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We study the design of state-dependent control for a closed queueing network model inspired by shared

transportation systems such as those for ridesharing and bike-sharing. We focus on the assignment policy,

where the platform can choose which supply unit to assign when a customer request comes in, and assume

that this is the exclusive control lever available. The supply unit once again becomes available at the desti-

nation after dropping the customer. We consider the proportion of dropped demand in steady state as the

performance measure.

We propose a family of simple and explicit state-dependent policies called Scaled MaxWeight (SMW)

policies and prove that under the complete resource pooling (CRP) condition (analogous to the condition in

Hall’s marriage theorem), each SMW policy leads to exponential decay of demand-dropping probability as

the number of supply units scales to infinity. We further show that there is an SMW policy that achieves the

optimal exponent among all assignment policies, and analytically specify this policy in terms of the customer

arrival rates for all source-destination pairs. The optimal SMW policy protects structurally under-supplied

locations.

Key words : maximum weight policy, closed queueing network, control, Lyapunov function, shared

transportation systems, large deviations
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1. Introduction

Recently there is an increasing interest in the control of shared transportation systems such as

Uber and Lyft. These platforms are dynamic two-sided markets where customers (demands) arrive

at different physical locations stochastically over time, and vehicles (supplies) circulate in the

system as a result of driving demands to their destinations. The platform’s goal is to maximize

throughput (proportion of demands fulfilled), revenue or other objectives by employing various

types of controls.

The main inefficiency in such systems comes from the geographic mismatch of supply units and

customers: when a customer arrives, he has to be matched immediately with a nearby supply

unit, otherwise the customer will abandon the request due to impatience. There are two sources

of spatial supply-demand asymmetry: structural imbalance and stochasticity. In ridesharing, the

former is dominant during rush hours in the city when most of the demand pickups concentrate

in a particular region of the city while dropoffs concentrate on others, otherwise the latter source

often dominates, see Hall et al. (2015). We propose an assignment (scheduling) policy that deals

with both sources simultaneously (if this is possible): the choice of policy parameters accounts for

the structural imbalance, while its state dependence nature manages stochasticity optimally.

Many control mechanisms have been proposed and analyzed in the literature. Pricing, for exam-

ple, enjoys great popularity in both academia and industry, see, e.g., Waserhole and Jost (2016),

Banerjee et al. (2016). By adjusting prices of rides, the system can indirectly re-balance supply and

demand. Empty-vehicle routing (Braverman et al. 2016) focus on sending available supply units to

under-supplied locations in order to meet more demand.

In this paper, we study another important form of control, assignment. When a customer re-

quest comes in, the platform can decide from where to assign a supply unit, which will in turn

influence the platform’s future ability to fulfill demands. Previous work has studied assignment

decisions based on fluid limits – by optimizing the system on fluid scale, the platform can calculate

the probability of assigning from any compatible location when a demand arises, and realize it

by randomization (Ozkan and Ward 2016) (hereafter referred to as fluid-based policy). However,

this approach requires exact knowledge of customer arrival rates (which is infeasible in practice),

fails to react to the stochastic variation in the system and creates additional variance due to ran-

domization. Although this control guarantees asymptotic optimality in the Law of Large Numbers

sense, it converges only slowly to the fluid limit (Banerjee et al. 2016). One might expect that

by implementing fluid-based policy in closed loop (i.e. allow resolving once in a while, hereafter

referred to as resolving fluid-based policy) it will perform better, but in our setting (where the
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objective is minimizing dropped demand) this is not the case 1. To counter these issues, we study

the state-dependent assignment control of closed queueing networks2.

We model the system as a closed queueing network with n servers representing physical locations,

and K “jobs” that stand for supply units. This is a common model for ridesharing systems, see

for example Banerjee et al. (2016), Braverman et al. (2016), Waserhole and Jost (2016). For each

location i there are some compatible supply locations that are close enough, from where the plat-

form can assign supply units to serve customer at i. Customers arrive at the system stochastically,

each has a destination in mind. Each time a customer arrives, the platform makes an assignment

decision from a compatible supply location based on the current spatial distribution of available

supplies. After a supply unit picks up a customer, it drops her at the destination and becomes

available again. (Supplies do not enter or leave the system.) The platform’s goal is to maintain

adequate supply in all neighborhoods and hence meet as much customer demands as possible,

therefore we adopt the (global) proportion of dropped demands as a measure of efficiency. For the

formal description of our model, see section 2.

To study state-dependent spatial rebalancing of supply while keeping the size of the state space

manageable, we make a key simplification – we assume that pickup and service of customers are

both instantaneous. This allows us to get away from the complexity of tracking the positions of

in transit supply units, while retaining the essence of our focal challenge, that of ensuring that all

neighborhoods have supplies at (almost) all times. To obtain tight characterizations, we further

consider the asymptotic regime where the number of supply units in the system K goes to infinity.

It’s worth noting that the large supply regime (demand arrival rates stay fixed while K →∞)

and the large market regime (demand arrival rate scales with K as K→∞) are equivalent in our

model. The reason is that we assume instantaneous relocation of assigned supply units, hence the

large market regime is simply a speed-up of the infinite supply regime.

A main assumption in our model is the complete resource pooling (CRP) condition. CRP is a

standard assumption in the heavy traffic analysis of queueing systems (see e.g. Harrison and López

1999, Dai and Lin 2008, Shi et al. 2015). It can be interpreted as requiring enough overlapping

in the processing ability of servers so that they form a “pooled server”. For the model considered

in this paper, the CRP condition is closely related to the condition in Hall’s marriage theorem

in bipartite matching theory. We show that the CRP condition is necessary for any assignment

policy to have demand dropping probability that converges to zero. In ridesharing the demand

arrival rates are endogenously determined by system manager’s pricing/admission control decisions

1 In fact, any static fluid-based policy that keeps the number of demands at each location unchanged in the fluid limit
is also an optimal resolving fluid-based policy.

2 Note that {fluid-based policy}⊂{resolving fluid-based policy}⊂{state-dependent policy}.
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(though we don’t focus on that here). If CRP condition doesn’t hold for base prices, the platform

may use spatially varying prices as in Bimpikis et al. (2016), Banerjee et al. (2016) to make it true,

and then use our assignment control to manage the unpredictable fluctuations in the system.

One key difficulty in the analysis is the necessity to deal with a multi-dimensional system in

the limit. In many existing works that seek to minimize the workload process or holding costs of

a queueing system, asymptotic optimality of a certain policy relies on “collapse” of the system

state to a lower dimensional space in the heavy traffic limit under the CRP condition. This is

not the case for the objective we are considering, i.e., minimizing demand dropping probability, or

maximizing throughput. Since the exponent of demand dropping probability depends on the most

likely event that leads to demand dropping event, we need to “protect” all the subsets of locations

simultaneously. An interesting observation drawn from our analysis is a “critical subset” property:

given the current state, the most likely way a demand may be dropped is via draining a certain

critical subset of locations. The critical subset changes with the state of the system.

Formulated as classic closed queueing network scheduling problem. Using terminology

of classic queueing theory, the K supply units are “jobs”, each demand location is a “server”, each

supply location is a “buffer”, inter-arrival times of customers with origin i are “service times” at

server i. The distribution of customers’ destinations given origin captures “routing probabilities”.

“Servers” are flexible (i.e. can serve multiple queues), and assignment is equivalent to “scheduling”.

Our model deviates a little from classic model in that a scheduled job relocates to destination

queue at the start of its service time, instead of the end.

1.1. Main Contributions

As a function of system primitives, we derive a large deviation rate-optimal assignment policy that

minimizes demand dropping (maximizes throughput). Our optimal policy is strikingly simple and

its parameters depend in a natural way on demand arrival rates. Our contribution is threefold:

1. Achievability: We propose a family of state-dependent assignment policies called Scaled

MaxWeight (SMW) policies, and prove that all of them guarantee exponential decay of demand-

dropping probability under CRP condition. The proof is based on a family of novel Lyapunov

functions (a different one for each SMW policy) which are used to analyze a multi-dimensional

variational problem. An SMW policy is parameterized by an n-dimensional vector consisting of a

scaling factor for each location; each demand is served by assigning a supply from the compat-

ible location with the largest scaled number of cars. We obtain an explicit specification for the

optimal scaling factors based on location compatibilities and demand arrival rates. Further, we

obtain the surprising finding that the optimal SMW policy is, in fact, exponent-optimal among all

state-dependent policies (Theorem 1). SMW policies are simple, explicit and appear promising for

practical applications.
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2. Converse bounds: We provide lower bound of demand dropping probability for any assign-

ment policy using random-walk related inequalities. We first show that no fluid-based assignment

policy can achieve exponential decay rate (Proposition 4), which demonstrates the value of state-

dependent control — even a naive state-dependent assignment policy with no knowledge of demand

arrival rates beats the best fluid-based assignment policy asymptotically. Then we justify the CRP

assumption by showing that it is a necessary condition for exponential convergence (Proposition

1; in fact if any of the inequalities is reversed, a positive fraction of demands must be dropped

for that instance even as K →∞). Finally, we obtain an upper bound on the demand dropping

probability exponent for any state-dependent policy that matches the achievable exponent of the

optimal SMW policy, thus proving that the best SMW policy is, in fact, exponent-optimal.

3. Qualitative insights: We characterize the system behavior under SMW policies as K→∞,

which is technically challenging since the problem remains n dimensional even in the limit. We

establish the critical subset property of the problem: given a system state (in the limit), there exists

a (state-dependent) subset J of demand locations that are most likely to be depleted of supply in

compatible locations, hence leading to demand dropping. The optimal SMW policy avoids using

supply from locations compatible with J for demand arising outside of J .

1.2. Literature Review

MaxWeight scheduling. MaxWeight policy is a simple scheduling policy in constrained queueing

networks that exhibits many good properties. It attaches a weight to each schedule activity u,

which is a function of current queue-lengths {fu(X)}; in many cases fu(X) is simply the queue

length at the scheduled server (source). At each time period it activates the admissible activities

with the largest total weight.

MaxWeight scheduling has been studied intensively since the seminal work Tassiulas and

Ephremides (1992), which showed MaxWeight (with weight defined as a constant multiple of

source-destination queue-length difference) achieves the entire stability region for an open one-pass

system. Dai and Lin (2005) showed that MaxWeight (with the same choice of weight as Tassiulas

and Ephremides 1992) achieves throughput optimality in open stochastic processing networks in

fluid limit under mild conditions.

Stolyar (2004) showed that for one-hop open network, any MaxWeight policy with weight fu(X)

chosen as a positive multiple of the β-th (β > 0) power of source queue length, minimizes workload

(weighted sum of queue lengths) under Resource Pooling (RP) condition in diffusion limit. A similar

result was obtained in Dai and Lin (2008), where they showed that for a more general family of

open networks, MaxWeight policy with weight defined as in Dai and Lin (2005) minimizes workload

in diffusion limit under CRP condition.
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Eryilmaz and Srikant (2012) showed that for one-hop network, MaxWeight policy with weight

fu(X) = csource(u)Xsource(u) minimizes the expectation of
∑

i ciXi in heavy traffic limit with one-

dimensional state-space collapse. Maguluri and Srikant (2016) showed that for cross-bar switch

MaxWeight policy with fu(X) = Xsource(u) achieves the optimal scaling of total queue-length in

heavy traffic with multi-dimensional state space collapse. Shi et al. (2015) considered a model

similar to Eryilmaz and Srikant (2012) with focus on design of network topology.

In contrast of the many of the above works where asymptotic optimality is guaranteed for

any choice of constant csource(u) > 0 in weight fu(X), we show that in our model the coefficients

need to be chosen carefully in order to achieve optimal exponent, though any choice of positive

constants will result in exponential decay under CRP condition. For example, vanilla MaxWeight

(fu(X) = Xsource(u)) can result in non-trivial sub-optimality of system performance. This is because

for open queueing networks under CRP condition, though the queue lengths can collapse to different

subspaces under different MaxWeight policies, the workload process always converges to the same

weak limit which is uniquely defined by the model primitives. In our case, however, different state

space collapse usually leads to different system performance (exponent); and evaluation of each

MaxWeight policy requires analysis of policy-specific most-likely sample paths.

There are other variants of MaxWeight policy that are less related to our work, e.g. Meyn (2009).

Large deviations in queueing systems. There is a large literature on characterizing the decay

rate of probability of building up large queue lengths in open queueing networks. To the best of

our knowledge, we are the first to consider large deviation of controlled closed queueing networks.

Stolyar and Ramanan (2001) showed the exponent optimality of Largest Weighted Delay First

scheduling in minimizing the probability of waiting times exceeding large values for multi-class

single server queueing system, and Stolyar (2003) extended the result to multi-class multi-server

queueing networks (the choice of weights corresponds to the objective at hand, in contrast with our

work, where the optimal choice of weights will be determined by the model primitives). Bodas et al.

(2014) considered the large deviation optimal scheduling of parallel servers, but the asymptotic

regime is different in that they are scaling up the size of network while keeping buffer size fixed.

Compared with these works, the difficulty of analyzing our model comes from its complex dynamics:

supply units circulate in the system endlessly (in contrast to one-hop system in Bodas et al. 2014),

and each supply unit can be matched to demands at different nodes (in contrast to multi-class

model in Stolyar and Ramanan 2001, Stolyar 2003). As a result, the techniques used in these works

cannot be directly applied here. Our result is also qualitatively different: in Stolyar (2003) the

analysis of queueing networks with arbitrary topology reduces to studying one node in isolation,

but in our work the optimal exponent include terms for each subset of nodes.
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The closest work to ours is that of Venkataramanan and Lin (2013), who established the rela-

tionship between Lyapunov function and buffer overflow probability for open queueing networks.

Our Lyapunov function approach is inspired by their work, and we devise a family of Lyapunov

functions such that the decay rate of demand dropping probability is the same as that of Lya-

punov function exceeding certain threshold. The key difficulty of extending the Lyapunov approach

to closed queueing networks is the lack of natural reference state where the Lyapunov function

equals to 0 (in open queueing network it’s simply 0). It turns out when optimizing the MaxWeight

parameters we are also solving for the best reference state.

There are also works that study the large deviation behavior of queueing networks without

control aspect, see e.g. Majewski and Ramanan (2008), Blanchet (2013).

Shared Transportation Systems. Optimization of shared transportation systems such as those

for ridesharing and bike-sharing has drawn attention in recent years. Ozkan and Ward (2016)

studied revenue-maximizing fluid-based assignment control by solving a minimum cost flow problem

in the fluid limit. Braverman et al. (2016) modeled the system by a closed queueing network and

derived the optimal static routing policy that sends empty vehicles to under-supplied locations.

Banerjee et al. (2016) adopted Gordon-Newell closed queueing network model and considered

static pricing policy that maximize throughput, welfare or revenue. In contrast to our work, which

studies state-dependent control, these works consider static control that completely relies on system

parameters. In terms of convergence rate to the fluid-based solution, Ozkan and Ward (2016) did

not show the order of convergence rate of their policy, Braverman et al. (2016) proved an O(1/
√
K)

rate as number of supply units in the closed system K goes to infinity, and Banerjee et al. (2016)

showed an O(1/K) convergence rate as K→∞. When CRP condition holds, we show that no fluid-

based policy can do better than O(1/K2), while our state-dependent policy achieves an O(e−γK)

convergence rate with optimal γ > 0.

