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Abstract

We consider a two-sided assignment market with agent types and a stochastic structure,

similar to models used in empirical studies. We characterize the size of the core in such

markets. Each agent has a randomly drawn productivity with respect to each type of agent

on the other side. The value generated from a match between a pair of agents is the sum of

the two productivity terms, each of which depends only on the type (but not the identity) of

one of the agents, and a third deterministic term driven by the pair of types. We prove, under

reasonable assumptions, that keeping the number of agent types fixed, the relative size of the

core vanishes rapidly as the number of agents grows. Numerical experiments confirm that the

core is typically small. Our results provide justification for the typical assumption of a unique

core outcome in such markets, that is close to a limit point. Further, our results suggest

that, given market composition, the wages are almost uniquely determined in equilibrium.
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1 Introduction

We study bilateral matching markets, such as marriage, labor, and housing markets, where

participants form partnerships for mutual benefit. The two classic models of matching markets

are the non-transferable utility (NTU) model of Gale and Shapley (1962), where payments are

not allowed between the agents; and the Shapley–Shubik–Becker transferable utility (TU) model

in Shapley and Shubik (1971) and Becker (1973), where monetary transfers are allowed between

arbitrary sets of agents. For each of these models the natural solution concept is that of a stable

outcome, in which there is no pair of agents who would prefer being matched with each other

over their current outcome.

In the TU matching market setting, it is well known that the notion of a stable outcome

coincides with that of a competitive equilibrium. Furthermore, a stable outcome is guaranteed

to exist in any two-sided market, but is generically not unique (Shapley and Shubik 1971).

Therefore, a fundamental question that arises is how big is the core (i.e., the set of stable

matchings) in a given market. This work seeks to characterize the size of the core as a function

of market characteristics.1

The motivation for our study of core size in TU matching markets is twofold. First, it is

of interest to know whether basic market primitives, i.e., the number of agents and the values

of possible matches, are sufficient to determine the outcome of the market, or whether there

is significant ambiguity arising from which equilibrium the market is in. As an example, can

a labor market support higher wages for labor without adding jobs or improving productivity,

just by moving to a different equilibrium? A small core would suggest a negative answer to this

question. Matching platforms such as Upwork, AirBnB, TaskRabbit and others commonly have

a “suggested wage/rate” feature, which is in the nature of a suggestion; i.e., it is not binding

(AirBnB 2015). Such platforms would then not be able to use such a feature to select between

equilibria, since the equilibrium is unique.2 Second, the concept of stability is widely used as a

1A small core has been found in special cases of the TU setting as in Gretsky et al. (1992, 1999), Hassidim
and Romm (2015), which we discuss below. In the NTU setting, real markets have almost always been found
to contain a nearly unique stable outcome; see, e.g., Roth and Peranson (1999). A body of theory explains this
phenomenon (Immorlica and Mahdian 2005, Kojima and Pathak 2009, Ashlagi et al. 2016, Holzman and Samet
2013, Azevedo and Leshno 2016).

2Our results extend to the case where transfers are taxed by the platform; cf. Remark 1.
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starting point in theoretical and empirical studies in matching markets, which in general require

or assume a nearly unique stable matching in order to facilitate predictions, comparative statics,

and so on. For instance, several papers (Choo and Siow 2006, Galichon and Salanié 2010) make

a continuum limit assumption in TU markets, and in the continuum limit there is a unique

equilibrium. However, there is insufficient theoretical basis to justify such an assumption on the

size of the core. We ask when such an assumption is justified. The core size and other features

of real NTU markets can be studied as the data on ordinal preferences is often available. In TU

matching markets this becomes a harder task given that preferences (i.e., the value generated

by a pair/match) are difficult to observe, which has hindered empirical studies of features like

core size in TU markets, providing additional motivation for a theoretical study of core size.

Our main contribution is to bound the size of the core as a function of the market primitives.

In particular, we characterize the rate at which the core shrinks as a function that depends

primarily on the size of the market. We find that the size of the core in TU matching markets is

typically small. This suggests that online matching platforms have limited ability to redistribute

welfare across agents, without changing the rules of the market. In addition, our findings justify

the continuum limit assumption that is typically made in such markets. Under additional (mild)

assumptions, we find that the core rapidly approaches the unique equilibrium in the continuum

limit.

In particular, we consider the traditional assignment game model of Shapley and Shubik

(1971), consisting of “workers” and “firms”, that can each match with at most one agent on

the other side. To model the different skills of the workers and the different requirements of the

firms, we assume that there are K types of workers and Q types of firms. Matching worker i with

firm j generates a value Φij (this can be divided between i and j in an arbitrary manner since

transfers are allowed), which we model as a sum of two terms: a term u(·, ·) that depends only on

the types of i and j, and a term ψi,j that represents the “idiosyncratic” contributions of worker

i to firm j. In our model the u(·, ·) is assumed to be fixed, but the ψij is the sum of two random

variables, the “productivity” of worker i with respect to the type of firm j and, symmetrically,

the “productivity” of firm j with respect to the type of worker i. These productivities are

assumed to be independently drawn from any distribution (satisfying some mild assumptions)
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for each (agent, type) pair. In addition to its plausibility, such a generative model for the value

of a match has been used in empirical studies of marriage markets, starting with Choo and Siow

(2006) (see also Chiappori et al. 2015, Galichon and Salanié 2010).

We study the size of the set of stable outcomes for a random market constructed in this way.

Shapley and Shubik (1971) showed that the set of stable outcomes (which is the same as the core)

has a lattice structure, and thus has two extreme stable matchings: the worker optimal stable

match, where each worker earns the maximum possible and each firm the minimum possible in

any stable matching; and the firm optimal stable match, which is the symmetric counterpart.

Also, in all stable outcomes, the matching between workers and firms must be such that social

welfare is maximized. Given these structural properties, our metric for the relative size of the

core is quite natural: we consider the difference between the maximum and minimum total

utility of workers (equivalently, firms) in the core, scaled by the (maximum) social welfare. We

show that if the number of types is fixed, then the core is small and provide bounds on the size

of the core under three different sets of assumptions.

First, we consider productivities drawn from a general distribution satisfying mild condi-

tions.3 Our first main result (Theorem 1) establishes a small core under some reasonable as-

sumptions on market structure: specifically, the expected core size is O∗(1/
√̀
n) in a market

with n agents, and at most ` = max(K,Q) types of agents on each side (with ` fixed).4 We show

that this bound is essentially tight by constructing a sequence of markets such that the core size

is5 Ω(1/
√̀
n). Thus the core shrinks with market size, and this shrinking is faster when there are

fewer types of agents. Additionally, we obtain a tighter upper bound in the special case with

just one type of employer and more employers than workers (Theorem 2). Our upper bound in

this case improves sharply as the number of additional employers m increases; we establish a

bound of O∗(1/(n1/`m1−1/`)), where ` is the number of worker types.

Second, we again consider a fixed set of types, but assume that productivities are drawn

3Namely, we require the support of the distribution to be a (possibly unbounded) interval, and the density to
be continuous and positive everywhere in the support. These requirements are satisfied by the normal, Gumbel,
uniform, and exponential distributions, among others.

4We write f(n) = O∗(g(n)) if there exists r < ∞ such that f(n) ≤ r(logn)rg(n) for all n. In words, this
corresponds to the big-O notation where poly-logarithmic factors are also suppressed.

5Similarly, we write f(n) = Ω(g(n)) if lim supn→∞

∣∣∣ f(n)
g(n)

∣∣∣ > 0. This corresponds to the standard big-O notation.

3



from a distribution with unbounded support (Theorem 3), and obtain stronger results. We

show an O∗(1/n) bound on core size in this case. We also establish that the core solutions in

the finite market converge to the unique equilibrium in the continuum limit market, bounding

the distance between any core solution and the limit equilibrium by O∗(1/
√
n). In particular,

this bounds the convergence rate of the (scaled) number of matched pairs belonging to each

pair of types, which is the empirically observed quantity in many settings (transfers are often

not observed, e.g., Choo and Siow 2006), and hence bounds the error that occurs when match

utilities are estimated in empirical studies based on a continuum limit assumption. Both our

bounds are again tight.

To supplement our theoretical findings, we conduct computational experiments (Section 5).

We run simulations with a variety of distributions for the idiosyncratic productivity terms and

also go beyond our theoretical development by allowing the number of agent types to grow.

In a broad range of settings, we find that the core is small, even in relatively small markets.

The only exception we find is the case of productivities following a Pareto distribution, and

a large number of agent types. Overall, our results strongly suggest that the core is small in

practically relevant settings. Our experiments also show that the (scaled) number of matched

pairs belonging to a each pair of types rapidly converge to the appropriate limiting value.

To conclude, we briefly describe the theoretical component of our work. Our model has

the following property (here, think of u( · , · ) as being formally incorporated in the worker

productivity): there is a “price” associated with each (worker type, firm type) pair, such that

for every matched pair of agents of these types, the utility of each agent is her productivity

(with respect to the type on the other side), which is “corrected” additively on both sides of

the market (in opposite directions) by the price. Each of our bounds on core size is proved

by showing uniform bounds on variation in type-pair prices across core allocations. A key

component of our analysis is to relate the combinatorial structure of the core to order statistics

of certain independent identically distributed (i.i.d.) random variables (r.v.s). These r.v.s are

one-dimensional projections of point processes in (particular subregions of) the unit hypercube,

where the point processes correspond to the market realization. An analytical challenge that

we face is that the relevant projections as well as the relevant order statistics are themselves a
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random function of the market realization. We overcome this via appropriate union bounds. In

our proof of Theorem 3 we further use an order-theoretic approach to control the set of candidate

core solutions (this also yields a limiting characterization of core solutions as market size grows).

Our analysis sheds light on how market structure affects the core and its size.

Related Literature Most of the related literature focuses on the NTU model of Gale and

Shapley (1962). Building on that model, a number of papers establish a small core under various

assumptions such as short preference lists or many unmatched agents (Immorlica and Mahdian

2005, Kojima and Pathak 2009, Kojima et al. 2013, Menzel 2015, Peski 2015), and strongly

correlated preferences (Holzman and Samet 2013, Azevedo and Leshno 2016).6 In a recent

paper Ashlagi et al. (2016) show that in a random NTU matching market with long lists and

uncorrelated preferences, even a slight imbalance results in a significant advantage for the short

side of the market and that there is approximately a unique stable matching.7 Further, Ashlagi

et al. (2016) find the near uniqueness of the stable matching to be robust to varying correlations

in preferences and other features, suggesting that a small core may be generic in NTU matching

markets.

