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We consider the problem faced by a service platform that needs to match supply with demand, but also to

learn a�ributes of new arrivals in order to match them be�er in the future. We introduce a benchmark model

with heterogeneous workers and jobs that arrive over time. Job types are known to the platform, but worker

types are unknown and must be learned by observing match outcomes. Workers depart a�er performing a

certain number of jobs. �e payo� from a match depends on the pair of types and the goal is to maximize the

steady-state rate of accumulation of payo�.

Our main contribution is a complete characterization of the structure of the optimal policy in the limit

that each worker performs many jobs. �e platform faces a trade-o� for each worker between myopically

maximizing payo�s (exploitation) and learning the type of the worker (exploration). �is creates a multitude of

multi-armed bandit problems, one for each worker, coupled together by the constraint on availability of jobs

of di�erent types (capacity constraints). We �nd that the platform should estimate a shadow price for each

job type, and use the payo�s adjusted by these prices, �rst, to determine its learning goals and then, for each

worker, (i) to balance learning with payo�s during the “exploration phase”, and (ii) to myopically match a�er

it has achieved its learning goals during the “exploitation phase.”
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1 INTRODUCTION
�is paper considers a central operational challenge faced by platforms that serve as matchmakers

between supply and demand. Such platforms face a fundamental exploration-exploitation trade-

o�: on the one hand, e�cient operation involves making matches that generate the most value

(“exploitation”); on the other hand, the platform must continuously learn about newly arriving

participants, so that they can be e�ciently matched (“exploration”). In this paper, we develop a

structurally simple and nearly optimal approach to resolving this trade-o�.

In the model we consider, there are two groups of participants: workers and jobs. �e terminology

is inspired by online labor markets (e.g., Upwork for remote work, Handy for housecleaning,

�umbtack and Taskrabbit for local tasks, etc.); however, our model can be viewed as a stylized

abstraction of many other matching platforms as well. Time is discrete, and new workers and jobs

arrive at the beginning of every time period. Workers depart a�er performing a speci�ed number

of jobs. Each time a worker and job are matched, a (random) payo� is generated and observed by

the platform, where the payo� distribution depends on the worker type and the job type.

As our emphasis is on the interaction between matching and learning, our model has several

features that focus our analysis in this paper. First, the platform centrally controls matching: at the

beginning of each time period, the platform matches each worker in the system to an available job.

Second, strategic considerations are not modeled; this remains an interesting direction for future

work. Finally, we focus on the goal of maximizing the steady-state rate of payo� generation.
1

1
�is is a reasonable proxy for the goal of a platform that, say, takes a fraction of the total surplus generated through

matches. More generally, we believe that this is a benchmark problem whose solution informs algorithmic design for

se�ings with other related objectives, such as revenue maximization.

Manuscript submi�ed for review to ACM Economics & Computation 2017 (EC ’17).
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We now describe the learning challenge faced by the platform. In most platforms, more is known

about one side of the platform than the other; accordingly, we assume job types are known, while

the type of a new worker is unknown. �e platform learns about workers’ types through the

payo�s obtained when they are matched to jobs. However, because the supply of jobs is limited,

using jobs to learn can reduce immediate payo�s, as well as deplete the supply of jobs available

to the rest of the marketplace. �us the presence of capacity constraints forces us to carefully

design both exploration and exploitation in any algorithm if we aim to optimize the rate of payo�

generation.

Our main contribution in this paper is the development of a matching policy that is nearly

payo� optimal. Our algorithm is divided into two phases in each worker’s lifetime: exploration
(identi�cation of the worker type) and exploitation (optimal matching given the worker’s identi�ed

type). We refer to our policy as DEEM: Decentralized Explore-then-Exploit for Matching.

To develop intuition for our solution, consider a simple example with two types of jobs (“easy”

and “hard”) and two types of workers (“expert” and “novice”). Experts can do both types of tasks

well; but novices can only do easy tasks well. Suppose that there is a limited supply of easy jobs:

more than the mass of novices available, but less than the total mass of novices and experts. In

particular, to maximize payo� the platform must learn enough to match some experts to hard jobs.

DEEM has several key features, each of which can be understood in the context of this example.

First, DEEM has a natural decentralization property: it determines the choice of job for a worker

based only on that worker’s history. �is decentralization is arguably essential in large-scale online

platforms, where matching is typically carried out on an individual basis, rather than centrally.

In order to accomplish this decentralization, it is essential for the algorithm to account for the

externality to the rest of the market when a worker is matched to a given job. For example, if easy

jobs are relatively scarce, then matching a worker to such a job makes it unavailable to the rest

of the market. Our approach is to “price” this externality: we �nd shadow prices for the capacity

constraints, and adjust per-match payo�s downward using these prices.

Second, our algorithm design speci�es learning goals that ensure an e�cient balance between

exploration and exploitation. In particular, in our example, we note that there are two kinds of

errors possible while exploring: misclassifying a novice as an expert, and vice versa. Occasionally

mislabeling experts as novices is not catastrophic: some experts need to do easy jobs anyway, and so

the algorithm can account for it in the exploitation phase. �us, relatively less e�ort can be invested

in minimizing this error. However, mistakenly labeling novices as experts can be catastrophic: in

this case, novices will be matched to hard jobs in the exploitation phase, causing substantial loss of

payo�; thus the probability of such errors must be kept very small. A major contribution of our

work is to precisely identify the correct learning goals in the exploration phase, and then design

DEEM to meet these learning goals while maximizing payo� generation.

�ird, DEEM involves a carefully constructed exploitation phase to ensure that capacity con-

straints are met while maximizing payo�s. A naive approach during the exploitation phase would

match a worker to any job type that yields the maximum externality-adjusted payo� corresponding

to his type label. It turns out that such an approach leads to signi�cant violations of capacity con-

straints, and hence poor performance. �e reason is that in a generic capacitated problem instance,

one or more worker types are indi�erent between multiple job types, and suitable tie-breaking

is necessary to achieve good performance. In our theoretical development, we achieve this by

modifying the solution to the static optimization problem with known worker types, whereas our

practical implementation of DEEM achieves appropriate tie-breaking via simple but dynamically

updated shadow prices. Both solutions are decentralized.
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Our main result (�eorem 5.1) shows that DEEM achieves essentially optimal regret as the

number of jobs N performed by each worker during their lifetime grows, where regret is the loss in

payo� relative to the maximum achievable with known worker types. In our se�ing, a lower bound

on the regret is C logN /N (1 + o(1)) for some C ∈ [0,∞) that is a function of system parameters.

DEEM achieves this level of regret to leading order when C > 0, while it achieves a regret of

O (log logN /N ) if C = 0. Our theory is complemented by implementation and simulation that

demonstrate a natural and implementable heuristic that translates our work into practice.
2

In

particular, our simulations reveal substantial bene�t from jointly managing capacity constraints

and learning, as we do in DEEM.

�e remainder of the paper is organized as follows. A�er discussing related work in Section 2,

we present our model and outline the optimization problem of interest to the platform in Section 3.

In Section 4, we discuss the three key ideas above in the design of DEEM, and present its formal

de�nition. In Section 5, we present our main theorem, and discuss the optimal regret scaling. In

Section 6 we present a sketch of the proof of the main result. In Section 7, we discuss practical

implementation of DEEM, and use simulations to compare the performance of the resulting heuristic

with well-known multi-armed bandit algorithms. We conclude in Section 8. All the proofs of the

results appearing in the paper are presented in the Appendices.

2 RELATED LITERATURE
A foundational model for investigating the exploration-exploitation tradeo� is the stochastic multi-

armed bandit (MAB) problem [Audibert and Munos, 2011, Bubeck and Cesa-Bianchi, 2012, Gi�ins

et al., 2011]. �e goal is to �nd an adaptive expected-regret-minimizing policy for choosing among

arms with unknown payo� distributions (where regret is measured against the expected payo�

of the best arm) [Agrawal and Goyal, 2011, Auer et al., 2002, Lai and Robbins, 1985]. �e closest

work in this literature to our paper is by Agrawal et al. [1989]; in their model, they assume the

joint vector of arm distributions can only take on one of �nitely many values. �is introduces

correlation across di�erent arms; depending on certain identi�ability conditions, the optimal regret

is either Θ(1/N ) or Θ(logN /N ). In our model, the analog is that job types are arms, and for each

worker we solve a MAB problem to identify the true type of a worker, within a �nite set of possible

worker types.

Our work is also related to recent literature on MAB problems with capacity constraints; we

refer to these broadly as bandits with knapsacks. �e formulation is the same as the classical MAB

problem, with the modi�cation that every pull of an arm depletes a vector of resources which are

limited in supply [Badanidiyuru et al., 2013]. �e formulation subsumes several related problems in

revenue management under demand uncertainty [Babaio� et al., 2015, Besbes and Zeevi, 2009, 2012,

Sauré and Zeevi, 2013, Wang et al., 2014], and budgeted dynamic procurement [Badanidiyuru et al.,

2012, Singla and Krause, 2013]; there have been a variety of extensions [Agrawal and Devanur,

2014, Badanidiyuru et al., 2014], with recently a signi�cant generalization of the problem to a

contextual bandit se�ing, with concave rewards and convex constraints [Agrawal and Devanur,

2015, Agrawal et al., 2015]. �ere is considerable di�erence between our model and bandits with

knapsacks. Bandits with knapsacks consider a single MAB problem over a �xed time horizon.

Our se�ing on the other hand can be seen as a system with an ongoing arriving stream of MAB

problems, one per worker; these MAB problems are coupled together by the capacity constraints

on arriving jobs. Indeed, as noted in the introduction, a signi�cant structural point for us is to

solve these problems in a decentralized manner, to ease their implementation in large-scale online

platforms.

2
Notably, our implementation does not require knowledge of the arrival rates of jobs and workers.
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We conclude by discussing some other directions of work that are related to this paper. �ere

are a number of recent pieces of work that consider e�cient matching in dynamic two-sided

matching markets [Akbarpour et al., 2014, Anderson et al., 2015, Baccara et al., 2015, Damiano

and Lam, 2005, Das and Kamenica, 2005, Hu and Zhou, 2015, Kadam and Kotowski, 2015, Kurino,

2005]; a related class of dynamic resource allocation problems, online bipartite matching, is also

well studied in the computer science community (see [Mehta, 2012] for a survey). Similar to the

current paper, Fershtman and Pavan [2015] also study matching with learning, mediated by a

central platform. Relative to our model, their work does not have constraints on the number of

matches per agent, while it does consider agent incentives. Finally, a recent work [Massoulie and

Xu, 2016] studies a pure learning problem in a se�ing similar to ours with capacity constraints on

each type of server/expert; while there are some similarities in the style of analysis, that paper

focuses exclusively on learning the exact type, rather than balancing exploration and exploitation

as we do in this paper.

3 THE MODEL AND THE OPTIMIZATION PROBLEM
In this section we �rst describe our model. In particular, we describe the primitives of our platform

(“workers” and “jobs”), and givea formal speci�cation of the matching process we study. We

conclude by precisely de�ning the optimization problem of interest that we solve in this paper.

3.1 Preliminaries
Workers and jobs. For convenience we adopt the terminology of workers and jobs to describe the

two sides of the market. We assume a �xed set of job types J , and a �xed set of worker types I.

A key point is that the model we consider is a continuum model, and so the evolution of the

system will be described by masses of workers and jobs.
3

In particular, at each time step, a mass

ρ̂ (i ) > 0 of workers of type i and a mass µ (j ) > 0 of jobs of type j arrive. In what follows, we model

the scenario where type uncertainty exists only for workers; i.e., the platform will know the types

of arriving jobs exactly, but will need to learn the types of arriving workers. We also assume for

now that the arrival rates of jobs and workers are known to the platform; later in Section 7, we

discuss how the platform might account for the possibility that these parameters are unknown.

Matching and the payo� matrix. If a mass of workers of type i is matched to a mass of jobs

of type j, we assume that a fraction A(i, j ) of this mass of matches generates a reward of 1 (per

unit mass), while a fraction 1 − A(i, j ) generates a reward of zero (per unit mass). �is formal

speci�cation is meant to capture a large-system model in a se�ing where matches between type

i workers and type j jobs generate a Bernoulli(A(i, j )) payo�. We do not concern ourselves with

the division of payo�s between workers and employers in this paper; instead we assume that the

platform’s goal is to maximize the total rate of payo� generation.
4

We call the matrix A the payo�
matrix; throughout, we assume that no two rows of A are identical.

5

A key assumption in our work is that the platform knows the matrix A. In particular, we are

considering a platform that has enough aggregate information to understand compatibility between

di�erent worker and job types; however, for any given worker newly arriving to the platform, the

platform does not know the worker’s type. �us, from the perspective of the platform, there will

be uncertainty in payo�s in each period because although the platform knows that a given mass of

workers of type i exist in the platform, the identity of the workers of type i is not known.

3
Formally, this can be seen as a continuum scaling of a discrete system; see, e.g., [Dai, 1995, Maglaras and Zeevi, 2003, 2005]

4
�is would be the case, e.g., in a platform where the operator takes a �xed percentage of the total payo� generated from a

match.

5
�is mild requirement simply ensures that it is possible, in principle, to distinguish between each pair of worker types.
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We de�ne an “empty” job type κ, such that all worker types matched to κ generate zero reward,

i.e., A(i,κ) = 0 for all i . We view κ as representing the possibility that a worker goes unmatched,

and thus assume that an unbounded capacity of job type κ is available, i.e., µ (κ) = ∞.

Worker lifetimes. We imagine that each arriving worker lives in the system for N time steps,
6

and has the opportunity to be matched to a job in each time step (so each job takes one unit of time

to complete). We assume the platform knows N .