We remark briefly that our CRP condition has some similarity with the notion of “balancedness”

in Bimpikis et al. (2016), although balancedness requires an exact balance between inflows and

outflows for each location3, whereas the CRP condition does not, due to the flexibility from having

multiple compatible supply locations for a demand location.

There are many other works that also studied ridesharing platforms but focus on pricing aspects,

see, e.g., Adelman (2007), Bimpikis et al. (2016), Waserhole and Jost (2016), Cachon et al. (2017),

Hall et al. (2015).

Online Stochastic Bipartite Matching. There is a stream of research on online stochastic

bipartite matching (OSBM) that are related to our work, see e.g. Caldentey et al. (2009), Adan

3 To compare with our closed network model, we consider here the special case of the model in Bimpikis et al. (2016)
where drivers never exit or enter, i.e., their parameter β = 1.
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and Weiss (2012), Bušić and Meyn (2015), Mairesse and Moyal (2016). In OSBM, different types

of supplies and demands arrive over time, and the system manager matches supplies with demands

of compatible types using some matching policy then discharge the matched pairs from the system.

Many matching policies considered in the literature have the flavor of MaxWeight, if not exactly

the same: in Caldentey et al. (2009) and Adan and Weiss (2012) demands are matched to the oldest

compatible supplies available, Mairesse and Moyal (2016) considered “match the longest” policy.

Our model is different from OSBM in the following ways: (1)our model is closed hence supply units

never leave enter or leave the system, while in OSBM the network is open; (2)many OSBM works

focus on the stability and other properties under a given policy instead of looking for the optimal

control, e.g. Caldentey et al. (2009), Adan and Weiss (2012), Mairesse and Moyal (2016); (3)in

terms of dynamics, in Caldentey et al. (2009), Bušić and Meyn (2015) exactly one supply and one

demand enter the system each time, which is different from our model.

1.3. Organization

The remainder of our paper is organized as follows. In section 2 we introduce the basic notation

used throughout the paper and formally describe our model together with performance measure.

Some background on sample path large deviation principle will also be provided. In section 3 we

introduce the family of Scaled MaxWeight policies. In section 4 we present our main theoretical

result, i.e., exponent optimality of SMW policy. In section 5 we prove the achievability bounds of

of SMW policies. In section 6 we prove the converse bounds and show the exponent optimality

of SMW policy. In section 7 we conclude the paper with further discussion of results and future

directions. We also present there the converse bounds for fluid-based policies and cases where CRP

condition is violated.

2. Model and Preliminaries
2.1. Notation

Wherever possible, we reserve capital letters for random quantities and small letters for their

realizations; we also use boldface letters to indicate column vectors. We use ei to denote the i-th

unit vector, and 1 the all-1 vector. If vector b is strictly larger than a component-wise, we write

b> a. For index set A, define 1A ,
∑

i∈A ei. For a set Ω in Euclidean space Rn, denote its relative

interior by relint(Ω). We use B(x, ε) to denote a ball centered at x ∈ Rn with radius ε > 0. For

event C, we define the indicator random variable 1{C} to equal 1 when C is true, else 0.

2.2. Basic Setting

Underlying Model and Simplifications: We model the shared transportation system as a finite-

state Markov process, comprising of a fixed number of identical supply units circulating among n



Authors’ names blinded for peer review
8 Article submitted to Stochastic Systems; manuscript no. MS-0001-1922.65

nodes (i.e., a given partition of a city into neighborhoods). Customers (i.e., prospective passengers)

arrive at each node i with desired destination j according to independent Poisson processes with

rate φ̂ij. To serve an arriving customer, the platform immediately assigns a supply unit from a

“neighboring” station of i (i.e., one among a set of nearby stations, defined formally below), and

subsequently, after serving the customer, the supply unit becomes available at the destination node

j. If however there are no supplies available in the neighboring nodes of i, then we experience a

demand drop, wherein the customer leaves the system without being served. Customers do not wait.

The aim of the platform is to assign supplies so as to minimize the fraction of demands dropped.

Intuitively, to achieve this objective, the platform should ensure that it maintains adequate supply

in (or near) all neighborhoods, i.e., it needs to manage the spatial distribution of supply.

To study the design of assignment rules in the above model, we make two simplifications. First,

we assume that pickup and service are instantaneous. This allows us to reformulate the above

model as a discrete-time Markov chain (the so-called jump chain of the continuous-time process),

where in each time-slot t∈N, with probability proportional to φ̂ij, exactly one customer arrives to

the system at node i with desired destination j. The customer is then served by an assigned supply

unit from a neighboring station of i, which then becomes available at node j at the beginning

of time-slot t+ 1. This simplification removes the high-dimensionality required for tracking the

positions of all in-transit supply units, while still retaining the complex supply externalities between

stations, which is the hallmark of ridesharing systems. Unfortunately, however, even after this

simplification, the setting still does not admit any amenable way to characterize the performance

of complex assignment policies. To circumvent this we make a second simplification, we study the

performance of assignment policies as the number of supply units K grow to infinity, while fixing

all other parameters.

Formal System Definition: We define φ ∈ Rn×n to be the arrival rate matrix with a row for

each origin and a column for each destination, normalized4 such that 1Tφ1 = 1. We denote the i-th

column (i.e., the arrival rates from different origins of customers to destination i) as φ(i), and the

transpose of the i′-th row of the arrival matrix (i.e., the arrival rates of customers to node i′ with

different destination nodes) as φi′ . Thus, the probability a customer arrives at node i′ is 1Tφi′ ,

and, assuming all customers are matched, the rate of supply units arriving at node i is 1Tφ(i).

As mentioned above, we consider a sequence of systems parameterized by the number of supplies

K. For the K-th system, its state at any time t ∈ N is given by XK [t], a vector that tracks the

4 This can always be achieved by appropriately re-scaling the arrival rates {φ̂ij}, which produces an equivalent setting
since pickups and dropoffs are instantaneous.
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Figure 1 The bipartite compatibility graph for the assignment problem: On the left are supply nodes i, and on

the right are demand nodes i′. Customers arrive to i′ with distributions chosen according to φi′ ; the total

probability of a customer arrival at i′ is thus 1Tφi′ . Similarly, assuming no demand is dropped, the total

probability a supply unit arrives at i is 1Tφ(i). The edges entering a node i′ encode compatible (i.e., nearby)

nodes that can supply node i′.

number of supplies at each location in time-slot t. The state space of the K-th system is thus given

by:

ΩK , {x∈Rn|1Tx =K}∩Nn.

Note that the normalized state XK/K lies in the n-simplex Ω = {x ∈ Rn|x≥ 0,1Tx = 1}. Hence-

forth, we drop explicit dependence on t when clear from context.

2.3. Assignment Policies and System Dynamics

The main idea behind the assignment problem in ridesharing is that most arriving customers have

a maximum tolerance (say 7 minutes) for the pickup time or ETA (i.e., expected time of arrival)

of a matched supply unit, but are essentially indifferent if the ETA is less than that. Thus when

a customer arrives at a node i, then any supply unit located at a node which is within 7 minutes

of i is a feasible match, while other vehicles which are further away are infeasible. This suggests a

natural model for assignment via a bipartite compatibility graph, as depicted in Figure 1.

Compatibility Graph: For pedagogical reasons, we move to a setup where we distinguish formally

between demand locations VD where customers arrive and supply locations VS where supply units

wait (and where customers are dropped off). We add a prime symbol to the indices of nodes in VD

to distinguish between the two.
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We encode the compatibility graph as a bipartite graph G(VS ∪ VD,E), wherein each station

i∈ V is replicated as a supply node i∈ VS and a demand node i′ ∈ VD.

An edge (i, j′) ∈ E represents a compatible pair of supply and demand nodes, i.e., supplies

stationed at i can serve demand arriving at j′. We denote the neighborhood of a supply node i∈ VS
(resp. demand node j′ ∈ VD) in G as ∂(i) (resp. ∂(j′)); thus, for a supply node i, its compatible

demands are given by ∂(i) = {j′ ∈ VD|(i, j′) ∈E}, and similarly for each demand node. Moreover,

for any set of supply nodes A⊆ VS, we also use ∂(A) to denote its demand neighborhood (and vice

versa).

We make some mild assumptions on arrival rates φ:

Assumption 1 The following holds:

1. Connectedness: Matrix [φij] is irreducible.5

2. Non-triviality: There exists an origin-destination pair i′ ∈ VD and j ∈ VS such that j /∈ ∂(i′)

and φi′j > 0.

Remark 1 The irreducibility assumption is useful for charactering the system’s steady state be-

havior under our policies. The second assumption is made to ensure that the assignment control

problem at hand is non-trivial. (If it is violated, and if the system starts with at least one supply

unit in each location, then we can “reserve” a supply unit for serving each demand origin location

i′ ∈ VD, and each such car will never leave the corresponding neighborhood ∂(i′), ensuring that no

demand is ever dropped.)

Assignment policies: Given the above setting, the problem we want to study is how to design

assignment policies which minimize the probability of dropping demand. For fixed K, this problem

can be formulated as an average cost Markovian decision process on finite state space, and is thus

known to admit an optimal stationary policy (i.e., ones where assignment decisions at time t only

depend on the system state XK [t]; see Proposition 5.1.3 in Bertsekas (1995)). Let UK be the set

of stationary policies for the K-th system.

For each t ∈N, i′ ∈ VD, an assignment policy U ∈ U includes a series of mappings UK ∈ UK for

each system K = 1,2, · · · , which maps the current queue-length to UK [XK [t]](i′)∈ ∂(i′)∪{∅}. Here

UK [XK [t]](i′) = j denotes that given the current state XK [t], we assign a supply unit from j ∈ ∂(i′)

to fulfill demand at i′, and UK [XK [t]](i′) = ∅ means that the platform does not assign supplies to i′

and hence any arriving demand at i′ is dropped. For simplicity of notation, we refer to the policies

by U instead of UK .

5 Replacing non-zero entries in the matrix by one, and viewing the matrix as the adjacency matrix of a directed
graph, the matrix is irreducible if and only if this directed graph is strongly connected.
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System Evolution: We can now formally define the evolution of the Markov chain we want to

study. At the beginning of time-slot t, the state of the system is XK [t−1]; note that this incorporates

the state-change due to serving the demand in time-slot t− 1. Now suppose the platform uses an

assignment policy U , and in time-slot t, a customer arrives at origin node o[t] with destination d[t]

(chosen from arrival matrix φ). If UK [XK [t]](o[t]) 6= ∅, then a supply unit from UK [XK [t]](o[t]) will

pick up the demand and relocate to d[t] instantly. Let S[t],UK [XK [t]](o[t]) be the chosen supply

node (potentially ∅). Formally, we have

XK [t] =

{
XK [t− 1]− eS[t] + ed[t], if S[t]∈ VS.
XK [t− 1], if S[t] = ∅.

2.4. Performance Measure

The platform’s goal is to find an assignment policy that drops as few demands as possible in steady-

state. In this section we formally define the performance measure for all assignment policies. We

first introduce some necessary notations.

For each subset A⊆ VS (resp. A′ ⊆ VD), define:

Ac , {v ∈ VS : v /∈A} (resp. (A′)c , {v ∈ VD : v /∈A′}). (1)

Define the scaled state as X̄K , 1
K

XK ∈ Ω. Now for a given state x ∈ Ω, we define the set of

empty stations as

Iem(x), {v ∈ VS : xv = 0}.

We now have the following simple observation:

Observation 1 If the scaled state at time t is X̄K [t] = x, then6

P[demand dropped at t+ 1] =
∑

i′:∂(i′)⊆Iem(x),j∈VS

φi′j = 1T{i′:∂(i′)⊆Iem(x)}φ1.

This follows from observing that demand arriving in period t to stations in {i : ∂(i)⊆ Iem(X̄K [t])}

must be dropped.

Given the above setting, a natural performance measure is the long-run average demand-drop

probability. Formally, for U ∈ U we define

PK,U
o , min

XK,U [0]∈ΩK

E

 lim
T→∞

1

T

T∑
t=0

[
1T
{i:∂(i)⊆Iem(XK,U [t])}φ1

] , (2)

6 The equality holds for non-idling policies, i.e. policies that don’t drop a customer at i whenever there are supplies
in ∂(i). For other policies, the equality becomes large than or equal to. This doesn’t affect our result because (1)for
achievability result, the policies we propose are non-idling; (2)for converse benchmark, the inequality will only make
our result stronger.
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PK,U
p , max

XK,U [0]∈ΩK

E

 lim
T→∞

1

T

T∑
t=0

[
1T
{i:∂(i)⊆Iem(XK,U [t])}φ1

] . (3)

Here (2) is an optimistic (subscript ‘o’ for optimistic) performance measure (under-estimates

demand-drop probability), (3) is a pessimistic (subscript ‘p’ for pessimistic) performance measure

(over-estimates demand-drop probability). When establishing the optimality of our policy, we will

compare its pessimistic measure against other policies’ optimistic measure, so we are not ‘cheating’.

Since UK ∈ UK is a stationary policy, the limits in (2) and (3) exist. We will drop the expectation

sign.

One issue however is that the exact expression of (2) and (3) may be complicated for a fixed K.

To this end, the main performance measures of interest in this work are the decay rates of PK,U
o

and PK,U
p as K→∞:

γo(U) =− lim inf
K→∞

1

K
logPK,U

o , (4)

γp(U) =− limsup
K→∞

1

K
logPK,U

p . (5)

For brevity, we henceforth refer to these as the demand-drop exponents. Again the definition is

suited to strong converse results, whereas for our positive results the lim sup will, in fact, be the

limit, and hence the same as the lim inf.

For any given policy U , the demand-drop exponent can be simplified further in terms of the

long-run average behavior of X̄K,U [t].

Now let DA , {x ∈ Ω : xi = 0 for i ∈ A,xj > 0 for j /∈ A}, and let A = {A ( VS : ∃i′ ∈

VD such that A ⊇ ∂(i′)} and let D , ∪A∈ADA. In words, D is the set of (normalized) states

satisfying the following requirement — that there is at least one location where demand arrives

with positive rate which is currently starved of supply at compatible locations. The demand-drop

exponent can now be simplified by the following lemma:

Lemma 1

γo(U) =− lim inf
K→∞

1

K
log

 min
XK,U [0]∈ΩK

lim inf
T→∞

1

T

T∑
t=0

1
{
X̄K,U [t]∈D

}
a.s.


 (6)

γp(U) =− limsup
K→∞

1

K
log

 max
XK,U [0]∈ΩK

limsup
T→∞

1

T

T∑
t=0

1
{
X̄K,U [t]∈D

}
a.s.


 (7)

Lemma 1 says that the probability of demand dropping has the same exponential decay rate as

the probability that there exists a node without any supply unit at a compatible location. The key
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idea of the proof is to bound the ratio of the two probabilities by a constant that doesn’t scale

with K.

Finally, the benchmark we use over all policies is:

max
U∈U

(
γo(U)

)
, (8)

since no policy can achieve a larger demand-drop exponent.

