If fPπ,i

(
ĈPπ,i

)
= 0 we set C̃Pπ,i = 1, and otherwise we let C̃Pπ,i be the minimal

cutoff satisfying fPπ,i

(
C̃Pπ,i

)
= fPπ,i

(
ĈPπ,i

)
.

Since E satisfies the global order condition, for all π there exists an ordering σπ such that

Cσπ(1) ≥ Cσπ(2) ≥ · · · ≥ Cσπ(N) and ĈP
′

σπ(1) ≥ ĈP
′

σπ(2) ≥ · · · ≥ ĈP
′

σπ(N) for all permutations P ′. We

show that the global order condition implies that the newly defined cutoffs ĈP satisfy C̃Pπ,σπ(1) ≥
C̃Pπ,σπ(2) ≥ · · · ≥ C̃Pπ,σπ(n). This is because the global order condition implies that fPπ is increasing

in i; i.e., for each π, i < j, and x it holds that fPπ,σπ(i)(x) ≤ fPπ,σπ(j)(x). Hence for all j > i,

fPπ,σπ(j)

(
C̃Pπ,σπ(j)

)
= fPπ,σπ(j)

(
ĈPπ,σπ(j)

)
≥ fPπ,σπ(j)

(
ĈPπ,σπ(i)

)
(since f is decreasing)

≥ fPπ,σπ(i)

(
ĈPπ,σπ(i)

)
(since f is increasing in i)

= fPπ,σπ(i)

(
C̃Pπ,σπ(i)

)
and so since we set C̃Pπ,σπ(j) to be minimal and fPπ,σπ(j) (·) is decreasing it follows that C̃Pπ,σπ(j) ≤
C̃Pπ,σπ(i).

(3) Cutoffs C̃Pπ,i are (almost) independent of priority type.

We now show that C̃Pπ,i depends on π only via πi, and for all j 6= i does not depend on πj .

Since Eπ satisfies the order condition, all PLDA mechanisms on Eπ are type-equivalent, and the

proportion of students who have each school in their affordable set is the same across all PLDA me-

chanisms. Hence for all permutations P , priority classes π, and schools i it holds that fPπ,i

(
C̃Pπ,i

)
=

fPπ,i

(
ĈPπ,i

)
= fRπ,i

(
ĈRπ,i

)
. This means that C̃Pπ,i satisfies the following equation in terms of ĈRπ,i, Cπ,i

and P :

fPπ,i

(
C̃Pπ,i

)
= fRπ,i

(
ĈRπ,i

)
= 2− ĈRπ,i − Cπ,i. (4)

(We note that an application of the intermediate value theorem shows that this equation always

has a solution in [0, 1], since fPπ,i(0) = 1 − Cπ,i, fπ,i(1) = 1, fπ,i is continuous and decreasing on

[0, 1], and we are in the case where 1− Cπ,i ≤ ĈRπ,i ≤ 1. Hence C̃Pπ,i is defined by fPπ,i and fRπ,i.) In

other words, the value of C̃Pπ,i is defined by fPπ,i(·), fRπ,i(·), and ĈRπ,i, which in turn are defined by

Cπ,i and the permutations P and R. Since Cπ,i depends on π only through πi, it follows that C̃Pπ,i
depends on π only through πi. In other words the C̃Pπ,i define cutoffs C̃Pi that are independent of

priority type.

(4) C̃Pi are the PLDA cutoffs.
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Finally, we remark that C̃Pi are market-clearing cutoffs. This is because we have shown that for

each priority class π, the number of students assigned to each school si is the same under RLDA

and under the demand induced by the cutoffs C̃Pi , and we know that the RLDA cutoffs are market-

clearing for E .

Hence C̃Pi give the assignments for PLDA on E , and since C̃Pi was defined individually for

each priority class π on Eπ, it follows that PLDA(P ) assigns the same measure of students of each

priority type to each school si as RLDA.

We are now ready to prove Theorem 1

Proof of Theorem 1. Fix a priority class π. By Theorem 6, for every school si, all PLDA mecha-

nisms assign the same measure qπ,i of students of priority class π to school si.

Consider the subproblem with primitives Eπ = (S, qπ,Λπ, ηπ). By Lemma 1, for all θ ∈ Θ and

si,

ηπ({λ ∈ Λπ : θλ = θ, µ̂P (λ) = si}) = ηπ({λ ∈ Λπ : θλ = θ, µ̂P ′(λ) = si}).

Since ηπ is the restriction of η to λπ, it follows that all PLDA mechanisms are type-equivalent.

C.3 Proof of Theorem 4

Proof of Theorem 4. Suppose that the order condition holds. In what follows, we will fix a per-

mutation P and show that the PLDA mechanism with permutation P satisfies the local order

condition and is type-equivalent to the reverse lottery RLDA mechanism. As this holds for every

P , it follows that the global order condition holds.

(1) Every school has a single priority group.

We first consider the case where ni = 1 for all i; that is, every school has a single priority

group. Recall that the schools are indexed according to the first-round overdemand ordering, so

that C1 ≥ C2 ≥ · · · ≥ CN ≥ CN+1. Since the local order condition holds for RLDA, let us assume

that they are also indexed according to the second-round overdemand ordering under RLDA, so

that ĈR1 ≥ ĈR2 ≥ · · · ≥ ĈRN ≥ ĈRN+1.

The idea will be to construct a set of cutoffs C̃P directly from the permutation P and the cutoffs

ĈR, show that the cutoffs are in the correct order C̃P1 ≥ C̃P2 ≥ · · · ≥ C̃PN ≥ C̃PN+1, and show that

the cutoffs C̃P and resulting assignment are market-clearing when school preferences are given by

the amended scoring function with permutation P .

(1a) Definitions.

As in the proof of Theorem 1, let βi,j = η({λ ∈ Λ : argmax�̂λ Xj = si}) be the measure of

students who, when their set of affordable schools is Xj , will choose si. Let Eλ(C) be the set of

schools affordable for type λ in the first round under PLDA with any permutation, let Êλ(ĈR) be
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the set of schools affordable for type λ in the second round under RLDA, and let Êλ(ĈP ) be the

set of schools affordable for type λ in the second round under PLDA with permutation P .

Let γRi = η({λ ∈ Λ : Êλ(ĈR) = Xi}) be the fraction of students whose affordable set in the

second round of RLDA is Xi, and let γPi = η({λ ∈ Λ : Êλ(ĈP ) = Xi}) be the fraction of students

whose affordable set in the second round of PLDA with permutation P is Xi.

Let n̂ be the smallest index such that sn̂ does not reach capacity when it is not offered to all

the students. In other words, n̂ is the smallest index such that every student has school sn̂ in her

affordable set under RLDA, i.e., sn̂ ∈ Êλ(ĈR). Since the local order condition holds for RLDA, we

may equivalently express n̂ in terms of cutoffs as the smallest index such that (1−Cn̂)+(1−ĈRn̂ ) ≥ 1.

Such an n̂ always exists, since every student has the outside option sN+1 in her total affordable set.