Note that we have ρ (i ) = ρ̂ (i )N as the total mass of workers of type i in the system at each time

step. For our theoretical analysis, we later consider a scaling regime where N → ∞, and ρ̂ (i ) → 0,

while ρ (i ) remains �xed. In this regime worker lifetimes grow to in�nity, and arrival rates scale

down, but the total mass of workers of each type available in each time period remains �xed.

Generalized imbalance. �roughout our technical development, we make a mild structural

assumption on the problem instance, de�ned by the tuple (ρ, µ,A). �is is captured by the following

de�nition. We say that arrival rates ρ = (ρ (i ))i ∈I and µ = (µ (j ))j ∈J satisfy the generalized
imbalance condition if there is no pair of nonempty subsets of worker types and job types (I ′,J ′),
such that the total worker arrival rate ofI ′ exactly matches the total job arrival rate of J ′. Formally,∑

i ∈I′
ρ (i ) ,

∑
j ∈J ′

µ (j ) ∀I ′ ⊆ I,J ′ ⊆ J ,I ′ , ϕ .

�e generalized imbalance condition holds generically.
7

Note that this condition does not depend

on the matrix A.

Worker history. To de�ne the state of the system and the resulting matching dynamics, we

need the notion of a worker history. A worker history is a tuple Hk = ((j1,x1), . . . , (jk ,xk )), where

jm is the job type this worker was matched to at herm-th time step in the system, for 1 ≤ m ≤ k ;

and xm ∈ {0, 1} is the corresponding reward obtained. Note that since workers live for N jobs, the

histories will have k = 0, . . . ,N − 1. We let ϕ denote the empty history (for k = 0).

3.2 System dynamics
Our goal is to model the following process. �e operator observes, at any point in time, the

distribution of histories of workers in the platform, and also knows the job arrival rate µ. �e

matching policy of the platform amounts to determining what mass of workers of each type of

history will be matched to which type of jobs. Ultimately, for this process to generate high payo�s

over time, the platform must choose jobs to learn worker types in order to optimize payo�s.

With this intuition in mind, we now give a formal speci�cation of our system dynamics.

System pro�le. A system pro�le ν is a joint measure over worker histories and worker types;

i.e., ν (Hk , i ) is the mass of workers in the system with history Hk and type i . �e evolution of the

system is a discrete-time dynamical system ν0,ν1,ν2, . . ., where each νt is a system pro�le.
8

Matching policy. To describe the dynamics we assume that the platform uses a matching policy
to match the entire mass of workers to jobs in each time step (we think of unmatched workers

as being matched to the empty job type κ). We assume that any mass of jobs le� unmatched in a

given period disappears at the end of that period (our results do not depend on this assumption).

6
Our analysis and results generalize to random worker lifetimes that are i.i.d. across workers of di�erent types, with mean

N and any distribution such that the lifetime exceeds N /polylog(n) with high probability.

7
�e set (ρ̂, µ ) for which the condition holds is open and dense in R|I |+|J |++ , where R++ are the strictly positive real numbers.

8
�e platform cannot directly observe the system pro�le, but can infer it. �e platform observes the mass of workers with

each possible history

( ∑
i∈I ν (Hk , i )

)
Hk

. It can then infer ν (Hk , i )’s individually by using knowledge of arrival rates

ρ̂ (i )’s, and the A matrix (which allows it to calculate the likelihood of seeing the sequence of outcomes in Hk under the

worker type i ), together with Bayes’ rule.
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Suppose that the system starts at time t = 0 with no workers in the system before this time.
9

A matching policy π0,π1, . . . for the system speci�es, at each time t , given a system pro�le νt , the

mass of workers with each history that is matched to jobs of each type. In particular, let πt (Hk , j |νt )
denote the fraction of workers with history Hk matched to jobs of type j at time t , given a system

pro�le νt . (�us

∑
j πt (Hk , j |νt ) = 1 for all t , Hk , and νt .) Note that the matching policy acts on

each worker’s history, not on the true type of each worker: this is because the platform is assumed

to not know worker types, except as learned through the history itself.

Dynamics. �ese features completely determine the evolution of the system pro�le {νt }. Observe

that νt (Hk , i )πt (Hk , j |νt ) is the total mass of workers of type i with history Hk who are matched to

jobs of type j at time t , given policy πt and system pro�le νt . For all i , j, and t , we have

νt+1 (ϕ, i ) = ρ̂ (i ); (1)

νt+1 ((Hk , (j, 1)), i ) = νt (Hk , i )πt (Hk , j |νt )A(i, j ), k = 0, . . . ,N − 2; (2)

νt+1 ((Hk , (j, 0)), i ) = νt (Hk , i )πt (Hk , j |νt ) (1 −A(i, j )), k = 0, . . . ,N − 2. (3)

Decentralization through worker-history-only (WHO) policies. Note that, in general,

policies may be time-varying, and may have complex dependence on the system pro�le νt . We

consider a much simpler class of policies that we call worker-history-only (WHO) policies. �ese are

policies where there exists a π such that

πt (Hk , j |νt ) = π (Hk , j ).

In other words, in a WHO policy, the fraction of workers with history Hk who are matched to

jobs of type j does not depend on either time or on the full system pro�le. �us WHO policies are

decentralized.

An obvious concern at this point is that a policy cannot allocate more jobs of type j than there

are. We formalize this capacity constraint in (8) below: in particular, a WHO policy does not exceed

the capacity of any job type in any period if and only if it satis�es (8).

Let ΠN
denote the class of WHO policies, for a given N . In Section D.1 in Appendix D, we

establish that it su�ces to restrict a�ention to policies in ΠN
that satisfy (8).

Remark 1. For any feasible policy, there exists a WHO policy satisfying capacity constraints that
achieves a payo� accumulation rate arbitrarily close to that of the former policy. In particular, WHO
policies satisfying capacity constraints su�ce to achieve the highest possible payo� accumulation rate.

Steady state of a WHO policy π . First, suppose that there are no capacity constraints, and

consider the system dynamics (1)–(3), assuming the system initially starts empty. �e dynamics

(1)–(3) yields a unique steady state that can be inductively computed for k = 0, 1, . . .:

νπ (ϕ, i ) = ρ̂ (i ); (4)

νπ ((Hk , (j, 1)), i ) = νπ (Hk , i )π (Hk , j )A(i, j ), k = 0, . . . ,N − 2; (5)

νπ ((Hk , (j, 0)), i ) = νπ (Hk , i )π (Hk , j ) (1 −A(i, j )), k = 0, . . . ,N − 2. (6)

We refer to the measure νπ as the steady state induced by the policy π .

Routing matrix of a WHO policy π . If the system is in steady state, then at any time period,

π induces a steady-state fraction xπ (i, j ) of the mass of workers of type i that are assigned to type

j jobs. We have xπ (i, j ) =
∑
H νπ (H,i )π (H, j )∑

H νπ (H,i ) =
∑
H νπ (H,i )π (H, j )

ρ (i ) . We call {xπ (i, j )}I×J the routing
matrix achieved by the policy π . �is is a (row) stochastic matrix; i.e., each row sums to 1. Observe

9
In what follows we ultimately consider a steady-state analysis of the dynamical system, and initial conditions will be

irrelevant as long as the initial mass of workers is bounded.



Ramesh Johari, Vijay Kamble, and Yash Kanoria 7

that the mass of demand for jobs of type j from workers of type i in any time period is ρ (i )xπ (i, j ),
and the total mass of demand for jobs of type j in any time period is

∑
i ∈I ρ (i )xπ (i, j ).

Let XN =
{
xπ : π ∈ ΠN

}
⊆ [0, 1]

|I |×|J |
be the set of routing matrices achievable (when each

worker does N jobs) by WHO policies. (Again, we note that capacity constraints are ignored in the

de�nition of XN
.) In Appendix D, we show that XN

is a convex polytope (see Proposition D.4).

3.3 The optimization problem
Our paper focuses on maximization of the steady-state rate of payo� accumulation, subject to the

capacity constraints. �is leads to the following optimization problem:

maximize W N (π ) ,
∑
i ∈I

ρ (i )
∑
j ∈J

xπ (i, j )A(i, j ) (7)

subject to

∑
i ∈I

ρ (i )xπ (i, j ) ≤ µ (j ) ∀j ∈ J ; (8)

xπ ∈ X
N . (9)

�e objective is the steady-state rate of payo� accumulation per time period, expressed in terms of

the routing matrix induced by a (WHO) policy π . �e constraint is the capacity constraint: the

system will be stable if and only if the total “demand” for jobs of type j is not greater than the

arrival rate of jobs of type j.
Since XN

is a convex polytope, this is a linear program, albeit a complex one. �e complexity of

this problem is hidden in the complexity of the set XN
, which includes all possible routing matrices

that can be obtained using WHO policies. �e remainder of our paper is devoted to solving this

problem and characterizing its value, by considering an asymptotic regime where N → ∞.

3.4 The benchmark: Known worker types
We evaluate our performance relative to a natural benchmark: the maximal rate of payo� accumu-

lation possible if worker types are perfectly known upon arrival. In this case, any stochastic matrix

is feasible as a routing matrix. Let D denote the set of all stochastic matrices:

D =

{
x ∈ R |I |×|J | : x (i, j ) ≥ 0;

∑
j ∈J

x (i, j ) = 1

}
. (10)

Note that any routing matrix in D is implementable by a simple policy under known worker types:

given a desired routing matrix x , route a fraction x (i, j ) of workers of type i to jobs of type j.
�us, with known worker types, the maximal rate of payo� accumulation is given by the solution

to the following optimization problem:

maximize

∑
i ∈I

ρ (i )
∑
j ∈J

x (i, j )A(i, j ) (11)

subject to

∑
i ∈I

ρ (i )x (i, j ) ≤ µ (j ) ∀j ∈ J ; (12)

x ∈ D . (13)

We let V ∗ denote the maximal value of the preceding optimization problem, and let x∗ denote the

solution. �is linear program is a special case of the “static planning problem” that arises frequently

in the operations literature (see, e.g. [Ata and Kumar, 2005]). �e problem can also be viewed as

a version of the assignment problem due to Shapley and Shubik [Shapley and Shubik, 1971], in

which the resources are divisible.
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3.5 Regret
We evaluate the performance of a given policy in terms of its regret relative to V ∗. In particular,

given N and a WHO policy π satisfying (8), we de�ne the regret of π as V ∗ −W N (π ).
We focus on the asymptotic regime where N → ∞, and try to �nd policies that have “small”

regret in this regime. �is asymptotic regime allows us to identify structural aspects of policies that

perform well. In Appendix D (see Proposition D.3), we show that it is relatively “easy” to design

policies that achieve a vanishing regret (and even regret that is within a constant factor of the

smallest possible). �e idea is straightforward: informally, when N is large, policies that “explore”

for a vanishing fraction of worker lifetimes will be able to learn the worker’s true type su�ciently

well to yield a rate of payo� accumulation such that regret converges to zero in the limit.

For this reason, our analysis focuses on a more re�ned notion of asymptotic optimality. In

particular, we focus on developing policies that achieve a nearly optimal rate at which the regret

V ∗ −W N (πN ) approaches zero. �is is formalized in �eorem 5.1 below.

3.6 A note on terminology
Note that, intuitively, WHO policies have the feature that decisions are taken on the basis of the

history of a given worker, not on the basis of the system pro�le as a whole. In the sequel, we
will typically refer to π (Hk , j ) as “the probability that a worker of history Hk is matched to a job of
type j.” We use this terminology to make the presentation more intuitive, since the intention is

that our algorithms be implemented at the level of each individual worker’s history. However, to

formalize all our arguments, we emphasize that our proofs translate π (Hk , j ) as the fraction of

workers of history Hk matched to a job type j; this correspondence applies throughout the technical

development.

4 DEEM: A PAYOFF-MAXIMIZING POLICY
In this section we present the design of a sequence of policies π ∗N that achieves a nearly optimal

rate of convergence of regret V ∗ −W N (π ∗N ). We refer to our policy design as DEEM: Decentralized
Explore-then-Exploit for Matching. Our main result, stated in the next section, is �eorem 5.1:

there we exactly quantify the regret performance of DEEM (an upper bound on its regret), and

characterize it as nearly optimal (a lower bound on the regret of any feasible WHO policy).

To begin to understand the challenges involved, consider the example in Figure 1. In this example,

there are two types of workers: “novice” and “expert,” with a mass of ρ = 0.5 of each present in

steady state. �ere are two types of jobs: “easy” and “hard,” each arriving at rate 0.6.

We make several observations regarding this example that inform our subsequent work.

(1) �e benchmark. In this example, the optimal solution to the benchmark problem (11)–(13)

with known types routes all novices to easy jobs, a mass 0.1 of experts to easy jobs, and a mass 0.4

of experts to hard jobs. Of course, our problem is that we do not know worker types on arrival.

(2) Capacity constraints a�ect an optimal WHO policy’s need to learn. If easy and hard jobs are in

in�nite supply, then the WHO policy π that matches all workers to easy jobs is optimal. However,

with the �nite supply of available easy jobs, some workers must do hard jobs. But which workers?

Clearly, for payo� optimality, an optimal policy should aim to match experts to hard jobs. But

this is only possible if it �rst learns that a worker is an expert. Because of the structure of A, the

type of a worker can only be learnt by matching it to hard jobs; those who perform well on these

jobs are experts, and those who fail are novices.

(3) Minimizing regret requires learning up front. Assigning workers of unknown type to hard

jobs necessarily incurs regret relative to the benchmark. Indeed, novices unknowingly matched

to hard jobs lead to a regret of 0.8 per unit mass of such workers in each period. Minimizing this
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regret therefore requires that the algorithm not only learn worker types, but also do so relatively

early in their lifetime, so that workers identi�ed as experts can be assigned many hard jobs.