2.5. Sample Path Large Deviation Principle

Our result relies on classical large deviation theory, which we briefly introduce in this subsection.

For each fixed K ∈ N+, define ĀK [·] ∈ (L∞[0, T ])n
2

where ĀK [0] = 0. For t = 1/K,2/K, . . . ,

dKT e/K,

ĀK
ij [t],

1

K

Kt∑
τ=1

1{o[τ ] = i, d[τ ] = j}.

ĀK [t] is defined by linear interpolation for other t’s. Here ĀK [t] is the fluid-scale accumulated

demand arrival process of the K-th system.

Let µK be the law of ĀK [·] in (L∞[0, T ])n
2
. Let Λ(λ) be the cumulant generating function of

Ā, Ā1[1]:

Λ(λ), logEe〈λ,Ā〉 = log

 n∑
i=1

n∑
j=1

φije
λij

 λ∈Rn×n.

Let Λ∗(f) be the Legendre-Fenchel transform of Λ(·), then

Λ∗(f), sup
λ∈Rn
〈λ, f〉−Λ(λ) =

{
DKL(f ||φ) if f ≥ 0,1T f1 = 1
∞ otherwise.

Here DKL(f ||φ) is Kullback-Leibler divergence defined as:

DKL(f ||φ) =
n∑
i=1

n∑
j=1

fij log
fij
φij

.

For any set Γ, define Γ̄ as its closure, Γo as its interior.

Below is the sample path large deviation principle (a.k.a. Mogulskii’s theorem) (see Dembo and

Zeitouni 1998):

Fact 1 For measures {µK} defined above, and any arbitrary measurable set Γ⊆ (L∞[0, T ])n
2
, we

have

− inf
Ā∈Γo

IT (Ā)≤ lim inf
K→∞

1

K
logµK(Γ)≤ limsup

K→∞

1

K
logµK(Γ)≤− inf

Ā∈Γ̄
IT (Ā),

where the rate function is:

IT (Ā) =

{∫ T
0

Λ∗
(
d
dt

Ā(t)
)
dt, if Ā(·)∈AC[0, T ], Ā(0) = 0

∞, otherwise.

Here AC[0, T ] is the space of absolutely continuous functions on [0, T ].
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Remark 2 Since absolutely continuous functions are differentiable almost everywhere, the rate

function is well-defined.

3. Scaled MaxWeight Policies

We now introduce the family of scaled MaxWeight (SMW) policies.

The traditional MaxWeight policy (hereafter referred to as vanilla MaxWeight) is a dynamic

scheduling rule that allocates the service capacity to the queue(s) with largest “weight” (where

weight can be any relevant parameter such as queue-length, sum of queue-lengths, head-of-the-line

waiting time, etc.). In our setting, vanilla MaxWeight would correspond to assigning from the

compatible location with most supplies (with appropriate tie-breaking rules).

The popularity of MaxWeight scheduling stems from the fact that it is known to be optimal for

different metrics in various problem settings (e.g., Stolyar 2003, 2004, Shi et al. 2015, Maguluri

and Srikant 2016). However, in our setting, vanilla MaxWeight is suboptimal (and further, we will

show that it does not achieve the optimal exponent). The suboptimality of vanilla MaxWeight can

be seen from the following simple example.

Example 1 Consider a network with two nodes {1,2}, compatibility graph G = (VS ∪ VD,E) =

({1,2}∪{1′,2′},{11′,12′,22′}) and demand arrival rates φ1′1 = 3/8, φ1′2 = 1/8, φ2′1 = φ2′2 = 1/4, as

shown in Figure 2. Suppose at time t we have X1[t]>X2[t] and a demand arrives at node 2′.

Under vanilla MaxWeight policy, we would assign from node 1 since there are more supply units

there. However, we claim that vanilla MaxWeight is dominated (in terms of minimizing demand

dropping probability) by another policy where one always assign from node 2 to serve demand at 2′

as long as X2 > 0. We call this policy the priority policy. To see this intuitively, note that under

both policies demand at node 2′ will never be dropped, hence demand dropping happens if and only

if supply at node 1 is depleted. The priority policy tries to keep all the servers at node 1 while

vanilla MaxWeight tries to equal the number of servers on both nodes, hence the priority policy

drops less demand. In fact, as we will show formally later, the exponent of demand dropping under

the priority policy is twice as large as the exponent under vanilla MaxWeight.

To deal with this issue, we slightly generalize vanilla MaxWeight by attaching a positive scale-

down parameter wi to each queue i∈ V , and assign from the compatible queue with largest weighted

queue length Xi/wi. Without loss of generality, we normalize w s.t.

1Tw = 1, or equivalently, w ∈ relint(Ω).

We call this family of policies Scaled MaxWeight ( SMW) policies, and denote SMW with parameter

w as SMW(w). Going back to Example 1, we can approximate the priority policy by attaching a

much larger scale-down parameter at node 1 than at node 2.
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𝑋2(𝑡)

𝑋1(𝑡)

Demand

𝟏

𝟐

𝟏’

𝟐’

Supply

𝝓𝟏′𝟏 = 𝟑/𝟖

𝝓𝟏′𝟐 = 𝟏/𝟖

𝝓𝟐′𝟏 = 𝟏/𝟒

𝝓𝟐′𝟐 = 𝟏/𝟒

Figure 2 An example of the sub-optimality of vanilla MaxWeight policy.

The formal definition of SMW is as follows.

Definition 1 (Scaled MaxWeight) Given system state X[t− 1] at the start of t-th period and

for demand arriving at o[t], SMW(w) assigns from

argmaxi∈∂(o[t])

Xi[t− 1]

wi

if maxi∈∂(o[t])
Xi[t−1]

wi
> 0; otherwise the demand is dropped. If there are ties when determining the

argmax, assign from the location with highest index.

The following fact (which we formalize in Section 5, on the way to proving our main result) gives

some intuition about SMW policies.

Remark 3 (Resting point of state under SMW(w)) If Assumption 2 holds, the SMW(w)

policy causes the normalized system state XK/K to drift towards w, where all the scaled queue

lengths are equal (to 1).

4. Optimality of Scaled MaxWeight

In this section we present our main result.

4.1. Complete Resource Pooling Condition

The following is the main assumption of this paper.

Assumption 2 We assume that for any J ( VD where J 6= ∅,

∑
i∈∂(J)

1Tφ(i) >
∑
j′∈J

1Tφj′ . (9)
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The intuition behind this assumption is clear: it assumes the system is “balanceable” in that for

each subset J ( VD of demand locations we have enough supply at neighboring locations to meet

the demand. Assumption 2 is equivalent to a strict version of the condition in Hall’s marriage

theorem. It is also closely related to Complete Resource Pooling (CRP) condition in queueing

literature (Harrison and López 1999, Stolyar 2004, Ata and Kumar 2005, Gurvich and Whitt

2009). This assumption marks the limit of assignment policies — no assignment policy can achieve

exponentially decaying demand dropping probability when Assumption 2 is violated. (if the sign

of the inequality is reversed in (9) for any subset J , then it is easy to see that, in fact, an Ω(1)

fraction of demand must be dropped under any policy).

Proposition 1 For any G and φ’s such that Assumption 2 is violated, it holds that for any policy

U , the demand dropping probability does not decay exponentially, i.e., γo(U) = γp(U) = 0 where

γo(U) and γp(U) was defined in (4) and (5). In fact, if the inequality (9) in Assumption 2 is

strictly reversed for some J ( VD, then we have limsupK→∞P
K,U
p ≥ lim infK→∞P

K,U
o ≥ ε > 0 for

ε=
∑

j′∈J 1Tφj′ −
∑

i∈∂(J) 1Tφ(i).

In other words, if Assumption 2 is violated, this means the system has significant spatial imbalance

of demand and stronger forms of control like pricing or repositioning should be employed to restore

spatial balance.

4.2. Rate Optimality of Scaled MaxWeight

In the fluid limit, it is easy to find an assignment rule such that no demand is dropped (see, e.g.,

Banerjee et al. 2016). Our goal here is to approach this utopian world as fast as possible as the

number of supply units K grows. Define

J ,

J ( VD :
∑
i′∈J

∑
j /∈∂(J)

φi′j > 0

 , (10)

we have J 6= ∅ by Assumption 1. The following result characterizes the rate at which the fraction

of dropped demand falls as K→∞.

Theorem 1 Under Assumptions 1 and 2, the following statements are true:

1. Achievability: For any w ∈ relint(Ω), SMW(w) achieves exponential decay of the demand

dropping probability with exponent7,8

γ(w) = min
J∈J

(
1T∂(J)w

)
log

(∑
i′ /∈J

∑
j∈∂(J) φi′j∑

i′∈J
∑

j /∈∂(J) φi′j

)
> 0 . (11)

7 We emphasize that for SMW policies, the lim inf and lim sup in (4) and (5) are limits, and we show that they are
equal. Thus, we are not “cheating” on either count.

8 Note that the argument of the logarithm has a larger numerator than denominator for every J ( VD since Assumption
2 holds, implying that γ(w) is the minimum of several positive numbers, and hence is positive. (Also see Remark 4.)
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2. Converse: Under any policy U , it must be that

γp(U)≤ γo(U)≤ γ∗ ,

where

γ∗ = sup
w∈relint(Ω)

γ(w) . (12)

In words, there is an SMW policy that achieves an exponent arbitrarily close to the optimal one.

We will prove claim 1 of the theorem in section 5.3, claim 2 in section 6.1. The first part of

the theorem states that for any SMW policy with w ∈ relint(Ω), the policy achieves an explicitly

specified positive exponent γ(w) such that the demand dropping probability decreases at the rate

Θ(e−γ(w)K) as K→∞. The second part of the theorem provides a universal upper bound γ∗ on

the exponent that any policy can achieve, i.e., for any assignment policy U , demand dropping

probability must be Ω(e−γ
∗K). Crucially, γ∗ is in fact identical to the supremum over w of γ(w).

In other words, there is an (almost) exponent optimal SMW policy, and moreover, this policy can

be obtained as the solution to an analytically specified optimization problem.

We note that this result is somewhat different from the numerous results showing optimality

of maximum weight matching in various open queuing network settings. Here, our objective is a

natural objective that is symmetric in all the queues. Our result says that there is an optimal

maximum weight policy, but it is not symmetric; rather, it is asymmetric via specific scaling factors

in a way that optimally accounts for the primitives of the setting at hand by protecting structurally

undersupplied locations.

The following remark provides some intuition regarding the expression for γ(w).

Remark 4 (Intuition for γ(w)) Consider the expression for γ(w) in (11). It is a minimum of

a “robustness” terms for each subset J ∈ J of demand locations. For subset J , the robustness of

SMW(w)’s ability to serve demand arising in J is the product of two terms:

• Robustness arising from w: At the resting point w (see Remark 3) of SMW(w), the supply at

neighboring locations is (1T∂(J)w), and the larger that is, the more unlikely it is that the subset will

be deprived of supply.

• Robustness arising from excess supply: The logarithmic term captures how vulnerable that sub-

set is to being drained of supply. The numerator of the argument of the logarithm can be interpreted

as maximum9 average rate at which supply can come in to ∂(J) from VS\∂(J), whereas the de-

nominator can be interpreted as the minimum9 average rate at which supply must go from ∂(J) to

9 Which arises if the assignment policy uses supply at ∂(J) only to serve demand in J , i.e., the policy is maximally
“protecting” J .
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VS\∂(J), unless demand is dropped (the larger the ratio, the more oversupplied and hence robust J

is). To see why the term appears in this form, recall that the equilibrium distribution of the length

of a stable M/M/1 queue is geometric, and hence has an exponentially decaying tail with the expo-

nent corresponding to log(service rate/arrival rate). The “magic” here is that SMW(w) achieves

an exponent such that it suffers no loss from the need to protecting multiple J ’s simultaneously.

(The converse result is somewhat more intuitive, pursuing this reasoning further.)

Similarly, we also try and give some intuition regarding the optimal choice of the resting state

w.

Remark 5 (Intuition for optimal w) To develop some intuition regarding the optimal choice

of w, consider (informally) the special case of a “heavy traffic” type setting where there is just

one subset J which has a vanishing logarithmic term (because it is only very slightly oversupplied,

the numerator being only slightly more than the denominator), whereas each other subset of VD

has a logarithmic term that converges to some positive number. Then the optimal choice of w will

satisfy 1T∂(J)w→ 1, i.e., all but a vanishing fraction of the weight will go to supply locations that

can serve J . The intuition is that the random walk for the supply at ∂(J) has only slightly positive

drift even if the assignment protects it, and hence it is optimal to keep the total supply at these

locations at a high resting point, to minimize the likelihood that the supply at these locations will

be depleted. We think an optimal policy for such a special case is itself interesting; what is more

remarkable is that the optimal policy characterized in Theorem 1 solves the general n-dimensional

problem considering all subsets simultaneously.

Another feature of our result is the novel Lyapunov analysis for a closed queueing network. A

key technical challenge we face in our closed queueing network setting is that it is a priori unclear

what the “best” state is for the system to be in. This is in contrast to open queueing network

settings in which the best state is typically the one in which all queues are empty, and the Lyapunov

functions considered typically achieve their minimum at this state. We get around this issue via

an innovative approach where we define a tailored Lyapunov function that achieves its minimum

at the resting point of the SMW policy we are analyzing, and use this Lyapunov function to

characterize its exponent γ(w). Moreover, given the optimal choice of w, our tailored Lyapunov

function corresponding to this choice of helps us establish our converse result. Our analysis is

described in the next section.
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5. Analysis of Scaled MaxWeight Policies

In this section, we first formally characterize the system behavior under SMW in fluid scale through

fluid sample paths (section 5.1) and fluid limits (section 5.2). In section 5.3 we prove achievability

bound of SMW policies based on a novel family of Lyapunov functions and large deviation principle

(Fact 1) of fluid sample paths. Finally, we provide the performance guarantee of vanilla MaxWeight

in section 5.4. Proofs are included in the appendices.

5.1. Fluid Sample Paths

Under any stationary assignment policy U ∈ U defined in section 2, the system dynamics is as

follows:

XK
i [t+ 1]−XK

i [t] =
∑
j′∈VD

1{o[t+ 1] = j′, d[t+ 1] = i}1{U [XK [t]](j′) 6= ∅}

−
∑

k′∈∂(i),j∈VS

1{o[t+ 1] = k′, d[t+ 1] = j}1{U [XK [t]](k′) = i}.
(13)

For SMW(w), we write the assignment mapping as Uw[X̄](i′) for scaled queue length X̄ ∈ Ω

and i′ ∈ VD since it only depends on the scaled state. Let Aj′i[t] be the total number of type (j′, i)

demands arriving in system during the first t periods (t= 1,2, · · · ), and let

ĀK
j′i[t],

1

K
Aj′i[Kt], X̄K,U

j′i [t],
1

K
XK,U
j′i [Kt] (14)

for t= 0,1/K,2/K, · · · . For other t≥ 0, ĀK
j′i[t] and X̄K,U [t] are defined by linear interpolation.