(1b) Defining cutoffs for PLDA.

Let us define cutoffs C̃P as follows. For i ≥ n̂ let C̃Pi = 0. For each permutation P , define a

function

fPi (x) = |{l : l ≥ Ci or P (l) ≥ x}|

representing the proportion of students who have si in their (second-round) affordable set with first-

and second-round cutoffs Ci, x under the amended scoring function with permutation P . Since P

is measure-preserving, fPi (x) is continuous and monotonically decreasing in x.

For i < n̂, we inductively define C̃Pi to be the largest real smaller than C̃Pi−1 satisfying

fPi (C̃Pi ) = fRi

(
ĈRi

)
(5)

(where we define C̃P0 = 1). Now fPi (0) = 1 ≥ fRi
(
ĈRi

)
, and

fPi

(
C̃Pi−1

)
= fPi−1

(
C̃Pi−1

)
+ |{l | l ∈ [Ci, Ci−1) and P (l) ≥ C̃Pi−1}|

≤ fRi−1

(
ĈRi−1

)
+ (Ci−1 − Ci)

= (1− Ci) + (1− ĈRi−1)

≤ fRi

(
ĈRi

)
= fPi

(
C̃Pi

)
where in the first equality we are using that Ci−1 ≥ Ci, the first inequality follows from the definition

of C̃Pi=1, and the last inequality holds since ĈRi−1 ≥ ĈRi .

It follows from the intermediate value theorem that the cutoffs C̃P are well defined and satisfy

C̃P1 ≥ C̃P2 ≥ · · · ≥ C̃PN ≥ C̃PN+1.

(1c) The constructed cutoffs clear the market.

We show that the cutoffs C̃P and resulting assignment (from letting students choose their

favorite school out of those for which they meet the cutoff) are market-clearing when the second-

round scores are given by r̂λi = P (L(λ))+ni1{L(λ)≥Ci}+pλi 1{L(λ)≥Ci}. We call the mechanism with

this second-round assignment MP .
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The idea is that since the cutoffs C̃Pi are decreasing in the same order as Ci and ĈRi , the

(second-round) affordable sets are nested in the same order under both sets of second-round cutoffs.

It follows that aggregate student demand is uniquely specified by the proportion of students with

each school in their affordable set, and we have defined these to be equal, fPi

(
C̃Pi

)
= fRi

(
ĈRi

)
.

It follows that C̃P are market-clearing and give the PLDA(P ) cutoffs, and so PLDA(P ) satisfies

the local order condition (with the indices indexed in the same order as with RLDA). We make the

affordable set argument explicit below.

Consider the proportion of lottery numbers giving a second-round affordable set Xi. Since

ĈR1 ≥ ĈR2 ≥ · · · ≥ ĈRN , under RLDA this is given by

γRi = fRi+1

(
ĈRi+1

)
− fRi

(
ĈRi

)
,

if i < n̂ and by 0 if i > n̂, where we define fP0 (x) = 1 for all P and x. Similarly, since C̃P1 ≥ C̃P2 ≥
· · · ≥ C̃PN , under MP this is given by

fPi+1

(
C̃Pi+1

)
− fPi

(
C̃Pi

)
if i < n̂, which is precisely γRi , and by 0 if i > n̂.

Hence, for all i < n̂, the measure of students assigned to school si under both RLDA and

MP is
∑

j≤i βi,jγ
R
j = qi, and for all i ≥ n̂, the measure of students assigned to school si is∑

j≤n̂ βi,jγ
R
j < qi. It follows that the cutoffs C̃P are market-clearing when the second-round scores

are given by r̂λi = P (L(λ)) + ni1{L(λ)≥Ci} + pλi 1{L(λ)≥Ci}, and so PLDA(P) = MP satisfies the

local order condition.

(2) Some school has more than one priority group.

Now consider when schools have possibly more than one priority group. We show that if RLDA

satisfies the local order condition, then PLDA with permutation P assigns the same number of

students of each priority type to each school si as RLDA, and within each priority type assigns

the same number of students of each preference type to each school as RLDA. We do this by first

assuming that PLDA with permutation P assigns the same number of students of each priority

type to each school si as RLDA, and showing that this gives consistent cutoffs.

We note that this proof uses very similar arguments to the proof of Theorem 6.

(2a) Defining little economies Eπ for each priority type.

Fix a priority class π. Let qπ be a restricted capacity vector, where qπ,i is the measure of students

of priority class π assigned to school si under RLDA. Let Λπ be the set of students λ such that

pλ = π, and let ηπ be the restriction of the distribution η to Λπ. Let Eπ denote the primitives

(S, qπ,Λπ, ηπ).

Let C̃P
π be the second-round cutoffs of PLDA(P ) on Eπ. By definition, ĈR

π are the second-

round cutoffs of RLDA on Eπ. We show that the cutoffs C̃P
π defined for the little economy are the

same as the consistent second-round cutoffs ĈP
π for PLDA(P ) run on the large economy E , that is,
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C̃P
π = ĈP

π .

(2b) Implications of RLDA satisfying the local order condition.

Since RLDA satisfies the local order condition for E , RLDA also satisfies the local order condition

for Eπ for all π. It follows from (1) that the global order condition holds on each of the little

economies Eπ. Hence by Theorem 1 all PLDA mechanisms produce type-equivalent assignments

when run on Eπ. Moreover, as in the proof of Theorem 6, the global order condition on Eπ also

allows us to determine aggregate student demand in Eπ from the proportions of students who have

each school in their affordable set.

Finally, as in the proof of Theorem 6, we may assume that for each π and school si the cutoff

C̃Pπ,i is the minimal real satisfying

fPπ,i

(
C̃Pπ,i

)
= fRπ,i

(
ĈRπ,i

)
where for each permutation P ,

fPπ,i(x) = |{l : l ≥ Cπ,i or P (l) ≥ x}|

is the proportion of students of priority class π who have school si in their affordable set if the first-

and second-round cutoffs are Cπ,i and x respectively.

It follows that C̃Pπ,i depends on π only via πi, and does not depend on πj for all j 6= i. This

is because C̃Pπ,i is defined by fPπ,i(·), fRπ,i(·), and ĈRπ,i, which are in turn defined by Cπ,i and the

permutations P and R. Moreover, Cπ,i depends on π only through πi. Hence, if π, π′ are two

priority vectors such that πi = π′i, then C̃Pπ,i = C̃Pπ′,i, and so the C̃Pπ,i are consistent across priority

types and define cutoffs C̃Pi that are independent of priority type.

(3) C̃Pi are the PLDA cutoffs.

Finally, we show that C̃Pi are market-clearing cutoffs. By (1), for each priority class π, the number

of students assigned to each school si is the same under RLDA as under the demand induced by

the cutoffs C̃Pi , and we know that the RLDA cutoffs are market-clearing for E .

Hence C̃Pi give the assignments for PLDA on E , and since C̃Pi was defined individually for each

priority class π for Eπ it follows that PLDA(P ) assigns the same measure of students of each priority

type to each school si as RLDA.