There is an extensive literature on large assignment games that extends the many structural

properties established by Shapley and Shubik for finite assignment games to a setting in which

the agents form a continuum; see, for example, Gretsky et al. (1992, 1999). Those papers also

show convergence of large finite markets to the continuum limit, including that the core shrinks

to a point. However, unlike in our model, they model the productivity of each partnership as

a deterministic function of the pair of types, with the only randomness being in the number

of agents of each type. The work on assignment games that is most closely related to our

work is a recent preprint of Hassidim and Romm (2015): in their model, all workers (firms)

are a priori identical, and the value of matching worker i to firm j is a random draw from

6Azevedo and Leshno (2016) consider a fixed number of schools and a growing number of students. One can
think of each school as being replaced with a linearly growing number of agents (equal to the number of seats in
the school) having identical preferences (identical to those of the school), without affecting the core. Hence, we
see Azevedo and Leshno (2016) as implicitly considering preferences that are strongly correlated in a particular
way.

7Our results on a small core in TU markets also hold under a similar “generalized imbalanced” requirement,
which is generically satisfied; cf. Section 3.
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a bounded distribution, independently for every pair (i, j). For such a model, they establish

an approximate “law of one price,” i.e., that workers are paid approximately identical salaries

in any core allocation, and that the long side gets almost none of the surplus in unbalanced

markets. By contrast, we work with multiple types of workers and firms, and the value of a

match depends on the types of each agent, and random variables that depend on the identity

of one of the agents and the type (but not the identity) of the other agent. We believe that our

model better captures features of real markets, as it allows for correlations in preferences across

types.

There has been recent work in the operations literature characterizing equilibria in matching

markets. Nguyen (2015) considers bargaining in a network en route to formation of coalitions

(a generalization of matching) and characterizes the stationary equilibria of the game. Alaei

et al. (2016) generalize the Shapley–Shubik model to the case of utilities that are not necessarily

quasilinear in payments. The paper characterizes equilibria, and provides an algorithm for

efficiently computing the extreme equilibria. This work leads to a mechanism for ad auctions that

has good properties even when there is inconsistency in click-through rate estimates. Overall,

the goal of this line of work, including the present paper, is to obtain a refined understanding

of equilibria to enable the design of better marketplaces for matching.

The rest of the paper is organized as follows. We present our model in Section 2 and a

statement of our results in Section 3. An overview of the proof of our main result for general

distributions (Theorem 1) is in Section 4 (the proof is deferred to the appendices). We defer

the proof of Theorems 2 and 3 to the appendices. Numerical experiments complementing our

theoretical findings are described in Section 5. We conclude with a discussion in Section 6.

2 Model Formulation

We consider a two-sided transferable utility matching market with a finite number of agents.

The sides of the market are represented by labor (L) and employers (E). Let nL be the number

of workers in L and nE be the number of employers in E ; we let n := |L| + |E| denote the size

of the market, i.e., the total number of agents. If nL = nE we say that the market is balanced.
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Otherwise, we say that the market is unbalanced. A matching is a mapping M from L ∪ E to

itself such that for every i ∈ L, M(i) ∈ E ∪ {i}, and for every j ∈ E , M(j) ∈ L ∪ {j}, and for

every i, j ∈ L ∪ E , M(i) = j implies M(j) = i. That is, each agent is either matched to one

agent on the other side, or remains unmatched. If M(i) = j 6= i, we say (i, j) ∈M . We assume

that the underlying graph is complete; that is, all pairs of agents can potentially be matched.

Each side of the market is partitioned into a finite number of types. We define TL :=

{1, . . . ,K} and TE := {1′, . . . , Q′} to be the set of types on the labor and employer sides respec-

tively. Let T = TL×TE denote the set of pairs of types. For a given type t ∈ TL ∪TE , we denote

by nt the number of agents of type t. Finally, τ(a) denotes the type of agent a ∈ L ∪ E ; given

a type t and an agent a, we say that a ∈ t if τ(a) = t. In what follows, we typically use i to

denote an individual agent in L, and j to denote an individual agent in E .

The value of the match between i and j is denoted Φ(i, j). An outcome is a pair (M,γ), where

M is a matching between agents in L and E , and γ is a payoff vector such that γi+γj = Φ(i, j)

for every pair of matched agents, and γi = 0 for every unmatched agent. That is, the vector

γ indicates how the value of a match is divided between the agents involved in the match. In

this paper we shall be concerned with outcomes that are in the core, i.e., outcomes such that no

coalition of players can produce greater value among themselves than the sum of their utilities.

Shapley and Shubik (1971) show that for this matching market model, an outcome (M,γ) is in

the core if and only if it is stable, a seemingly weaker condition. An outcome is said to be stable

if no agent prefers not to participate in the matching (because of a negative payoff), and if there

is no blocking pair of agents who can both do better by matching with each other (because the

value they generate by matching with each other exceeds the sum of their current payoffs). Thus,

the stability condition can be mathematically described as γi + γj ≥ Φ(i, j) for all i ∈ L and

j ∈ E , and further γi ≥ 0 for all i ∈ L∪E . Furthermore, it is known that the matching M in any

stable outcome must be utility-maximizing; that is, M ∈ argmaxM ′∈M
∑

(i,j)∈M ′ Φ(i, j), where

M is the set of all possible matchings. For a given matching M , we refer to
∑

(i,j)∈M Φ(i, j) as

the weight of the matching.8

8 These results are formalized by Shapley and Shubik (1971). They show that the set of stable outcome utilities
is the set of optima of the dual to the maximum-weight matching linear program, implying in particular that the
matching M in a stable outcome must be a maximum-weight matching.
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2.1 Structure of Φ(i, j)

We now impose some structure on the value of matching two agents. Recall that each agent

in our model is associated with a type. These types are used to group agents with similar

characteristics. As an example, consider a labor market consisting of Ph.D. candidates (workers)

and firms. Suppose that the type of a worker is the university and program he is graduating

from, while the type of a firm corresponds to the industry it belongs to (e.g., tech, consulting,

finance).9 It is then natural to think that some portion of Φ will be determined by the types of

the agents alone; in other words, matching two agents of a certain type will induce some baseline

value. For instance, depending on the curricula of the programs, students at one program might

be better trained for the tech industry than for consulting, while the opposite might hold for

students at another program. However, each worker also has her own characteristics, which

might make her more or less suitable for a particular industry, relative to other workers from

the same program. Similarly, a particular firm may be more or less attractive to workers from

a particular program, relative to other firms in the same industry.10

To capture both the correlation in preferences between agents of the same type as well

as individual variations, we model the value Φ(i, j) of matching i and j as the sum of two

components: a type-type utility term u(τ(i), τ(j)), and a match-specific term ψ
τ(i),τ(j)
i,j . The

utility term u(τ(i), τ(j)) depends only on the agents’ types, and allows us to express how well

suited, in general, a worker of type τ(i) is to work in a firm of type τ(j). The match-specific

term ψ
τ(i),τ(j)
i,j potentially depends on both the identity of the agents as well as their types, and

captures how useful are i’s individual skills to perform job j. We further assume that Φ(i, j) is

additively separable as follows.

Assumption (Separability). Φ(i, j) = u(τ(i), τ(j)) + ε
τ(i)
j + η

τ(j)
i .

The separability assumption states that the match-specific component, ψ
τ(i),τ(j)
i,j , is further

additively separable into two terms, ε
τ(i)
j and η

τ(j)
i ; each term depends on the identity of one

9More generally, several other relevant characteristics may be included to define a type, such as location and
past experience.

10An alternative way of thinking about types is in the context of an empirical model. There, types represent
the observable characteristics of the agents (age, sex, location, education level). In addition, agents also have
some unobservable characteristics, captured by allowing for idiosyncratic variations.
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agent and only the type of the other agent. In particular, for any fixed employer j and two

distinct workers i, i′ ∈ L we have ε
τ(i)
j = ε

τ(i′)
j whenever τ(i) = τ(i′), as the term ε depends only

on the type of the agents in L. Analogously, the term η depends on the individual worker i ∈ L

but only on the type of the firm j ∈ E .

To illustrate the rationale behind the separability assumption, consider our previous example

of a market consisting of Ph.D. candidates and firms. Students in a particular program have their

own idiosyncratic skills; these are captured by the term η
τ(j)
i , which indicates how an individual

student i is valued by a certain type of industry τ(j), relative to other students of type t(i).

Note that all industries of type τ(j) value candidate i equally. Similarly, the productivity terms

associated with firms (ε
τ(i)
j ) capture how attractive that firm is to students emerging from a

given program, relative to the other firms of type τ(j). Throughout the paper, we refer to the

term u(τ(i), τ(j)) as the type-type compatibility, and to the terms η and ε as the idiosyncratic

productivity terms.

Unless otherwise stated, we model the term u(τ(i), τ(j)) as a fixed constant, whereas the ε

and η terms are modeled as random variables, independent across agent type pairs. We assume

that the distributions of ε and η terms are supported on a (possibly unbounded) interval, with

positive and continuous density everywhere in the support. The continuum limit of such a

model was first introduced by Choo and Siow (2006), to empirically estimate certain structural

features of marriage markets. The model has since been employed in other contexts in the

empirical literature in matching markets (Galichon and Salanié 2010, Chiappori et al. 2015,

Fox 2008). This model is attractive for both theoretical and empirical work, as it allows for

reasonable correlation in agents’ preferences, and also heterogeneity and idiosyncratic variation

via the random productivities, while still remaining tractable due to a fixed number of types.11

2.2 Preliminaries

We now state some preliminary observations on the structure of the core under the separability

assumption. We start by showing that the payoffs can be expressed more conveniently. For each

11These features have also been important in facilitating identification (Choo and Siow 2006, Chiappori et al.
2015). A researcher is typically able to observe only the cross-section marriage/matching distribution, namely,
the number of type t agents matched to type t′ agents on the other side of the market.
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i ∈ L and each type q ∈ TE , let η̃qi = u(τ(i), q) + ηqi .

Denote by M(t) the set of agents who are matched to an agent of type t. In addition, let U

denote the set of unmatched agents. It is easy to check that the weight of a matching depends

only on the type of partner that each agent is matched to. This implies that the maximum-

weight matching is typically not unique under the separability assumption. However, since the

idiosyncratic productivities are random with non-atomic distributions, the following holds.

Observation 1. With probability 1, the sets U and M(t) for t ∈ TL ∪ TE are the same under

all maximum weight matchings. We call this the type-matching.

We take this as the definition of the sets M(t) and U for our purposes, since in any stable

outcome, the matching is a maximum weight matching; cf. footnote 8.

Proposition 1. Any core solution (M,γ) corresponds to a vector α = {αkq} ∈ RK×Q′ such that

the payoffs can be expressed as:

• γi = η̃qi − αkq for all i ∈ L such that τ(i) = k and i ∈M(q).

• γj = εkj + αkq for all j ∈ E such that τ(j) = q and j ∈M(k).

• γi = 0 for all i ∈ U .