Definition 2 (Set of demand arrival sample paths) Define ΓK,T ⊂Cn2
[0, T ] as the set of all

scaled demand arrival sample paths of the K-th system for bTKc periods. Mathematically, any

Ā[·]∈ ΓK,T satisfies:

1. Ā[0] = 0.

2. For any t = 0,1/K,2/K, · · · , bTKc/K, Āi′j[t] = Āi′j[t + 1/K] for but one pair (i′0, j0) =

(o[K(t+ 1)], d[K(t+ 1)]). We have Āi′0j0
[t+ 1/K] = Āi′0j0

[T ] + 1/K.

3. Ā[t] is defined by linear interpolation for other values of t.

Definition 3 (Queue-length correspondence of SMW(w)) For each given demand arrival

sample path ĀK [·]∈ ΓK,T and initial state X̄K [0], scaled queue length X̄K [·] is uniquely (recursively)

defined by equation (13)(14). Denote this correspondence by the mapping:

Ψw :Cn2

[0, T ]×Ω→Cn[0, T ]

(ĀK [·], X̄K [0]) 7→ X̄K [·].
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To obtain a large deviation result, we need to look at the queue-length process at the fluid scaling.

We take the standard approach of fluid sample paths (FSP) (see Stolyar 2003, Venkataramanan

and Lin 2013).

Definition 4 (Fluid sample paths) We call a pair (Ā[·], X̄[·]) a fluid sample path (under

SMW(w)) if there exists a sequence (ĀK [·], X̄K [0],Ψw(ĀK [·], X̄K [0])) where ĀK [·]∈ ΓK,T , X̄K [0]∈

Ω, such that it has a subsequence which converges to (Ā[·], X̄[0], X̄[·]) uniformly on [0, T ].

Remark 6 Since for any such sequence all elements (ĀK [·], X̄K [0],Ψw(ĀK [·], X̄K [0])) are Lips-

chitz continuous with Lipschitz constant 1, it must have a subsequence that converges uniformly to

a limit by Arzelà-Ascoli theorem. Meanwhile, uniform convergence passes the Lipschitz continuity

to the limit (see Rudin 1964), hence all FSPs are Lipschitz continuous.

Remark 7 One must take extra care when stating results involving FSP. Although each ĀK [·]

uniquely defines a queue-length sample path X̄K [·], it is not necessarily true that the Ā[·] component

in FSP uniquely defines the X̄[·] component. Theoretically, it is possible that for different X̄1[·] and

X̄2[·], (Ā[·], X̄1[·]) and (Ā[·], X̄2[·]) are both FSPs. Contraction principle (see Dembo and Zeitouni

1998) can rule out such behaviors, but it’s technically challenging to prove it for MaxWeight policies

(see Subramanian 2010, for its proof under a different setting). As a result, we circumvent this

technicality by considering all FSPs in the following proofs.

In brief, FSPs include both typical and atypical sample paths. Recall Fact 1, which gives the

likelihood for any atypical sample path to be realized. The following large deviation analysis in

section 5.3 will base on finding the ‘most-likely’ atypical sample path that leads to demand-drop.

5.2. Fluid Limits

The fluid limits of the system characterizes its behavior on the Law of Large Numbers scale, i.e.

for typical sample paths. Except for the fact that our queueing network is closed rather than open,

the results in this section are similar to Dai and Lin (2005).

For the K-th system, denote AK
j′k[t] as the total number of type (j′, k) demands arriving in

system during the first t periods, denote the number of times i is assigned to serve type (j′, k)

demand as EK
ij′k[t]; denote the number of times type (j′, k) demand being dropped as DK

j′k[t]. We

have the following.

Proposition 2 The following holds almost surely. Denote

X̄K [t] =
1

K
XK [Kt], ĒK [t] =

1

K
EK [Kt], D̄K [t] =

1

K
DK [Kt]
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for t = 0,1/K,2/K, · · · . For other t ≥ 0, X̄K,U [t] is defined by linear interpolation. For every se-

quence of initial conditions {X̄K [0]} such that K→∞, there exists a subsequence indexed by Kr

such that as r→∞,

(X̄Kr [·], ĒKr [·], D̄Kr [·])⇒ (X̄[·], Ē[·], D̄[·]),

where ⇒ is uniform convergence on compact sets on [0, T ]. All the limits are called fluid limits

and are Lipschitz continuous hence almost everywhere differentiable. The differentiable points are

called regular points. The fluid limits satisfy the following relations at the regular points:

d

dt
X̄i[t] =−

∑
j′∈∂(i),k∈VS

d

dt
Ēij′k[t] +

∑
j∈VS

∑
k′∈∂(j)

d

dt
Ējk′i[t],

∀t∈ [0, T ], i∈ VS

X̄i[t]≥ 0, ∀t∈ [0, T ], i∈ VS∑
i

X̄i[t] = 1, ∀t∈ [0, T ]

∑
i∈∂(j′)

d

dt
Ēij′k[t] +

d

dt
D̄j′k[t] = φj′k, ∀t∈ [0, T ], j′ ∈ VD, k ∈ VS

Ē, D̄ are non-decreasing and Ēij′k(0) = D̄j′k(0) = 0.∀j′ ∈ VD, i, k ∈ VS.

For non-idling policies, it satisfies additional equations:

∫ T

0

 ∑
i∈∂(j′)

X̄i(t)

 d

dt
D̄j′k(t) = 0, ∀j′ ∈ VD, k ∈ VS.

The lemma can be proved using an adaptation of proof of Theorem 3.1 in Kumar and Kumar

(1996) and Dai and Lin (2005).

5.3. Lyapunov Functions for Scaled MaxWeight

Lyapunov functions are useful tool for analyzing complex stochastic systems. In the literature on

the MaxWeight policy, the quadratic Lyapunov function is a popular choice to facilitate analysis

(Tassiulas and Ephremides 1992, Eryilmaz and Srikant 2012, Maguluri and Srikant 2016, etc.);

others have also used piecewise linear Lyapunov functions (Bertsimas et al. 2001, Venkataramanan

and Lin 2013, etc.). None of these suffice for our closed queueing network setting, however, and so

we need to define a novel family of piecewise linear Lyapunov functions, as follows.

Definition 5 For each w ∈ relint(Ω), define Lyapunov function Lw(x) as:

Lw(x), 1−min
i

xi
wi
. (15)
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𝒘

Figure 3 Sub-level sets of Lw when |VS |= |VD|= 3. State space Ω is a probability simplex in R3, and its

boundary coincides with {x :Lw(x)≤ 1}∩h1.

Note that for each x∈Ω, Lw(x)∈ [0,1]. Furthermore, the intersection of sub-level set {x :Lw(x)≤

1} and hyperplane h1 , {x : 1Tx = 1} is exactly Ω, as is proved in the next lemma. See Figure 3

for illustration.

Lemma 2 (Sub-level set of Lyapunov functions.) For any w ∈ relint(Ω), Lyapunov function

Lw(x) satisfies:

{x :Lw(x)≤ 1}∩h1 = Ω.

To establish system stability using Lyapunov functions, the key step is to show that it has

negative drift along fluid limits. In Lemma 3, we explicitly characterize the Lyapunov drift of any

fluid sample path under SMW(w) when all queue lengths are positive.

Lemma 3 (Lyapunov drift of fluid sample paths) Let (Ā, X̄) be any FSP on [0, T ], w ∈

relint(Ω). For a regular t∈ [0, T ] such that Lw(X̄[t])< 1, define:

A1(X̄[t]),

{
i∈ VS : i∈ argmin

X̄i[t]

wi

}
,

A2

(
X̄[t],

d

dt
X̄[t]

)
,

{
i∈A1(X̄[t]) : i∈ argmin

1

wi

d

dt
X̄i[t]

}
.

All the derivatives are well defined since t is regular.

Denote

c, min
i∈A1(X̄[t])

1

wi

d

dt
X̄i[t].

We have:

1. d
dt
Lw(X̄[t]) =−c.

2. c= 1
1T
A2

w

(∑
i′∈VD,j∈A2

d
dt

Āi′j[t]−
∑

i′:∂(i′)⊆A2,j∈V
d
dt

Āi′j[t]
)

.
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The above lemma is about the Lyapunov drift along fluid sample paths; we now state an analo-

gous lemma bounding the drift for fluid limits. We first need some additional notation.

We denote

λmin ,min
i∈VS

1Tφ(i) (16)

It follows from Assumption 1 that λmin > 0. Similarly, we denote

ξ , min
J(VD,J 6=∅

 ∑
i∈∂(J)

1Tφ(i)−
∑
j′∈J

1Tφj′

 , (17)

and based on assuming Assumption 2 holds, we have ξ > 0.

Lemma 4 (Lyapunov drift of fluid limits) Let t be a regular point, then for any fluid limit

X̄[·]:
d

dt
Lw(X̄[t])≤−min{ξ,λmin}.

Note that the above result holds for any X̄ ∈ Ω, including when there are empty queues. This is

because under SMW policies, the empty queues are replenished ‘immediately’ in fluid-scale time,

see the proof of Lemma 4 for details.

The following lemma is an adaptation of Theorem 5 and Proposition 7 in Venkataramanan and

Lin (2013) to our setting. It gives the lower bound of the exponent of P(Lw(X̄K)≥ α) for α∈ (0,1),

where the system is under SMW(w) and in stationarity, given initial state z ∈ ΩK . This event is

closely related to demand-drop as α→ 1. The key insight from this lemma is that the most likely

fluid sample path under SMW(w) which leads to the event has a linear structure. See Stolyar

and Ramanan (2001), Stolyar (2003) for similar results in a different setting where the achievable

exponent is given by a variational problem with piecewise linear solution (called ‘simple elements’

in Stolyar and Ramanan 2001).

Lemma 5 For the system being considered, we have ∀α∈ (0,1),

− limsup
K→∞

1

K
log

(
max
z∈ΩK

P
(
Lw(X̄K,SMW(w)

z [∞])≥ α
))
≥ αγ(w), (18)

where X̄K,SMW(w)
z [∞] is distributed as the stationary distribution of the K-th system under

SMW(w) given initial state z∈ΩK. For fixed T > 0,

γ(w) = inf
v>0,f,Ā,X̄

1

v
Λ∗(f),

s.t. (Ā, X̄) is a fluid sample path on [0, T ] under SMW(w)

such that for some regular t∈ [0, T ]

d

dt
Ā[t] = f , Lw(X̄[t]) = α,

d

dt
Lw(X̄[t]) = v.
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Remark 8 As is discussed in Remark 6, all FSPs (Ā, X̄) are Lipschitz continuous, hence Lw(·)

is also Lipschitz continuous due to Lemma 10. As a result, Lw(X̄[t]) is almost everywhere differ-

entiable w.r.t. t (Rudin 1964).

The following corollary is a direct consequence of Lemma 5.

Corollary 1 (Achievability bound of SMW(w)) Let γp(w) be the pessimistic demand-drop

exponent (defined earlier in (5)) under SMW(w) , γ(w) is the value defined in Lemma 5. We

have:

γp(w)≥ γ(w).

The next lemma provides an explicit bound of γ(w) (later turns out to be the exact expression

of γ(w)).

Lemma 6

γ(w)≥min
J∈J

(1T
∂(J)w)g(φ,J), where g(φ,J), log

(∑
i′ /∈J

∑
j∈∂(J) φi′j∑

i′∈J
∑

j /∈∂(J) φi′j

)
Proof Idea of Theorem 1 Claim 1: (See Appendix C.9 for the whole proof.) To prove Theorem

1 Claim 1, it remains to bound γo(w) from above. For a fix w ∈ relint(Ω), we first divide the time

periods into cycles of length O(K2). Given any initial state of a cycle, we can show that it goes to

a state close to wK in O(K) by exploiting the negative Lyapunov drift.

Then we explicitly construct a demand arrival sample path that leads to demand drop. Let

J∗ = argminJ∈J (1T
∂(J)w)g(φ,J),

arbitrarily select one if there are multiples minimizers. Define f∗ ∈Rn×n and T ∗ as follows:

f∗j′i ,


φj′ie

g(φ,J∗), for j′ ∈ J∗, i /∈ ∂(J∗)
φj′ie

−g(φ,J∗) for j′ /∈ J∗, i∈ ∂(J∗)
φj′i, otherwise.

,

T ∗ , (1T
∂(J∗)w)

 ∑
j′ /∈J∗,i∈∂(J∗)

φj′i−
∑

j′∈J∗,i/∈∂(J∗)

φj′i

−1

.

Roughly speaking, for arbitrary δ > 0, any scaled demand arrival sample path that is within a

small enough neighborhood (in terms of sup norm) of tf∗(t∈ [0, (1 + δ)T ∗]) leads to demand drop.

By using Fact 1 and letting δ→ 0, we have:

γo(w)≤min
J∈J

(1T
∂(J)w)g(φ,J).

Combined with Corollary 1 and Lemma 6, we conclude the proof.
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Remark 9 (Critical Subset Property) In the proof above we explicitly construct a fluid sample

path that leads to demand dropping by draining the supply in subset J∗. The same proof can be

used to show that this is also the most likely sample path that leads to demand drop under any

assignment policy given initial normalized state is w. We refer to this as critical subset property:

for each normalized state x∈Ω, there is(are) corresponding critical subset(s):

argminJ∈J (1T
∂(J)x)g(φ,J).

5.4. Performance of Vanilla MaxWeight

The following theorem shows that SMW with a naive choice of parameter w = 1
n
1 achieves an

exponent of demand dropping rate that is no smaller than 1
n

of γ∗.

Proposition 3 Suppose Assumption 2 holds, then we have

γ

(
1

n
1

)
≥ 1

n
γ∗.

Main idea: Simply observe that for each J ∈J , the ‘buffer supply’ vanilla MaxWeight allocates

to ∂(J), 1T
∂(J)w, is at least 1

n
of that under the optimal SMW.

6. Proofs of Converse Bounds

In this section, we will complete the proof of Theorem 1. In addition, we will provide a converse

bound for fluid-based policies.

The key observation in converse proofs is that the number of vehicles in a subset of supply

locations is upper bounded by a random walk. Under Assumption 2, the best state-dependent

policy can provide this random walk with a positive drift, while the best fluid-based policy only

leads to zero drift. As a result of this difference, the lower bound on the demand-drop probability

decays exponential in K for state-dependent policies, but only polynomially in K for fluid-based

policies. Full proofs are included in the appendices.

6.1. Proof of Theorem 1 Claim 2: Converse Bound of State-Dependent Policies

We first prove the following lemma that characterizes the probability of a positive drift random

walk hitting a negative value with large magnitude.

Lemma 7 Let {Zi}∞i=1 be i.i.d. random variables such that P(Z1 = 1) = p, P(Z1 =−1) = q, P(Z1 =

0) = 1−p− q, where 0< q < p< 1, p+ q≤ 1. Define Sm ,
∑m

i=1Zi. Then for any ε > 0, there exists

m0 > 0 such that for m>m0:

P(Sm ≤−(p− q)m)≥ e−mε
(
p

q

)−m(p−q)

.
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Remark 10 Lemma 7 is closely related to the well-known fact that the most-likely path for a stable

M/M/1 queue to overflow is to reverse the arrival and service rates, see Shwartz and Weiss (1993).