C.4 Proof of Theorem 3

Proof of Theorem 3. We first note that with a single priority class, the first round corresponds to

the random serial dictatorship (RSD) mechanism of Abdulkadiroglu and Sönmez (1998), where the

(random) order of students is the single order of tie-breaking. Hence instead of referring to the

first-round mechanism as DA-STB, we will sometimes refer to it as RSD.
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Recall the cutoff characterization of the set of stable matchings for given student preferences

and responsive school preferences (encoded by student scores rλi = pλi +L(λ)) Azevedo and Leshno

(2016). Namely, if C ∈ RN
+ is a vector of cutoffs, let the assignment µ defined by C be given by

assigning each student of type λ to her favorite school among those where her score weakly exceeds

the cutoff, µ(λ) = max�λ({si ∈ S : rλi ≥ Ci} ∪ {sN+1}). The cutoffs C are market-clearing if

under the assignment µ defined by C, every school with a positive cutoff is exactly at capacity,

η(µ(si)) ≤ qi for all si ∈ S, with equality if Ci > 0. The set of all stable matchings is precisely

given by the set of assignments defined by market-clearing vectors (Azevedo and Leshno, 2016).

Under PLDA(P ), a student of type λ has a second-round score r̂λi = P (L(λ)) + 1{L(λ)≥Ci} at

school si for each school si ∈ S ∪ {sN+1} (assuming that scores are modified to give guarantees

to students who had a school in their first-round affordable set, instead of just students assigned

to the school in the first round). In a slight abuse of notation, we will sometimes let ĈP refer to

the second-round cutoffs from some fixed PLDA(P ) (not necessarily corresponding to the student-

optimal stable matching given by PLDA).

The proof that any PLDA satisfies the axioms essentially follows from Proposition 1. We

note that averaging follows from the continuum model, which preserves the relative proportion of

students with different reported types under random lotteries and permutations of random lotteries.

Hence it suffices to show that any mechanism M satisfying the axioms is a PLDA.

We will show that the reassignment produced by M is type-equivalent to the reassignment

produced by some PLDA. If we assume that, conditional on their reports, students’ assignments

under M are uncorrelated, we are able to explicitly construct a PLDA that provides the same joint

distribution over assignments and reassignments as M . We provide a sketch of the proof before

fleshing out the details.

Fix a distribution of student types ζ. Since the first round of our mechanism M is DA-STB

and M is anonymous, this gives a distribution η of students that is the same (up to relabeling of

students) at the end of the first round. For a fixed labeling of students, it also gives a distribution

over first-round assignments µ and a distribution over second round assignments µ̃.

We first invoke averaging to assume that all ensuing constructions of aggregate cutoffs and

measures of students assigned to pairs of schools in the two rounds are deterministic. Specifically,

since the first-round assignment µ is given by STB, and the mechanism satisfies the averaging

axiom, we may assume that each pathwise realization of the mechanism gives type-equivalent (two-

round) assignments. Hence, for the majority of the proof we perform our constructions of aggregate

cutoffs and measures of students pathwise, and assume that any realization of the lottery numbers

produces the same cutoffs and measures of students. (In particular, the quantities Ĉi, ρi,j , γi,j that

we will later define will be the same across all realizations.)

Outline of Proof. We use constrained Pareto efficiency to construct a first-round overdemand

ordering s1, s2, . . . , sN , sN+1 and a permutation σ giving the second-round overdemand ordering

sσ(1), sσ(2), . . . , sσ(N+1), as in (Ashlagi and Shi, 2014), where school s comes before s′ in an ordering

for the first (second) round if there exists a non-zero measure of students who prefer school s to
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s′ in the first (second) round but who are assigned to s′ in the first (second) round. (In the case

of the second-round ordering, we require that these students’ second-round assignments s′ not be

the same as their first-round guarantees.) The existence of these orderings follows from the facts

that the first-round mechanism, DA with a single priority class and uniform-at-random single tie-

breaking, is Pareto efficient, that the two-round mechanism is constrained Pareto efficient. We let

Xi = {si, si+1, . . . , sN+1} denote the set of schools after si in the first-round overdemand ordering,

and let X̃i = {sσ(i), sσ(i+1), . . . , sσ(N+1)} denote the set of schools after sσ(i) in the second-round

overdemand ordering.

We next note that instead of assignments µ and µ̂, we can think of giving students first- and

second-round affordable sets E(λ), Ê(λ) so that µ and µ̂ are given by letting each student choose her

favorite school in her affordable set for that round. We use weak two-round strategy-proofness and

anonymity to show that two students of different types face the same joint distribution over first-

and second-round affordable sets. This allows us to construct the permutation P by constructing

proportions γi,j of students whose first-round affordable set was Xi and whose (second-round)

affordable set was X̃j . This is the most technical step in the proof, and so we separate it into

several steps. The crux of the analysis is the fact that for any school s and set S′ 63 s of schools,

two students with top choices S′ who are assigned to a school they weakly prefer to s the first round

have the same conditional probability of being assigned to a school in S′ in the second round.31

We term this the “prefix property” and prove it in Lemma 2.

Finally, we construct the lottery L and verify that if second-round scores are given by first

prioritizing all guaranteed students over non-guaranteed students and subsequently breaking ties

according to the permuted lottery P ◦L, then PLDA(P ) gives every student the same pair of first-

and second- round assignments as M .

Formal Proof. We now present the formal proof. Since we are assuming that the considered

mechanism M is weakly strategy-proof, we assume that students report truthfully and so we consi-

der preferences instead of reported preferences. We will explicitly specify when we are considering

the possible outcomes from a single student misreporting.

(2a) Definitions

Let the schools be numbered s1, s2, . . . , sN such that Ci ≥ Ci+1 for all i. The intuition is that

this is the order in which they reach capacity in the first round. We observe that all reassignments

are index-decreasing. That is, for all s, s′, if there exists a non-zero measure of students who are

assigned to s in the first round and to s′ in the second round, and s′ 6= sN+1, then s = si and

s′ = sj for some i ≥ j. This follows since the mechanism respects guarantees, student preferences are

consistent, and the schools are indexed in order of increasing first-round affordability. Throughout

this section we will denote the outside option sN+1 either by s0 or ∅, to make it more evident that

indices are decreasing.