Proposition 1 follows directly from stability. This proposition formalizes the existence of a

single “price” for every type-pair (k, q) that is common across all matched pairs of agents with

those types. In particular, if worker i and firm j of types k and q respectively are matched, the

worker payoff is the type-type compatibility plus her own productivity with type q minus the

price αkq; on the other hand, the firm’s payoff is its productivity with type k plus αkq. Note

that this implies that if two firms j′ and j′′ are of the same type and are matched to the same

type, the difference in their utilities must be equal to the difference in their productivities with

respect to that type.

Based on Proposition 1, any core solution can be expressed in terms of the maximum weight

matching M and the vector α. The following proposition states necessary and sufficient condi-

tions for (M,α) to be a core outcome. (The maximum over an empty set is defined as −∞.)
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Proposition 2. The following conditions are necessary and sufficient for (M,α) to be a core

solution:

(ST) For every pair of types (k, q), (k′, q′) ∈ T :

min
i∈k′∩M(q′)

η̃q
′

i − η̃
q
i + min

j∈q∩M(k)
εkj − εk

′
j ≥ αk′q′ − αkq ≥ max

i∈k∩M(q)
η̃q
′

i − η̃
q
i + max

j∈q′∩M(k′)
εkj − εk

′
j .

(IR) For every pair of types (k, q) ∈ T :

min
j∈q∩M(k)

εkj ≥ −αkq ≥ max
j∈q∩U

εkj ,

and min
i∈k∩M(q)

η̃qi ≥ αkq ≥ max
i∈k∩U

η̃qi .

We refer the reader to Chiappori et al. (2015, Proposition 1) for a proof. The first set of

conditions (ST) follow from re-expressing the condition imposing the non-existence of a blocking

pair of matched agents; i.e., for every (i, j) ∈ M , we have γi + γj′ ≤ Φ(i, j) for all j ∈ E and

γi′ + γj ≤ Φ(i, j) for all i ∈ L. In particular, if the condition for pairs (k, q) and (k′, q′) fails

to hold, it means that we can find either (1) a worker i of type k who is matched to a firm in

q (i ∈ k ∩M(q)) and a firm j′ of type q′ matched to an agent in k′ such that i and j′ would

rather be matched together, or, (2) a worker i′ of type k′ who is matched to a firm in q′ and

a firm j in q matched to an agent in k such that i′ and j prefer to be matched together. By

considering the difference between two prices, these conditions state how much a type-pair price

can vary relative to another type-pair price; therefore, these conditions impose bounds on the

relative variation of prices.

The second conditions (IR) follow from combining two facts. The payoffs of matched agents

are non-negative, as otherwise they would rather be unmatched (see Proposition 1); this implies

the left inequalities. The non-existence of a blocking pair involving an unmatched agent, implies

the right inequalities. In particular, note that the right inequality for a type-pair price αkq is

meaningful only if an unmatched agent of type k or q exists. The (IR) conditions constitute

bounds on the absolute variation of type-pair prices. Note that Proposition 2 highlights the

lattice structure of the set of core solutions (Shapley and Shubik 1971).
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We conclude with a definition of the size of the core, denoted by C. We define C as the

difference between the maximum and minimum total payoff of workers (or firms) among core

outcomes, scaled by the overall social welfare (the total weight of M) in any core outcome.

This can be equivalently stated in terms of the vector α. For each pair of types (k, q) ∈ T ,

let αmax
kq and αmin

kq be the maximum and minimum possible values of αkq in the core. Defining

αmax = (αmax
kq )k∈TL,q∈TE , note that (M,αmax) is in the core and constitutes the firm-optimal

stable outcome. Similarly, (M,αmin) is the worker-optimal stable outcome, where the definition

of αmin is analogous to that of αmax. The size of the core is defined in terms of αmax and αmin

as follows.

Definition 1 (Size of the core). Let M be the unique maximum weight type-matching. For each

pair of types (k, q) ∈ T , let N(k, q) denote the number of matches between agents of type k and

agents of type q. Then, the size of the core is denoted by C and is defined as

C =

∑
k

∑
qN(k, q)|αmax

kq − αmin
kq |

weight(M)
.

It is worth noting that C is always between 0 and 1. This is because weight(M) is the total

surplus produced by the match, while |αmax
kq − αmin

kq | captures how much the surplus kept by

one side can vary, which in turn is scaled by the number of matches involving agents of such a

type-pair. The stability conditions imply that, for each match, the variation in surplus kept by

each side must always be less than the value of the match.

We conclude this section by noting that the results in the paper can be further generalized.

Remark 1. All of our analysis and bounds extend to a model with taxation of transfers (Jaffe

and Kominers 2014), which captures commissions charged by matching platforms. Think of

the utility of each agent in a matched pair (i, j) as arising from both the sum of a base utility

from participating in the match and the amount received/paid in a transfer payment between

the matched partners. Suppose the base utility is −c(τ(i), τ(j)) for the worker, whereas the

remaining match value, i.e., Φ(i, j) + c(τ(i), τ(j)), accrues as the base utility to the firm (thus,

all the stochastic variation due to idiosyncratic productivities is in the base utility that accrues to

the firm; the base utility/cost of the worker depends only on the pair of types). Suppose that the
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matching platform collects a fraction λ ∈ [0, 1) of the transferred amount as taxes/commission.

Following Jaffe and Kominers (2014), we assume that the base utility is (weakly) negative for

workers, i.e., c(k, q) ≥ 0 for all k ∈ TL, q ∈ TE , capturing the base cost to a worker of type k

of matching to a firm of type q. This ensures that transfers are only from firms to workers,

making this a so-called “wage market”. Consider any such market Mtax. There is a one-to-one

correspondence between the core solutions in Mtax and those in a market M̃ with no taxes, the

same set of agents, and modified values from matching pairs of agents12

Φ̃(i, j) = Φ(i, j)− λc(τ(i), τ(j))

1− λ
∀ i ∈ L, j ∈ E .

The correspondence between core solutions ofMtax and M̃ is as follows: the matching is identical

in both markets, firm payoffs are identical in both markets, and the payoffs of workers are a factor

(1−λ) smaller in Mtax relative to M̃. It follows that the size of the core13 in Mtax is identical

to that in M̃.

3 Results

We now turn our attention to the main objective of the paper, which is to understand how the

size of the core scales as the market grows. Given the stochastic nature of our model, the size of

the core C is itself a random variable. Therefore, the rest of this section is devoted to studying

how the expected/typical value of C depends on the characteristics of the market. Throughout

this section we keep the number of agent types as well as u( · , · ) fixed and allow the number of

agents to grow.

In markets with a finite number of agents there is always a finite number of stability con-

straints. Thus, it is generically possible to marginally modify some payoffs in a core solution

without violating stability and, therefore, the size of the core is strictly positive with proba-

bility one (Shapley and Shubik 1971).14 However, as the size of the market increases (whereas

12The modification can be absorbed in the u(τ(i), τ(j)) term, leaving the idiosyncratic productivities unaffected.
13One may define the size of the core in Mtax as the difference between the maximum and minimum total

payoff of firms in core outcomes (this difference exceeds the corresponding difference for workers), divided by the
weight of M (all stable matchings once again live on M , and weight(M) is again the total payoff of the workers,
employers, and the platform combined).

14In the continuum limit markets as used in the empirical studies (e.g., Choo and Siow 2006, whose model is
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the number of agent types stays the same), the number of stability constraints also increases,

limiting the possible perturbations to the payoffs (cf. Proposition 2). Hence, one would expect

the set of core vectors α to shrink as the market size increases. In this section, we characterize

the rate at which the size of the core shrinks as the size of the market increases, as a function

of the market primitives. In particular, in Section 3.1, we present results for the general case

of productivities drawn independently from any bounded or unbounded distribution satisfying

mild conditions. In Section 3.2, we present stronger results for distributions with (two-sided)

unbounded support, including convergence of the core to a particular limiting point.

3.1 Idiosyncratic productivities with a general distribution

In this section, we consider general distributions F for the idiosyncratic productivities, that

satisfy the condition that F is supported on an interval of the form [Cl, Cu] or (−∞, Cu] or

[Cl,∞) for some finite Cl, Cu, and its density f is positive and continuous everywhere on the

support.

One type on each side of the market. We start by considering the simple case of markets

with one type on each side, that is, K = Q = 1. Given that there is only one type of agent

on each side, the deterministic type-type utility term u = u(τ(i), τ(j)) will be the same for all

matches, regardless of the identity of the agents. The value of a match between agents i ∈ L

and j ∈ E is Φ(i, j) = u+ηi+εj , where one may think of ηi as representing the quality of worker

i and εj as representing the quality of firm j. Suppose u > 0 is a fixed constant.

Definition. We say f(n) = O∗(g(n)) if there exists C < ∞ such that f(n) ≤ (log n)Cg(n) for

all n ≥ 2.

Definition. A sequence of events En occurs with high probability if limn→∞ Pr(En) = 1.

Remark 2. The size of the core depends on the number of agents on each side of the market.

very similar to ours), there is a unique core solution. Real-world markets, on the other hand, are finite and thus
always have multiple core solutions. Therefore, bounding the size of the core as a function of the market size and
other market primitives may provide some justification for the continuum market assumption.
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• In a balanced market, i.e., when nL = nE , the core is large if F is supported on positive

values. For instance, if F is Uniform(0, 1), the above market has C ≥ u/(u + 2) with

probability 1. In particular, we have E[C] = Ω(1).

• In any unbalanced market, i.e., nL 6= nE , there exists f(n) = O∗(1/n) such that, with high

probability, we have C ≤ f(n). Also, E[C] = Ω(1/n).

In a balanced market, all agents will be matched in a stable solution and, by Proposition 1,

we can describe the size of the core in terms of a single parameter α; by Proposition 2, the

core consists of all α ∈ [−minj εj , u + mini ηi]. In other words, the value u that is part of

Φ(i, j) for each (i, j) can be split in an arbitrary fashion between employers and workers. On

the other hand, in any unbalanced market, i.e., nL 6= nE , the core is small and rapidly shrinks

with market size. It turns out that the short side of the market has a significant advantage: if

there are fewer workers than firms, the price α is always negative in the core, and is bounded

as minj∈M εj ≥ −α ≥ maxj∈U εj . This observation agrees with some of the existing results for

the non-transferable utility setting (Ashlagi et al. 2016).

Multiple types on both sides of the market. We now consider the general case of K

types of labor and Q types of employers. The following condition generalizes the imbalance

condition to the case of multiple types. The idea is to get rid of the cases that, for certain values

of deterministic type-type utilities u( · , · ), may resemble a balanced problem.15

Assumption 1 (Generalized Imbalance). For every pair of subsets of types S ⊆ TL and S ′ ⊆ TE ,

we have
∑

t∈S nt 6=
∑

t∈S′ nt. In words, there is no subset of types for which the induced

submarket is balanced.