Proof Sketch of Theorem 1, Claim 2: (see Appendix E.2 for the whole proof) Divide the

discrete periods into cycles with length Θ(K). Consider a cycle with initial scaled state x. By

Lemma 7, the exponent of the probability that ∂(J) run out of supply in this cycle is g(φ,J), where

g(φ,J) = log

(∑
i′ /∈J

∑
j∈∂(J) φi′j∑

i′∈J
∑

j /∈∂(J) φi′j

)
.

Hence the exponent of the probability that some J ∈ J gets drained in this cycle is γ(x) =

minJ∈J (1T∂(J)x)g(φ,J). Taking minimum over all starting state x, the exponent of the probability

that demand-drop happens in a cycle is at most maxx∈Ω γ(x) = γ∗. We conclude the proof.

6.2. No State-Independent Policy Achieves Exponential Decay

To demonstrate the value of state-dependent controls, we show in the following that under no

circumstances can any fluid-based (static) assignment policy lead to exponential decay of demand

dropping probability. We first formally define the set of fluid-based policies.

Definition 6 We call an assignment policy fluid-based if for any time t, j′ ∈ VD, if a demand

arrives at j′ at t, the platform randomly selects an assigned location i ∈ ∂(j′) with probability

u(i,j′)[t], or drop it with probability 1−
∑

i∈∂(j′) u(i,j′)[t]. If there is no supply at the assigned location,

the demand is also dropped.

Remark 11 The fluid-based policy defined above includes time-varying policies. It is the same as

the randomized policy defined in Ozkan and Ward (2016), definition 2.

Proposition 4 Under any fluid-based assignment policy π, we have:

PK,π = Ω

(
1

K2

)
.

Hence the system converge to fluid limit as K→∞ much faster under state-dependent controls

(Θ(e−γ
∗
)) comparing to fluid-based ones (Ω(1/K2)).

7. Conclusions and Future Directions

In this paper we study state-dependent assignment control in a shared transportation system mod-

eled by a closed queueing network. We introduce a family of state-dependent assignment policies

called Scaled MaxWeight (SMW) and prove that they have superior performance guarantees in

terms of maximizing throughput, comparing with fluid-based policies. In particular, we construct

an SMW policy that achieves the optimal large deviation rate of demand-dropping. Our analysis
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also uncovers the structure of the problem: given system state, demand-dropping is most likely to

happen within a state-dependent critical subset of locations. The optimal SMW policy protects

all subsets simultaneously. The SMW policies are simple and explicit hence have the potential to

influence practice in shared transportation systems.

Before closing, we point out several interesting directions for future research:

1. Choosing w where φ is imperfectly known. In practice, a key issue is knowledge of the true

arrival rates φ. We remark that if these rates are entirely unknown, but Assumption 2 holds, the

platform can pick an SMW policy such as vanilla max weight, and be sure to achieve exponential

decay of the demand dropping probability (albeit with a suboptimal exponent). This is already an

improvement over the fluid-based/state-independent control policies studied thus far (Ozkan and

Ward 2016, Banerjee et al. 2016). If φ is not precisely known but is known to lie within some set,

that setting may lend itself to a natural robust optimization problem of maximizing the demand

dropping exponent, worse case over possible φ. We leave this as an open question.

2. Computational challenges. A limitation of Theorem 1 is that it does not prescribe how to

compute w. It simply specifies a concave maximization problem that must be solved, one where

the objective is the minimum over an exponential number of linear functions. We suspect that

structural properties of “realistic” G and φ can be exploited to make this problem tractable; for

the moment, we leave it as an open question.

3. General customer arrival process. Because our analysis relies mostly on fluid sample paths

and large deviations, the result may potentially be generalized to a setting where arrival processes

are non-Poisson and spatially correlated. One would expect the specification of arrival process to

enter the form of the exponent γ(w) through its moment generation function.

4. Relations to robust queueing. The large deviation analysis in our paper can be interpreted

as a zero-sum game between adversary (nature) and platform: the large deviation rate function

is “cost”, the adversary tries to force demand dropping while incurring minimum “cost”. Another

interesting question would be: what’s the worse case system performance if the adversary has a

finite budget? The latter question is closely related to works on robust queueing.

5. Bike-sharing systems. Our model is related to bike-sharing by interpreting the assignment

of supply units as suggestion to customers regarding where to pick up a bike among nearby loca-

tions. However, bike-sharing systems have some additional features, e.g. limited number of docks.

One could consider the flexibility in bike-returning stations, where a natural policy analogous to

MaxWeight would suggest returning to a nearby location with most empty docks.

6. Simulation. Simulation of closed queueing network instances under proposed policies is ongo-

ing. So far we can conclude from the numerical results that: (1)computation of optimal w is not an
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issue when the number of locations is close to real world situation (when n≈ 30, computation takes

about 1 hour on PC); (2)with model primitives chosen realistically, the optimal Scaled MaxWeight

policy already outperforms vanilla MaxWeight significantly.

Appendix A: Simplifying the Objective: Proof of Lemma 1

Proof. First, since 1Tφ1 = 1 and DIem(X̄K,U [t]) ⊆D, we have

1T
{i′:∂(i′)⊆Iem(X̄K,U [t])}φ1≤ 1

{
X̄K,U [t]∈D

}
.

On the other hand, whenever X̄K,U [t]∈D, by definition of D there exists A⊂ VD where 1T
Aφ1> 0 such that

X̄K,U [t]∈D∂(A),

hence (
min

A⊆VD,1T
A
φ1>0

1TAφ1

)
1
{
X̄K,U [t]∈D

}
≤ 1T

{i′:∂(i′)⊆Iem(X̄K,U [t])}φ1.

As a result, the ratio between argument of logarithm on both sides of (6) is bounded away from zero and

infinity, hence they have the same exponential decay rate. �

Appendix B: Necessity of CRP condition for Exponential Decay: Proof of
Proposition 1

Proof. There are two cases:

1. Some inequality in (9) is strictly reversed, i.e., there exists J ( VD s.t.
∑

i∈∂(J) 1Tφ(i) <
∑

j′∈J 1Tφj′ .

Consider the following balance equation:

#{supply in ∂(J) at t}=#{supply in ∂(J) at 0}+ #{supply arrive to ∂(J) in [0, t]}

−#{demand should be served by ∂(J) in [0, t]}

+ #{dropped demand that should be served by ∂(J) in [0, t]}

≤#{supply in ∂(J) at 0}+

t∑
s=1

1{d[s]∈ ∂(J)}−
t∑

s=1

1{o[s]∈ J}

+ #{dropped demand in [0, t]}

Divide both sides by K and let K→∞, by SLLN we have:

lim inf
t→∞

{proportion of dropped demand in [0, t]} ≥
∑
j′∈J

1Tφj′ −
∑
i∈∂(J)

1Tφ(i) > 0,

hence a positive portion of demand will be dropped, and the second half of the proposition is proved.

2. No inequality in (9) is strictly reversed but there exists J ∈J such that
∑

i∈∂(J) 1Tφ(i) =
∑

j′∈J 1Tφj′ .

Divide the discrete time periods into cycles with length MK2, where

M ,
6∑

j′ /∈J,i∈∂(J) φj′i
.

Without loss of generality, consider the first cycle [0,MK2− 1].

Define random walk SJ [t] with the following dynamics:
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• SJ [0] = 1T
∂(J)X[0].

• SJ [t+ 1] = SJ [t] + 1 if o[s] /∈ J,d[s]∈ ∂(J).

• SJ [t+ 1] = SJ [t]− 1 if o[s]∈ J,d[s] /∈ ∂(J).

• SJ [t+ 1] = SJ [t] if otherwise.

We have:

P
(
some demand is dropped in [0,MK2− 1]

)
≥ P

(
SJ [t′] = 0 for some t′ ∈ [0,MK2− 1]

)
.

This is because either (1) some demand is dropped before t′, or (2) no demand is dropped before t′, then

SJ [t]≥ 1T∂(J)X
K,U [t] holds for all t≤ t′. Either way, the event on RHS implies the event on LHS.

For J of interest, note that SJ is an unbiased random walk, hence a martingale. It’s easy to verify that

MGJ [t] = S2
J [t]− 2t

∑
j′ /∈J,i∈∂(J)

φj′i

is also a martingale. Apply Optional Stopping Theorem, we have the following result for the first time SJ

hit {1T
∂(J)X[0]− 2K,1T

∂(J)X[0] + 2K}, denoted by τ :

E[τ ] =
2K2∑

j′ /∈J,i∈∂(J) φj′i
.

Note that SJ hitting {1T
∂(J)X[0]− 2K} implies that it hit 0 before, we have

P
(
SJ [t] = 0 for some t′ ∈ [0,MK2− 1]

)
=1−P(τ >MK2)−P(τ ≤MK2)P(X[τ ] = 1T

∂(J)X[0] + 2K|τ ≤MK2)

≥1−P(τ > 3E[τ ])− 1

2

≥1

6
. (Markov inequality)

As a result, for any U , we have:

PK,U
p ≥ PK,U

o = Ω

(
1

K2

)
,

hence γp(U) = γo(U) = 0 for any U .

�

Appendix C: Achievability Proofs

C.1. Sub-level Set of Lyapunov Functions: Proof of Lemma 2

Proof.

{x :Lw(x)≤ 1,x∈ h1}=

{
x : min

i∈VS

xi
wi
≥ 0,1Tx = 1

}
=
{

x : x≥ 0,1Tx = 1
}

= Ω.

�
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C.2. Lyapunov Drift of FSPs: Proof of Lemma 3

Proof. For notation simplicity, we will write A1(X̄[t]) as A1, A2

(
X̄[t], d

dt
X̄[t]

)
as A2 in the following.

1. Denote b, argmini∈VS
X̄i[t]

wi
. By definition of derivatives, ∀δ > 0, ∃ε0 > 0 such that ∀ε∈ [0, ε0],

X̄i(t+ ε)

wi
≥ b+ (c− δ)ε ∀i∈A1.

Hence

d

dt
Lw(X̄[t]) =− lim

ε→0

mini∈A1

X̄i(t+ε)

wi
− b

ε
≤− lim

ε→0

b+ (c− δ)ε− b
ε

= δ− c.

Since δ > 0 is chosen arbitrarily, we have d
dt
Lw(X̄[t]) ≤ −c. Similarly, we can show that d

dt
Lw(X̄[t]) ≥ −c,

hence:
d

dt
Lw(X̄[t]) =−c.

2. Define

c′ , argmini∈A1\A2

1

wi

d

dt
X̄i[t],

then c′ > c. By definition of derivatives, there exists ε0 > 0 such that ∀ε∈ [0, ε0],

X̄k(t+ ε)

wk
≥ b+

(
c′− c′− c

3

)
ε, ∀k ∈A1\A2 (19)

X̄l(t+ ε)

wl
≤ b+

(
c+

c′− c
3

)
ε, ∀l ∈A2. (20)

Let (ĀK [·], X̄K [0],Gw(ĀK [·], X̄K [0])) (where ĀK [·]∈ ΓK,T ) converges uniformly to a FSP (Ā, X̄). By defini-

tion of uniform convergence, for any M > 1 there exists K0 such that for any K >K0 and t∈ [0, T ], we have

∀i∈ VS, ∣∣∣∣∣X̄K
i [t]

wi
− X̄i[t]

wi

∣∣∣∣∣< c′− c
6

ε0
M
. (21)

As a result, for any ε∈
[
ε0
M
, ε0
]

and K ≥K0, let k ∈A1\A2, l ∈A2, we have

X̄K
k (t+ ε)

wk

≥X̄k(t+ ε)

wk
− c′− c

6

ε0
M

(plug in (21))

>b+

(
c′− c′− c

3

)
ε− c′− c

6
ε (plug in (19))

=b+

(
c− c′− c

2

)
ε

≥X̄l(t+ ε)

wl
+
c′− c

6
ε (plug in (20))

≥X̄K
l (t+ ε)

wl
(plug in (21)).

By definition of SMW(w), the K-th system will not use dispatch within A2 to serve demand outside {j′ ∈ VD :

∂(j′)∈A2} during (scaled) time [t+ ε0
M
, t+ε0]. Also, note that since Lw(X̄[t])< 1, we have X̄[t]∈ relint(Ω) by
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Lemma 2; by uniform convergence, we know that for large enough K and s close enough to t, Uw(X̄K [s], k)

will never be ∅. Hence

∑
i∈A2

(X̄K
i [t+ ε0]− X̄K

i [t+
ε0
M

]) =−
∑

j′∈VD:∂(j′)⊆A2,i∈VS

(ĀK
j′i[t+ ε0]− ĀK

j′i[t+
ε0
M

])

+
∑

j′∈VD,i∈A2

(ĀK
j′i[t+ ε0]− ĀK

j′i[t+
ε0
M

]).

Using the Lipschitz property of X̄K [·], we know∣∣∣∣∣∣
∑
i∈A2

(X̄K
i [t+

ε0
M

]− X̄K
i [t])

∣∣∣∣∣∣≤ ε0
M
.

Combined, we have:

∑
i∈A2

(X̄K
i [t+ ε0]− X̄K

i [t])≤−
∑

j′∈VD:∂(j′)⊆A2,i∈VS

(ĀK
j′i[t+ ε0]− ĀK

j′i[t+
ε0
M

])

+
∑

j′∈VD,i∈A2

(ĀK
j′i[t+ ε0]− ĀK

j′i[t+
ε0
M

]) +
ε0
M
.

First let K→∞, then let M →∞. Using the continuity of Ā[·], we have:

∑
k∈A2

(X̄i[t+ ε0]− X̄i[t])≤−
∑

j′∈VD:∂(j′)⊆A2,i∈VS

(Āj′i[t+ ε0]− Āj′i[t])

+
∑

j′∈VD,i∈A2

(Āj′i[t+ ε0]− Āj′i[t])

Divided by ε0 on both sides and let ε0→ 0. Since t is regular, we have:

∑
i∈A2

d

dt
X̄i[t]≤

 ∑
j′∈VD,i∈A2

d

dt
Āj′i[t]−

∑
j′∈VD:∂(j′)⊆A2,i∈VS

d

dt
Āj′i[t]

 .

Similarly, we can show that

∑
i∈A2

d

dt
X̄i[t]≥

 ∑
j′∈VD,i∈A2

d

dt
Āj′i[t]−

∑
j′∈VD:∂(j′)⊆A2,i∈VS

d

dt
Āj′i[t]

 .

Hence

d

dt
Lw(X̄[t]) =− 1

wi

d

dt
X̄i[t], ∀i∈A2

=− 1

1T
A2

w

∑
i∈A2

wi
1

wi

d

dt
X̄i[t]

=
1

1T
A2

w

 ∑
j′∈VD:∂(j′)⊆A2,i∈VS

d

dt
Āj′i[t]−

∑
j′∈VD,i∈A2

d

dt
Āj′i[t]

 .

�
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C.3. Lyapunov Drift of Fluid Limits: Proof of Lemma 4

The following lemma says that in the fluid limit, any node will be replenished with supplies ‘immediately’

once it becomes empty. However, one should be careful when interpreting this result because a fluid-scale

time interval with length δ corresponds to bδKc time periods in the original system.