Next, we define a permutation σ on the schools. We think of this as giving a second-round

31The formal statement also takes into account how demanded the schools they weakly prefer to s are, and is given
in terms of student types who were assigned to s, and lottery numbers.
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overdemand (or inverse affordability) ordering, where in the second round the schools fill in the

order sσ(1), sσ(2), . . . , sσ(N). We will eventually show that M gives the same outcome as a PLDA

with cutoffs that are ordered Ĉσ(1) ≥ Ĉσ(2) ≥ · · · ≥ Ĉσ(N). We require that σ satisfies the following

property. For all s, s′, if there exists a non-zero measure of students with consistent preferences

who have second-round preference reports � such that s � s′, and who are not assigned to s′ in

the first round, but are assigned to s′ in the second round, then s = sσ(i) and s′ = sσ(j) for some

i < j. We assume that σ is the unique permutation satisfying this property that is maximally

order-preserving. That is, for all pairs of schools si, sj for which no non-zero measure of students of

the above type exists, σ(i) < σ(j) iff i < j. We also define σ(N + 1) = N + 1. An ordering σ with

the required properties exists since the mechanism is constrained Pareto efficient. In particular, if

there is a cycle of schools si1 , si2 , . . . , sim where for each j there is a set of students Λj with non-zero

measure who prefer sij+1 to their second-round assignment sij and who are not assigned to sij in

the first round, then p̂
λj
sij

= p
λj
sij

for each λj ∈ Λj , and so there is a Pareto-improving cycle that

respects second-round priorities.

Let S′ be a set of schools, and let � be a preference ordering over all schools. We say that S′ is

a prefix of � if s′ � s for all s′ ∈ S′, s 6∈ S′. For a set of schools S′, let i(S′) = max{j : sj ∈ S′} be

the maximum index of a school in S′. We may think of i(S′) as the index of the most affordable

school in S′ in the first round.

For a student type θ = (�, �̂), an interval I ⊆ [0, 1], and a set of schools S′, let ρθ(I, S′) be the

proportion of students with type θ who, under the mechanism M , have a first-round lottery in the

interval I and are assigned to a school in S′ in the second round. When S′ = {s′} we will sometimes

write ρθ(I, s′) instead of32 ρθ(I, {s′}). In this section, for brevity, when defining preferences � we

will sometimes write �: [si1 , si2 , . . . , sik ] instead of si1 � si2 � · · · � sik .

(2b) Constructing the permutation P .

We now construct the permutation P as follows. For all pairs of indices i, j, we define a scalar

γi,j , which we will show can be thought of as the proportion of students (of any type) whose

first-round affordable set is Xi and whose second-round affordable set is X̃j .

Now, for all pairs of indices i, j such that σ(j) < i, we define student preferences θi,j = (�i,j , �̂i,j)
such that

�i,j : [sσ(j), si−1, si, sN+1] and �̂i,j : [sσ(j), sN+1],

with all other schools unacceptable. (We remark that in the case where σ(j) = i− 1, the first two

schools in this preference ordering coincide.) We note that the full-support assumption implies that

there is a positive measure of such students. Let ρi,j be the proportion of students of type θi,j whose

first-round assignment is si and whose second-round assignment is school sσ(j). Intuitively, ρi,j is

the proportion of students who can deduce that their lottery number is in the interval [Ci, Ci−1],

and whose second-round affordable set contains X̃j .

32Here we are assuming that this proportion is the same for every realization of the first round of M . This requires
non-atomicity and anonymity.
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For a fixed index i, we define γi,j for j = 1, 2, . . . , N to be the unique solutions to the following

n equations:

γi,j = 0 for all j such that σ(j) ≥ i

γi,1 + · · ·+ γi,j = ρi,j for all j such that σ(j) < i.

Note that by this definition it holds that γ1,j = 0 for all j. We may intuitively think of γi,j as the

proportion of students of type θi,j whose first-round lottery is in [Ci, Ci−1] and whose second-round

affordable set contains sσ(j) but not sσ(j−1). (This is not quite the case, as we let γi,j = 0 for all j

such that σ (j) ≥ i. More precisely, if σ (j) < i then γi,j is the proportion of students of type θi,j

whose first-round lottery is in [Ci, Ci−1] and whose second-round affordable set contains sσ(j), but

not sσ(j′), where j′ = max {j′′ : σ (j′′) < i}.) Note that if σ(j) ≥ i then school sσ(j) will be in the

first-round affordable set for all students whose first-round lottery is in [Ci, Ci−1], and we define

γi,j = 0 and keep track of these students separately.

We also define γi,N+1 to be

γi,N+1 = Ci−1 − Ci −
n∑
j=1

γi,j .

Since transfers are index-decreasing, we may intuitively think of γi,N+1 as the proportion of students

of type θi,j assigned to school si in the first round whose only available school in the second round

comes from their first-round guarantee.

We define the lottery P from γi,j as follows. We break the interval [0, 1] into (N + 1)2 intervals,

Ĩi,j , where the interval Ĩi,j has length γi,j , and the intervals are ordered in decreasing order of the

first index33 i,

ĨN+1,N+1, ĨN+1,N , . . . , Ĩ1,2, Ĩ1,1.

The permutation P maps the intervals back into [0, 1] in decreasing order of the second index34

j,

P (ĨN+1,N+1), P (ĨN,N+1), . . . P (Ĩ2,1), P (Ĩ1,1).

In Figure 5, we show an example with two schools.

We note that
∑N+1

j=1 γi,j = Ci−1 − Ci, which is the proportion of students whose first-round

affordable set is Xi. We may interpret γi,j to be the proportion of students who can deduce that

their lottery number is in the interval [Ci, Ci−1], and whose second-round affordable set is X̃j , and

so
∑N+1

i=1 γi,j is the proportion of students whose second-round affordable set is X̃j . We remark that

there may be multiple values of i, j for which γi,j = 0 (i.e. there are no students whose first-round

affordable set is Xi and second-round affordable set is Xj), but that this does not affect our ability

to assign students to all possible pairs of schools that are consistent with consistent preferences and

33Specifically, let Ĩi,j = [Ci−1 −
∑
j′≤j γi,j′ , Ci−1 −

∑
j′<j γi,j′ ].

34Specifically, let Ĉσ(j) = 1−
∑
i′,j′:j′≤j γi′,j′ , and let P (Ĩi,j) = [Ĉσ(j−1) −

∑
i′≤i γi′,j , Ĉσ(j−1) −

∑
i′<i γi′,j ].

20



0 C1C2 1

Ĩ1,∅Ĩ2,1Ĩ2,∅Ĩ∅,1Ĩ∅,2Ĩ∅,∅

0 Ĉσ(1)Ĉσ(2) 1

P (Ĩ2,1)P (Ĩ∅,1)P (Ĩ∅,2)P (Ĩ1,∅)P (Ĩ2,∅)P (Ĩ∅,∅)

Figure 5: Constructing the permutation P for n = 2 schools, where σ is the identity permutation.
The intervals Ĩi,j for i ≤ σ(j) = j < N + 1 are empty by definition, as all transfers are index-
decreasing.

the first- and second-round overdemand orderings. For example γ1,j = 0 for all j, but any student

whose first-round affordable set is X1 is assigned to her top choice school in both rounds, and hence

her second-round affordable set is inconsequential.

We show that there exists a PLDA mechanism with permutation P , where the students with

first-round scores in Ĩi,j are precisely the students with a first-round affordable set Xi and a second-

round affordable set X̃j , and that this PLDA mechanism gives the same joint distribution over first-

and second-round assignments as M . To do this, we first show that this distribution of first- and

second-round affordable sets gives rise to the correct joint first- and second-round assignments over

all students. We then use anonymity to construct L in such a way as to have the correct first-

and second-round assignment joint distributions for each student. Finally, we verify that these

second-round affordable sets give the student-optimal stable matching under the second round

school preferences given by P .