We highlight that in our setting with fixed K and Q and growing n, “most” markets satisfy

Assumption 1.16

Throughout this section we allow the number of agents to grow, while keeping the number

of types fixed. We limit the way in which the market grows by assuming that there is at least

15Whenever Assumption 1 is not satisfied, one can construct a market for which E[C] = Ω(1), by extending the
reasoning leading to Remark 2.

16Consider possible vectors N = {(nt)t∈TL∪TE :
∑
t nt = n} describing the number of agents of each type. Then

O(1/n) fraction of these vectors violate Assumption 1.
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a linear number of agents of each type.

Assumption 2. There exists C > 0 such that for all types t ∈ TL ∪ TE , we have nt ≥ Cn.

Under Assumption 2, each type has a comparable number of agents and no type vanishes as

the market increases. We now present our main theorem.

Theorem 1. Consider K ≥ 1 types of labor, and Q ≥ 1 types of employers. Let the idiosyncratic

productivities be drawn i.i.d. from any fixed distribution F that is supported on an interval of

the form [Cl, Cu] or (−∞, Cu] or [Cl,∞) or (−∞,∞) where Cl > −∞ and Cu <∞, and whose

density f is strictly positive and continuous everywhere on the support.17,18 Under Assumption 1

and Assumption 2, for a market with n agents we have that

• (Upper Bound) There exists f(n) = O∗
(
n−1/max(K,Q)

)
such that, with high probability,

we have

max
(k,q)∈T
N(k,q)>0

|αmax
kq − αmin

kq | ≤ f(n).

Also, we have E[C] ≤ f(n).

• (Lower Bound) There exists a sequence of markets with K types of labor and Q types of

employers such that E[C] = Ω
(
n−1/max(K,Q)

)
.

In words, our main result says that under reasonable conditions, with high probability, the

variation in the type-pair prices is uniformly bounded by O∗
(
n−1/max(K,Q)

)
, which vanishes as

n grows. The same bound holds for E[C]. In addition, this bound is tight in the worst case.

Thus, the core size shrinks to zero as the market grows larger, at a rate that is faster (in the

worst case) if there are fewer types of agents. The proof of Theorem 1 is sketched in Section 4.1;

the complete proof is in Appendices C and D.

As the type-matching is the same across all core solutions, the bound on the type-pair prices

implies that the maximum difference between the utilities of any agent in any two core solutions

17Thus, allowed distributions include typical continuous distributions such as Gumbel, Gaussian, Pareto, and
uniform.

18We remark that we in fact only need a weaker condition on f , namely, that it is bounded below by a function
that is positive and continuous everywhere in the support, and is non-atomic. Also, F can be different for different
type pairs.
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vanishes at a rate of n−1/max(K,Q), as the size of the market increases. Therefore, the fraction of

welfare that can flexibly move from workers to firms (and vice versa) in core solutions vanishes.

Overall, Theorem 1 shows that the vector of prices that support a competitive equilibrium (a

core solution) is approximately unique, provided the market is big enough.19 As a result, the

payoff of an agent is roughly the same in all stable solutions.

The upper bound in Theorem 1 can be improved if further constraints are imposed on the

number of types and the imbalance. As an illuminating example, we show that for multiple

worker types, a single employer type, and a type with more employers than workers, the size of

the core can be bounded above by a function that depends on both the size of the market and

the size of the imbalance in the market.

Theorem 2. Let idiosyncratic productivities be drawn i.i.d. from any fixed distribution F that

is supported on an interval of the form [0, Cu] or [0,∞) where Cu < ∞, and whose density

f is strictly positive and continuous everywhere on the support.20 In addition, suppose that

u(k, 1) ≥ 0 for all k ∈ TL. Consider the setting in which K ≥ 2, Q = 1, nE > nL, and let

m = nE −nL. Under Assumption 2, we have, with high probability, that C ≤ O∗
(
n−

1
Km−

K−1
K

)
.

Also, E[C] ≤ O∗
(
n−

1
Km−

K−1
K

)
.

For m = O∗(1), the bound in Theorem 2 matches that in Theorem 1. However, the bound

here becomes tighter as the imbalance m grows. In fact, for m = Θ(n), the core size is bounded

as O∗(1/n). It is noteworthy that, under a linear imbalance, the scaling behavior does not

depend on the number of worker types.

A formal proof of Theorem 2 can be found in Appendix E. The idea behind the proof is

to use the unmatched agents and condition (IR) in Proposition 2 (for the employers) to control

absolute variation in one of the α’s, and this control improves as m grows. We separately

control the relative variation of the α’s in the core using condition (ST) in Proposition 2 under

Assumption 2. Combining these we obtain the stated bound on C.

Our results and proofs extend immediately to productivities drawn independently from an

19This is similar in spirit to the result obtained by Hassidim and Romm (2015), albeit in a different model
where a single marketwide price emerges.

20A positive lower limit on the support of F can be absorbed into the u(·, ·)’s, and hence this case is covered.
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arbitrary non-atomic distribution supported on a closed interval, with positive density every-

where in the support, where the density is bounded below by some ε > 0.

3.2 Idiosyncratic productivities with unbounded support

For our second main result, we require the terms ε
τ(i)
j , η

τ(j)
i to be drawn independently from a

distribution having unbounded support, with positive density everywhere (for instance, Gumbel

and Gaussian distributions will be covered by our analysis here). Again, the distribution may

depend on τ(i) and τ(j), but to ease the burden of notation, we assume that all these terms are

drawn i.i.d. from a single distribution whose density f : (−∞,∞)→ R+ is positive everywhere

and continuous.21 Let F : (−∞,∞) → [0, 1] be the corresponding cumulative distribution.

Recall that N(k, q) is the number of agents of type k matched with agents of type q, under the

unique core type-matching M .

In the following theorem, we fix the fraction of agents of each type and scale the number of

agents.22 We show that the core prices and the fraction of matches corresponding to a type-pair,

each converge to a unique limit, and we further provide a bound on the rate of convergence.

The second part of the theorem leverages these limit characterizations to bound the size of the

core.

Theorem 3. Fix K and Q and the distribution F . Also fix the fraction ρk > 0 of each agent

type k, where k can be a type of worker or a type of employer. Consider a market with n agents

that includes nρk agents of each type23 k, with idiosyncratic productivities drawn i.i.d. from the

distribution F . We obtain the following bounds as a function of n.

• Limit characterization of α. There exists α∗ = α∗(K,Q, ρ, F ) and corresponding(
ν∗kq
)

(k,q)∈T such that as n → ∞, we have that both αmax and αmin converge (in prob-

ability and almost surely) to α∗, and N(k, q)/n→ ν∗kq for all (k, q) ∈ T . In fact, with high

21In fact, it is enough for f to be bounded below by a function that is positive everywhere and continuous.
22This scaling is a bit stronger than the one in Assumption 2, as we require the fraction to remain constant

throughout. Note that this is necessary to ensure convergence to a limit point.
23In fact, it is sufficient that the fraction of agents of type k converges to ρk as n → ∞. If we have

maxk∈TL∪TE |ρk−(# agents of type k)/n| ≤ δn for some δn = o(1), then we obtain bounds of O∗(max(1/
√
n, δn))

in the first part of the theorem, while Eq. (3) remains unchanged.
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probability, all core outcomes (M,α) satisfy

‖α− α∗‖ ≤ O∗(1/
√
n) , (1)∣∣∣N(k, q)/n− ν∗kq

∣∣∣ ≤ O∗(1/√n) for all (k, q) ∈ T . (2)

• Size of the core. With high probability, the size of the core is bounded as

C ≤ O∗(1/n) . (3)

See Appendix F for a statement of Theorem 3 with additional technical details and a proof.

The first part of our result (the limit characterization of α) is analogous to the one obtained in

Azevedo and Leshno (2016) for NTU markets. Roughly, the limit point α∗ is the unique price

vector that clears the limit market, in the sense that for each type pair (k, q), the “demand” of

worker type k for employer type q is equal to the “supply” of employer type q for worker type k

(both demand and supply take a value of ν∗kq). Our analysis takes advantage of the fact that the

limit market satisfies a strong gross substitutes condition on both sides (leading to uniqueness

of the equilibrium price, and allowing it to be computed via tatonnement), whereas the finite n

market also satisfies a weak gross substitutes condition on both sides. We use an order-theoretic

approach along with convergence of the empirical distribution of (type, productivity vector)

among agents to the limiting distribution, to relate the finite n market to the limit market. This

connection leads to the bounds that we obtain.

Theorem 3 has several noteworthy features:

1. The scaling of the bounds with n does not depend on the number of types K and Q. The

stronger assumption of F having full support on (−∞,∞) yields a stronger upper bound

on core size than that in Theorem 1, without the need for Assumption 1 (generalized

imbalance).24

24The generalized imbalance assumption guarantees that at least one agent is unmatched, which is necessary
for a small core to arise. Here, as F is unbounded on both sides, some agents will remain unmatched with high
probability for a big enough market.
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2. The bound on core size (the second part of the theorem) is tight if F has a first moment, as

demonstrated by Example 1 (Appendix A). The idea is that 1/n is the typical (expected)

gap between consecutive order statistics of the idiosyncratic productivities.

3. The first part of the theorem states that the core converges to a limit point (α∗, ν∗), and

provides a bound of O∗(1/
√
n) on the rate of convergence. Again, Example 1 (Appendix A)

shows that this is tight. The idea is that the actual fraction of agents of a particular

type who satisfy some fixed conditions on their idiosyncratic productivities has stochastic

variations of order 1/
√
n.

Past works that establish a small core and show convergence to a limit point, e.g., Gretsky

et al. (1999), Kamecke (1992), are superficially similar. However, the novel feature of

(random) idiosyncratic productivity terms in our model (as well as bounds on the rates of

convergence) makes Theorem 3 significantly more powerful than previous results.

4. Theorem 3 provides a bound on the estimation error in empirical studies of matching. Of-

ten in empirical studies, only N(k, q)’s are observed (no cardinal utilities or transfers are

observed), and the goal is to estimate type-type utilities (the u(k, q)’s), under suitable as-

sumptions on the idiosyncratic productivities, such as that they follow a standard Gumbel

distribution. The estimation is typically performed using a continuum limit assumption,

as a result of which there is a tractable one-to-one mapping between observed quantities

(N(k, q))(k,q)∈T , (ρk)k∈TL∪TE , and the estimated quantities (u(k, q))(k,q)∈T ; cf. Choo and

Siow (2006, Eq. (11)). Moreover, this mapping is well behaved (e.g., it is Lipschitz con-

tinuous in both directions at interior points), and so we can immediately use Eq. (2) to

obtain a bound of O∗(1/
√
n) on the error in the estimate of (u(k, q))(k,q)∈T .

4 Overview of the proof of Theorem 1

We now present an overview of our proof of Theorem 1. We first discuss the key steps in

establishing the upper bound (the complete proof can be found in Appendix C), and then

sketch the proof of the lower bound in Section 4.2 (completed in Appendix D). Throughout this

section, we assume that there is a unique maximum weight type-matching as per Observation 1;
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i.e., unique M(t) and U . Recall that N(k, q) is defined as the number of matches between agents

of type k and agents of type q in M .