Lemma 8 Let X̄[·] be a fluid limit of the system under SMW(w) policy. Suppose t= 0 is a regular point

(right derivative exists), then for any i∈ VS such that X̄i[0] = 0, we have

d

dt
X̄i[t]|t=0 > 0.

Proof. We prove the result by contradiction. The set VS can be partitioned into three disjoint sets:

A1[t] = {i∈ VS : X̄i[t]> 0},

A2[t] = {i∈ VS : X̄i[t] = 0,
d

dt
X̄i[t]> 0},

A3[t] = {i∈ VS : X̄i[t] = 0,
d

dt
X̄i[t] = 0}.

Suppose A3[t] 6= ∅.

Denote:

x+
min , min

i∈A1[t]

X̄i[t]

wi
, p+

min , min
i∈A1[t]

d

dt

X̄i[t]

wi
,

p0
max , max

i∈A2[t]

d

dt

X̄i[t]

wi
, p0

min , min
i∈A2[t]

d

dt

X̄i[t]

wi
.

By definition of derivatives, we know that for arbitrary δ > 0, ∃ε0 > 0 such that for any ε∈ [0, ε0], we have:

X̄i[t+ ε]

wi
≥ X̄i[t]

wi
− (p+

min + δ)ε, ∀i∈A1[t]

X̄i[t+ ε]

wi
≤ (p0

max + δ)ε, ∀i∈A2[t]

X̄i[t+ ε]

wi
≥ (p0

min− δ)ε, ∀i∈A2[t]

X̄i[t+ ε]

wi
≤ δε, ∀i∈A3[t].

Choose δ =
p0min

3
, ε0 ≤

x+
min

2(p0max+|p+
min
|+2δ)

.

For M > 1 and any subsequence X̄Kr [·] (as in Proposition 2) that uniformly converges to X̄[·], there exists

K0 > 0 such that for any Kr >K0, we have:

sup
t∈[0,T ]

∣∣∣∣∣X̄i[t]

wi
− X̄Kr

i [t]

wi

∣∣∣∣∣< δε0
6M

, ∀i∈ VS.

As a result, for Kr >N0 in the uniformly converging subsequence, the Kr-th system satisfies:

X̄i[τ ]

wi
<

X̄j [τ ]

wj
,∀i∈A3[t], j ∈A1[t]∪A2[t]
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for τ ∈ {bKr(t+ ε0
M

)c, · · · , bKr[t+ ε0]c}. Under SMW(w), all the demands arriving at d(A1[t]∪A2[t]) will be

met by supply within A1[t]∪A2[t] during {bKr(t+ ε0
M

)c, · · · , bKr[t+ ε0]c} for the Kr-th system. Moreoever,

supplies in A1[t]∪A2[t] will not be depleted during this period. As a result, we have:∑
i∈A1[t]∪A2[t]

X̄i(bKr[t+ ε0]c)−
∑

i∈A1[t]∪A2[t]

X̄i(bKrtc)

≤bKr

ε0
M
c+

bKr(t+ε0)c∑
τ=bKr(t+

ε0
M

)c

 ∑
j′∈VD,i∈A1[t]∪A2[t]

1{o[τ ] = j′, d[τ ] = i}

−
∑

j′∈∂(A1[t]∪A2[t]),i∈VS

1{o[τ ] = j′, d[τ ] = i}

 .

LHS of the above inequality is the net increase of supplies in subset A1[t]∪A2[t], RHS is an upper-bound

that let supplies accumulate in A1[t]∪A2[t] as the fastest speed possible (one supply per period) during the

first 1
M

fraction of the considered time interval, and use supplies in A1[t] ∪ A2[t] to serve all demands in

∂(A1[t] ∪A2[t]) during the rest of the period. Divide both sides by Kr and let r→∞. By SLLN we have

almost surely, ∑
i∈A1[t]∪A2[t]

X̄i[t+ ε0]−
∑

i∈A1[t]∪A2[t]

X̄i[t]

≤ t ε0
M

+
M − 1

M
ε0

 ∑
j′∈VD,i∈A1[t]∪A2[t]

φj′i−
∑

j′∈∂(A1[t]∪A2[t]),i∈VS

φj′i

 .

Since we assume that A1[t]∪A2[t] ( V , by Assumption 2 and (17) we have:∑
i∈A1[t]∪A2[t]

X̄i[t+ ε0]−
∑

i∈A1[t]∪A2[t]

X̄i[t]≤ t
ε0
M
−M − 1

M
ε0ξ.

Since M can be chosen arbitrarily, we choose increasingly large M and have:∑
i∈A1[t]∪A2[t]

X̄i[t+ ε0]−
∑

i∈A1[t]∪A2[t]

X̄i[t]≤−ε0ξ.

Since the system is closed, this is equivalent to:∑
i∈A3[t]

X̄i[t+ ε0]−
∑

i∈A3[t]

X̄i[t]≥ ε0ξ. (22)

But we derived above that
X̄i[t+ ε0]

wi
≤ X̄i[t]

wi
+ δε0, ∀i∈A3[t].

Let δ < 1
2
ξ, then the above implies

∑
i∈A3[t]

X̄i[t+ ε0]−
∑

i∈A3[t]

X̄i[t]≤
1

2

∑
i∈VS

wi

 ε0ξ =
1

2
ε0ξ. (23)

(22) and (23) contradicts each other, hence the lemma is proved. �

We now complete the proof of Lemma 4.
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Proof of Lemma 4. Based on the definition of fluid sample paths and fluid limits, we can see that

fluid limits are equivalent to FSP that satisfies:

d

dt
Āj′i[t] = φj′i, ∀j′ ∈ VD, i∈ VS, for almost every t∈ [0, T ].

There are two cases:

• X̄[t]> 0. In this case, plug in Lemma 3 and we have

d

dt
Lw(X̄[t]) =− 1

1A2
w

 ∑
j′∈VD,i∈A2

d

dt
Āj′i[t]−

∑
j′∈VD:∂(j′)⊆A2,i∈VS

d

dt
Āj′i[t]


≤− min

A2(VS

1

1A2
w

 ∑
j′∈VD,i∈A2

φj′i−
∑

j′∈VD:∂(j′)⊆A2,i∈VS

φj′i


≤− ξ.

• There exists i∈ V such that X̄i[t] = 0. Similar to the proof of Lemma 3, we focus on the behavior of the

fluid limit during [t, t+ ε0] for small enough ε0 > 0, and partition it into two time intervals: [t, t+ ε0
M

] and

[t+ ε0
M
, t+ ε0] for M > 1. By Lemma 8, we know that d

dt
X̄i[t]> 0 for the nodes who have zero supply at time

t, hence in the fluid limit the system will have positive supply at each node at X̄i[t+ ε0
M

]> 0. We can derive

the same Lyapunov drift as in the first case on [t+ ε0
M
, t+ ε0], and get the desired result by letting M →∞.

The details are omitted here.

�

C.4. Robustness of Lyapunov Drift

The following lemma shows that we still have negative Lyapunov drift if the arrival process is a small

perturbation of fluid limits.

Lemma 9 There exists ε > 0 such that for all fluid sample paths (Ā, X̄) and any t∈ [0, T ], if d
dt

Ā[t]∈B(φ, ε),

we have
d

dt
Lw(X̄[t])≤−1

2
min{ξ,λmin}.

Proof. From the proof of Lemma 4, we can see that the Lyapunov drift depends on the gap ξ defined in

(17) and λmin defined in (16). Mathematically, for fluid sample path (Ā, X̄) and regular point t, we have:

d

dt
Lw(X̄[t])≤− min

A(VS

 ∑
j′∈VD,i∈A

d

dt
Āj′i[t]−

∑
j′:∂(j′)⊆A,i∈VS

d

dt
Āj′i[t]


=−min{ξ,λmin}.

(24)

Note that

G(f), min
A(VS

 ∑
j′∈VD,i∈A

fj′i−
∑

j′:∂(j′)⊆A,i∈VS

fj′i


is continuous for f ∈M, {g ∈Rn×n : g≥ 0,1Tg1 = 1}. Since G(φ)≤−min{ξ,λmin}< 0, by continuity there

must exist ε such that for any f ∈M such that f ∈B(φ, ε), we have

G(f)≤−1

2
min{ξ,λmin}.

�
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C.5. Properties of Lyapunov Functions

The Lyapunov functions we defined admit many nice properties. The following lemma is a collection of basic

technical facts regarding Lw(x) that are useful for the following proofs. The norm || · || is Euclidean norm if

note stated otherwise.

Lemma 10 Let Lw(x) be the Lyapunov function defined in (15) (w ∈ relint(Ω)). Note that Lw(x)’s domain

is h1 = {x : 1Tx = 1}. We have:

1. Lw(x) is a continuous function of x.

2. Lw(x)≥ 0 for all x∈ h1, and Lw(x) = 0 if and only if x = w.

3. There exists cw > 0, lw > 0, uw > 0 such that

min
x:||x−w||≥cw,x∈h1

Lw(x)≥ lw, max
x:||x−w||≤cw,x∈h1

Lw(x)≤ uw.

4. Lw(x) is globally Lipschitz on h1, i.e.

|Lw(x1)−Lw(x2)| ≤ 1

mini∈VS wi
||x1−x2||.

5. For all fluid sample paths (Ā, X̄), there exists M > 0 such that:

d

dt
Lw(X̄[t])≤M.

6. (Centered linear-in-scale property) Assume cz + w lies in the domain h1. For any z such that 1Tz = 0

and c > 0, we have:

Lw(cz + w) = cLw(z + w).

Proof. Property (1)(2)(4)(5)(6) are easy to verify, so we only prove (3) below. For fixed w ∈ relint(Ω):

(3) Let cw ,miniwi. For x∈ {x :Lw(w)≤ ε}∩h1, we have:

||x−w|| ≤
√
n ·max

i∈V
|xi−wi|

≤
√
n ·max

i∈V

(
max{εwi, ε(1−wi)}

)
.

Hence for ε0 , cw
(

2
√
n ·maxi∈V

(
max{wi, (1−wi)}

))−1

> 0, we have {x :Lw(x)≤ ε0}∩h1 ⊂ {x : ||x−w||<

cw}∩h1. Let lw , ε0, we have

min
x:||x−w||≥cw,x∈h1

Lw(x)> lw > 0.

Also note that for any x∈ {x : ||x−w|| ≤ cw}∩h1, we have xi ≥wi− cw ≥ 0, hence

max
x:||x−w||≤cw,x∈h1

Lw(x)≤ uw , 1.

�
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C.6. Achievability Bound of SMW Policies: Proof of Lemma 5

For x≥ 0, let |x|, 1Tx. Let X̄xl [·] be the scaled process of the |xl|-th system with initial state xl. We have

the following technical lemma.

Lemma 11 For any w ∈ relint(Ω), the following holds:

lim
|xl|→∞

E
(
Lw

(
X̄xl [ν]

))
= 0, where ν =

1

min{ξ,λmin}
. (25)

Proof. The proof is analogous to the proof of Theorem 3.1 in Dai (1995), but there are minor differences

because of our closed queueing network setting. Let {xl} be any sequence of (scaled) initial states such that

|xl| →∞, then almost surely there is a subsequence {xlr} such that X̄xlr [·] converges uniformly on compact

sets to a fluid limit X̄[·] (Proposition 2). We know that any fluid limit X̄[·] is absolutely continuous, and it

satisfies:
d

dt
Lw(X̄[t])≤−min{ξ,λmin}

for {X̄[t] :Lw(X̄[t])> 0} at any regular point (Lemma 4). Since Lw(x)≤ 1 for any x∈Ω (Lemma 2) we have

lim
r→∞

Lw

(
X̄xlr [ν]

)
= 0 a.s.

Because of the boundedness of Lw

(
X̄xlr [ν]

)
, the sequence is uniformly integrable hence we have:

lim
r→∞

E
(
Lw

(
X̄xlr [ν]

))
= 0.

Since the sequence {xlr} is arbitrary, we have:

lim
|xl|→∞

E
(
Lw

(
X̄xl [ν]

))
= 0.

�

We have the following corollary from Lemma 11.

Corollary 2 Fix w ∈ relint(Ω).For any ε > 0, there exists K0 > 0 such that for any K >K0, each recurrent

class in the K-th system under SMW(w) contains at least one element from:

ΠK,ε , {x∈ΩK :Lw(x/K)≤ ε}.

Proof. By Lemma 11 we have: for any ε > 0, there exists K0 > 0 such that for any K >K0, we have

E
(
Lw(X̄xl [ν])

)
<
ε

2
. (26)

Suppose the corollary doesn’t hold, there exists x where |x|>K0 and:

E
(
Lw(X̄x[t])

)
≥ ε for any t > 0,

which contradicts (26). Hence the corollary must hold.
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The above corollary reveals the recurrent class structure of system under SMW(w). As a result, we have

the following decomposition (see Theorem 6.4.5 in Durrett 2010):

ΩK = T K ∪
(
∪z∈ΠK,εRz

)
,

where T K is the set of transient states, and Rz is the recurrent class containing at least one state z in ΠK,ε.

Since any possible stationary distribution can be expressed as a convex combination of the unique stationary

distribution of each recurrent class (see p.14 in Asmussen 2008), we have

max
z∈ΩK

P
(
Lw(X̄K,SMW(w)

z [∞])≥ α
)

= max
z∈ΠK,ε

P
(
Lw(X̄K,SMW(w)

z [∞])≥ α
)
.

The following technical lemma bounds the expected time it takes for Lw(X̄K [t]) to reach any δ ∈ (0,1)

given starting point XK [0]∈Rz for some z∈ΠK,δ.

Lemma 12 For δ ∈ (0,1), let XK [0]∈Rz for some z∈ΠK,δ,

βK ,
dK inf{t≥ 0 :Lw(X̄K [t])≤ δ}e

K
,

then there exists K0 > 0 such that for any K >K0, we have

Ex(βK1 )≤C(w, ξ, λmin)δ−1

for a finite positive constant C(w, ξ, λmin) that doesn’t depend on K or initial state x (as long as x∈Rz for

some z∈ΠK,δ).

Proof. As a result there exists K0 > 0 such that for any K >K0 we have:

E
(
Lw

(
X̄K [ν]

))
≤ δ/2.

We now consider an arbitrary K >K0 and initial state x ∈Rz where z ∈ΠK,δ. For notation simplicity we

ignore the integrality of time below. Let

S , {x∈ΩK :Lw(x/K)≤ δ},

then for any XK
z [0]∈ΩK\S,

E
(
Lw(XK

z [Kν]/K)
)
≤ 1

2
Lw(XK

z [0]/K);

for XK
z [0]∈ S,

E
(
Lw(XK

z [ν]/K)
)
≤ 1

2
Lw(XK

z [0]/K) + 1

because the Lyapunov function is always smaller than 1 for argument in Ω.