(2c) Equivalence of the joint distribution of assignments given by affordable sets and

M .

Fix student preferences θ = (�, �̂). We show that if we let γi,j be the proportion of students

with preferences θ who have first- and second-round affordables Xi and X̃j respectively, then we

obtain the same joint distribution over assignments in the first and second rounds for students with

preferences θ as under mechanism M . In doing so, we will use the following “prefix lemma”.

The “prefix lemma” states that for every set of schools S′, there exist certain intervals of the

form Iji = [Ci, Cj ] such that for any two student types whose top set of acceptable schools under

second-round preference reports is S′, the proportion of students with lotteries in Iji who are

upgraded to a school in S′ in the second round is the same for each type.

We define a prefix of preferences � to be a set of schools S′ that is a top set of acceptable

schools under �; that is, for all s′ ∈ S′ and s 6∈ S′, it holds that s′ � s.

Lemma 2. [Prefix Property] Let s = sj be a school, and let S′ 63 s be a set of schools such that

i(S′) < j. Let θ = (�, �̂) and θ′ = (�′, �̂′) be consistent preferences such that S′ is a prefix of �, �̂
and some students with preferences θ are assigned to school s in the first round, and similarly S′ is

a prefix of �′, �̂′ and some students with preferences θ′ are assigned to school s in the first round.
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Then
ρθ([Cj , Ci(S′)], S

′) = ρθ
′
([Cj , Ci(S′)], S

′).

That is, the proportion of students of type θ whose first-round lotteries are in the interval [Cj , Ci(S′)]

and who are assigned to a school in S′ in the second round is the same as the proportion of students

of type θ′ whose first-round lotteries are in the interval [Cj , Ci(S′)] and who are assigned to a school

in S′ in the second round.

Sketch of proof of Lemma 2. The idea of the proof is to use weak strategy-proofness and first-order

stochastic dominance to show that the probabilities of being assigned to S′ (conditional on certain

first-round assignments) are the same for students of type θ or θ′. We then invoke anonymity to

argue that proportions of types of students assigned to a certain school are given by the conditional

probabilities of individual students being assigned to that school. We present the full proof at the

end of Section 3.1.

We now show that the mechanism M and the affordable set distribution γi,j produce the same

joint distribution of assignments.

(2c.i.) Students with two acceptable schools.

To give a bit of the flavor of the proof, we first consider student preferences θ of the form

�: [s, s′, sN+1] and �̂ : [s, sN+1], where all other schools are unacceptable. We let k, l be the indices

such that s = sk and s′ = sl.

There are five ordered pairs of schools that students of this type can be assigned to in the two

rounds. Namely, if we let (s, s′) denote assignment to s in the first round and to s′ in the second

round, then the ordered pairs are (s, s), (s′, s), (s′, sN+1), (sN+1, s), and (sN+1, sN+1). Since

the proportion of students with each first-round assignment is fixed, it suffices to show that the

mechanism M and the mechanism that assigns first- and second-round affordable set distributions

according to γi,j produce the same proportion of students assigned to (s′, s) and the same proportion

of students assigned to (sN+1, s).

Let Ikl = [Cl, Ck], and let I
max{k,l}
N+1 = [0, Cmax{k,l}]. The proportions of students with pre-

ferences θ who are assigned to (s′, s) and (sN+1, s) under M are given by ρθ([Cl, Ck], s) and

ρθ([0, Cmax{k,l}], s) respectively. We want to show that this is the same as the proportion of students

with preferences θ who are assigned to (s′, s) and (sN+1, s) respectively when first- and second-

round affordable sets are given by the affordable set distribution γi,j . We remark that when k > l

this holds vacuously, since all the terms are 0. Hence, since for any school s the proportion of

students with preferences θ who are assigned to s in the first round does not depend on θ, it suffices

to consider the case where k < l.

Let θ′ = (�′, �̂′) be the preferences given by �′: [s = sk, sk+1, . . . , sl−1, s
′ = sl, sN+1] and

�̂′ : [s = sk, sN+1], where only the schools with indices between k and l are acceptable in the first

round, only s = sk is acceptable in the second round, and all other schools are unacceptable.

For all pairs of indices i, j such that j < i, let θ′i,j = (�i,j , �̂i,j) be the student preferences such
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that �i,j : [sj , si−1, si, sN+1] and �̂i,j : [sj , sN+1], with all other schools unacceptable. (In the case

where i = j + 1, we let the first two schools under the preference ordering �i,j coincide.) We note

that θ′i,j = θi,σ−1(j), where θi,j was defined in (2b), and that for i > σ(j) we previously defined

ρi,j =
∑

l≤j γi,l to be the proportion of students of type θi,j whose first-round assignment is si and

whose second-round assignment is school sj .

The proportion of students with preferences θ who are assigned to (s′, s) under M is given by

ρθ([Cl, Ck], s) = ρθ
′
([Cl, Ck], s) (by the prefix property (Lemma 2))

=
∑
k<i≤l

ρθ
′
([Ci, Ci−1], s)

=
∑
k<i≤l

ρθ
′
i,k([Ci, Ci−1], s)

(since the second-round assignment does not depend on the first-round report)

=
∑
k<i≤l

ρi,σ−1(k) (by the definition of ρi,σ−1(k))

=
∑
k<i≤l

∑
j≤σ−1(k)

γi,j (by the definition of γi,j),

which is precisely the proportion of students with preferences θ who are assigned to (s′, s) if the

first- and second-round affordable sets are given by γi,j .

Similarly, let θ′′ = (�′′, �̂′′) be the preferences given by �′′: [s = sk, s
′ = sl, sl+1, . . . , sN , sN+1]

and �̂′′ : [s = sk, sN+1], where only s = sk and the schools with indices greater than l are

acceptable in the first round, only s = sk is acceptable in the second round, and all other schools

are unacceptable. Then the proportion of students with preferences θ who are assigned to (sN+1, s)

under M is given by

ρθ([0, Cl], s) = ρθ
′′
([0, Cl], s) (by the prefix property (Lemma 2))

=
∑
l<i≤N

ρθ
′′
([Ci, Ci−1], s)

=
∑
l<i≤N

ρθ
′
i,k([Ci, Ci−1], s)

(since the second-round assignment does not depend on the first-round report)

=
∑
l<i≤N

ρi,σ−1(k) (by the definition of ρi,σ−1(k))

=
∑

i,j:l<i≤N,j≤σ−1(k)

γi,j (by the definition of γi,j),

which is precisely the proportion of students with preferences θ who are assigned to (sN+1, s) if the

first- and second-round affordable sets are given by γi,j .