In our work, this leads to a structure where we separate our policy into exploration and exploitation
phases: the policy �rst tries to learn a worker’s type, and then “exploits” by assigning this worker

to jobs while assuming that the learned type is correct. �e exploration phase will be of length

O(logN ), which is short relative to the worker’s lifetime.

(4) Some mistakes in the exploration phase are worse than others. �ere are two kinds of mistakes

that the policy can make while learning: it can mistakenly identify novices as experts, and it can

mistakenly identify experts and novices. �ese mistakes di�er in their impact on regret.

Suppose that at the end of the exploration phase, the algorithm misclassi�es a novice as an

expert. �is has a dire impact on regret: the novice is then assigned to hard jobs in the exploitation

phase, and as noted above, this incurs a regret of 0.8 per unit mass (of workers misclassi�ed this

way) per unit time. �us we must work hard in the exploration phase to avoid such errors.

On the other hand, suppose that at the end of the exploration phase, the algorithm misclassi�es

an expert as a novice. �is mistake is far less consequential: workers misclassi�ed in this way

will be assigned to easy jobs. But a mass 0.1 of experts must be assigned to easy jobs even in the

benchmark solution with known types. �erefore, as long as this misclassi�ed mass is not too large,

we can adjust for it in the exploitation phase.

�is discussion highlights the need to precisely identify the learning goals of the algorithm: to

minimize regret, how strongly does each worker type need to be distinguished from others? A

major contribution of our work is to demonstrate an optimal construction of learning goals for

regret minimization. As noted above, the capacity constraints fundamentally in�uence the learning

goals of the algorithm.

0.5 Expert

Workers

Jobs
0.6 𝜇 0.6

𝜌

0.5 Novice

HardEasy

0.9 0.8

0.9 0.1

Fig. 1. An example

In the remainder of the section, we describe key ideas behind

the construction of our policy, highlighted by the issues raised in

the preceding example. We formally describe DEEM in Section 4.4.

We state our main theorem in Section 5.

4.1 Key idea 1: Use
shadow prices as an “externality adjustment” to payo�s
We begin by �rst noticing an immediate di�culty that arises in

using WHO policies in the presence of capacity constraints. WHO

policies are decentralized, i.e., they act only on the history of the

worker; as such, they cannot use aggregate state information about

the system, that conveys whether capacity constraints are being

met or not. In order to solve (7)–(9), therefore, we need to �nd a

way to “adjust” for capacity constraints despite the fact that our policy acts only at the level of

worker histories.

Our key insight is to use shadow prices for the capacity constraints to adjust payo�s; we then

measure regret with respect to these adjusted payo�s. Recall that (7)–(9) is a linear program. Let

pN be the optimal shadow prices (dual variables) for the capacity constraints (8). �en by standard

duality results, it follows that the policy that is optimal for (7)–(9) is also optimal for the following

unconstrained optimization problem:

maximizexπ ∈XN
∑
i ∈I

ρ (i )
∑
j ∈J

xπ (i, j ) (A(i, j ) − p
N (j )). (14)
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�us one may a�empt to account for capacity constraints using shadow prices
10 pN (j ).

�e challenge here is that the set XN
is quite complex, and thus characterizing the optimal

shadow prices of (7)–(9) is not a reasonable path forward. Instead, we use the optimal shadow

prices in the benchmark linear program with known types (11)–(13) to adjust payo�s; we then

measure regret with respect to these adjusted payo�s (the practical heuristic we implement uses a

di�erent, instance-independent approach to estimate shadow prices; see Section 7).

We let p∗ denote the vector of optimal shadow prices for the capacity constraint (12) in the

problem with known types (11)–(13). Using the generalized imbalance condition, we show that

these prices are uniquely determined; see Proposition D.2 in Appendix D.

Although p∗ (j ) , pN (j ), for large N , the platform should be able to learn the type of a worker

type early in her lifetime, leading to small |p∗ (j ) − pN (j ) |. �is motivates an analog of (14):

maximizexπ ∈XN
∑
i ∈I

ρ (i )
∑
j ∈J

xπ (i, j ) (A(i, j ) − p
∗ (j )). (15)

We develop a near-optimal algorithm for problem (15), such that (1) constraints on job capacities

are not violated, and (2) complementary slackness conditions are satis�ed, i.e., if p∗ (j ) > 0, then

the job type j is fully utilized. We then show this leads to the upper bound in the main result.

4.2 Key idea 2: Meet required learning goals while minimizing regret
As noted in our discussion of the example in Figure 1, we must carefully de�ne the learning goals of

the algorithm: which worker types need to be distinguished from which others, and with what level

of con�dence? A key contribution of our work is to formalize the learning goals of our algorithm.

In this section we de�ne the learning goals of the algorithm, and outline the exploration phase that

meets these goals.

Let the set of optimal job types for worker type i be de�ned by J (i ) = arg maxj ∈J A(i, j )−p∗ (j ).
(A standard duality argument demonstrates that in any optimal solution of the benchmark (11)–(13),

a worker type i is assigned only to jobs in J (i ).)
Recall that in the example in Figure 1, it is far more important not to misclassify a novice as an

expert than to misclassify an expert as a novice. We formalize this distinction through the following

de�nition.

De�nition 4.1. We say that a type i needs to be strongly distinguished from a type i ′ if J (i ) \
J (i ′) , ∅. For each worker type i , let Str(i ) be the set of all types i ′ from which i needs to be

strongly distinguished, i.e., Str(i ) = {i ′ : J (i ) \ J (i ′) , ∅}.

In words, this means that i needs to be strongly distinguished from i ′ if it has at least one optimal

job type that is not optimal for i ′, whereas it needs to be only weakly distinguished from i ′ if all

optimal job types for i are also optimal for i ′. �is de�nition is most easily understood through

the example in Figure 1 and our subsequent discussion. In particular, note that for that example,

the benchmark shadow prices are p∗ (easy) = 0.1 and p∗ (hard) = 0, and thus J (novice) = {easy},

while J (expert) = {easy, hard}. �us experts need to be strongly distinguished from novices, since

hard jobs are optimal for experts but not for novices; on the other hand, novices need to be only

weakly distinguished from experts, since easy jobs are optimal for experts as well.

In the exploration phase of our algorithm, our goal is to classify a worker’s type as quickly as

possible: the preceding de�nition is what we use to formalize the learning goals in this phase. In

particular, consider making an error where the true type is i , but we misclassify it as i ′. For any i ′

10
Further e�ort is needed to ensure the policy does not violate capacity constraints, and that complementary slackness

holds.
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not in Str(i ), any probability of an error of o(1) for a misclassi�cation error is tolerable as N grows

large (as in the example in Figure 1). We choose Θ(1/ logN ) as the target error probability for this

kind of error. On the other hand, for any i ′ ∈ Str(i ), the optimal target error probability is much

smaller. In particular, the optimal target error probability can be shown to be approximately 1/N :

if we choose a larger target, we will incur a relatively large expected regret during exploitation due

to misclassi�cation, if we choose a smaller target, the exploration phase is unnecessarily long, and

we thus incur a relatively large regret in the exploration phase.

With the learning goals de�ned, the exploration phase of DEEM operates in one of two subphases:

either “guessing” or “con�rmation,” as follows. First, we check whether the likelihood of the

maximum likelihood estimator (MLE) of the worker type is su�ciently high. If this likelihood is

low, we say the policy is in the “guessing” subphase of the exploration phase, and a job type is

chosen at random for the next match. On the other hand, if this likelihood is high (in particular,

greater than logN times the likelihood of any other worker type), then we say that the policy is in

the “con�rmation” subphase of the exploration phase: in this regime, the policy works to con�rm

the MLE as the correct type as quickly as possible. Speci�cally, in the con�rmation subphase, the

policy focuses only on strongly distinguishing the MLE from all other types in Str(i ); the trade-o�

is that this must be done with minimum regret. We frame this as an optimization problem (see (16)

below): essentially, the goal is to �nd a distribution over job types that minimizes the expected

regret until the con�rmation goals are met. In the con�rmation subphase, the policy allocates the

worker to jobs according to this distribution, until the type is con�rmed.

4.3 Key idea 3: Optimally allocate in the exploitation phase while meeting capacity
constraints

When the algorithm completes the exploration phase, it enters the exploitation phase; in this phase,

the algorithm aims to match a worker to jobs that maximize the rate of payo� generation, given

the con�rmed type label. A naive approach would match a worker labeled type i to any job type in

J (i ), since these are the optimal job types for worker type i a�er externality adjustment.

�is approach turns out to fail spectacularly and generically leads to Ω(1) regret (this occurs for

any set of �xed shadow prices). To see why, we need the following fact.

Fact 1. Under generalized imbalance, as long as there is at least one capacity constraint that is
binding in some optimal solution x∗ to the benchmark problem (11)–(13) with known types, there is at
least one worker i such that x∗ (i, ·) is supported on multiple job types.

�is fact implies that appropriate tie-breaking between multiple optimal job types is necessary
during exploitation for one or more worker types in order to achieve vanishing regret.

In order to implement appropriate tie-breaking, suppose that we assign jobs during the exploita-

tion phase using the routing matrix x∗ that solves the benchmark problem (11)–(13); in this case,

each worker with con�rmed type i is matched to job type j with probability x∗ (i, j ). However, this

naive approach needs further modi�cation to overcome two issues. First, some capacity is being

used in the exploration phase and the e�ective routing matrix during the exploration phase does

not match x∗. Second, the exploration phase can end with an incorrectly classi�ed worker type.

Our policy in the exploitation phase chooses a routing matrix y∗ that resembles x∗, but addresses

the two concerns raised in the preceding paragraph. Crucially, the choseny∗ should ensure that only

job types in J (i ) are assigned with positive probability, and satisfy the complementary slackness

conditions. We show (in Proposition A.5, using Fact 1) that such a y∗ indeed exists for an N large

enough under the generalized imbalance condition, and we show how to compute it. Note that as

y∗ is a �xed routing matrix, it can be implemented in a decentralized manner.
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We comment here that y∗ is largely a theoretical device used to obtain the provable regret

optimality of our policy. In our implementation of DEEM (see Section 7), we propose a far simpler

solution: we use dynamically updated shadow prices to automatically achieve appropriate tie-

breaking. �e shadow prices respond in a “tâtonnement” manner based on the currently available

supply of di�erent job types: the price of job type j rises when the available supply falls. In

particular, �uctuations in these shadow prices naturally lead to the necessary tie-breaking for

e�cient exploitation.

4.4 Formal definition: Decentralized Explore-then-Exploit for Matching (DEEM)
In this section we provide a formal de�nition of the policy π ∗N , based on the discussion above.

First, for each i de�ne the maximal externality-adjusted utility U (i ) = maxj ∈J A(i, j ) − p∗ (j ).
�en choose α (i ) such that:

α (i ) ∈ A (i ) = arg min

α ∈∆(J )

∑
j ∈J α j

(
U (i ) − [A(i, j ) − p∗ (j )]

)
mini′∈Str(i )

∑
j ∈J α jKL(i, i ′ |j )

, (16)

where KL(i, i ′ |j ) is the Kullback–Leibler divergence
11

between Bernoulli(A(i, j )) and Bernoulli(A(i ′, j )),
and ∆(J ) is the set of distributions over J . �e idea is that sampling job types from α (i ) allows

the policy to distinguish i simultaneously from all i ′ ∈ Str(i ), while incurring the smallest possible

externality-adjusted regret. If the optimization problem in (16) has multiple solutions, we pick the

one that has the largest denominator (and hence the largest numerator as well), thus maximizing

learning rate subject to optimality. Note that (16) can be wri�en as a small linear program.
12

For m = 1, · · · ,N − 1, let the job type chosen at opportunity m be jm and the outcome be Xm .

For any i ∈ I and j ∈ J , let l (X , i, j ) = A(i, j )1{X=1} + (1 −A(i, j ))1{X=0} . De�ne λ0 (i ) = 1, and for

k ≥ 1, let λk (i ) =
∏k

m=1
l (Xm , i, jm ) denote the likelihood of the observed history until the k-th job

under worker type i . Let MLEk = arg maxi ∈I λk (i ) be the maximum likelihood estimate based on

the history, and de�ne Λk (i, i
′) = λk (i )

λk (i′)
, i.e., the ratio of the likelihoods of the history under type i

vs. i ′. For convenience, we refer to Λk (i, i
′) as the likelihood ratio.

DEEM is de�ned as follows.

(1) Phase 1: Exploration. Suppose that i = MLEk .

(a) Guessing subphase. If mini′,i Λk (i, i
′) < logN , choose the next job type uniformly at

random in J .

(b) Con�rmation subphase to strongly distinguish i from types in Str(i ). If we have

mini′,i Λk (i, i
′) ≥ logN but mini′∈Str(i ) Λk (i, i

′) < N , draw the next job type i.i.d. from the

distribution α (i ).
(c) Exit condition for the exploration phase. If mini′,i Λk (i, i

′) ≥ logN and

mini′∈Str(i ) Λk (i, i
′) ≥ N , then the worker is labeled as being of type i and the policy moves to the

exploitation phase. (�e worker is never returned to the exploration phase.)

(2) Phase 2: Exploitation. For every job opportunity, for a worker con�rmed to be of type i ,
choose a job in J (i ) with probability y∗ (i, j ), where y∗ is a routing matrix (speci�ed in Proposition

A.5 in Appendix A) such that system capacity constraints are not violated in steady state.

11
�e KL divergence between a Bernoulli(q) and a Bernoulli(q′) distribution is de�ned as q log

q
q′ + (1 − q ) log

1−q
1−q′ .