We start by constructing a graph associated with matching M as follows. Let G(M) be

the bipartite graph whose vertex sets are the types in L and E , and such that there is an edge

between types k ∈ TL, q ∈ TE if and only if there is an agent of type k matched to an agent of

type q in M , i.e., N(k, q) > 0. We say that G(M) is the type-adjacency graph associated with

matching M . The following lemma states a key fact regarding the structure of G(M).

Lemma 1. Let G(M) be the associated type-adjacency graph. Suppose we mark the vertex in

G(M) corresponding to type t if and only if at least one agent of type t is unmatched under M .

Then, under Assumption 1 (generalized imbalance), every connected component in G(M) must

contain a marked vertex.

4.1 Overview of the upper bound proof

The intuition for the result is as follows. We start by bounding the type-pair prices associated

with types with at least one unmatched agent. By applying the bounds given by the (IR)

conditions in Proposition 2, we show that the difference between the maximum and minimum

α corresponding to a type-pair price associated with at least one such type is small with high

probability. Using these bounds, we move on to bounding the prices associated with types

with all agents matched. We use the (ST) conditions in Proposition 2, which bound the relative

variation of a type-pair price with respect to other type-pair prices. That such a relative variation

is also small with high probability, taken together with the absolute variation on the types with

unmatched agents, implies the result.

We first establish the result for the case where F is Uniform[0, 1]. The two main challenges

in the proof of this case are as follows. First, we must express the bounds in Proposition 2 as a

function of the market primitives, i.e., market size and number of types. To do so, we re-interpret

the stability conditions as geometric conditions over appropriately defined random regions in

unit hypercubes, as explained in Section 4.1.1. Second, we need to relate the bounds given by

the (IR) constraints to those given by the (ST) constraints, to obtain uniform absolute bounds

on the variation of all type-pair prices. We address this issue in Section 4.1.2, by exploiting
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the combinatorial structure of the problem. Finally, we extend the proof to deal with general

distributions. We show that under appropriate scaling and translation, the bounds obtained

for the uniform case will also hold (within a constant factor) for any general distribution with

positive density in an interval. This is shown in Section 4.1.3

We provide a detailed overview of the proof next.

4.1.1 Geometric interpretation of the stability conditions

We now briefly describe the geometric interpretation of the (IR) and (ST) conditions. This will

allow us to re-express the constraints in Proposition 2 as bounds that depend on the market

primitives.

The intuition is as follows. Once we focus on a single type t, the random productivities of an

agent of type t can be described by a D(t)-dimensional vector within the [0, 1]D(t)-hypercube,

where D(t) is the dimension of the productivity vector of agents of type t (i.e., D(t) = K if

t ∈ TE and D(t) = Q if t ∈ TL). Furthermore, the location of these points can be described by

a point process in [0, 1]D(t). Every such hypercube can be partitioned into (at most) D(t) + 1

random regions: one region corresponding to agents matched to each of the D(t) types on the

other side, and pne region corresponding to unmatched agents. For every α vector in the core,

the regions are separated by hyperplanes as per the (ST) and (IR) conditions. Since there

is a unique type-matching with probability one (by Observation 1), each agent (point) must

fall into the same region for all core α’s. Thus, the stability conditions can be interpreted as

geometric conditions in the unitary hypercube, namely, how far we can move the boundaries of

each random region without changing the members of each region. Possible fluctuations in the

boundaries are bounded by the distance between consecutive order statistics of the projections

of points distributed independently in (sub-regions of) the hypercube. We show that the event

where all such distances are bounded by functions in O(f(n)) occurs with high probability, and

thus achieves a bound that depends only on the market primitives. Next, we formally define

some of the regions, random sets, and random variables that will be useful in our analysis,25

and we relate such definitions to the stability constraints as defined in Proposition 2.

25Remaining definitions can be found in Appendix B.
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Consider a type t ∈ TE . For each employer j with τ(j) = t, there is a vector of idiosyncratic

productivities εj distributed uniformly in [0, 1]K and independently across employers. In this

subsection we consider these productivities for a given t. We suppress t in the definitions to

simplify notation (so n here corresponds to nt, and so on). Analogous definitions can be made

for t ∈ TL.

Consider n i.i.d. points (εj)
n
j=1, distributed uniformly in the [0, 1]K-hypercube. Here εj =

(ε1j , ε
2
j , . . . , ε

K
j ). Let TL = {1, 2, . . . ,K} denote the set of dimension indices. Intuitively, for a fixed

type t ∈ TE with unmatched agents, one can bound αkt by using condition (IR) in Proposition 2:

minj∈t∩M(k) ε
k
j ≥ −αkt ≥ maxj∈t∩U ε

k
j . To apply this bound, we care just about the projection

onto the k-th coordinate of the points εj with j ∈ M(k) ∪ U . The main analytical challenge

we face is that these relevant subregions (containing sets such as M(k) ∪ U) are themselves a

random function of the market realization, as both M(k) and U are themselves random sets.

We overcome this difficulty by appropriately defining the region R̃k(δ) := R̃k(t, δ) (throughout

the rest of this section, the type t is suppressed in the definition of the associated regions, sets,

and random variables26). Specifically, for δ ∈ (0, 1/2] and k ∈ K, define

R̃k(δ) = {x ∈ [0, 1]K : xk
′ ≤ δ ∀k′ ∈ K, k′ 6= k} . (4)

By choosing k and δ appropriately, we can guarantee that R̃k(δ) only contains points corre-

sponding to agents in M(k) ∪ U . (Intuitively, we can choose δ so that the other types are not

attractive enough with such a low productivity.) Once we have done that, it should be easy to

see that minj∈t∩M(k) ε
k
j −maxj∈t∩U ε

k
j is upper-bounded by the maximum distance between two

consecutive points in R̃k(δ), when projected onto their k-th coordinate (the corner cases of all

points being in M(k), or in U , turn out to be easy to handle). This becomes precise once we

26While for our purposes we consider the hypercube associated to a given type t, the results in this section are
intended more generally as results for random point processes in a hypercube. Thus, types are omitted from the
definitions.
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introduce the set Ṽk(δ) and the random variable Ṽ k(δ), defined as follows:

Ṽk(δ) = {x : x = εkj for {j : εj ∈ R̃k(δ)}} (5)

and Ṽ k(δ) = max
(
Difference between consecutive values in Ṽk(δ) ∪ {0, 1}

)
. (6)

Thus, Ṽk(δ) ⊂ [0, 1] is the set of values of the k-th coordinate of the points lying in Rk(δ),

and Ṽ k(δ) ∈ R is the maximum difference between consecutive values in Ṽk(δ) ∪ {0, 1}. (As an

example, if Ṽk(δ) = {0.3, 0.4, 0.8}, the differences between consecutive values in Ṽk(δ) ∪ {0, 1}

are 0.3, 0.1, 0.4, 0.2, resulting in Ṽ k(δ) = 0.4. Note that Ṽk(δ) is a random and finite set, and

Ṽ k(δ) is a random variable.) Therefore, the variation in αkt is bounded by Ṽ k(δ). One of our

intermediate results is to show that with high probability {maxk Ṽ
k(δ) ≤ f1(n,K)}, for some

f1(n,K) = O∗(1/n1/K).

To complete the proof overview, note that once the absolute variation of, say, αtt′ has

been bounded, a bound on the absolute variation of αtt′′ can be obtained by bounding the

relative variation in prices (i.e., the variation in αtt′ − αtt′′) using the (ST) conditions; cf.

Section 4.1.2. Therefore, we need to define additional regions, sets, and variables that will

allow us to apply the (ST) conditions. Such regions will be analogous to those defined above.

However, instead of being a function of a single parameter k, they will be defined as functions

of two parameters k1, k2; this difference is due to the fact that, unlike the (IR) constraints that

focus on a single type-pair, the (ST) constraints bound the variation between two type-pairs.

Since the relationship between these random regions and the α’s is more involved, their definition

and analysis is relegated to Appendix B. However, analogously to the case explained above, we

still care about the difference between (appropriately defined) consecutive order statistics in

these regions.

4.1.2 Using the combinatorial structure of the problem to relate the bounds given

by (IR) and (ST) constraints

We consider some suitably defined “typical” events as discussed in Section 4.1.1, which occur

with high probability in the markets being considered. When these events occur, the possible
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fluctuations in the boundaries of the random regions (see Section 4.1.1) are bounded by functions

in O(f(n)), where f(n) = O∗
(

1
n1/max(K,Q)

)
, and f(n) agrees with that in the statement of

Theorem 1. Under these events, we show that the variation in the type-pair prices is uniformly

bounded as follows:

max
(k,q)∈TL×TE ,N(k,q)>0

|αmax
kq − αmin

kq | ≤ f(n).

This bound on the type-pair prices, together with the fact that the defined events occur with a

high probability, imply our result.

We divide the proof of the bound on the type-pair prices into two steps. First, note that

types with at least one unmatched agent are “easier” to bound; we use the (IR) conditions

in Proposition 2 to bound the absolute variation of prices α associated with such types. In

particular, for each type t with at least one matched and one unmatched agent, we use the

(IR) conditions to show that maxt′: N(t,t′)>0

(
αmax
t,t′ − αmin

t,t′

)
≤ O∗

(
1

n1/max(K,Q)

)
. This is done in

Lemma C.2.

It remains to show that the bound holds for prices between types such that all agents are

matched. Unfortunately, as the (IR) conditions in Proposition 2 cannot be applied to such types,

proving the result is not straightforward. Only the (ST) conditions can be used, which provide

only relative bounds on the values of the associated type-prices.

To prove the bounds on the variations of the prices associated with fully matched types, we

use the graph G(M) as defined above. Given a type t ∈ TL ∪TE , let the distance d(t) be defined

as the minimum distance in G(M) from t to any marked vertex. By Lemma 1, every unmarked

vertex t must be at a finite distance from a marked one. Furthermore, maxt∈TL∪TE d(t) ≤ K+Q,

regardless of the realization of the graph. Our argument to control the variation in the α’s is by

induction on d(t) starting with d(t) = 0. The induction base has already been established, as

we showed that the variation in all the relevant α’s associated with marked types (these types

have distance zero) is bounded. Note that these types are those with at least one matched and

one unmatched agent.

In the inductive step, we assume that the bound holds for every α associated with a type

whose distance is d or less; i.e, for every (t, t′) ∈ TL ×TE such that min(d(t), d(t′)) ≤ d, we have
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αmax
t,t′ − αmin

t,t′ ≤ O∗
(

1
n1/max(K,Q)

)
. Then, we use the inductive hypothesis to show that the result

must also hold for all types whose distance is d + 1. By the definition of distance, for every

type t such that d(t) = d + 1, there must exist a type t∗ such that d(t∗) = d and N(t, t∗) >

0. Therefore, by our inductive hypothesis, we must have αmax
t,t∗ − αmin

t,t∗ ≤ O∗
(

1
n1/max(K,Q)

)
.