(2c.ii.) Students with general preferences.
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We now consider general (consistent) student preferences θ of the form (�, �̂), where

�: [si1 , si2 , . . . , sik , sN+1] and �̂ : [si1 , si2 , . . . , sil , sN+1],

for some k > l and where all other schools are unacceptable. We wish to show that for every pair of

schools s, s′ ∈ {si1 , si2 , . . . , sik , sN+1}, the mechanism M and the mechanism that assigns first- and

second-round affordable set distributions according to γi,j produce the same proportion of students

assigned to (s, s′). It suffices to show that for every prefix S′ of the preferences �̂ and every school

s ∈ {si2 , . . . , sik , sN+1}, the mechanism M and the mechanism that assigns first- and second-round

affordable set distributions according to γi,j produce the same proportion of students assigned to s

in the first round and some school in S′ in the second round. We say that the students are assigned

to (s, S′).

Fix a prefix S′ of �̂ and a school s = sij , 1 < j ≤ k. Let m ≤ k be such that S′ =

{si1 , si2 , . . . , sim}. If j ≤ m then s ∈ S′, and so in any mechanism that respects guarantees,

the proportion of students assigned to (s, S′) is the same as the proportion of students assigned to

s in the first round.

Recall that i(S′) is the largest index of a school in S′, i.e. if i(S′) = max{i′ : si′ ∈ S′}. (Note

that this is not necessarily im, the index of the school in S′ that is least preferred by a student of

type θ.) If j > m and ij ≤ i(S′), then in the first round, whenever the school ij is available in

the first round, so is the preferred school i(S′); thus, for any school s′, the proportion of students

assigned to s in the first round is 0. It follows that in any mechanism that respects guarantees, the

proportion of students assigned to (s, S′) is 0.

From here on, we may assume that j > m (i.e., s 6∈ S′) and ij > i(S′). Since ij > i(S′),

the proportion of students with preferences θ who are assigned to (s, S′) under M is given by

ρθ([Cij , Ci(S′)], S
′). Let i(σ(S′)) be the index i such that si ∈ S′ and σ−1(i) is maximal, that is,

the index of the school in S′ that is most affordable in the second round.

Let θ′ = (�′, �̂′) be the preferences given by

�′: [si(σ(S′)), s
′, si(S′)+1, si(S′)+2, · · · , sij−1, sij , sN+1] and �̂′ : [si(σ(S′)), s

′, sN+1]

for all s′ ∈ S′ \ {si(σ(S′))}. It may be helpful to think of this as all preferences of the form

�′: [S′, si(S′)+1, si(S′)+2, · · · , sij−1, sij , sN+1] and �̂′ : [S′, sN+1],

where the school si(σ(S′)) comes first and otherwise the schools in S′ are ordered arbitrarily, and

where all schools between si(S′) and sij are acceptable in the same order as first round overdemand.

We remark that only the schools in S′ and the schools with indices between i(S′) and ij are

acceptable in the first round, only the schools in S′ are acceptable in the second round, and all

other schools are unacceptable. Since j > m, ij > i(S′), and the preferences θ are consistent,

the preferences θ′ are well defined. Let θ′′ = (�′′, �̂′′) be the preferences given by �′′=�′ and
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�̂′′ : [si(σ(S′)), sN+1].

Recall that for all i > i(σ(S′)), θ′i,i(σ(S′)) = (�i,i(σ(S′)), �̂i,i(σ(S′))) are the student preferences

such that

�i,i(σ(S′)): [si(σ(S′)), si−1, si, sN+1] and �̂i,i(σ(S′)) : [si(σ(S′)), sN+1],

with all other schools unacceptable. Additionally, recall that ρi,σ−1(i(σ(S′))) is the proportion of

students of type θi,i(σ(S′)) whose first-round assignment is si and whose second-round assignment

is school si(σ(S′)).

Let Ŝ = {si1 , si2 , . . . , sij−1}, and let i(Ŝ) be the index i such that i ∈ Ŝ and σ−1(i) is maximal,

that is, the index of the school preferable to s under � that is most affordable in the second round.

Then the proportion of students with preferences θ who are assigned to (s, S′) under M is given

by ρθ([Cij , Ci(Ŝ)], S
′), where

ρθ([Cij , Ci(Ŝ)], S
′) = ρθ

′
([Cij , Ci(Ŝ)], S

′) (by the prefix property (Lemma 2) with prefix S′)

=
∑

i(Ŝ)<i≤ij

ρθ
′
([Ci, Ci−1], S′)

=
∑

i(Ŝ)<i≤ij

ρθ
′
([Ci, Ci−1], si(σ(S′)))

(by the definition of the second-round overdemand ordering)

=
∑

i(Ŝ)<i≤ij

ρθ
′′
([Ci, Ci−1], si(σ(S′))) (by the prefix property with prefix {si(σ(S′))})

=
∑

i(Ŝ)<i≤ij

ρ
θ′
i,i(σ(S′))([Ci, Ci−1], si(σ(S′)))

(since the second-round assignment does not depend on the first-round report)

=
∑

i(Ŝ)<i≤ij

ρi,σ−1(i(σ(S′))) (by the definition of ρi,σ−1(i(σ(S′))))

=
∑

i(Ŝ)<i≤ij

∑
j′≤σ−1(i(σ(S′)))

γi,j′ (by the definition of γi,j′),

which is precisely the proportion of students with preferences θ who are assigned to (s, S′) if the

first- and second-round affordable sets are given by γi,j′ . Note that all θ′i,i(σ(S′)) and ρi,σ−1(i(σ(S′)))

in the summation are well-defined, since the sum is over indices satisfying i > i
(
Ŝ
)

, and since

j > m it follows that Ŝ ⊇ S′ and hence i > i
(
Ŝ
)
≥ i (σ (S′)) .

(2d) Constructing the lottery L.

Fix a student λ who reports first- and second-round preferences θ = (�, �̂). Suppose that λ is

assigned to schools (si, sj) in the first and second rounds respectively. We first characterize all first-

and second-round budget sets consistent with the overdemand orderings that could have led to this

assignment. Let i be the smallest index i′ such that max�Xi′ = si, let j be the smallest index j′

such that max�̂ X̃j′ ∪ {si} = sj , and let j be the largest index j′ such that max�̂ X̃j′ ∪ {si} = sj .
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Then the set of first- and second-round budget sets that student λ could have been assigned by the

mechanism is given by {Xi′ , Xj′ ∪ {si} : i ≤ i′ ≤ i, j ≤ j′ ≤ j}. (We remark that the asymmetry

in these definitions is due to the existence of the first-round guarantee in the second-round budget

sets.)

Conditional on λ being assigned to schools (si, sj) in the first and second rounds respecti-

vely, we assign a lottery number L(λ) to λ distributed uniformly over the union of intervals

∪i′,j′:i≤i′≤i,j≤j′≤j Ĩi′,j′ ,

( L(λ) | (µ(λ), µ̃(λ)) = (si, sj)) ∼ Unif
(
∪i′,j′:i≤i′≤i,j≤j′≤j Ĩi′,j′

)
,

independent of all other students’ assignments.