12
Denoting mini′∈Str(i )

∑
j∈J α jKL(i, i′ |j ) as h (where h is non-negative), the optimization problem is the same as min-

imizing

∑
j∈J

αj
h

(
U (i ) − [A(i, j ) − p∗ (j )]

)
subject to

∑
j∈J

αj
h KL(i, i′ |j ) ≥ 1,

∑
j
αj
h =

1

h ,
1

h ≥ 0 and

αj
h ≥ 0 for all j .

Now rede�ne

αj
h , ᾱ j and

1

h , h′ to obtain a linear program. Our tie-breaking rule amounts to the picking the optimum

with the smallest value of h′.
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5 MAIN RESULT
Our main result is the following theorem. In particular, we prove a lower bound on the regret of

any policy, and show the sequence of policies π ∗N constructed in the preceding section (essentially)

achieves this lower bound.

Theorem 5.1. Fix (ρ, µ,A) such that: (a) no two rows of A are identical; and (b) the generalized
imbalance condition holds. �en there is a constant C = C (ρ, µ,A) ∈ [0,∞) such that

(1) (Lower bound) For any N and any WHO policy π that is feasible for (7)–(9),

V ∗ −W N (xπ ) ≥
C logN

N

(
1 + o(1)

)
and (17)

(2) (Upper bound) �e sequence of policies π ∗N is feasible for (7)–(9) for each N , with:

V ∗ −W N (π ∗N ) ≤
C logN

N

(
1 + o(1)

)
+ O

(
log logN

N

)
. (18)

�e constant C that appears in the theorem depends on the primitives of the problem, i.e.,

(ρ, µ,A); it is de�ned as follows:

C (i ) = min

α ∈∆(J )

∑
j ∈J α j

(
U (i ) − [A(i, j ) − p∗ (j )]

)
mini′∈Str(i )

∑
j ∈J α jKL(i, i ′ |j )

; C =
∑
i ∈I

ρ (i )C (i ) . (19)

(Note that C (i ) captures the regret per unit mass of service opportunities from workers of type

i .) Informally, instances in which there is a con�ict between exploration (i.e., learning worker

type) and exploitation (i.e., maximizing short-term payo�s) have larger values of C . �e case

C = 0 corresponds to instances where the goals of learning and regret minimization are aligned;

i.e., learning does not require regret of Ω(logN /N ). In this case, our result establishes that our

chosen policies are nearly asymptotically optimal, to within O(log logN /N ). On the other hand,

the instances with C > 0 are those instances with a non-trivial tension between learning and

short-term payo�s. For these instances, our result establishes that our chosen policies (π ∗N )N ≥1

achieve asymptotically optimal regret upto leading order in N .

�e constant C is best understood in terms of the de�nition of α in the exploration phase

(cf. (16)). Note that for a �xed α , for workers of true type i , the smallest log-likelihood ratio

mini′∈Str(i ) logΛn (i, i
′) increases at an expected rate of mini′∈Str(i )

∑
j ∈J α jKL(i, i ′ |j ) during con-

�rmation. �us, when N is large, the time taken to con�rm i against worker types in Str(i )
is approximately logN /(mini′∈Str(i )

∑
j ∈J α jKL(i, i ′ |j )). Hence, the externality-adjusted regret

incurred until con�rmation is complete, per unit mass of workers of type i , is approximately∑
j ∈J α j

(
U (i ) − [A(i, j ) − p∗ (j )]

)
logN /(mini′∈Str(i )

∑
j ∈J α jKL(i, i ′ |j )). Optimizing over α results

in an expected regret of nearly C (i ) logN that must be incurred until the strong distinguishing

goals are met for a unit mass of workers of type i . �is translates to an expected regret of nearly

ρ̂ (i )C (i ) logN = ρ (i )C (i ) logN /N owing to workers of type i per time unit. �is reasoning forms

the basis of our lower bound, formalized in Proposition A.1 in Appendix A.

Now, a regret of Θ(logN /N ) is unavoidable whenC (i ) > 0 for some i . To develop some intuition

for this case, consider the same example as before, but with a modi�ed payo� matrix (see Figure 2).

It can be shown that in this case, a regret of Ω(logN /N ) is unavoidable in the event that the true

type of the worker is novice [Agrawal et al., 1989]. �e problem is the following: to distinguish

novices from experts, the policy must allocate workers to hard jobs. But hard jobs are strictly

suboptimal for novices, and so if the true type of the worker is novice, some regret is unavoidable.
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0.5 Expert

Workers

Jobs
0.6 𝜇 0.6

𝜌

0.5 Novice

HardEasy

0.6 0.8

0.6 0.1

Fig. 2. An example where
Ω(logN /N ) regret is unavoid-
able.

�is discussion motivates the following de�nition.

De�nition 5.2. Consider a worker type i . Suppose that there

exists another type i ′ such that A(i, j ) = A(i ′, j ) for all j ∈ J (i )
and J (i ) ∩ J (i ′) = ϕ. �en we say that the ordered pair (i, i ′) is

a di�cult type pair.

A similar de�nition also appears in [Agrawal et al., 1989]; the

modi�cation here is that the sets J (i ) are de�ned with respect to

externality-adjusted payo�s to account for capacity constraints.

�e constant C (i ) > 0 if and only if there is some other i ′ such

that (i, i ′) is a di�cult type pair. In general, if: (1) none of the job

types in J (i ) allow us to distinguish between i and i ′; and (2) all

the jobs in J (i ) are strictly suboptimal for i ′, then any policy that

achieves small regret must distinguish between i and i ′ and must

assign the worker to jobs outside J (i ) to make this distinction. �is leads to a regret of Ω(logN )
per unit mass of workers of type i (over the lifetime of the workers).

On the other hand, if there is no di�cult type pair, then there is no con�ict between learning

and regret minimization. Here, one can show that C (i ) = 0 for each i , and this value is a�ained

by some distribution α (i ) that is supported on J (i ). To see this note that if α is fully supported

on J (i ) (i.e., α j > 0 for all j ∈ J (i )), then the numerator is 0; however if there is no type i ′ such

that (i, i ′) is a di�cult type pair, then the denominator is strictly positive, and thus C (i ) = 0. In

this case, C = 0 and our main result says that our algorithm achieves a regret of O(log logN /N )
asymptotically.

13

6 PROOF SKETCH
�e proof of �eorem 5.1 can be found in Appendix A. Here we present a sketch. �e critical

ingredient in the proof is the following relaxed optimization problem in which there are no capacity

constraints, but capacity violations are charged with non-negative prices p∗ from the optimization

problem (11) with known worker types.

W N
p∗ = max

x ∈XN

∑
i ∈I

ρ (i )
∑
j ∈J

x (i, j )A(i, j ) −
∑
j ∈J

p∗ (j )
[ ∑
i ∈I

ρ (i )x (i, j ) − µ (j )
]
. (20)

Lower bound on regret. IfC > 0 (i.e., if there is at least one di�cult pair of worker types; cf. Section

5), there is an upper bound on the performance of any policy in this problem, expressed relative to

V ∗. �is result follows directly from [Agrawal et al., 1989]:

W N
p∗ ≤ V ∗ −

C logN

N
(1 + o(1)),

where C ≥ 0 is precisely the constant appearing in (19). By a standard duality argument, we know

thatW N ≤ W N
p∗ , and hence this bound holds forW N

as well (see Proposition A.1), yielding the

lower bound on regret on our original problem (7).

Upper bound on regret. �ere are two key steps in proving that π ∗N is feasible for problem (7)–(9),

andW N (π ∗N ) ≥ V ∗ −C (logN /N ) (1 + o(1)).

(1) First, we show that our policy π ∗N , with an arbitrary exploitation-phase routing matrix

supported on J (i ) for each i ∈ I, achieves near optimal performance for the single multi-armed

13
In fact, our proof demonstrates that this regret can be brought down to any O(fN /N ) such that fN = o(1) by choosing a

di�erent threshold in the guessing phase.



Ramesh Johari, Vijay Kamble, and Yash Kanoria 15

bandit problem (20). Formally, if (with some abuse of notation) we letW N
p∗ (π ) denote the value

a�ained by a policy π in problem (20), i.e.,

W N
p∗ (π ) =

∑
i ∈I

ρ (i )
∑
j ∈J

xπ (i, j )A(i, j ) −
∑
j ∈J

p∗ (j )
[ ∑
i ∈I

ρ (i )xπ (i, j ) − µ (j )
]
,

then

V ∗ −W N
p∗ (π

∗
N ) = C (logN /N ) (1 + o(1)) + O(log logN /N ).

�is is shown in
14

Proposition A.2. �us we have W N
p∗ (π

∗
N ) ≥ W N

p∗ − o(logN /N ), i.e., π ∗N is

near-optimal in problem (20).

(2) In the next part of the proof, we show that we can design a routing matrix y∗ (that depends

on N ) for the exploitation phase of the policy π ∗N , such that the following conditions are satis�ed:

(a) (Complementary slackness)

∑
i ∈I ρ (i )xπ ∗N (i, j ) − µ (j ) = 0 for all j such that p∗ (j ) > 0, and,

(b) (Feasibility)

∑
i ∈I ρ (i )xπ ∗N (i, j ) − µ (j ) ≤ 0 for all other j ∈ J .

�is is shown in Proposition A.5. We deduce that π ∗N with this choice of y∗ in the exploitation

phase is feasible for problem (7)–(9) and the complementarity slackness property implies that

W N (π ∗N ) =W
N
p∗ (π

∗
N ), yielding our upper bound on regret.

Construction of y∗. At the end of the exploration phase of π ∗N , the correct label of the worker is

learned with a con�dence of at least (1 − o(1)). �is fact, coupled with the generalized imbalance

condition (leading to �exibility in modifying x∗; cf. Fact 1), is su�cient to ensure an appropriate and

feasible choice of y∗ = x∗ + o(1) will correct the deviations from x∗ in terms of capacity utilizations

of job types with p∗ (j ) > 0 arising because of the (short) exploration phase, and because of the

infrequent cases in which exploitation is based on an incorrect worker label coming out of the

exploration phase.

7 IMPLEMENTATION
In this section we describe some practical considerations for implementation of DEEM, and simulate

its performance against other benchmark policies. For more details see Appendix B.

7.1 Practical considerations
Exploration with �nite N . First, when N is relatively small (as is common in practice), we

observe that we should adjust our notion of whether job type j helps to distinguish worker types i
and i ′. In particular, any job type j such that A(i, j ) and A(i ′, j ) are su�ciently close will not help

in distinguishing types i and i ′ from each other within the �xed lifetime of the worker. Motivated

by this observation, we replace KL(i, i ′ |j ) by

KL(i, i ′ |j ) = KL(i, i ′ |j )I{KL(i,i′ |j )>β logN /N }

in the de�nition of DEEM (cf. (16). �e idea is that if KL(i, i ′ |j ) < β logN /N , then one cannot

strongly distinguish between i and i ′ using N /β jobs of type j; we use β = 3 in our simulations

below. In this case we say that i and i ′ are practically indistinguishable using job type j; if this is

true for every job type j, then we simply do not try to distinguish them at all.

Dynamic shadow prices. A key innovation in making DEEM practical is to use dynamic
shadow prices, based on supply-demand imbalances in the market. In particular, suppose that the

platform maintains a “queue” of jobs of each type. �en a reasonable approach is to set the shadow

price on each job type via a decreasing function of the corresponding queue length, and use these

shadow prices as an externality adjustment to payo�s.

14
[Agrawal et al., 1989] proves this result for a similar policy.
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If this function is appropriately chosen, then the prices obviate the need to explicitly compute

y∗ in our policy; instead the exploitation phase can be implemented by allocating optimally for

each worker given the current queue-based prices (still a fully decentralized solution). �e natural

�uctuation in these prices ensures appropriate tie-breaking in allocation (cf. Fact 1). As an added

bene�t, since the solution to the benchmark (11)–(13) is no longer used, the resulting algorithm

does not need knowledge of arrival rates of workers or jobs.

7.2 Simulations
Given an instance (ρ̂,N , µ,A), we �rst describe our simulated marketplace.

Arrival process. Time is discrete. Fix a scaling constant τ . At the beginning of each time

period t , a random Mt (i ) number of workers of type i and Lt (j ) jobs of type j arrive, such that

M1, (i ),M2, (i ), · · · and L1, (i ),L2, (i ), · · · are i.i.d. sequences with E (Mt (i )) = τ ρ̂ (i ), and E (Lt (j )) =
τ µ (·). In our simulations, we generate Mt (i ) and Lt (j ) from a binomial distribution with the

required means. Each worker stays in the system for N periods (each job takes one period).

�eues. As discussed above, arriving jobs accumulate in queues for the di�erent types, each

with a �nite bu�er B. We assume that if the bu�er capacity B is exceeded for some job type, then

the remaining jobs are lost. We use the queue-based dynamic shadow prices discussed above:

if the queue length of job type j at any instant is q(j ), then we set the price of j at that instant

to pq (j ) = (B − q(j ))/B (thus the price lies in [0, 1]). Note that pq (j ) changes every time a job is

assigned to a worker, or a new job arrives.

Matching process. In the beginning of each period, once all the new workers and jobs have

arrived, the platform sequentially considers each worker in the platform,
15

and generates an

assignment based on the history of the worker and the chosen policy. If a job of the required type

is unavailable, then the worker remains unmatched. For each worker-job match, a random payo�

is realized, drawn from the distribution speci�ed by A, and the assignment-payo� tuple is added to

the history of the worker.