Separately, we control the relative variation of the α’s associated with type t in the core using

the (ST) conditions; i.e., we show that αt,t1−αt,t2 for types t1, t2 with matches to type t can vary

only within a range bounded by O∗
(

1
n1/max(K,Q)

)
. Combining, we deduce the desired bound on

the variation in all α’s associated with type t. This is formally achieved in Lemma C.5.

4.1.3 Extension to general distributions

So far we have given an overview of the proof for the case in which F is Uniform(0, 1). We now

argue that the same bounds can be obtained for any distribution satisfying the conditions in

Theorem 1, via appropriate scalings and translations of productivities and base utilities.

We first show that in any core solution, each type-pair price must lie in a bounded interval

whose extremes are independent of n.

Lemma 2. Fix K,Q, u’s, and F . Then under Assumption 2, there exists U = U(K,Q, (ukq)k,q, F ) <

∞ such that, with high probability, any core outcome (M,α) satisfies

−U ≤ αkq ≤ U for all k, q . (7)

Lemma 2 is proved in Appendix G.

Recall that in our proof of Theorem 1 for the Uniform(0, 1) case, we were able to bound

the variation in type-pair prices by bounding the distances between relevant consecutive or-

der statistics of the productivities and their linear combinations. In particular, we followed

an inductive approach where we first focused on agent types with an unmatched agent and

bounded all the prices corresponding to that type, and then we proceeded inductively to bound

the prices corresponding to types where all agents are matched. Note that when F is an un-

bounded distribution, the distance between consecutive order statistics might be larger than any
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O∗(n1/max(K,Q)) function. However, using Lemma 2, it follows that the relevant interval where

realized values matter is

I =


[max(Cl,−U),min(Cu, U)] for εki ’s[
max(Cl,−U + mink,q u(k, q)),min(Cu, U −maxk,q u(k, q))

]
for ηqj ’s.

(8)

In other words, if we fix a type t ∈ TE , then we care about the consecutive order statistics of

the ε’s that occur in the IK-hypercube, and analogously for t ∈ TL. Now fmin = infx∈I f(x) > 0;

by assumption, f is positive and continuous, and I is a compact set. If we suitably translate the

productivity (achieved via an equal and opposite change in u) and then scale utilities down by

|I|, we can map I to [0, 1], and the density in [0, 1] is now lower-bounded by fmin|I|. Thus, if the

productivities of type t ∈ TE are being considered, we apply this translation to all k ∈ TL, and

then scale all utilities down by |I|. As a result, we obtain that the density of the productivity

vector (εki )k∈TL for τ(i) = t is lower-bounded uniformly by (fmin|I|)K everywhere in [0, 1]K , and

that this is now the relevant region where realized values matter. Hence, our uniform bounds on

the gaps between consecutive order statistics for the case where F is Uniform(0, 1) suffice.27 The

corresponding bound on order statistics for the original problem is simply |I| times (a constant

factor) larger.

4.2 Proof of the lower bound

Our lower bound follows from the following proposition, proved in Appendix D.

Proposition 3. Consider a sequence of markets (indexed by ñ) with |TL| = K types of labor,

with ñ workers of each type, and with a single type 1′ of employer, and (K − 1)ñ+ 1 employers

of this type. (Note that these markets satisfy Assumptions 1 and 2.) Set u(k∗, 1
′) = 0 for some

k∗ ∈ L, and u(k, 1′) = 3 for all k ∈ L\k∗. For this market, we have E[C] = Ω∗(1/(n1/K)).

The rough intuition for our construction in Proposition 3 is as follows. For our choice of u’s it

is not hard to see that all workers of types different from k∗ are always matched in the core. One

27Formally, we divide realized productivity vectors into those that are considered and those that are not. The
density of considered realizations is (fmin|I|)K in [0, 1]K and 0 elsewhere; overall, a fraction (fmin|I|)K > 0 of
realizations are considered and hence, w.h.p., Ω(n) workers of type k are considered.
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employer j∗ is matched to a worker of type k∗. Suppose vector (αk)k∈TL is in the core. Given

that all types k 6= k∗ are a priori symmetric, we would expect that the αk’s for k 6= k∗ are close

to each other (we formalize using Lemma E.4 that they are typically no more than δ ∼ 1/
√
ñ

apart). Assuming this is the case, we can order employers based on Xj = maxk 6=k∗ ε
k
j − ε

k∗
j ,

and j∗ should usually be the employer with the smallest Xj , since this employer has the largest

productivity with respect to k∗, relative to the other types. Now, the Xj ’s are i.i.d., and a short

calculation establishes that the distance between the first- and second-order statistics of (Xj)j∈E

is Θ(1/n1/K). This “large” gap between the first two order statistics allows (αk∗ , (αk + θ)k 6=k∗)

to remain within the core for a range of values of θ ∈ R that has an expected length of Θ(1/n1/2)

for K = 2 and Θ(1/n1/K)−O(δ) = Θ(1/n1/K) for K > 2, which leads to the stated lower bound

on C.

We remark that the key quantity here, namely, the gap between the first two order statistics

of (Xj)j∈E , is determined by the tail behavior of the distribution (both the left and right tails)

of the ε’s, along with the number of types K. See Section 6 for further discussion.

Note that the construction above can easily be adapted to accommodate Q ≤ K types of

firms.28 If Q > K, we simply swap the roles of workers and firms in our construction, leading to

E[C] = Ω∗(1/(n1/Q)), as needed. Thus, the lower bound in Theorem 1 follows from Proposition

3.

5 Numerical Experiments

In the previous sections, we provided asymptotic bounds on the size of the core. The purpose

of this section is twofold. First, in Section 5.1, we provide simulation results to illustrate our

theoretical results, and study the core behavior in markets with a small number of agents. Sec-

ond, in Section 5.2, we explore what happens when the number of types is allowed to grow. Our

simulation results reveal that the core is indeed small across a wide range of settings, includ-

ing relatively small markets, reinforcing our main conclusion, namely, that typical assignment

markets are likely to have a small core.

28Let each worker type q 6= 1 have ñ agents each and u( · , q) = −2. These workers are always unmatched,
leaving the core unaffected.
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In our numerical experiments, we find that the core size typically appears to decay at a rate

between Θ(1/
√
n) and Θ(1/n) as the number of agents increases (with at least two types on

each side); in particular, the decay rate is observed to be roughly independent of the number

of types K and faster than the worst-case rate captured by Theorem 1. Note that a core size

of at least 1/n is expected simply from the fact that the distance between an arbitrary pair of

consecutive order statistics for n random variables drawn i.i.d. from some distribution is Ω(1/n)

in expectation, combined with Proposition 2. We find also that, in all the cases we studied, the

core remains small with an increasing number of types, except when idiosyncratic productivities

follow a Pareto distribution, in which case when there is a very large number of types the core

size may no longer be small; see Figure 3.

5.1 Simulation of theoretical results

Our main results state that, if the number of types is fixed and bounded by K, then the core

becomes small as the market size grows. In particular, the core size in a market with n agents

and at most K types on each side is bounded as O∗(1/n1/K) (Theorem 1). In addition, if the

distribution of the idiosyncratic terms is supported on the interval (−∞,+∞), the size of the

core is bounded as 1/n and the core solutions converge to a limit point (Theorem 3). We now

numerically investigate finite markets, including relatively small markets.

5.1.1 Illustration of Theorem 1

In Theorem 1 we show that our bound is tight in the worst case by carefully constructing a

specific family of instances whose expected core size is Ω∗(1/n1/K). However, such markets are

unlikely to occur in practice. We are now interested in understanding the size of the core in

more “typical” settings. To that end, we define a typical market with a distribution over the

number of agents of each type as follows.

Definition 2 (Typical market). A typical market is a market of random size defined by the

quadruple (nL, nE , [p1, . . . , pK ], [r1, . . . , rQ]), where [p1, . . . , pK ] (resp. [r1, . . . , rQ]) is a list of

positive reals of length K (resp. Q) such that
∑K

i=1 pi = 1 and
∑Q

i=1 ri = 1, and such that the

29



number of agents of type k ∈ K (resp. q ∈ Q) is given by an independent random draw from a

Poisson distribution with mean pknL (resp. rqnE).

We highlight that the above definition of a typical market is valid regardless of the distribu-

tion used to determine the idiosyncratic productivities. If nL = nE we say that the market is

balanced. Otherwise, we say that the market is unbalanced. Note that even a balanced typical

market is very unlikely to have exactly the same number of agents on each side; the likelihood

of exact balance is O(1/
√
n) and such realizations have a negligible impact on our numerical

results since we are focusing on the median core size across realizations.

We tested the intuition provided by Theorem 1 by simulating typical markets with a varying

number of agents, number of types, and type-type utilities. We consider three types of distribu-

tions for the idiosyncratic productivities: uniform, exponential (right-unbounded with a lighter

tail), and Pareto (right-unbounded with a heavier tail).29 For each set of parameters, we ran

100 trials and reported the median core size over those markets.

To illustrate our findings, in Figure 1 we show the median core size as a function of the number

of agents for balanced markets with a fixed number of types (2 and 5 types on each side), the

same expected number of agents of each type, and all type-type utilities equal to zero. The

idiosyncratic terms were drawn independently from, respectively, a uniform(0,1) distribution,

an exponential distribution with mean 1, and a Pareto distribution with shape parameter α = 2

(the choice of scale parameter has no impact on core size). We also added the functions 1/n and

1/
√
n to the graph, and used logarithmic scales on both axes to facilitate the comparison with

polynomials of n. In the figure, one observes that the dependence of decay rate on the number

of types is weak, and the decay rate appears to be between 1/
√
n and 1/n.

We also simulated the effect of imbalance and changing type-type utilities.30 In our ex-

periments, the core size tends to slightly decrease as the imbalance increases (see Theorem 2).

However, the difference in the core size between balanced and unbalanced typical markets was

not large and the core size was found to always decay at a rate of between 1/
√
n and 1/n. Fur-

ther, consistent with our theoretical insights, we find that the values of the type-type utilities

29The Pareto distribution has two parameters: the shape parameter α and the minimum point in the support
xmin. Given those parameters, the CDF at x ≥ xmin is given by 1−

(
xmin
x

)α
.

30These results are not explicitly reported for the sake of brevity.
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Figure 1: (Left) Median core size as a function of number of agents, for balanced markets with
two types of agents on each side and both the type-type productivities and idiosyncratic terms
drawn from uniform (U), exponential (E), and Pareto (P) distributions, respectively. The graph
uses logarithmic scales on both axes. The functions 1/n and 1/

√
n are added for comparison.