Combined, we have:

E
(
KLw

(
XK

z

[
f(XK

z [0])
]))
≤ 1

2
KLw(XK

z [0]) +K1{XK
z [0]∈ S}

≤KLw(XK
z [0])− δ

2ν
f(XK

z [0]) +

(
δ

2
+K

)
1{XK

z [0]∈ S},
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where f(x) = νK if x /∈ S, otherwise f(x) = ν. Since x ∈ Rz, the first hitting time of S equals to the first

hitting time of Rz ∩S. Because any state in Rz is positively recurrent, hence Rz ∩S is a petite set. Proceed

exactly the same as in the proof of Theorem 2.1(ii) of Meyn and Tweedie (1994), for each x∈ΩK we have:

Ex(βK1 )≤ 2ν

δ

KLw(x/K) + δ/2 +K

K
≤ 6ν

δ
,C(w, ξ, λmin)δ−1.

The hitting time is divided by K because by definition βK1 is scaled time. Here C(w, ξ, λmin) ∈ (0,∞) is

constant that doesn’t depend on K or x. �

Now we complete the proof of Lemma 5.

Proof of Lemma 5. The proof is lengthy, so we divide it into several steps:

Step 1. Define stopping times and consider the sampling chain. In this step, we mostly follow the approach

in Venkataramanan and Lin (2013) (Freidlin-Wentzell theory) and decompose the desired expression. There

are minor differences between our proof and Proof of Theorem 4 in Venkataramanan and Lin (2013) because

of our closed queueing network setting, so we will write down each step for completeness.

In the following, let XK
z be a random vector distributed as the stationary distribution of recurrent class

associated with initial state z∈ΩK .

We want to upper bound:

lim sup
K→∞

1

K
log

(
max
z∈ΩK

P
(
Lw(XK

z /K)≥ α
))

.

Recall that X̄K
z [t],XK

z [Kt]/K for t= 0,1/K,2/K, · · · ; for other values of t it’s defined via linear interpo-

lation.

Choose positive constants δ, ε, ρ such that 0< δ < ε< ρ<α. Consider the following stopping times defined

on a sample path X̄K
z [·]:

βK1 ,
dK inf{t≥ 0 :Lw(X̄K

z [t])≤ δ}e
K

,

ηKi ,
dK inf{t≥ βKi :Lw(X̄K

z [t])≥ ε}e
K

, i= 1,2, · · ·

βKi ,
dK inf{t≥ ηKi−1 :Lw(X̄K

z [t])≤ δ}e
K

, i= 2,3, · · ·

Let the Markov chain X̂K
z [i] be obtained by sampling X̄K

z [t] at the stopping times ηKi . Since X̄K
z is

stationary, there must also exist a stationary distribution for Markov chain X̂K
z [i]. Let ΘK

z denote the state

space of the sampled chain, P̂Kz is the chain’s stationary distribution. The stationary distribution of X̄K
z [·]

can be expressed as (see Lemma 10.1 in Stolyar 2003)

P
(
Lw(X̄K

z )≥ α
)

=

∫
ΘKz

P̂Kz (dx)Ex

(∫ ηK1
0
I
{
Lw(X̄K

z [t])≥ α
}
dt

)
∫

ΘKz
P̂Kz (dx)Ex(ηK1 )

(27)

Here Ex(·) denotes the expectation conditioned on the event that X̄K
z [0] = x.

As argued above, we are only concerned with the stationary distribution of each recurrent class for each

finite system. In the following, let the initial state z in the K-th system belong to Ry for some y ∈ΠK,δ.

Step 2. Bounding the RHS of (27).
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• Step 2a. Bounding the Denominator. It’s not hard to see that

||XK
z [t+ 1]−XK

z [t]||2 ≤
√

2.

As a result we have

||X̄K
z [t+ 1]− X̄K

z [t]||2 ≤
√

2,

Lw(X̄K
z [ηK1 ])−Lw(X̄K

z [βK1 ])≤ 1

mini{wi}
||X̄K

z [ηK1 ]− X̄K
z [βK1 ]||2

≤
√

2

mini{wi}
(ηK1 −βK1 ).

Since ηK1 is within 1/K (scaled) time unit of the time of Lw(X̄K
z ) hitting ε, we have:

Lw(X̄K
z [ηK1 ])≥ ε−

√
2

mini{wi}
1

K
.

Similarly, we have:

Lw(X̄K
z [βK1 ])≤ δ+

√
2

mini{wi}
1

K
.

Hence there exists K1 > 0 such that for any K >K1, the denominator of (27) can be lower bounded by

ηK1 ≥
mini{wi}

2
√

2
(ε− δ). (28)

• Step 2b. Bounding the Numerator. This part is more complex, and we first decompose the numerator

into several terms.

By definition, each ηKi is within 1
K

(scaled) time unit after Lw(X̄K
z [t]) just exceeds ε. Since ε < ρ, using the

boundedness of arrival rates and service rates, we can conclude that there exists K2 > 0 (that depends on

ρ− ε), such that L(X̄K
z [ηKi ])≤ ρ for all N ≥N2.

We next define another stopping time:

ηK,↑ ,
dinf{t≥ 0 :Lw(X̄K

z [t])≥ α}Ke
K

.

Then for any x∈ΘK
z , we must have:

Ex

(∫ ηK1

0

1{Lw(X̄K
z [t])≥ α}dt

)
≤Ex

(
1{ηK,↑ ≤ βK1 }(βK1 − ηK,↑)

)
.

The above inequality holds because:

— if βK1 occurs before ηN,↑, then both sides will be zero (because the Lyapunov function will hit ε before

α);

— if βK1 occurs after ηN,↑, then the amount of time Lw(X̄K
z [t])≥ α must be no greater than βK1 − ηK,↑.

Let PKx denote the probability distribution conditioned on X̄K
z [0] = x, we then have:

Ex

(∫ ηK1

0

1{Lw(X̄K
z [t])≥ α}dt

)
≤Ex

(
βK1 − ηN,↑

∣∣ηN,↑ ≤ βK1 )PKx (ηN,↑ ≤ βK1 ) .
Using the properties of Markov chains and conditional expectation, we have:

Ex

(
βK1 − ηN,↑

∣∣ηN,↑ ≤ βK1 )=Ex

(
EX̄Kz (ηN,↑)(β

K
1 )
∣∣ηN,↑ ≤ βK1 ) (29)
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Let C ∈ (α,1), then using the boundedness of arrival rates and service rates again, there exists K3 > 0 such

that for K >K3:

(29)≤ sup
{y:Lw(y)≤C}

Ey(βK1 )

Let T be a positive number which will be chosen later. Recall that Lw(x)≤ ρ for all x∈ΘK
z when K ≥K2.

Hence, for any such x∈ΘK
z , we have,

numerator of (27)

=Ex

(
βK1 − ηN,↑

∣∣ηN,↑ ≤ βK1 )PKx (ηN,↑ ≤ βK1 )
≤

(
sup

{y:Lw(y)≤C}
Ey(βK1 )

)[
PKx
(
ηN,↑ ≤ T

)
+PKx

(
βK1 ≥ T

)]

≤

(
sup

{y:Lw(y)≤C}
Ey(βK1 )

)
︸ ︷︷ ︸

(a)

 sup
{x:Lw(x)≤ρ}

PKx
(
ηN,↑ ≤ T

)
︸ ︷︷ ︸

(b)

+ sup
{x:Lw(x)≤ρ}

PKx
(
βK1 ≥ T

)
︸ ︷︷ ︸

(c)


Note that all the terms are independent of z.

— Step 2b(i). Bounding term (a). Apply Lemma 12, there exists K4 such that for K ≥K4, we have

(a)≤Cδ−1 for some C ∈ (0,∞).

— Step 2b(ii). Asymptotics for (b). For K→∞, apply Proposition 2 in Venkataramanan and Lin (2013)

to X̄K [·], which doesn’t require X̄K [·] to be irreducible. We have:

lim sup
K→∞

1

K
log

(
sup

{x∈Ω:Lw(x)≤ρ}
Px

(
ηK,↑ ≤ T

))

≤− inf
Ā,X̄

∫ T

0

Λ∗
(
d

dt
Ā[t]

)
dt,

where Ā, X̄ is any FSP such that Lw(X̄[0])≤ ρ, Lw(X̄[t])≥ α for some t∈ [0, T ].

— Step 2b(iii). Asymptotics for (c). Proceed exactly the same as in Proof of Theorem 4, part b(3) in

Venkataramanan and Lin (2013), which only uses the properties equivalent to Lemma 4 and Lemma 9 in

our paper, we have:

lim sup
K→∞

1

K
log

(
sup

{x:Lw(x)≤ρ}
Px

(
βK1 ≥ T

))
≤− T min{ξ,λmin}+ 2(δ− ρ)

2/miniwi + min{ξ,λmin}
Jmin,

where

Jmin = min
f /∈B(φ,ε)

Λ∗(f)

for the ε implicitly specified in Lemma 9. It’s not hard to see that Jmin > 0.

Now combine all the terms and proceed exactly the same as in the proof of Theorem 4, part C in Venkatara-

manan and Lin (2013), we have:

lim sup
K→∞

1

K
log

(
max
z∈ΩK

P
(
Lw(XK

z /K)≥ α
))

(30)

≤− inf
T>0

inf
Ā,X̄

∫ T

0

Λ∗
(
d

dt
Ā[t]

)
dt,

where Ā, X̄ is any FSP such that Lw(X̄[0]) = 0, Lw(X̄[T ])≥ α.
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Step 3. Reduce (30) to an one-dimensional variation problem. This part is exactly the same as proof of

Theorem 5 in Venkataramanan and Lin (2013), we state the result here and omit the details.

Let

lw,T (y, v), inf
Ā,X̄

Λ∗(f)

s.t. (Ā, X̄) is an FSP on [0, T ] such that for some regular t∈ [0, T ]

d

dt
Ā[t] = f , Lw(X̄[t]) = y,

d

dt
Lw(X̄[t]) = v.

Moreover, define:

θT , inf
L[·]

∫ T

0

lw,T (L[t],
d

dt
L[t])dt

s.t. L[·] is absolutely continuous and L[0] = 0, L[T ]≥ α.

Claim:

lim sup
K→∞

1

K
logP

(
max
z∈ΠK

(
Lw(Xz/K)≥ α

))
≤− inf

T>0
θT . (31)

Step 4. Reduce RHS of (31) to an optimization problem. It’s not hard to see that the RHS of (31) equals to

− inf
T>0

θ̃T , where θ̃T , inf
L[·]

∫ T

0

lw,T (L[t],
d

dt
L[t])dt

s.t. L[·] is absolutely continuous and L[0] = 0, L[T ] = α.

We can provide a lower bound to lw,T (y, v) which is independent of y:

lw,T (y, v)≥ l̃w(v), inf
y∈(0,α)

lw,T (v)

As a result, we have:

θ̃T ≥ inf
L[·]

∫ T

0

l̃w

(
d

dt
L[t]

)
dt (32)

s.t. L[·] is absolutely continuous and L[0] = 0, L[T ] = α.

Using Lemma C.6 in Shwartz and Weiss (1995), we have the following bound that is independent of T :

RHS of (32)≥ α inf
m>0

l̃w(m)

m
,

where the RHS is exactly αγ(w) after plugging in the definition of l̃w. �

C.7. Proof of Corollary 1

Proof. Let α→ 1 in (18), we have:

− lim sup
K→∞

1

K
log

(
max
z∈ΩK

P
(
Lw

(
X̄K,SMW(w)

z [∞]
)
≥ 1

))
≥ γ(w).

By Lemma 2 we have D⊆ {x :Lw(x)≥ 1}, hence

− lim sup
K→∞

1

K
log

(
max
z∈ΩK

P
(
X̄K,SMW(w)

z [∞]∈D
))
≥ γ(w).

Finally, using Lemma 1 we have:

γp(w) =− lim sup
K→∞

1

K
log

(
max
z∈ΩK

P
(
X̄K,SMW(w)

z [∞]∈D
))
≥ γ(w).

�
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C.8. Explicit Exponent: Proof of Lemma 6

Proof. Let t be regular and f , d
dt

Ā[t]. In the following, denote

gapA(f),
∑

j′:∂(j′)⊆A,i∈VS

fj′i−
∑

j′∈VD,i∈A

fj′i.

Using the result of Lemma 3, we have:

d

dt
Lw(X̄[t])≤ v̄(f), max

A⊆VS

{
1

1TAw
gapA(f)

}
.

Note that in the definition of γ(w) in Lemma 5, if we replace any feasible pair (v, f) (where v > 0) with

(v̄(f), f), since v≤ v̄(f) and therefore v > 0⇒ v̄(f)> 0, we have

1

v
Λ∗(f)≥ 1

v̄(f)
Λ∗(f).

Combine the above observation with Lemma 5, we have

γ(w)≥ min
f :v̄(f)>0

Λ∗(f)

v̄(f)

≥ min
A⊆VS

 min
f :gapA(f)>0

Λ∗(f)
1

1T
A
w

gapA(f)


= min

J∈J

(1T∂(J)w)

{
min

f :gap∂(J)(f)>0

Λ∗(f)

gap∂(J)(f)

} .

The last equality holds because for any A⊆ VS such that {j′ ∈ VD : ∂(j′)⊆A,∃i /∈ ∂(j′) s.t.φj′i > 0}= ∅, we

always have gapA(f)≤ 0. Denote the optimal value of the inner minimization problem as g(φ,J)> 0, then

we have:

min
f :gap∂(J)(f)>0

Λ∗(f)− g(φ,J)

 ∑
j′∈J,i∈VS

fj′i−
∑

j′∈VD,i∈∂(J)

fj′i

= 0. (33)

We can get rid of the constraint on f since any f that violates it will not achieve minimum in (33). Then

using Legendre transform, we have:

min
f

Λ∗(f)− g(φ,J)

 ∑
j′∈J,i∈VS

fj′i−
∑

j′∈VD,i∈∂(J)

fj′i


= min

f
Λ∗(f)−

〈
f , g(φ,J)

∑
j′∈J,i∈VS

ej′i− g(φ,J)
∑

j′∈VD,i∈∂(J)

ej′i

〉

=−Λ

g(φ,J)
∑

j′∈J,i∈VS

ej′i− g(φ,J)
∑

j′∈VD,i∈∂(J)

ej′i


=− log

 ∑
j′∈VD,i∈VS

φj′ie
g(φ,J)1{j′∈J}−g(φ,J)1{i∈∂(J)}

 .

Hence equation (33) reduces to nonlinear equation: ∑
j′ /∈J,i∈∂(J)

φj′i

e−g(φ,J) +

 ∑
j′∈J,i/∈∂(J)

φj′i

eg(φ,J) =
∑

j′ /∈J,i∈∂(J)

φj′i +
∑

j′∈J,i/∈∂(J)

φj′i.
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Let y, eg(φ,J), this becomes a quadratic equation: ∑
j′∈J,i/∈∂(J)

φj′i

y2−

 ∑
j′ /∈J,i∈∂(J)

φj′i +
∑

j′∈J,i/∈∂(J)

φj′i

y+

 ∑
j′ /∈J,i∈∂(J)

φj′i

= 0.

Hence

y=

∑
j′ /∈J,i∈∂(J) φj′i∑
j′∈J,i/∈∂(J) φj′i

or 1.

Since g(φ,J)> 0, we have

g(φ,J) = log

(∑
j′ /∈J,i∈∂(J) φj′i∑
j′∈J,i/∈∂(J) φj′i

)
.