Results. We considered instances with 3 types of workers and 3 types of jobs. We assumed that

N = 30, and ρ̂ (i ) = 1 for each i . We generated 350 instances where for each instance: (1) µ (j ) is

sampled from a uniform distribution on [0.5, 1.5]; and (2) each entry of the expected payo� matrix

is sampled from a uniform distribution on [0, 1]. We chose the scaling constant τ = 30, so that

E[Mt (i )] = 30 for all i and E[Lt (j )] = 30µ (j ) for the generated µ (j ). We assumed that Mt (i ) = 30

for all t , i.e., Mt (i ) is deterministic, and we generated Lt (j ) from a binomial distribution with mean

30µ (j ).
We implemented 4 policies, each using queue-length based prices, and compared them in these

350 instances: UCB [Auer et al., 2002], �ompson sampling (TS) [Agrawal and Goyal, 2011], Greedy,

and a variant of DEEM that implements the modi�ed learning goals above. UCB and TS are standard

algorithms for the standard stochastic multi-armed bandit problem. Greedy simply chooses the job

type that is myopically optimal, for the worker type that is the posterior mode (the prior distribution

is proportional to the arrival rates of the workers, i.e., Uniform for our simulations). All algorithms,

including DEEM, measure payo�s adjusted by the queue-based shadow prices described above; in

this way, UCB, TS, and Greedy are e�ectively accounting for capacity constraints.

Figure 3 shows the cumulative distribution function – over the 350 instances – of the ratio of the

payo� generation rate a�ained by a policy and the optimal payo� generation rate if the worker

types are known, for the 5 candidate policies. �e average of these ratios over the sample space for

each policy is given in Table 1. As one can observe, DEEM substantially outperforms UCB, Greedy,

15
�is consists of the new workers and all the workers who have arrived in the past N − 1 periods, or from the beginning

of time if t < N .
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Fig. 3. The empirical CDF of the performance
ratios of the di�erent policies.

Policy Average Performance Ratio

UCB 0.7973

TS 0.8301

Greedy 0.8355

DEEM 0.9330

Table 1. Average performance ratios of di�er-
ent policies across 350 instances.

and TS. �is can be a�ributed to the careful design of the learning goals along with the learning

policy (including the modi�cations for small N se�ings). Greedy and TS perform be�er than UCB

on average, presumably bene�ting from the knowledge of the expected payo� matrix A.

Out of 350 instances, 181 instances had a pair that cannot be practically distinguished using

any job type. �is suggests that although exact indistinguishability is almost never encountered,

practical indistinguishability is encountered quite frequently and poses a concern. �is veri�es

that the modi�cations that we made to our learning goals are important in practice.

8 CONCLUSION
�is work suggests a novel and practical algorithm for learning while matching, applicable across

a range of online matching platforms. Several directions of generalization remain open for future

work. First, while we consider a �nite-type model, a richer model of types would admit a wider range

of applications; e.g., workers and jobs may be characterized by features in a vector-valued space,

with compatibility determined by the inner product between feature vectors. Second, while our

model includes only one-sided uncertainty, in general a market will include two-sided uncertainty

(i.e., both supply and demand will exhibit type uncertainty). We expect that a similar approach

using externality prices to �rst set learning objectives, and then achieve them while incurring

minimum regret, should be applicable even in these more general se�ings.

We conclude by noting that our model ignores strategic behavior by participants. A simple

extension might be to presume that workers are less likely to return a�er several bad experiences;

this would dramatically alter the model, forcing the policy to become more conservative. �e

modeling and analysis of these and other strategic behaviors remain important challenges.
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APPENDICES
A PROOF OF THEOREM 5.1
For the rest of this section, let C be the quantity de�ned in (19). Recall problem 7. We will �rst

show the following lower bound on the di�erence between V ∗ andW N
.

Proposition A.1. Suppose that {p∗ (j )} are the unique optimal prices in the matching problem with
known worker types. �en,

lim sup

N→∞

N

logN

(
V ∗ −W N

)
≥ C .

Proof. Consider the following relaxed problem:

W N
p∗ = max

x ∈XN

∑
i ∈I

ρ (i )
∑
j ∈J

x (i, j )A(i, j ) −
∑
j ∈J

p∗ (j )[
∑
i ∈I

ρ (i )x (i, j ) − µ (j )]. (21)

By a standard duality argument, we know thatW N
p∗ ≥W

N
. �e optimal policy in this problem is a

solution to

maximizeπ ∈ΠN

∑
i ∈I, j ∈J

ρ (i )xπ (i, j ) (A(i, j ) − p
∗ (j )) . (22)

�en from �eorem 3.1 in [Agrawal et al., 1989], we know that

lim sup

N→∞

N

logN

(
V ∗ −W N

p∗
)
≥ C .

�e result then follows from the fact thatW N ≤W N
p∗ . �

LetW N
p∗ (π

∗) be the value a�ained by DEEM in optimization problem (20) (same as (21)), for any

y∗ in the exploitation phase such that y∗ (i, .) is supported on J (i ). We will prove an upper bound

on the di�erence between V ∗ and W N
p∗ (π

∗). Note that the di�erence in these values of the two

problems is the same as the di�erence in∑
i ∈I

ρ (i )
∑
j ∈J

xπ ∗ (i, j ) (A(i, j ) − p
∗ (j )),

and

∑
i ∈I ρ (i )U (i ). Following is the result.

Proposition A.2. Consider the sequence of policies (π ∗ (N ))N ≥1 such that the routing matrix y
used in the exploitation phase satis�es y (i, .) ∈ ∆(J (i )). �en,

lim sup

N→∞

N

logN

(
V ∗ −W N

p∗ (π
∗)

)
≤ C .

Further, suppose that there are no di�cult type pairs. �en,

lim sup

N→∞

N

log logN

(
V ∗ −W N

p∗ (π
∗)

)
≤ K

where K = K (ρ, µ,A) ∈ (0,∞) is some constant.

In order to prove this Proposition, we need the following result that follows from �eorem 4.1 in

[Agrawal et al., 1989].
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Lemma A.3. Let X1,X2, · · · be i.i.d. random variables where Xi is the outcome of choosing a job
type j ∈ J according to a distribution α ∈ ∆(J ). Suppose i ∈ I and B ⊆ I \ {i} are such that∑

j ∈J

α jKL(i, i ′ |j ) > 0

for each i ′ ∈ B. Let ΛBk (i ) = mini′∈B Λk (i, i
′). �en,

(1)

lim sup

N→∞

Ei [inf {k ≥ 0|ΛBk (i ) ≥ f (N )}]

log f (N )
≤

1

mini′∈B
∑

j ∈J α jKL(i, i ′ |j )
,

(2)

Pi′ (Λk (i, i
′) ≥ f (N ) for some k ≤ N ) ≤

1

f (N )
.

for any f (N ) = ω (1).

Next, we also need the following result.

Lemma A.4. Let X j
1
,X j

2
, · · · be i.i.d. random variables for each j = 1, · · · ,K , such that |X j

i | ≤ M

and E(X j
i ) =m

j > 0. Let a, b and k j be such that a < k j < b for each j. Let S jn = k j +
∑n

i=1
X j
i and

let B ⊆ {1, · · · ,K }. Let E be the event:

{S j
′

n < a for some j ′ before S jn > b for all j ∈ B}.

Let T be inf {n : S jn < a for some j}. �en

E[T1E ] ≤ G

for some 0 < G < ∞ that does not depend on a, b, or k j for any j.

Proof. De�ne k j − a , z j . If we de�ne Ej = {S
j′
n < a for some n}, then we have E ⊆ ∪jEj , and

thus we have E[T1E ] ≤
∑K

j=1
E[T1Ej ]. Now we have

E[T1Ej ] =
∞∑
n=1

nP(T = n)

≤

∞∑
n=1

nP(
n∑
i=1

X j
i ≤ −zj )

≤

∞∑
n=1

n exp(
−(nmj + zj )

2

4nM2
)

=

∞∑
n=1

n exp(−
nm2

j

4M2
−
mjzj

2M2
−

z2

j

4nM2
)

≤

∞∑
n=1

n exp(−
nm2

j

4M2
) = G (mj ,M ) < ∞,

where the second inequality results from the Hoe�ding bound. Taking G =
∑K

j=1
G (mj ,M ) proves

the result.

�
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Proof of Proposition A.2. Let X denote the type of the worker. Let R (i ) denote the expected

total regret over the lifetime of a worker on the event {X = i}, de�ned as

R (i ) = N max

j ∈J
[A(i, j ) − p∗ (j )] − N

∑
j ∈J

xπ ∗ (i, j )[A(i, j ) − p
∗ (j ))].

Here Nxπ ∗ (i, j ) is the expected total number of times a job of type j is allo�ed to a worker of type i
under the policy π ∗ (N ). We will refer to the above quantity as just regret. For the rest of the proof,

all the expectations are on the event {X = i}. �e proof will utilize the fact that the log likelihood

ratio, log(Λk (i, i
′)), for any i and i ′ is a random walk, such that if αk is the probability distribution

over job types chosen at opportunity k , then

log(Λk+1 (i, i
′)) − log(Λk (i, i

′)) = log(
p (Xk , i, jk )

p (Xk , i ′, jk )
),

where the random variables {log(
p (Xk ,i, jk )
p (Xk ,i′, jk )

)}k are independent random variables with a �nite

support (since Xk and jk take �nite values), and with mean

∑
j α

k
j KL(i, i ′ |j ). (Note here that if∑

j α
k
j KL(i, i ′ |j ) = 0 then since KL(i, i ′ |j ) ≥ 0, it must be that KL(i, i ′ |j ) = 0 for all j such that

αkj > 0, and in this case we must have A(i, j ) = A(i, j ′) for all such j. �us log(
p (Xk ,i, jk )
p (Xk ,i′, jk )

) = 0, i.e.,

the if the dri� of the random walk is 0 at some k then the random walk has stopped.) Recall that

the initial likelihoods in our policy are λ0 (i ) = 1 for all i . Hence log(Λ0 (i, i
′)) = 0.

Our goal is to compute an upper bound on R (i ). To do so we �rst compute the expected regret

incurred till the end of the exploration phase in our algorithm. Denote this by Re (i ). Below we will

�nd an upper bound on this regret assuming that the worker performs an unbounded number of

jobs. Clearly the same bound holds on the expected regret until the end of exploration phase if the

worker leaves a�er N jobs.

Our strategy is as follows: we will decompose the regret till the end of exploration into the regret

incurred till the �rst time one of the following two events occurs:

(1) Event A: mini′,i logΛk (i, i
′) ≥ log logN (or mini′,i logΛk (i, i

′) ≥ logN ) and

(2) Event B: mini′,i logΛk (i, i
′) ≤ − log logN (or mini′,i logΛk (i, i

′) ≤ 1

logN ).

followed by the residual regret, which will depend on which event occurred �rst. Note that one of

these two events will occur with probability 1.

We will compute two di�erent upper bounds, depending on two di�erent regimes of initial

likelihoods of the di�erent types (note that the likelihoods of the di�erent types i under the

observed history is a su�cient statistic at any opportunity under our policy). First, suppose that

R̄ (i ) is highest expected regret incurred over all possible starting likelihoods that a) do not satisfy

the conditions of both A and B and b) such that mini′,i logΛ0 (i, i
′) ≥ 0. Let L1 be the set of starting

likelihoods that satisfy these conditions. Next, suppose that R̃ (i ) is the highest expected regret

incurred, where the maximum is taken over all possible starting likelihoods that a) do not satisfy the

conditions of both A and B and b) such that mini′,i logΛn (i, i
′) < 0. Let L2 be the set of likelihoods

that satisfy these conditions. Clearly, Re (i ) ≤ R̄ (i ).
LetG (i ) denote the maximum expected regret incurred by the algorithm till one of A or B occurs,

where the maximum is taken over all possible starting likelihoods of the di�erent types that do not

satisfy the conditions of both A and B, i.e., L1 ∪ L2. For convenience, we denote A < B as the event

that A occurs before B and vice versa (similarly for any two events). �us we have

R̄ (i ) ≤ G (i ) + sup

l1∈L1

P(A < B |l1)E(Residual regret|A, l1) + sup

l1∈L1

P(B < A|l1)E(Residual regret|B, l1)
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and

R̃ (i ) ≤ G (i ) + sup

l2∈L2

P(A < B |l2)E(Residual regret|A, l2) + sup

l2∈L2

P(B < A|l2)E(Residual regret|B, l2).

First, let us �nd a bound on G (i ). �is is easy, because, G (i ) ≤ E(inf {k > 0 : mini,i′ Λk (i, i
′) ≥

log
2 N }}) = O(log logN ) from Lemma A.3 (since if neither condition A, nor B is satis�ed, then

the policy in the guessing phase, and thus all job types are utilized with positive probability, and

hence the condition in the Lemma is satis�ed). Also, from the second statement in Lemma A.3,

since the likelihoods in L1 are such that mini′,i Λn (i, i
′) ≥ 1, we have that P(B < A|l1) ≤

P(B ever occurs till time N) ≤ 1/ logN . Finally we have supl2∈L2

P(B < A|l2) = w < 1. We

thus have

R̄ (i ) ≤ O(log logN ) + sup

l1∈L1

E(Residual regret|A, l1) +
1

logN
sup

l1∈L1

E(Residual regret|B, l1) and

(23)

R̃ (i ) ≤ O(log logN ) + sup

l2∈L2

E(Residual regret|A, l2) +w sup

l2∈L2

E(Residual regret|B, l2). (24)

Next, consider suplk ∈Lk E(Residual regret|A, lk ). �is depends on which of the two events hap-

pens next:

(1) Event A′: mini′,i logΛk (i, i
′) < log logN (or mini′,i Λk (i, i

′) < logN ),

(2) Event A′′: i gets con�rmed, i.e., mini′∈Str(i ) logΛk (i, i
′) > logN (or mini′∈Str(i ) Λk (i, i

′) > N ).