(Right) Core size as a function of number of agents, for balanced markets with five types of
agents on each side.

do not play a significant role in the size of the core.

5.1.2 Illustration of Theorem 3

We now numerically illustrate our result in Theorem 3, using a standard Gumbel as the distri-

bution for the idiosyncratic productivities. This case is particularly important: most empirical

studies using this model assume a fixed number of types and idiosyncratic terms drawn from

a Gumbel distribution (see, e.g., Choo and Siow (2006)). For these experiments, we fixed the

fraction ρt of agents of each type t ∈ TL ∪ TE and the type-type utilities, and increased the

number of agents on each side of the market. For each set of parameters, we ran 100 trials and

reported the average distance to the limiting type-type prices α∗, the average distance to the

limiting (scaled) number of matches of each type-pair ν∗, and the median core size. As expected,

the observed decrease in the core size occurs at a rate of approximately 1/n, even when n is

relatively small. We also found that the average distances from the realized α’s and ν’s to α∗

and ν∗, respectively, decrease at a rate of 1/
√
n, as predicted. Also, as predicted by Theorem 3,

we found that the values of the type-type utilities do not alter the rate of convergence, and this

holds even for small markets (results for different type-type utilities are not reported).
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We consider markets with two and five types on each side. Agents on each side are evenly

distributed across types, but there is an imbalance across sides (we considered 1.2n workers and

n firms). We also set the type-type utilities to be equal to 3.0, for each type pair. In this setting,

all agents on each side are ex-ante symmetric and thus, in the limit, the proportion of agents of

type k that are matched to agents of type q, ν∗kq, is the same for all type-pairs. Similarly, the

limiting prices α∗kq are equal across all type-pairs. In Figure 2 we illustrate this, by plotting the

median of Averagek,q(|αkq −α∗kq|), the median of Averagek,q(|N(k, q)/n− ν∗kq|), and the median

size of the core as n increases. We observe that our asymptotic bounds capture the behavior of

the core even in small markets.

5.2 Beyond our theory: Increasing the number of types

Our theoretical results assume that the maximum number of types (K) on each side remains

fixed as the number of agents (n) increases. To conclude this section, we now numerically analyze

what happens if we allow the number of types to increase.

In particular, we fix the number of agents n, and study the behavior of the core when the

number of types K increases. We again show results for the case where the type-type utilities

are drawn independently from the same distribution as the idiosyncratic terms. (We found that

the core size is not sensitive to the distribution of the type-type utility term.) Clearly, the size

of the core (see Definition 1) is bounded by 1. Therefore, it should not be surprising that the

core size as a function of the number of types eventually flattens out. The question is, how much

can the core grow if we allow the number of types to grow, and how many types of agents are

needed before the core stops growing?

If the random productivities are drawn from a uniform distribution, then allowing the number

of types to increase as n increases does not have a significant effect and the core remains small.

This is illustrated by Figure 3, where we consider balanced typical markets with 200 and 400

agents on each side, respectively, and plot the median core size as a function of the number of

types for uniform, exponential, and Pareto distributions. Observe that under both uniform and

exponential distributions, the curve flattens out when K is approximately 30 in each case. On

the other hand, the effect of increasing the number of types for Pareto distributions is significant,
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Figure 2: (Left top) Median distance to α∗ as a function of the number of workers for markets
with two and five types of agents on each side, idiosyncratic terms drawn from standard Gumbel
distribution, type-pair utilities set to zero, and 1.2 times as many workers as firms. For each
simulation, we compute the distance to α∗ as Average(k,q)|αk,q − α∗|. When K = 2, we have
α∗ = 0.132 and, when K = 5, α∗ = 1.026. (Right top) Median distance to ν∗, where for each
simulation, we compute the distance to ν∗ as Average(k,q)|N(k, q)/n − ν∗|. When K = 2, we
have ν∗ = 0.106 and, when K = 5, we have ν∗ = 0.018. (Bottom) Median core size as a function
of the number of workers. All graphs use logarithmic scales on both axes. The functions 1/

√
n

and 1/n are added respectively for comparison.

and a “large” core may arise as a result (with core size exceeding 0.1), albeit only when there

is a large number of types (e.g., more than ∼ 30 types with 200 agents on each side). As seen

in Figure 3, the size of the core does not flatten out even with 100 types per side in this case.31

However, such a large number of types would not be expected to occur in practice, and we

31Our intuition for the underlying reason for a large core is as follows: when the number of types exceeds
√
n,

then most of the matched pairs consist of agents who are especially well suited to each other in terms of their
productivities for each other’s type. This leaves significant leeway for each pair of agents to negotiate the division
of the surplus they generate, even while keeping other agents’ payoffs fixed and retaining stability.
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Figure 3: (Left) Median core size as a function of number of types, for balanced typical markets
with 200 agents on each side and idiosyncratic terms drawn from a uniform distribution (U), an
exponential distribution (E) and a Pareto distribution (P) with shape parameter α = 2. The
graph uses logarithmic scales on both axes. (Right) Median core size as a function of number
of types, for typical markets with 400 agents on each side.

consider our findings here as a confirmation that the core is indeed small under plausible values

for n, K, and Q.

6 Discussion

This paper quantifies the size of the core in matching markets with transfers, as a function of

market characteristics. We considered a model of an assignment market with a fixed number of

types of workers and firms. We modeled the value of a match between a pair of agents as a sum

of a deterministic term determined by the pair of types, and a random component that is the

sum of two terms, each depending on the identity of one of the agents and the type of the other.

Assuming a fixed number of types, we showed that the size of the core is bounded as O∗(1/n1/`),

where each side of the market contains no more than ` types, when the random terms are drawn

from a distribution whose density is strictly positive and continuous everywhere in the (possibly

unbounded) support. This bound holds in the worst case over the number of agents. These

results imply that the vector of prices that support a competitive equilibrium (a core solution)

is approximately uniquely determined, and thus the payoff of an agent is roughly the same in
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all stable solutions.

We provide additional results for the practically relevant case of distributions with support

(−∞,∞) (including Gumbel and normal): we show a tighter bound of O∗(1/n) on the size of

the core, as well as convergence to a unique limit of both the core prices and the fraction of

matches of each type-pair, and bounds of O∗(1/
√
n) on these rates of convergence.

Using numerical experiments, we show that our small core finding holds across a range of

practically relevant situations.

It would also be interesting to extend our results to many-to-one markets, where employers

can each have more than one opening. We expect that our results regarding the core (also our

proofs) extend to the case where each employer’s capacity is bounded by a constant, and each

employer’s utility is additive across matches.

Another interesting direction is to investigate the role of a marketplace operator (e.g.,

AirBnB, Upwork) in determining the wage/price levels in a decentralized market. Our work

suggests that price recommendations alone may not be a good tool to control prices, since prices

are uniquely determined in equilibrium. However, there are nontrivial search costs in many such

marketplaces. Hence, search engine design and other aspects of the search/recommendation

environment provided by a platform can play a role in modulating prices.
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A Examples supporting Section 3.2

We present an example showing that the bounds in Theorem 3 are tight.

Example 1. Suppose there is one type of worker k and one type of employer q, i.e., K = Q = 1

and u(k, q) = 0. Fix arbitrary F that has a first moment and with density f being positive

and continuous everywhere. Suppose ρk = 1/2, implying ρq = 1 − ρk = 1/2. Then α∗ = 0 by

symmetry, and the limiting core outcome is one in which workers with ηi > 0 match (worker i

37



earns utility ηi), with employers with εj > 0 (employer j earns utility εj). The expected number of

workers with ηi > 0 is (1−F (0))n/2 and this is also the expected number of employers with εj > 0.

However, in the n-th market, the number of workers with ηi > 0 deviates from its expectation by

order
√
n, and similarly for the number of firms with εj > 0, and further, the difference between

these two numbers is ∆ ∼
√
n. Core α’s are those which lead to exactly the same number of

workers with ηi − α > 0 as the number of employers with εi + α > 0. Consequently, core α’s

differ from α∗ = 0 by about ∆/(nf(0)) ∼ 1/
√
n (in particular, E[|α|] = 1/

√
n for any core α),

and the number of matched pairs scaled by n deviates by order 1/
√
n from its limiting value of

1/4, i.e., E[|N(1, 1)/n−1/4|] = Θ(1/
√
n). The (expected) size of the core is32 of order 1/n since

all core α’s lie between the same pair of order statistics of ηj’s and −εi’s. (We use that F has

a first moment to obtain that weight(M) = Θ(n) whp.)

B Additional definitions and results on point processes in the

unit hypercube

B.1 Additional definitions

Analogously to the definitions of the regions in Section 4.1.1, we define the regions Rk(t) (for

appropriate k) and Rk1,k2(t, δ) (for appropriate k1, k2) which allow us to apply the conditions

(IR) and (ST) respectively. For consistency, the type t is suppressed in the definition of the

associated regions, sets and random variables (e.g. Rk := Rk(t)). Let

Rk = {x ∈ [0, 1]K : xk ≥ xk′ ∀k′ 6= k, k′ ∈ K} (9)

For k1, k2 ∈ K, k1 6= k2 and for δ ∈ [0, 1/2], define the region

Rk1,k2(δ) = {x ∈ [0, 1]K : xk1 ≥ xk ∀k /∈ {k1, k2}, k ∈ K, xk1 ≥ δ} . (10)

The relationship between these random regions and the α’s is more involved, so the expla-

32Showing this rigorously requires a small (straightforward) argument to get around the dependence between
the realization of productivities, and the relevant order statistics.
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nation is delayed to the proofs. However, and analogously to the case explained about, we still

care about the difference between (appropriately defined) consecutive order statistics in these

regions. To that end, we define:

Vk = {x : x = εkj for {j : εj ∈ Rk}} , (11)

and V k = max
(
Difference between consecutive values in Vk ∪ {0, 1}

)
; (12)

as well as,

Vk1,k2(δ) = {x : x = εk1
j − ε

k2
j for {j : εj ∈ Rk1,k2(δ)}} , (13)

and V k1,k2(δ) = max
(
Difference between consecutive values in Vk1,k2(δ) ∪ {−1 + δ, 1}

)
.

(14)

Thus, Vk ⊂ [0, 1] is the set of values of the k-th coordinate of the points lying in Rk, and

V k ∈ R is the maximum difference between consecutive values in Vk ∪ {0, 1}. Analogously,

Vk1,k2 ⊂ [−1 + δ, 1] is the set of values of the difference between the k1-th and k2-th coordinate

of points lying in Rk1,k2 , and V k1,k2 ∈ R is the maximum difference between consecutive values

in Vk1,k2 ∪ {−1 + δ, 1}.