We show that this is consistent with the first round of the mechanism being RSD. We have

shown in (1) that if for each pair of reported preferences θ = (�, �̂) ∈ Θ, a uniform proportion γi′,j′

of students with reported preferences θ are given first- and second-round budget sets Xi′ , {sθ} ∪
X̃j′ (where sθ = max�Xi is the first-round assignment of such students), we obtain the same

distribution of assignments as M . Since M is anonymous and satisfies the averaging axiom, and

since |Ĩi′,j′ | = γi′,j′ , it follows that each student’s first-round lottery number is distributed as

Unif[0, 1].

Given the constructed lottery L, we construct the second-round cutoffs Ĉi for the PLDA and

verify that the assignment µ̃ is feasible and stable with respect to the schools’ second-round prefe-

rences, as defined by P ◦L and the guarantee structure. Specifically, in PLDA, each student with a

first-round score l and a first-round assignment s has a second-round score r̂i = P (l) +1(s = si) at

each school si ∈ S, and students are assigned to their favorite school si at which their second-round

score exceeds the school’s second-round cutoff, r̂i ≥ Ĉi (or to the outside option sN+1).

Recall that the schools are indexed so that C1 ≥ C2 ≥ · · · ≥ CN+1, and that the permutation σ

is chosen so that the second-round overdemand ordering is given by sσ(1), sσ(2), . . . , sσ(N+1) = sN+1,

and so it should follow that the second-round cutoffs Ĉi satisfy Ĉσ(1) ≥ Ĉσ(2) ≥ · · · ≥ Ĉσ(N+1).

By the characterization of stable assignments given by Azevedo and Leshno (2016), it suffi-

ces to show that if each student with a first-round assignment s and second-round lottery num-

ber in [Ĉσ−1(i), Ĉσ−1(i−1)] is assigned to her favorite school in {s} ∪ X̃i, where we define X̃i =

{sσ(i), sσ(i+1), . . . , sσ(N+1)}, then the resulting assignment µ̂ is equal to the second-round assign-

ment µ̃ of our mechanism M , and satisfies that η(µ̂−1(si)) ≤ qi for any school si, and η(µ̂−1(si)) = qi

if Ĉi > 0.

For fixed i, j, let Ĉσ(j) = 1−
∑

i′,j′:j′≤j γi′,j′ and let Ĉi,σ(j) = Ĉσ(j−1) −
∑

i′≤i γi′,j . (We remark

that since γi,j refers to the i-th school to fill in the first round, si, and the j-th school to fill in the

second round, sσ(j), the Ĉ are indexed slightly differently than γi,j is.)

We use the averaging assumption and the equivalence of assignment probabilities that we have

shown in (1) to conclude that if µ̂ is the assignment given by running DA with round scores r̂ and

cutoffs Ĉ, then µ̃ = µ̂.
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This is fairly evident, but we also show it explicitly below. Specifically, consider a student

λ ∈ Λ with a first-round lottery number L(λ) and reported preferences θ = (�, �̂). Let i, j be

such that L(λ) ∈ ∪i′,j′:i≤i′≤i,j≤j′≤j Ĩi′,j′ , where i is the smallest index i′ such that max�Xi′ = si,

j is the smallest index j′ such that max�̂ X̃j′ ∪ {si} = sj , and j is the largest index j′ such that

max�̂ X̃j′ ∪ {si} = sj . Then, because of the way in which we have constructed the lottery L,

(µ(λ), µ̃(λ)) = (si, sj).

Moreover, since

P (L(λ)) ∈ P (∪i′,j′:i≤i′≤i,j≤j′≤j Ĩi′,j′)

= ∪i′,j′:i≤i′≤i,j≤j′≤jP (Ĩi′,j′),

where P (Ĩi′,j′) ∈ [Ĉσ(j′), Ĉσ(j′−1)], it holds that under µ̂, student λ receives her favorite school in

{si} ∪ X̃j′ for some j ≤ j′ ≤ j, which is the school sj . Hence µ̃(λ) = µ̂(λ) = sj .

It follows immediately that the assignment µ̂ is feasible, since it is equal to the feasible assign-

ment µ̃.

Finally, let us check that the assignment is stable. Suppose that Ĉj > 0. We want to show that

η(µ̃−1(sj)) = qj . First note that it follows from the definition of Ĉj that

1 >
∑

i′,j′:j′≤σ−1(j)

γi′,j′ =
∑
i′

ρi′,σ−1(j).

Consider student preferences θ = (�,�) given by �: [sj , s1, s2, . . . , sj−1, sj+1, . . . , sN+1]. Then∑
i′ ρi′,σ−1(j) is the proportion of students of type θ who are assigned to school sj in the second

round, which, by assumption, is also the probability that a student with preferences θ is assigned

to sj in the second round. But since M is non-wasteful, this means that η(µ̃−1(sj)) = qj . It follows

from constrained Pareto efficiency that the output of M is the student-optimal stable matching.

Proof of Lemma 2. Here, we prove the prefix property. We first observe that any schools reported

to be acceptable but ranked below s in the first round are inconsequential. Moreover, since M

respects guarantees, weak two-round strategy-proofness implies that any schools reported to be

acceptable but ranked below s in the second round are inconsequential. Hence it suffices to prove

the lemma for first-round preference orderings � and �′ for which s is the last acceptable school.

Suppose that the lemma holds for i = i (C′). Then if i (C′) = i′ < i it holds that

ρθ
(
[Cj , Ci] , C′

)
=

ρθ
([
Cj , Ci(C′)

]
, C′
) (
Ci(C′) − Cj

)
− ρθ

([
Ci, Ci(C′)

]
, C′
) (
Ci(C′) − Ci

)
Ci − Cj

=
ρθ
′ ([

Cj , Ci(C′)
]
, C′
) (
Ci(C′) − Cj

)
− ρθ′

([
Ci, Ci(C′)

]
, C′
) (
Ci(C′) − Ci

)
Ci − Cj

= ρθ
′ (

[Cj , Ci] , C′
)
,
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where the first and last equalities follow from Bayes’ rule, and the second equality holds since the

lemma holds for i = i (C′), and the theorem follows. Hence it suffices to prove the lemma for

i = i (C′).

Let i1, . . . , ik be the indices of the schools in S′, in increasing order. We observe that ik = i(S′).

Recall that s = sj , where ik < j.

Since we wish to prove that the lemma holds for all pairs θ, θ′ satisfying the assumptions, it

suffices to show that the lemma holds for a fixed preference θ when we vary only θ′. Therefore, we

may, without loss of generality, fix the preferences θ to satisfy that

�: [si(S′), si1 , . . . , sik−1
, s = sj , sN+1] and �̂ : [si(S′), si1 , · · · , sik−1

, sN+1],

and all other schools are unacceptable. That is, the worst school in S′ is top ranked, then all other

schools in S′ in order. In the first round s = sj is also acceptable, and in the second round only

schools in S′ are acceptable.