Again conditional on A, one of the two events will occur with probability 1. We have

sup

lk ∈Lk
E(Residual regret|A, lk ) = sup

lk ∈Lk
E(Residual regret|A,A′ < A′′, lk )P(A

′ < A′′ |A, lk )

+ sup

lk ∈Lk
E(Residual regret|A,A′ > A′′, lk )P(A

′ > A′′ |A, lk ).

Now from Lemma A.4 it follows that

E(Residual regret|A,A′ < A′′, lk )P(A
′ < A′′ |A, lk )

= E(Residual regret I{A′<A′′ } |A, lk ) ≤ M + R̄ (i ) sup

lk ∈Lk
P(A′ < A′′ |A, lk )

for some constant M that does not depend on lk or N . To see this, note that A′ < A′′ is the event

that, starting from some values between log logN and logN , all the random walks Λk (i, i
′) for

each i ′ ∈ Str (i ) cross the threshold logN , before any of the random walks Λk (i, i
′) for i ′ , i cross

the (lower) threshold log logN . Now between these two thresholds, the job distribution αk = α (i )
for all k . Hence the mean dri� for any of the random walks Λk (i, i

′) for each i ′ ∈ Str (i ) is strictly

positive. Further, as we argued earlier, if the mean dri� for any of these random walks is 0, then

that random walk has stopped, and such random walks can be ignored. �us the conditions of

Lemma A.4 are satis�ed, and hence E((Time till A′) I{A′<A′′ } |A, lk ) = G < ∞. Since the regret per

unit time is bounded, the deduction follows. Moving on, we have

E(Residual regret|A,A′′ < A′, lk )

≤ E(inf {k > 0 : min

i′∈Str (i )
Λk (i, i

′) ≥ N })
∑
j ∈J

α j
(
U (i ) − [A(i, j ) − p∗ (j )]

)
.

Denoting suplk ∈Lk P(A′ < A′′ |A, lk ) = qk , we have

sup

lk ∈Lk
E(Residual regret|A, lk ) ≤ O(1) + qk R̄ (i ) + (1 − qk )E(inf {k > 0 : min

i′∈Str(i )
Λk (i, i

′) ≥ N })

(25)
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Note that qk < 1. Next, consider suplk ∈Lk E(Residual regret|B, lk ). �is depends on which of the

following two events occurs next:

(1) Event B′: mini′,i logΛk (i, i
′) ≥ − log logN (or mini′,i Λn (i, i

′) ≥ 1

logN ),

(2) Event B′′: Some i ′ , i gets con�rmed, i.e., mini′′∈Str(i′) logΛk (i
′, i ′′) > logN

(or mini′′∈Str(i′) Λk (i
′, i ′′) > N ).

Again conditional on B, one of the two events will occur with probability 1. LetK (i ) be the maximum

expected time till either B or B′occurs given that B has occurred and the starting likelihoods were

in Lk . Note that if B′′ < B′ then the exploration phase ends and hence there is no residual regret

(although if i ′ is such that i ∈ Str(i ), then P(B′′ < B′ |B,Lk ) ≤ 1/N from the second statement in

Lemma A.3).

sup

lk ∈Lk
E(Residual regret|B, lk ) ≤ K (i ) + sup

lk ∈Lk
P(B′ < B′′ |B, lk )R̃ (i )

Now �rst, we can show that if there is a type i ′ such that i ∈ I \ Str(i ′), then K (i ) ≤ O(logN ).
If there is no such type, then K (i ) = O(1). �us we have

sup

lk ∈Lk
E(Residual regret|B, lk ) ≤ O(logN ) + R̃ (i ).

And thus we �nally have

R̄ (i ) ≤ O(log logN ) + q1R̄ (i ) +
1

logN

(
O(log(N ) + R̃ (i )

)
+ (1 − q1)E(inf {k > 0 : min

i′∈Str(i )
Λk (i, i

′) ≥ N })
∑
j ∈J

α j
(
U (i ) − [A(i, j ) − p∗ (j )]

)
; (26)

R̃ (i ) ≤ O(log logN ) + q2R̄ (i ) +wO(logN ) +wR̃ (i )

+ (1 − q2)E(inf {k > 0 : min

i′∈Str(i )
Λk (i, i

′) ≥ N })
∑
j ∈J

α j
(
U (i ) − [A(i, j ) − p∗ (j )]

)
. (27)

Combining the above two equations, we deduce that

Re (i ) ≤ R̄ (i ) ≤
1 − q1

1 − q1 − q2/ logN

(
O(log logN ) (28)

+ E[inf {k > 0 : min

i′∈Str (i )
Λn (i, i

′) ≥ N }]
∑
j ∈J

α j
(
U (i ) − [A(i, j ) − p∗ (j )]

))
= O(log logN ) + (1 + o(1))E[inf {k > 0 : min

i′∈Str(i )
Λn (i, i

′) ≥ N }]
∑
j ∈J

α j
(
U (i ) − [A(i, j ) − p∗ (j )]

)
.

(29)

Now, we observed earlier that P(i ′ gets con�rmed | {X = i}) ≤ 1/N if i ′ ∈ Str(i ). �us the regret

in the exploitation phase is in the worst case of order O(N ) with probability 1/N and 0 otherwise.

�us the total expected regret in the exploitation phase is O(1). �us

R (i ) ≤ O(log logN )+ (1+o(1))E[inf {k > 0 : min

i′∈Str(i )
Λk (i, i

′) ≥ N }]
∑
j ∈J

α j
(
U (i )− [A(i, j )−p∗ (j )]

)
.

�us Lemma A.3 implies the result (note that if there are no di�cult type pairs, then

∑
j ∈J α j

(
U (i )−

[A(i, j ) − p∗ (j )] = 0).

�
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Next, we prove that there is for a large enough N , one can choose a routing matrix y∗ in the

exploitation phase of DEEM that will ensure that matches optimize price-adjusted payo�s, and

such that the capacity and complementary slackness conditions are satis�ed.

Proposition A.5. Suppose that the generalized imbalance condition is satis�ed. Consider any
optimal routing matrix x∗ that is an optimal solution to problem (11). �en in the policy π ∗ (N ) for the
N -job problem, for anyN large enough, one can choose a routing matrixy∗ such thaty∗ (i, .) ∈ ∆(J (i ))
and that satis�es:

(1)
∑

i ∈I ρ (i )xπ ∗ (i, j ) = µ (j ) for any j such that
∑

i ∈I ρ (i )x
∗ (i, j ) = µ (j ), and

(2)
∑

i ∈I ρ (i )xπ ∗ (i, j ) < µ (j ) for any other j.

We remark that the y∗ we construct satis�es ‖y∗ − x∗‖ = o(1). In order to prove this proposition,

we will need the following Lemma.

Lemma A.6. Suppose that the generalized imbalance condition is satis�ed. Consider any feasible
routing matrix [x (i, j )]I×J . Consider any job j such that

∑
i ∈I ρ (i )x (i, j ) = µ (j ). �en there is a path

on the complete bipartite graph between worker types I and job types J with the following properties:
• One end point is job j.
• �e other end point is a job type whose capacity is under-utilized (it is permi�ed to be κ).
• For every job type on the path in between, they are operating at capacity/all jobs are being
served. (All worker types are fully utilized by de�nition, since we formally consider an
unassigned worker as being assigned to job type κ.)

• For every undirected edge on the path, there is a positive rate of jobs routed on that edge in x .

Proof. Consider a bi-partite graph with jobs representing nodes on one side and workers on

the other. �ere is an edge between a job j ′ and a worker i if x (i, j ) > 0. Consider the connected

component of job type j in this graph. Suppose it includes no job type that is underutilized. �en

the arrival rate of jobs from the set of workers in the connected component exactly matches the

total e�ective service rate of the sellers in connected component. But this is a contradiction since

generalized imbalance holds. Hence there exists an underutilized job type j ′ that can be reached

from j. Take any path from j to j ′. Traverse it starting from j and terminate it the �rst time it hits

any underutilized job type. �

Proof of Proposition A.5. Recall that for a given routing matrix [y (i, j )]I×J , xπ ∗ (i, j ), is the

resulting fraction of jobs of type j directed to worker type i . In the course of this proof, we will

suppress the subscript π ∗. Clearly, there exist εi′ (i, j ) for each i ∈ I, i ′ ∈ I ∪ {0}, j ∈ J such that

we have

x (i, j ) = ε0 (i, j ) + (1 − εi (i, j ))y (i, j ) +
∑

i′∈I\{i }

εi′ (i, j )y (i
′, j ) . (30)

�e ε’s depend on the guessing and con�rmation phases but not on y. (In particular, ε0 arises from

the overall routing contribution of the guessing and con�rmation phases, and εi ’s arise from the

small likelihood that a worker who is con�rmed as type i is actually some other type.) A key fact

that we will use is that all ε’s are uniformly bounded by o(1).
Let Jx ∗ = {s :

∑
i ∈I ρ (i )x

∗ (i, j ) = µ (j )} and Jπ ∗ = {j :

∑
i ∈I ρ (i )xπ ∗ (i, j ) = µ (j )}. Now we want

to �nd a y such that y (i, ·) ∈ ∆(J (i )) for all i ∈ I (call (i, j ) a “permissible edge” in the bipartite

graph between workers and jobs if j ∈ J (i )), and such that:

• For each j ∈ Jx ∗ we also have j ∈ Jπ ∗ , i.e., Jx ∗ ⊆ Jπ ∗ .

• ‖y − x∗‖ = o(1).
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Note that the two bullets together will imply the proposition, since ‖x − x∗‖ = o(1) from Eq. (30),

and this leads to

∑
i ∈I ρ (i )x (i, j ) =

∑
i ∈I ρ (i )x

∗ (i, j ) + o(1) < µ (j ) for all j ∈ J\Jx ∗ , for large

enough N .

�e requirement in the �rst bullet can be wri�en as a set of linear equations using Eq. (30). Here

we write y (and later also x∗) as a column vector with |I | |J | elements:

By + ε̂ = (µ (j ))j ∈Jx∗ .

Here we have ‖ε̂ ‖ = o(1) and matrix B can be wri�en as B = B0 + Bε , where B0 has 1’s in columns

corresponding to dimensions (·, s ) and 0’s everywhere else, and ‖Bε ‖ = o(1). Expressing y as

y = x + z, we are le� with the following equation for z,

Bz = −(Bεx
∗ + ε̂ ) (31)

using the fact that B0x
∗ = (µ (j ))j ∈Jx∗ by de�nitions of B0 and Jx ∗ . We will look for a solution to this

underdetermined set of equations with a speci�c structure: we want z to be a linear combination

of �ows along |Jx ∗ | paths coming from Lemma A.6, one path λj for each j ∈ Jx ∗ . Each λj can

be wri�en as a column vector with +1’s on the odd edges (including the edge incident on j) and

−1’s on the even edges. Let Λ = [λj ]j ∈Jx∗ be the path matrix. �en z with the desired structure

can be expressed as Λη, where η is the vector of �ows along each of the paths. Now note that

Bz = (B0 + Bε )Λη = (I + BεΛ)η. Here we deduced B0Λ = I from the fact that λj is a path which

has j as one end point, and a worker or else a job not in Jx ∗ as the other end point. Our system of

equations reduces to

(I + BεΛ)η = −(Bεx
∗ + ε̂ ) ,

Since ‖Bε ‖ = o(1), the coe�cient matrix is extremely well behaved being o(1) di�erent from

the identity, and we deduce that this system of equations has a unique solution η∗ that satis�es

‖η∗‖ = o(1). �is yields us z∗ = Λη∗ that is also of size o(1), and supported on permissible edges

since each of the paths is supported on permissible edges (Lemma A.6). �us, we �nally obtain

y∗ = x∗ + z∗ possessing all the desired properties. Notice that the (permissible) edges on which y∗

di�ers from x∗ had strictly positive values in x∗ by Lemma A.6, and hence this is also the case in y∗

for large enough N .

�

Finally, we show that with the choice of y∗ constructed in Proposition A.5 in the exploitation

phase, the sequence of policies (π ∗ (N )) asymptotically achieve the required upper bound on regret.

Proposition A.7. Suppose that the generalized imbalance condition is satis�ed. Consider the
sequence of policies (π ∗ (N ))N ≥1, with the routing matrix y∗ proposed in Proposition A.5. LetW N (π ∗)
be the value a�ained by this policy in optimization problem (7). �en

lim sup

N→∞

N

logN

(
V ∗ −W N (π ∗)

)
≤ C .

Further, suppose that there are no di�cult type pairs. �en,

lim sup

N→∞

N

log logN

(
V ∗ −W N (π ∗)

)
≤ K

where K = K (ρ, µ,A) ∈ (0,∞) is some constant.
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Proof. From Proposition A.5 it follows that the policy π ∗ is feasible in problem 7, and further

W N
p∗ (π

∗) =
∑
i ∈I

ρ (i )
∑
j ∈J

xπ ∗ (i, j )A(i, j ) −
∑
j ∈J

p∗ (j )[
∑
i ∈I

ρ (i )xπ ∗ (i, j ) − µ (j )]. (32)

=
∑
i ∈I

ρ (i )
∑
j ∈J

xπ ∗ (i, j )A(i, j ), (33)

where the second equality follows from the fact that if p∗ (j ) > 0, then

∑
i ∈I ρ (i )x

∗ (i, j )−µ (j ) = 0 by

complementary slackness, and hence from Proposition A.5 we obtain that

∑
i ∈I ρ (i )xπ ∗ (i, j )−µ (j ) =

0 as well for these j. �us we have a policy π ∗ that is feasible, and that gives a rateW N
p∗ (π

∗) of

accumulation of payo� in problem (7). �us the result follows from Proposition A.2. �

B PRACTICAL IMPLEMENTATION OF DEEM
In this section, we describe a modi�ed version of DEEM that incorporates certain changes that

address practical considerations.