Plug in the original inequality, we have:

γ(w)≥min
J∈J

(1T∂(J)w) log

(∑
j′ /∈J,i∈∂(J) φj′i∑
j′∈J,i/∈∂(J) φj′i

)
.

�

C.9. Proof of Theorem 1 Claim 1

Proof. Fix w ∈ relint(Ω) and consider systems under SMW(w). For any ε∈ (0,1), define

SK(ε), {x∈Ω :Lw(x)≤ ε}, τK , inf{t≥ 0 : XK [t]/K ∈ SK(ε)}.

By Lemma 12, there exists K1 > 0 such that for K >K1 and any XK [0] that belongs to some recurrent class

in ΩK , we have:

E(τK)≤ C

ε
K.

for some universal constant C > 0. Consider the K-th system where K >K1. Divide the periods into cycles

with length 2K2. We study the lower bound of demand-drop probability on each cycle. Without loss of

generality, consider the first cycle. We have:

P(demand drop at t for some t∈ [1,2K2]) (34)

≥P(τK ≤K2,demand drop at t for some t∈ [τK , τK +K2])

=P(τK ≤K2)P(demand drop at t for some t∈ [0, τK +K2]|XK [0]/K ∈ SK(ε))

≥
(

1− C

εK

)
P(demand drop at t for some t∈ [0,K2]|XK [0]/K ∈ SK(ε)).

Here the equality follows from strong Markov property, the last inequality follows from Markov inequality.

Now we construct a set of sample paths that will lead to demand drop in [0,K2]. Let

J∗ = argminJ∈J (1T
∂(J)w)g(φ,J),

arbitrarily select one if there are multiples minimizers. Define f∗ ∈Rn×n and T ∗ as follows:

f∗j′i ,

 φj′ie
g(φ,J∗), for j′ ∈ J∗, i /∈ ∂(J∗)

φj′ie
−g(φ,J∗) for j′ /∈ J∗, i∈ ∂(J∗)

φj′i, otherwise.
,

T ∗ , (1T
∂(J∗)w)

 ∑
j′ /∈J∗,i∈∂(J∗)

φj′i−
∑

j′∈J∗,i/∈∂(J∗)

φj′i

−1

.
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For δ, 4nε
1T
∂(J∗)w

, define a neighborhood Bδ ⊆Cn2
[0, (1 + δ)T ∗]:

Bδ ,

{
f [·]∈Cn2

[0, (1 + δ)T ∗] : sup
0≤t≤(1+δ)T∗

||f [t]− tf∗||∞ ≤
ε

n

}
,

Recall that ΓK,T is the set of demand arrival sample paths from Definition 2. It’s not hard to verify that

there exists Kδ > 0 such that for K >Kδ, Bδ ∩ΓK,(1+δ)T∗ is non-empty; we omit the details here.

Now we carefully count the number of supplies within set ∂(J∗) at time bK(1+δ)T ∗c given the initial state

satisfies XK [0]/K ∈ SK(ε), and the scaled demand arrival process falls in Bδ. It’s easy to verify that given

XK [0]/K ∈ SK(ε), we have maxiX
K
i [0]/K ≤wi+ 2ε. For the process, either there are already demand-drops

before bK(1 + δ)T ∗c, or we must have:

1T
∂(J∗)X

K [K(1 + δ)T ∗]

≤1T
∂(J∗)X

K [0] +K max
fK [·]∈Bδ∩ΓK,(1+δ)T

∗

 ∑
j′ /∈J∗,i∈∂(J∗)

fKj′i[(1 + δ)T ∗]−
∑

j′∈J∗,i/∈∂(J∗)

fKj′i[(1 + δ)T ∗]


≤2nεK + (1T

∂(J∗)w)K +K(1 + δ)T ∗

 ∑
j′ /∈J∗,i∈∂(J∗)

f∗j′i−
∑

j′∈J∗,i/∈∂(J∗)

f∗j′i

+
ε

n
n2K

=2nεK − δ(1T
∂(J∗)w)K +nεK

=−nεK

<0,

which cannot happen. As a result, we have:

(34)≥
(

1− C

εK

)
P(fK [·]∈Bδ).

Let K→∞ and consider the exponents on both sides, we have:

γo(w)≤− lim inf
K→∞

1

K
logP(fK [·]∈Bδ)≤ inf

f∈Bo
δ

∫ (1+δ)T∗

0

Λ∗
(
d

dt
f [t]

)
dt

≤
∫ (1+δ)T∗

0

Λ∗
(
d

dt
f∗[t]

)
dt= (1 + δ)T ∗Λ∗(f∗) = (1 + δ)(1T

∂(J∗)w)g(φ,J∗),

where the first inequality follows from Fact 1. Since δ can be chosen arbitrarily, we have

γo(w)≤ (1T
∂(J∗)w)g(φ,J∗) = min

J∈J
(1T
∂(J)w)g(φ,J).

Combined with Corollary 1 and Lemma 6, we have:

γo(w) = γ(w) = γp(w),

which concludes the proof. �
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Appendix D: Performance of Vanilla MW: Proof of Proposition 3

Proof. We have

LHS = min
J∈J

|∂(J)|
n

log

(∑
j′ /∈J,i∈∂(J) φj′i∑
j′∈J,i/∈∂(J) φj′i

)
, (35)

γ∗ = max
w∈Ω

min
J∈J

(1T
∂(J)w) log

(∑
j′ /∈J,i∈∂(J) φj′i∑
j′∈J,i/∈∂(J) φj′i

)
. (36)

Let J∗ ( VD be one of the minimizer of (35), w∗ is the maximizer of (36). Hence

γ∗ = min
J∈J

(1T
∂(J)w

∗) log

(∑
j′ /∈J,i∈∂(J) φj′i∑
j′∈J,i/∈∂(J) φj′i

)

≤(1T
∂(J∗)w

∗) log

(∑
j′ /∈J∗,i∈∂(J∗) φj′i∑
j′∈J∗,i/∈∂(J∗) φj′i

)

≤|∂(J∗)| log

(∑
j′ /∈J∗,i∈∂(J∗) φj′i∑
j′∈J∗,i/∈∂(J∗) φj′i

)

=γ

(
1

n
1

)
.

�

Appendix E: Converse Proofs

E.1. Large Deviation of a Random Walk: Proof of Lemma 7

Proof. Apply Cramér’s Theorem (see Theorem 2.2.3 in Dembo and Zeitouni 1998), we have:

lim
m→∞

1

m
logP(Sm ≤−(p− q)m) =−Λ∗1(q− p),

where

Λ∗1(q− p) = sup
x∈R

{
(q− p)x− logEexZ1

}
= (p− q) log

(
p

q

)
.

As a result, for any ε > 0 there exists m0 > 0 such that for any m>m0:

1

m
logP(Sm ≤−(p− q)m)≥−Λ∗1(q− p)− ε.

�

E.2. Proof of Theorem 1 Claim 2

Proof. For any J ∈J , define:

BJ ,
{

x∈Ω : (1T∂(J)x)g(φ,J) = argminA∈J (1T∂(A)x)g(φ,A)
}
.

To make {BJ}J∈J a non-overlapping partition, index J by natural numbers and only keep x’s membership

in the set with smallest index J . Let

zJ , sup
x∈BJ

1T
∂(J)x.

Recall the definition ξ in (17), define

ξJ ,
∑
i′ /∈J

∑
j∈∂(J)

φi′j −
∑
i′∈J

∑
j /∈∂(J)

φi′j .
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By Assumption 2, we have:

ξmin ,min
J∈J

ξJ > 0.

For the K-th system, we divide the discrete periods into cycles with length K/ξ (ignoring the technicality

regarding the integrality of K/ξ). We are going to lower bound the probability of demand dropping in

any cycle for any state-dependent dispatch policy U , even including time-varying policies. Without loss of

generality, consider the first cycle [0,K/ξ− 1]. Suppose X̄K,U [0] = y ∈BJ .

Consider the random walk SJ [t] with the following dynamics:

• SJ [0] = 1T
∂(J)y.

• SJ [t+ 1] = SJ [t] + 1 if o[s] /∈ J,d[s]∈ ∂(J).

• SJ [t+ 1] = SJ [t]− 1 if o[s]∈ J,d[s] /∈ ∂(J).

• SJ [t+ 1] = SJ [t] if otherwise.

Observe that:

P
(
some is was dropped in [0,K/ξ− 1]

)
≥ P

(
SJ [t] = 0 for some t′ ∈ [0,K/ξ]

)
. (37)

This is because either (1) some demand is dropped before t′, or (2) no demand is dropped before t′, then

SJ [t]≥ 1T∂(J)X̄
K,U [t] holds for all t≤ t′; SJ(t′) = 0 implies that there is no supply in ∂(J) at t′. Either way,

the event on RHS implies the event on LHS.

Fix ε > 0. For any J ∈ J , by Lemma 7 there exists KJ>0 such that for K >KJ (ignore the integrality of

arguments below):

P(SJ [zJK/ξJ ]≤−zJK)≥ e−zJKε/ξJ e−g(φ,J)zJK

Then for K >maxJ∈J KJ , we have:

(37) =
∑
J∈J

P
(
SJ [t]−SJ [0] =−K(1T∂(J)y) for some t′ ∈ [0,K/ξ]|y ∈BJ

)
P(y ∈BJ)

≥min
J∈J

P
(
SJ [zJK/ξJ ]−SJ [0]≤−K(1T∂(J)y)

)
≥min
J∈J

P
(
SJ [zJK/ξJ ]−SJ [0]≤−KzJ

)
≥min
J∈J

e−zJKε/ξJ e−g(φ,J)zJK .

Hence

lim inf
K→∞

1

K
logPK,U

o ≥ lim inf
K→∞

1

K
log

minJ∈J e
−zJKε/ξJ e−g(φ,J)zJK

K/ξ

≥−max
J∈J

(
zJε

ξJ
+ g(φ,J)zJ

)
.

Since ε can be chosen arbitrarily, we have:

lim inf
K→∞

1

K
logPK,U

o ≥−max
J∈J

(
g(φ,J)zJ

)
=− sup

w∈relint(Ω)

min
J∈J

(
1T
∂(J)w

)
g(φ,J) = γ(w).

This concludes the proof. �
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E.3. Converse of State-Independent Policies: Proof of Proposition 4

Proof. We first define an ‘augmented’ policy π̃ for any state-independent policy π. Policy π̃ is also state

independent, where:

ũ(i,j′)[t] = u(i,j′)[t] +
1

|∂(j′)|

1−
∑

i∈∂(j′)

u(i,j′)[t]

 .

Note that π̃ is a non-idling policy, and π̃= π if π is non-idling. In the following analysis, we couple π and π̃

in such a way that if π dispatch from i to serve the t-th demand, then π̃ will do the same.

We first divide the discrete periods into cycles with length K2. We will lower bound the probability of

demand-drop on any cycle. Without loss of generality, consider cycle [0,K2− 1]. Suppose XK,π[0] = X0. By

Assumption 1, there exists a subset J ∈J . Consider the ‘virtual’ process of change of number of supplies in

∂(J), denoted by SJ [t]:

• SJ [0] = 0.

• SJ [t+ 1] = SJ [t] + 1 if d[t]∈ ∂(J) and policy π̃ dispatches a vehicle from ∂(J)c to serve the t-th demand

(regardless of whether the demand is fulfilled).

• SJ [t+ 1] = SJ [t]− 1 if d[t]∈ ∂(J)c and policy π̃ dispatches a vehicle from ∂(J) to serve the t-th demand

(regardless of whether the demand is fulfilled).

• SJ [t+ 1] = SJ [t] if otherwise.

Observe that:

P
(
some demand is dropped in ∈ [0,K2− 1]

)
≥ P

(
SJ(K2− 1) + 1T∂(J)X0 ≥K or ≤ 0

)
. (38)

This is because : (1) if SJ [t] + 1T∂(J)X̄0 = 1T∂(J)X̄
K,π[t] for all t ≤ T , then SJ(K2) + 1T∂(J)X0 is exactly the

number of supplies in ∂(J) at K2, and demand will be dropped if ∂(J) is empty or ∂(J)
c

is empty; (2)if

SJ [t] + 1T∂(J)X0 6= 1T∂(J)X̄
K,π[t] for some t < K2, it means a unit of demand was already dropped at the

smallest such t. Either way, RHS implies LHS.

Note that SJ(K2) is the sum of K2 independent random variables Zt, where Zt = SJ [t+ 1]−SJ [t]. Here

Zt has support {−1,0,1} and satisfies:

P(Zt =−1)≥ P(o[t]∈ J,d[t]∈ ∂(J)
c
)

There are two scenarios:

• If E[SJ(K2)]≤−K2

2
, then for K > 8,

P
(
SJ(K2) + 1T∂(J)X0 ≥K or ≤ 0

)
≥1−P

(
SJ(K2)∈ [−K,K]

)
≥1−P

(
SJ(K2)−E[SJ(K2)]≥−K +

K2

2

)

≥1− 2 exp

(
−K

2
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)
(Hoeffding’s inequality)

≥1

2
.
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• If E[SJ(K2)]>−K2

2
, then:

the number of t’s where E[Zt]≥−
3

4
is at least

K2

7
. (39)

Denote the set of these t’s as T . Hence

Var(SJ(K2)) =

K2∑
t=1

Var(ξt)≥
∑
t∈T

Var(ξt)≥
K2

7
· δ
(

1− 3

4

)2

=
δK2

102
. (40)

Apply Theorem 7.4.1 in Chung (2001) (Berry-Esseen Theorem), we have:

sup
x∈R

∣∣∣∣P(SJ(K2)−E(SJ(K2))≤ x
√

Var(SJ(K2))
)
−Φ(x)

∣∣∣∣≤∑K2

t=1 E|Zt−EZt|3

Var(SJ(K2))3/2
, (41)

where Φ(·) is the cumulative distribution function of standard normal distribution. Plug in (39) and (40),

we can upper bound the RHS of (41) by 10000δ−3/2 1
K

. For K > 40000A0δ
−3/2

2Φ̄(50/
√
δ)

:

P(SJ(K2)∈B
(
E(SJ(K2)),4K

)
∈B

(
2Φ̄

(
4K

Var(SJ(K2))

)
,
1

2
Φ̄

(
4K

Var(SJ(K2))

))

P(SJ(K2)∈B
(
E(SJ(K2)),2K

)
∈B

(
2Φ̄

(
2K

Var(SJ(K2))

)
,
1

2
Φ̄

(
4K

Var(SJ(K2))

))
.

Here B(x,a) , [x − a,x + a]. Now we are ready to bound demand-drop probability. Note that one of

the three cases will happen: [−K,K] ⊂ B
(
E(SJ(K2)),4K

)
, [−K,K] ∩ B

(
E(SJ(K2)),4K

)
= ∅, [−K,K] ∩

B
(
E(SJ(K2)),2K

)
= ∅. In any case, the probability of SJ(K2) fall into an interval with width 2K is uni-

formly bounded away from 1, denoted by c < 1. Hence

P
(
some demand is dropped in ∈ [1,K2]

)
= c > 0.

Combine the two cases, we have the desired result. �
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