We remark that given the first-round ordering, the worst school in S′ and the school s (namely,

si(S′) and sj) are the only acceptable schools to which students of type θ will be assigned in the first

round. Moreover, the proportion of students with preferences θ (or θ′) who can deduce that their

score is in [Cj , Ci(S′)] is precisely Ci(S′) −Cj , since such students are assigned in the first round to

some school not in S′ that they weakly prefer to s, and all such schools are between si(S′′) and sj

in the overdemand ordering. Similarly, the proportion of students with preferences θ (or θ′) who

can deduce that their lottery number is in [Ci(S′), 1] is precisely 1− Ci(S′), since such students are

assigned in the first round to a school in S′. (Note that students with preferences θ′ may be able to

deduce that their lottery number falls in a subinterval of the interval we have specified. However,

this does not affect our statements.)

To compare the proportion of students of types θ and θ′ whose scores are in [Cj , Ci(S′)] and who

are assigned to S′ in the second round, we define a third student type θ′′ as follows. Let θ′′ = (�′, �̂)

be a set of preferences where the first-round preferences are the same as the first-round preferences

of θ′, and the second-round preferences are the same as the second-round preferences of type θ.

Let λ be a student with preferences θ, and similarly let λ′ be a student with preferences θ′. We

use the two-round strategy-proofness of the mechanism to show that λ has the same probability

of being assigned to some school in S′ in the second round as if she had reported type θ′′, and

similarly for λ′. Since the proportion of students of either type being assigned to a school in S′ in

the first round is the same and the mechanism respects guarantees, this is sufficient to prove the

prefix property.

Formally, let ρ be the probability that λ is assigned to some school in S′ in the second round if

she reports truthfully, conditional on being able to deduce that her first-round score is in [Cj , Ci(S′)],

and let ρ′ be the probability that λ′ is assigned to some school in S′ in the second round if she

reports truthfully, conditional on being able to deduce that her first-round score is in [Cj , Ci(S′)].

(We note that given her first-round assignment µ(ρ′), the student ρ′ may actually be able to deduce
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more about her first-round score, and so the interim probability after knowing her assignment that

ρ′ is assigned to some school in S′ in the second round if she reports truthfully is not necessarily ρ′.)

Let ρ′′ be the probability that a student with preferences θ′′ and a first-round score in [Cj , Ci(S′)]

chosen uniformly at random is assigned to some school in S′ in the second round. It follows from

the design of the first round and from anonymity that ρ is the probability that a student with

preferences θ and a lottery number in [Cj , Ci(S′)] chosen uniformly at random is assigned to some

school in S′ in the second round, and similarly for ρ′.

Proving the lemma is equivalent to proving ρ = ρ′. We show that ρ = ρ′′ = ρ′. Note that the

first equality is between preferences that are identical in the second round, and the second equality

is between preferences that are identical in the first round.

We first show that ρ = ρ′′; that is, changing just the first-round preferences does not affect the

probability of assignment to S′. This is almost immediate from first-order stochastic dominance

of truthful reporting, since the second-round preferences under θ and θ′′ are identical. (This also

illustrates the power of the assumption that the second-round assignment does not depend on first-

round preferences. It implies that manipulating first-round reports to obtain a more fine-grained

knowledge of the lottery number does not help, since assignment probabilities are conditionally

independent of the lottery number.) We present the full argument below.

Let π be the probability that a student with preferences θ who is unassigned in the first round

is assigned to a school in S′ in the second round. We note that since the last acceptable school

under preferences θ and θ′ is s = sj , the set of students with preferences θ who are unassigned in

the first round is equal to the set of students with preferences θ with lottery number in [0, Cj ], and

similarly the set of students with preferences θ′′ who are unassigned in the first round is equal to

the set of students with preferences θ′′ with lottery number in [0, Cj ]. Hence, the fact that θ and

θ′′ have the same second preferences gives us that π is also the probability that a student with

preferences θ′′ who is unassigned in the first round is assigned to a school in S′ in the second round.

The probability of being assigned in the second round to a school in S′ when reporting θ is

given by:

(1− Ci(S′)) + (Ci(S′) − Cj)ρ+ Cjπ,

The probability of being assigned in the second round to a school in S′ when reporting θ′′ is given

by:

(1− Ci(S′)) + (Ci(S′) − Cj)ρ′′ + Cjπ,

It follows from first-order stochastic dominance of truthful reporting for types θ and θ′ that

ρ = ρ′′.

We now show that ρ′ = ρ′′. This is a little more involved, but essentially relies on breaking

the set of students with first-round score in [Cj , Ci(S′)] into smaller subsets, depending on their

first-round assignment, and using first-order stochastic dominance of truthful reporting to show

that in each subset, the probability of an arbitrary student being assigned to a school in S′ in the

second round is the same for students with either set of preferences θ′ or θ′′.
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We first introduce some notation for describing the first-round preferences of θ′ and θ′′. Let

{j1 ≤ · · · ≤ jm} be the indices between i(S′) and j corresponding to schools that a student with

preferences θ′ and a lottery number in [Cj , Ci(S′)] could have been assigned to in the first round.

Formally, we define them to be the indices k for which sk 6∈ S′, i(S′) < k ≤ j, sk �′ sj and sk is

relevant in the first-round overdemand ordering, that is, k′ < k for all k′ such that sk′ �′ sk. We

observe that jm = j. For l = 1, . . . ,m, let ρ′l be the probability that a student with preferences θ′

who was assigned to school sjl is assigned to a school in S′ in the second round.

The set of students with preferences θ′ assigned to school sjl in the first round is precisely the

set of students with preferences θ′ whose first-round lottery number is in [Cjl , Cjl−1
] and similarly

the set of students with preferences θ′′ assigned to school sjl in the first round is precisely the set of

students with preferences θ′′ whose first-round lottery number is in [Cjl , Cjl−1
]. If we define j0 = i,

it follows that (Ci(S′) − Cj) =
∑m

l=1(Cjl−1
− Cjl), and that

(Ci(S′) − Cj)ρ′ =
m∑
l=1

(Cjl−1
− Cjl)ρ

′
l.

Let ρ′′l be the probability that a student with preferences θ′′ who was assigned to school sjl is

assigned to a school in S′ in the second round. Then it also holds that

(Ci(S′) − Cj)ρ′′ =
m∑
l=1

(Cjl−1
− Cjl)ρ

′′
l .

We show now that ρ′′l = ρ′l for all l, which implies that ρ′ = ρ′′.

Consider a student λl who reported �′=�′′ in the first round and was assigned to school sjl .

Note that such a report is consistent with either reporting θ′ or θ′′, and since the first-round

reports of these types are the same and the first-round mechanism is DA-STB there exists some

set of lottery numbers Ll such that students of type θ′ and θ′′ are assigned to jl in the first round

if and only if their lottery lies in Ll. The probabilities that this student is assigned in the second

round to a school in C′ when reporting θ′ and θ′′ are given by ρ′l and ρ′′l respectively. Now for any

fixed lottery L (λ), truthful reporting is a dominant strategy in the second round for types θ and

θ′. It follows that ρ′l = ρ′′l .

This completes the proof of the lemma.
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