B.1 Practical values of N
First, we discuss the issues in the regime where N is small, which would be the case in many

situations in practice. �ese issues are centered around the notion of distinguishability of two types

of workers. Nominally, two worker types i and i ′ are distinguishable using job type j if A(i, j ) ,
A(i, j ′), since by repeatedly allo�ing job j and observing the outcomes, we can asymptotically

distinguish between the two worker types. But when N is small, the degree of accuracy we

can achieve in this distinction depends on how di�erent A(i, j ) is from A(i ′, j ). For example, if

A(i, j ) = 0.5 and A(i ′, j ) = 0.6, then KL(i, i ′ |j ) ≈ 0.0204 and if N = 30, it would take approximately

log 30/0.0204 ≈ 166 jobs to distinguish i and i ′ using j with a probability of error of 1/30 (the

requirement for distinguishing i strongly from i ′) – hence this distinction is impossible within 30

jobs. �us, the practically relevant notion is distinguishability within ∼ N jobs: We say a worker

type i is practically indistinguishable from a worker type i ′ using a job type j if KL(i, i ′ |j ) ≤ γ (N ) =
β logN /N . �e motivation for this de�nition is that it is impossible to con�rm that the type is i
and not i ′ with a reasonably small probability of error - where we choose the strong distinguishing

requirement of 1/N on the error probability - within a reasonable number of job allocations of type

j - where we allow N /β job allocations - if KL(i, i ′ |j ) ≤ γ (N ) holds.
16

Practical indistinguishability a�ects the speci�cation of our algorithm in the following ways.

First, it could be that some type i is practically indistinguishable from a type i ′ no ma�er which job

type is used for the distinction. In this case, it is hopeless to try to distinguish these types as a part

of our learning goals. Next, practical indistinguishability is also a concern in the determination

of the optimal policy in the con�rmation phase. It could be that the only job type picked with

positive probability by the sampling distribution α (i ) (de�ned in (16)) to distinguish i from some

other type i ′ that it needs to be strongly distinguished from, is such that i and i ′ are practically

indistinguishable using this job type. In this case, although that job type may o�er a non-zero

learning rate, this rate may be so small that the distinguishability goals will be achieved too late

relative to the lifetime of the worker. �is is undesirable because there would not be enough

opportunities le� for exploitation where one can reap the bene�ts of having a�ained the learning

goals. �us it may be prudent to ensure that some other job type that makes this distinction is

chosen by the con�rmation policy (at the expense of potentially higher regret during learning).

16
It takes approximately logN /KL(i, i′ |j ) jobs for this distinction, and thus we require that logN /KL(i, i′ |j ) ≤ N /β ,

resulting in KL(i, i′ |j ) ≥ β logN /N , γ (N ).
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To incorporate the two practical considerations above, we propose the following modi�cations

to our policy.

(1) Practically indistinguishable types: Suppose that S (i ) is the set of types that i is prac-

tically indistinguishable from using any job type, i.e., S (i ) = {i ′ , i ∈ I : KL(i, i ′ |j ) <
γ (N ) for all j ∈ J }. �en, �rst remove S (i ) from the set Str(i ). Also, while implementing the

algorithm, if MLEn is worker type i , then the likelihoods under all worker types in S (i ) are removed

from consideration in deciding whether the conditions of either the guessing or the con�rma-

tion phase are satis�ed. Essentially, we act as if types in S (i ) do not exist in checking for these

conditions.

(2) Enforcing quicker learning: Next, in the computation of the distribution α (i ) to be used

in the con�rmation mode, (see equation (16)), de�ne KL(i, i ′ |j ) = KL(i, i ′ |j )I{KL(i,i′ |j )≥γ (N ) } , and

replace KL(i, i ′ |j ) by KL(i, i ′ |j ) in the computation. �e idea is to prevent the algorithm from

relying on job types with a small learning rate (but with a low regret accumulation rate at the same

time), which is achieved by replacing the learning rate they o�er (i.e., the KL divergence) with 0 in

computing the optimal α (i ). For instance, this would be the case when there are practically di�cult

type pairs that are not (strictly) di�cult. Note that for every i ′ in Str(i ) \ S (i ) there is always a j

such that KL(i, i ′ |j ) > γ (N ), and hence KL(i, i ′ |j ) > 0, i.e., there exists an optimal policy α (i ) that

accomplishes the learning goals within a reasonable amount of time under the modi�ed learning

rates.

B.2 Using queue-length based prices
One of the central ideas in the design of our algorithm is that of employing appropriate externality

adjustments to the payo�s so that the matching while learning problem can be decoupled into

unconstrained per-worker problems. In principle, these externalities can be captured by the shadow

prices in (7), but as discussed earlier, these are di�cult to compute. Our results show that in the

large N regime, the shadow prices p∗ (j ) from the problem with known worker types approximately

capture these externalities. But there are two practical considerations: 1) when N is small, we do

not expect p∗ (j ) to be a good proxy for the true shadow prices pN (j ) and 2) it could be di�cult to

compute the routing policy y∗ in the exploitation phase that ensures that the capacity constraints

and complementarity conditions with respect to p∗ (j ) are satis�ed (in fact for a small N , it is not

even clear if a y∗ with the desired properties is feasible).

Moreover, in practice, both workers and jobs arrive in continuous time. In these situations, there

is a practical alternative of using instantaneous queue-length based prices to capture the externalities.

�e idea is simple: we will assume that arriving jobs that remain unassigned accumulate in queues

(one for each job type), and at each assignment opportunity the algorithm uses the instantaneous

prices based on current queue lengths for each job type to adjust the payo�s (in the learning as

well as the exploitation phase), where the price is a decreasing function of current queue length (as

we described for our simulated marketplace in section 7). We now describe how such queue-length

based prices can be incorporated in our policy.

(1) �eue-length based prices in Learning and Exploitation: In computing α (i ) for each

i ∈ I in the con�rmation phase, replace p∗ (j ) by the instantaneous queue-length based prices pq (j )
in Eq. (16). Similarly, in the exploitation phase, instead of explicitly computing the routing matrix

y∗, use queue-length based prices to decide assignments in the following manner. De�ne the sets

J ∗ (i ) as:

J ∗ (i ) = arg max

j ∈J
A(i, j ) − pq (j ).
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If an assignment has to be made in the exploitation phase for some worker who has already been

labeled as being of type i , then a job type j∗ ∈ J ∗ is chosen (note that typically, J ∗ (i ) will be a

singleton).

(2) �eue-length based prices to de�ne Learning goals: In determining the learning goals,

determine the strong distinguishability requirements (see De�nition 4.1) and hence the set Str(i )
for each i based on the payo�s adjusted by queue-length based prices, instead of the prices from

the problem with known worker types. To be more precise, instead of de�ning these sets based

on J (i ), de�ne them based on J ∗ (i ) de�ned above. Note that J ∗ (i ) may change throughout the

lifetime of a worker because of changing prices.

One would expect that the system would eventually reach a steady state, these prices will stabilize,

and barring one caveat (see below), this will ensure that the resulting assignments made by the

algorithm satisfy the following near-optimality conditions: 1) the per-worker multi-armed bandit

problem with these price-adjusted payo�s is near-optimally solved and 2) the capacity constraints

and the complementarity conditions with respect to these prices are satis�ed.

�e caveat is the following: we expect to see small �uctuations in the queue-length based

prices around the stable values even at steady state. Although these �uctuations are essential

for appropriate tie-breaking across multiple optimal job types in the exploitation phase, these

�uctuations can result in major changes in the membership of J ∗ (i ), and hence in the set Str(i )
that determines the learning goals. Instead, for condition 1 described above to hold, these sets

should be determined based on the mean values of the prices, ignoring the �uctuations altogether.

So we propose the following modi�cation to point (2): we utilize an average of recent prices

within some window, and modify the de�nition of J (i ) to incorporate a small tolerance so that

the set Str(i ) remains una�ected by the �uctuations in the prices. To be precise, for a window size

W , let p̄q (i ) be the unweighted average of the queue length based prices seen over the past W
assignments system-wide (note again that pq (i ) changes every time a job is assigned to a worker,

and also when new jobs arrive). Next, for a tolerance ε > 0, we de�ne

J ∗ε (i ) = {j ∈ J : A(i, j ) − p (j ) ≥ max

j
[A(i, j ) − p (j )] − ε }.

�en the strong distinguishability requirements (see De�nition 4.1) and hence the set Str(i ) for

each i is de�ned based on J ∗ε (i ). In our simulations, we pickedW = 900 and ε = 0.05.

C PRACTICAL IMPLEMENTATION OF OTHER POLICIES
(1) UCB: �e upper con�dence bound (UCB) algorithm is a popular multi-armed bandit algo-

rithm [Audibert and Munos, 2011, Auer et al., 2002, Bubeck and Cesa-Bianchi, 2012], that embodies

the well known approach of “optimism in the face of uncertainty” to solving these problems. In its

classical implementation, one keeps track of high-probability con�dence intervals for the expected

payo�s of each arm, and at each step chooses an arm that has the highest upper con�dence bound,

i.e., the highest upper boundary of the con�dence interval. To be precise, if r j (t ) is the average

reward seen for some arm j, that has been pulled nj times until time t , then the upper con�dence

bound for the mean reward for this arm is given by:

uj (t ) = r j (t ) +
√

2 log t/nj .

�e algorithm chooses arm j = arg maxj µ j (t ). In our context, the arms are the job types, and if

k jobs have already been allo�ed to a worker, and r̄ j (k ) is the average payo� obtained from past

assignments of job j, and nj is the number of these assignments, we will de�ne

uj (k ) = r j (k ) +
√

2 logk/nj − pq (j ),
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where pq (j ) is the current queue length based price for job j. �e algorithm then chooses job type

j = arg maxj ∈J µ j to be assigned to the worker next. Note that this algorithm does not require the

knowledge of the instance primitives (ρ̂,N , µ,A).
(2) �ompson sampling (TS): �ompson sampling is another popular multi-armed bandit

algorithm [Audibert and Munos, 2011, Bubeck and Cesa-Bianchi, 2012] employing a Bayesian

approach to the problem of arm selection. �e description of the algorithm is simple: starting

with a prior, at every step select an arm with a probability equal to the posterior probability of

that arm being optimal. �ese posterior probabilities are updated based on observations made at

each step. One can incorporate information about correlation between the rewards of the di�erent

arms in computing these posteriors, which makes it a versatile algorithm that exploits the reward

structure in multiple se�ings. It is known to give asymptotically tight regret guarantees in many

multi-armed bandit problems of interest [Agrawal and Goyal, 2011, Kaufmann et al., 2012, Russo

and Van Roy, 2014].

In our simulations, TS is implemented as follows. �e prior probability of the worker being of

type i is
ρ̂ (i )∑
i′ ρ̂ (i′)

. With this as the prior, depending on each worker’s history, a posterior distribution

of the type of the worker is computed using the knowledge of the expected payo� matrix A.

�en a worker type is sampled from this distribution. Suppose this type is i , then a job type

j∗ = arg maxj A(i, j ) −pq (j ) is assigned to the worker. In contrast to the UCB algorithm, �ompson

sampling does utilize the knowledge of the expected payo� matrix A as well as the arrival rates ρ̂
(the la�er to construct a starting prior, and the former for the posterior updates).

(3) Greedy: �e greedy policy is simple: as in �ompson sampling, we keep track of the posterior

distribution of the type for each worker, but at each assignment opportunity, instead of sampling

a type from the posterior, we take the type i with the highest posterior probability and a�empt

to assign a job type j∗ = arg maxj A(i, j ) − pq (j ). In the se�ing with no capacity constraints, one

can show that if all the entries of the expected payo� matrix are distinct from each other (which

also means that there are no di�cult type pairs; see de�nition 5.2), then this policy achieves a

regret of O(1/N ) asymptotically.
17

�is is likely to be the case for payo� matrices encountered in

practice. But in the simulations we demonstrate that for a small N , in the light of our discussion in

section B.1, using this policy could prove to be disastrous.

D OTHER PROOFS
D.1 Su�iciency of worker-history-only policies
We show that there is a worker-history-only (WHO) policy that achieves a rate of payo� accumula-

tion that is arbitrarily close to the maximum possible. We will think of N as being �xed throughout

this section.

Suppose the system starts at time t = 1 with no workers already present before the period.
18

Arrivals therea�er occur as described in Section 3. Consider any (arbitrary, time varying) policy π
and let xπ ,t (i, j ) denote the derived quantity representing the fraction of workers of type i who are

assigned jobs on type j in period t under π . �en the largest possible rate of payo� accumulation

17
�e probability that the true worker type is not identi�ed as the MLE at opportunity t decays as exp(−ηt ), where η is an

instance dependent constant. �us the total expected regret over the lifetime of a worker is bounded as O(1) in expectation.

18
�e analysis would be very similar and produce the same results if the starting state is an arbitrary one with a bounded

mass of workers already present.
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under policy π over long horizons is

V (π ) = limsupT→∞VT (π ) (34)

where VT (π ) =
1

T

T∑
t=1

∑
i ∈I

ρ (i )
∑
j ∈J

xπ ,t (i, j )A(i, j ) . (35)

Note that we have ignored the e�ect of less than ρ (i ) workers of type i being present for the �rst N

periods, but this does not change the limiting value V . Also, note that randomization in π cannot

increase the achievable value of V , since one can always do as well by picking the most favorable

sample path.

Claim D.1. Fix any policy π and any ε > 0. �en there is a worker-history-only (WHO) policy that
achieves a steady state rate of payo� accumulation exceeding V (π ) − ε .

Proof. We suppress dependence on π . By de�nition ofV , we know that there exists an increasing

sequence of timesT1,T2, . . . such thatVTi > V − ε/2 for all i = 1, 2, . . .. We will construct a suitable

WHO policy by using a su�ciently large time in this sequence. Let νt (Hk ) be the measure of

workers in the system with history Hk just before the start of time t , and abusing notation, let

νt (Hk )j be the measure of such workers who are assigned to job type j at time t . Since the policy

cannot assign more jobs than have arrived in any period, we have

N∑
k=1

∑
Hk

νt (Hk )j ≤ µ (j ) for all t ≥ 1 . (36)

FixT , which we think of as a large member of the sequence above. �e average measure of workers

with history Hk who are present is

ν̄ (Hk ) =
1

T

T∑
t=1

νt (Hk ) for all Hk and k = 1, 2, . . . ,N . (37)

�e average measure of such workers who are assigned job j is similarly de�ned and denoted by

ν̄ (Hk , j ). We immediately have that

N∑
k=1

∑
Hk

ν̄ (Hk )j ≤ µ (j ) , (38)

by averaging Eq. (36) over times until T . Now, consider a worker with history Hk assigned a job

of type j. Using the known A matrix and arrival rates ρ, we can infer the posterior distribution

of the worker type based on Hk , and hence, the likelihood of the job of type j being successfully

completed. Let p (Hk , j ) denote the probability of success. �en the distribution of Hk+1 for the

worker is simply given by

Hk+1 =
(
Hk ,

(
j,Bernoulli(p (Hk , j ))

) )
.

Barring the edge e�ect at time T caused by workers whose history was Hk at time T , this allows

us to uniquely determine ν̄ (Hk+1) based on ν̄ (Hk , j )’s. In particular, for any δ1 > 0, if T ≥
maxi ∈I ρ (i )/(Nδ1) we have that

ν̄ (Hk , (j, 1))
δ1

≈ ν̄ (Hk )jp (Hk , j )

ν̄ (Hk , (j, 0))
δ1

≈ ν̄ (Hk )j
(
1 − p (Hk , j )

)
. (39)
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Here, a
δ
≈ b represents the bound |a − b | ≤ δ . Note that we have

VT =
N∑
k=1

∑
Hk

ν̄ (Hk )jp (Hk , j ) . (40)

We are now ready to de�ne our WHO policy π . For every Hk such that ν̄ (Hk ) ≥ δ2, this policy

will a�empt to assign a fraction ν̄ (Hk )j/ν̄ (Hk ) of workers with history Hk to jobs of type j. Ignore

capacity constraints for the present. (We will �nd that the capacity constraints will be almost

satis�ed.) Leave the choice of δ2 for later; we will choose δ2 small and then choose 0 < δ1 < δ2/N
so as to achieve the desired value of δ3 below. Workers with rare histories, i.e., histories such that

ν̄ (Hk ) < δ2, will not be assigned jobs under π . Note that the de�nition of rare histories refers to

frequency of occurrence under π . �en, this uniquely speci�es π as well as the steady state mix

of workers before any time t . In particular, the steady state mass ν (Hk ) under π of workers with

history Hk that are not rare is bounded as

(1 − δ1/δ2)
k−1ν̄ (Hk ) ≤ ν (Hk ) ≤ (1 + δ1/δ2)

k−1ν̄ (Hk )

(41)

using Eq. (39), and the fact that all subhistories of Hk are also not rare. It follows that

ν (Hk )
δ3

≈ ν̄ (Hk ) where δ3 = max(exp(Nδ1/δ2) − 1,δ2) , (42)

for all histories (including rare histories), using k ≤ N and ν (Hk ) ≤ 1. Violation of the j-capacity

constraint under π is given by

*.
,

N∑
k=1

∑
Hk

ν (Hk )j − µ (j )
+/
-+
≤

*.
,

N∑
k=1

∑
Hk

ν̄ (Hk )j − µ (j )
+/
-+
+ 2

N |J |N−1δ3 = 2
N |J |N−1δ3

using Eq. (42) and Eq. (38), and the fact that there are

∑
k≤N (2|J |)N−1 ≤ 2

N |J |N−1
possible

histories. It follows that the sum of capacity constraint violations across j ∈ J is bounded by

(2|J |)N δ3. Pick an arbitrary set of workers to go unmatched to get rid of any capacity violations

(this can be done while remaining within the class of WHO policies). In worst case, this will cause

payo� loss of 1 for each period remaining in the worker’s lifetime. �us, the loss caused by the

need to remedy capacity violations is bounded by δ4 = N (2|J |)N δ3 per period.

Ignoring capacity violations, the steady state rate of accumulation of payo� under π is

N∑
k=1

∑
Hk

ν (Hk )jp (Hk , j )
δ5

≈

N∑
k=1

∑
Hk

ν̄ (Hk )jp (Hk , j ) = VT (π )

where δ5 = 2
N |J |N−1δ3 < δ4 . (43)

again using Eq. (42) and the fact that there are

∑
k≤N (2|J |)N−1 ≤ 2

N |J |N−1
possible histories.

Let V (π ) denote the true steady state rate of accumulation of payo� under π when capacity

constraints are considered. Combining the above, we deduce that V (π ) ≥ VT (π ) − 2δ4. �e time

T will be chosen as a member of the sequence de�ned at the beginning of the proof, ensuring

VT (π ) ≥ V (π ) − ε/2; hence it will su�ce to show V (π ) ≥ VT (π ) − ε/2. Hence, it su�ces to have

δ4 = ε/4, which can achieved using δ3 = δ2 = ε/(4N (2|J |)N ) and δ1 = δ3 log(1 + δ3)/N and T
a member of the sequence satisfying T ≥ maxi ∈I ρ (i )/(Nδ1). �is yields the required bound of

V (π ) ≥ V (π ) − ε . �
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D.2 Uniqueness of prices under generalized imbalance
Proposition D.2. Under the generalized imbalance condition, the job shadow prices p∗ are uniquely

determined.

Proof of Proposition D.2. �e dual to problem 11 can be wri�en as

minimize

∑
j ∈J

µ (j )p (j ) +
∑
i ∈I

ρ (i )v (i )

subject to

p (j ) +v (i ) ≥ A(i, j ) ∀i ∈ I, j ∈ J ,

p (j ) ≥ 0 ∀j ∈ J ,

v (i ) ≥ 0 ∀i ∈ I .

�e dual variables are (P ,V ) where “job prices” P = (p (j ))j ∈J and “worker values” V = (v (i ))i ∈I .

We will prove the result by contradiction. Suppose there are multiple dual optima. Let D be the set

of dual optima. Let J ′ be the set of jobs such that the prices of those jobs take multiple values in

D. Formally,

J ′ = {j ∈ J : p (j ) takes multiple values in D} . (44)

Similarly, let I ′ be the set of workers such that the prices of those workers take multiple values in

D. Formally,

I ′ = {i ∈ I : v (i ) takes multiple values in D} . (45)

For each j ∈ J ′, we immediately deduce that there exists a dual optimum with p (j ) > 0, and hence

the capacity constraint of job type j is tight in all primal optima. Similarly, we deduce that for each

i ∈ I ′, worker type i is assigned a job in all periods, i.e.,

∑
j ∈J x (i, j ) = 1. By assumption, we have∑

i ∈I′
ρ (i ) ,

∑
j ∈J ′

µ (j ) .

Suppose the le� hand side is larger than the right (the complementary case can be dealt with

similarly). Take any primal optimum x∗. �e jobs in J ′ do not have enough capacity to serve all

workers in I ′, hence there must be some worker i ∈ I ′ and a job s < J ′ such that x∗ (i, s ) > 0.

Since s < J ′, we must have that p (j ) has a unique optimum value in D. Call this value p∗ (j ). Let

the largest and smallest values of v (i ) in D be vmax (i ) and vmin (i ). By complementary slackness,

we know that

vmax (i ) + p∗ (j ) = A(i, j ) = vmin (i ) + p∗ (j )

⇒ vmax (i ) = vmin (i ) .

But since i ∈ I ′ we must have vmax (i ) > vmin (i ). �us we have obtained a contradiction.

�

�e proof of the next proposition shows that a very simple “learn then exploit” strategy achieves

a regret of O(logN /N ). �is follows from the fact that, under an identi�ability condition, the

sequence of sets (XN ) converges to the set D in an appropriately de�ned distance.

Proposition D.3. Suppose that no two rows in A are identical. �en supx ∈D infy∈XN ‖x − y‖ =

O

(
logN
N

)
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Proof. It is clear that xN ⊆ D. We will �nd an inner approximation
˜XN

to XN
such that

˜XN ⊆ XN
, and

˜XN
converges to D in an appropriate sense as N goes to in�nity. To de�ne this

approximation, suppose that in the learning problem corresponding to a �xed N , one starts o�

with a exploration phase of a �xed length O(logN ), where each job j is presented to the worker

Os number of times (where Os = O(logN ), �xed a priori), so that a�er this phase, the type of the

worker becomes known with a probability of error at most O(1/N ). �is will then allow us to relate

the problem to the problem in which the user type is known.

Suppose a�er this phase, the probability that a worker of type i is correctly identi�ed is p (i ) and the

probability that she is mis-identi�ed as some other type i ′ is p (i, i ′). Note that since no two rows in

A are identical, p (i, i ′) = O(1/N ) for all i , i ′. Let d (i, j ) denote the expected number of times a

worker that has been identi�ed as being of type i (correctly or incorrectly) is directed towards job j
a�er the exploration phase, i.e., from job Os + 1 till the N th

job. Let
¯d (i, j ) = d (i, j )/N . �en we

can see that, one can a�ain all x in the following set:

˜XN =

{
x ∈ R |I |×|J | :

¯d (i, j ) ≥ 0;

∑
j ∈J

x (ib, s ) = 1; (46)

x (i, j ) =
Os

N
+ p (i ) ¯d (i, j ) +

∑
i′,i

p (i, i ′) ¯d (i ′, s )

}
(47)

Now since
¯d (i, j ) ≤ 1, and since p (i, i ′) ≤ O(1/N ), we can express the above set as:

˜XN =

{
x ∈ R |I |×|J | :

¯d (i, j ) ≥ 0;

∑
j ∈J

x (i, j ) = 1; x (i, j ) = ¯d (i, j ) + O

(
logN

N

)}
(48)

�is in turn is the same as:

˜XN =

{
x ∈ R |I |×|J | : x (i, j ) ≥ O

(
logN

N

)
;

∑
j ∈J

x (i, j ) = 1

}
(49)

Note that by construction,
˜XN ⊆ xN . But we can now see that

˜XN
converges to D in the sense

that

sup

x ∈D
inf

y∈ ˜XN
‖x − y‖ = O

(
logN

N

)
,

and hence,

sup

x ∈D
inf

y∈XN
‖x − y‖ = O

(
logN

N

)
as well. �

Proposition D.4. �e set XN is a convex polytope.

Proof. For the purpose of this proof, let

X
N
= {Nx : x ∈ XN }.

We will show that X
N

is a polytope, from which the result will follow. We will prove this using an

induction argument. We will represent each point in X
N

as a |I | × |J | matrix (x (i, j )) |I |×|J | . Let

worker types in I be labeled as i1, . . . , i |I | and let job types in J be labeled as j1, . . . , j |J | .

Now clearly, X
0

= {(0) |I |×|J | } which is a convex polytope. We will show that if X
N

is a convex

polytope, then X
(N+1)

is one as well, and hence the result will follow. To do so, we decompose the
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assignment problem with (N + 1) jobs, into the �rst job and the remaining N jobs.

A policy in the (N + 1)- jobs problem is a choice of a randomization over the jobs in J for the

�rst job, and depending on whether a reward was obtained or not with the chosen job, a choice

of a point in X
N

to be achieved for the remaining N jobs. Each such policy gives a point in the

X
(N+1)

. Suppose that η1 ∈ ∆(J ) is the randomization chosen for job 1, and let R (j, 1) ∈ X
N

and

R (j, 0) ∈ X
N

be the points chosen to be achieved from job 2 onwards depending on the job j that

was chosen, and whether a reward was obtained or not, i.e.. R (., .) is a mapping from J × {0, 1} to

the set X
N

. �en this policy achieves the following point in the (N + 1)- jobs problem:



η1 (j1) η1 (j2) . . . η1 (j |J | )
...

...
. . .

...
η1 (j1) η1 (j2) . . . η1 (j |J | )


+

∑
j ∈J

η1 (j )

(
Diag[A(., j )]R (j, 1) + Diag[Ā(., j )]R (j, 0)

)
,

where

Diag[A(., j )] =



A(i1, j ) 0 . . . 0

0 A(i2, j ) . . . 0

...
...

. . . 0

0 0 . . . A(i |I |, j )


and

Diag[Ā(., j )] =



1 −A(i1, j ) 0 . . . 0

0 1 −A(i2, j ) . . . 0

...
...

. . . 0

0 0 . . . 1 −A(i |I |, j )



.

And thus we have

X
(N+1)

={ 

η1 (j1) η1 (j2) . . . η1 (j |J | )
...

...
. . .

...
η1 (j1) η1 (j2) . . . η1 (j |J | )


+

∑
j ∈J

η1 (j )

(
Diag[A(., j )]R (j, 1) + Diag[Ā(., j )]R (j, 0)

)

: η1 ∈ ∆(J ), R (., .) ∈ X
N
}
.

Let 1s be the |I | × |J | matrix with ones along column corresponding to job type j and all other

entries 0. �en the set

J (s ) =

{
1s + Diag[A(., j )]R (j, 1) + Diag[Ā(., j )]R (j, 0) : R (s, .) ∈ X

N
}
,

is a convex polytope, being a linear combination of two convex polytopes, followed by an a�ne

shi�. It is easy to see that X
(N+1)

is just a convex combination of the polytopes J (s ) for j ∈ J ,

and hence X
(N+1)

is a convex polytope as well. �
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