Using the above notation, we now define two events that will help us prove the results by

providing us with a bound on the maximum difference between consecutive values in the relevant

regions. Specifically, the events are defined as follows:

B1(t, δ) =
{

max
(

max
k∈K

V k(t), max
(k1,k2)∈K(2)

V k1,k2(t, δ)
)
≤ f1(nt,K)

}
, (15)

for some f1(nt,K) = O∗(1/n
1/K
t ) defined in Lemma B.1, δ ∈ [0, 1/2] and where K(2) = {(k1, k2) :

k1, k2 ∈ K, k1 6= k2}. (If K = 1, then K(2) is the empty set ∅ in which case we follow the

convention that max∅[ · ] = −∞.). In addition,

B2(t, δ) =
{

max
k∈TL

Ṽ k(t, δ) ≤ f2(nt)/δ
K−1

}
(16)
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for some f2(nt) = O∗(1/nt) defined in Lemma B.2, δ ∈ (0, 1] and Ṽ k(t, δ) as defined in Eq. (6).

The proof of all lemmas auxiliary to the proof of Theorem 1 assume that these events (or

some subset of them) occur. As shown by the next result, that assumption does not pose a

problem as these events simultaneously occur with high probability.

Theorem 4. There exists Ĉ = Ĉ(K,Q) < ∞ such that, for any δ = δ(n) ∈ (0, 1/2], the event⋂
t∈TL∪TE

(
B1(t, δ) ∩ B2(t, δ)

)
occurs with probability at least 1− Ĉ/n.

B.2 Results

Consider the K dimensional unit hypercube [0, 1]K , and the Poisson process of uniform rate n

in this hypercube, leading to N points (εi)
N
i=1. (Note that E[N ] = n.) Here εi = (ε1i , ε

2
i , . . . , ε

K
i ).

Let K = {1, 2, . . . ,K} denote the set of dimension indices.

Let Rk be the region defined by Eq. (9), and let Vk and V k be as defined by Eqs. (11) and

(12) respectively. Similarly, let Rk1,k2(δ) be the region defined by Eq. (10), and let Vk1,k2(δ) and

V k1,k2(δ) be as defined by Eqs. (13) and (14) respectively.

The following lemma, key to our proof of Theorem 1, says that with high probability, all

the (V k)’s and the (V k1,k2)’s are no larger than a (deterministic) function33 of n that scales as

O∗(1/n1/K).

Lemma B.1. Let Rk be the region defined by Eq. (9), and let Vk and V k be as defined by

Eqs. (11) and (12) respectively. Similarly, let Rk1,k2(δ) be the region defined by Eq. (10), and

let Vk1,k2(δ) and V k1,k2(δ) be as defined by Eqs. (13) and (14) respectively. Fix K ≥ 1. Then

there exists f(n,K) = O∗(1/n1/K) such that for any δ = δ(n) ∈ [0, 1/2] the following holds: Let

B1 =

max

(
max
k∈K

V k, max
(k1,k2)∈K(2)

V k1,k2(δ)

)
≤ f(n,K)

 , (17)

where K(2) = {(k1, k2) : k1, k2 ∈ K, k1 6= k2}. (If K = 1, then K(2) is the empty set ∅ in which

33In fact, our proof of Lemma B.1 identifies a bound of (C logn/n)1/K where C = 6K(K − 1), for sufficiently
large n.
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case we follow the convention that max∅[ · ] = −∞.) We have

Pr(B1) ≥ 1− 1/n .

Proof. Let m = b1/(C log n/n)1/Kc for some C <∞ that we will choose later, and let ∆ = 1/m.

Note that

∆ ≥ (C log n/n)1/K . (18)

In our analysis of V k (resp. V k1,k2), we will divide the interval [0, 1] (resp. [−1 + δ, 1]) into

subintervals of size ∆ each, and show that with large probability, each subinterval contains at

least one value of εi ∈ Rk (resp. εk1
i − ε

k2
i for {i : εi ∈ Rk1,k2}). We will find that the density

of points in Vk (resp. Vk1,k2) is smallest near 0 (resp. −1 + δ), but even for the interval [0,∆]

(resp. [−1+δ,−1+δ+∆]), the number of points is Poisson with parameter Θ(n∆K) = Θ(log n),

allowing us to obtain the desired result for appropriately chosen C.

We first present our formal argument leading to a bound on V k, followed by a similar

argument leading to a bound on V k1,k2 . Let

Bk ≡
m−1⋂
i=0

{ [i∆, (i+ 1)∆] ∩ Vk 6= ∅ } , (19)

where ∅ is the empty set. Clearly, Bk ⇒ V k ≤ 2∆. We now show that for any k ∈ K, we have

Pr
(
Bk
)
≤ 1/nK+2, for appropriately chosen C. Define

hj(x, θ) =


xj for x ∈ [θ, 1]

0 otherwise .
(20)

It is easy to see that Vk follows a Poisson process with density nhK−1( · , 0). The number of

points in interval [i∆, (i+ 1)∆] is hence Poisson with parameter

n

∫ (i+1)∆

i∆
hK−1(x) dx = ((i+ 1)K − iK)n∆K/K ≥ n∆K/K ≥ C log n/K ,
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where we used the lower bound on ∆ in (18). It follows that

Pr([i∆, (i+ 1)∆] ∩ Vk = ∅) ≤ exp(−C log n/K) = 1/nC/K ≤ 1/n3 ,

for C ≥ 3K. We deduce by union bound over i = 0, 1, . . . ,m− 1 and De Morgan’s law on (19)

that

Pr
(
Bk
)
≤ m/n3 ≤ n1/K/n3 ≤ 1/n2 .

Using union bound over k we deduce that

Pr
(
∪k Bk

)
≤ K/n2 (21)

We now present a similar argument to control V k1,k2 when K ≥ 2. Let m′ = (1− δ)/∆. (To

simplify notation we assume m′ is an integer. The case when it is not an integer can be easily

handled as well.) Let

Bk1,k2 ≡
m−1⋂
i=−m′

{ [i∆, (i+ 1)∆] ∩ Vk1,k2 6= ∅ } , (22)

where ∅ is the empty set. Clearly, Bk1,k2 ⇒ V k1,k2 ≤ 2∆. We now show that for any k1 6= k2,

we have Pr
(
Bk1,k2

)
≤ K(K − 1)/n2, for appropriately chosen C. It is easy to see that the two-

dimensional projection (x, y) = (εk1
i , ε

k2
i ) of points in Rk1,k2 follows a two-dimensional Poisson

process with density hK−2(x)I(y ∈ [0, 1]), cf. (20). We deduce that values in Vk follow a one-

dimensional Poisson process with density ng for g = hK−2( · , δ) ∗ I(∈ [−1, 0]), where ∗ is the

convolution operator. A short calculation yields

g(x) =



[
(x+ 1)K−1 − δK−1

]
/(K − 1) for x ∈ [−1 + δ, 0)[

1− δK−1
]
/(K − 1) for x ∈ [0, δ)

(1− xK−1)/(K − 1) for x ∈ [δ, 1]

0 otherwise.
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The number of points in interval [i∆, (i+ 1)∆] is Poisson with parameter

n

∫ (i+1)∆

i∆
g(x) dx .

Below we bound the value of this parameter for different cases on i, obtaining a bound of

(K + 3) log n in each case, for large enough C.

For −m′ ≤ i < 0, the smallest parameter occurs for i = −m′, since g(x) is monotone

increasing in [−1+δ, 0]. Thus, the Poisson parameter is lower bounded by its value for i = −m′,

which is

n
[(

(δ + ∆)K − δK
)
/K − δK−1∆

]
/(K − 1)

≥n∆K/(K(K − 1)) ≥ C log n/(K(K − 1)) ≥ 3 log n ,

for C ≥ 3K(K − 1), using (18), and (δ + ∆)K ≥ ∆K +K∆δK−1 + δK .

For 0 ≤ i < m−m′, the Poisson parameter is

n
[
1− δK−1

]
∆/(K − 1) ≥ n∆/(2(K − 1)) ≥ n∆K/(K(K − 1)) ≥ 3 log n ,

using δ ≥ 1/2 and K ≥ 2.

For (m−m′) ≤ i < m, the Poisson parameter is

n(∆−∆K((1 + i)K − iK)/K)/(K − 1) .

A short calculation allows us to again bound this below by (K + 3) log n (the bound is slack for

K > 2): Note that

∆K((1 + i)K − iK) ≤ ∆K(mK − (m− 1)K) = 1− (1−∆)K

≤ K∆−K(K − 1)∆2/2 +K(K − 1)(K − 2)∆3/6 ,

where we used that (1 + i)K − iK is monotone increasing in i for i ≥ 0. Substituting back, we
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obtain that the Poisson parameter is bounded by

n(1− (K − 2)∆/3)∆2/2 ≥ n∆2/4

for (K − 2)∆/3 ≤ 1/2, which occurs for sufficiently large n. Finally, ∆2 ≥ ∆K , hence n∆2/4 ≥

n∆K/4 ≥ 3 log n for C ≥ 12.

Choosing C = 6K(K − 1), in all cases the Poisson parameter is bounded below by 3 log n.

It follows that

Pr([i∆, (i+ 1)∆] ∩ Vk1,k2 = ∅) ≤ exp(−3 log n) = 1/n3 .

We deduce by union bound over i and De Morgan’s law on (22) that

Pr
(
Bk1,k2

)
≤ 2m/n3 ≤ n1/K/n3 ≤ 1/n2 , (23)

for large enough n. Using union bound over (k1, k2) we deduce that

Pr
(
∪(k1,k2) Bk1,k2

)
≤ K(K − 1)/n2 (24)

Combining (23) and (24) by union bound and using De Morgan’s law, we deduce that

Pr
[(
∩k Bk

)
∩
(
∩(k1,k2) Bk1,k2

)]
≥ 1−K2/n2

for large enough n. This implies that for large enough n, with probability at least 1 −K2/n2

we have

max

(
max
k

V k,max
k1,k2

V k1,k2

)
≤ 2∆ ≤ 3(C log n/n)1/K = O∗(1/n1/K) ,

implying the main result for large enough n (note that K2/n2 < 1/n for large enough n). For

small values of n, we can simply choose f(n, k) large enough to ensure that the bound holds

with sufficient probability.
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.

Lemma B.2. For k ∈ K, let R̃k(δ), Ṽk(δ) and Ṽ k(δ) be as defined by Eqs. (4), (5) and (6)

respectively. Fix K ≥ 1. There exists f(n) = O∗(1/n) such that for any δ ∈ (0, 1], the following

occurs: Let

B2 ≡
{

max
k∈K

Ṽ k(δ) ≤ f(n)/δK−1

}
. (25)

Then

Pr(B2) ≥ 1− 1/n .

Proof. The values in the set Ṽk ⊂ [0, 1] follow a one-dimensional Poisson process with rate

nδK−1. Choose f(n) = 6 log n/n. If 6 log n/(nδK−1) ≥ 1 there is nothing to prove, since

maxk∈K Ṽ
k(δ) ≤ 1 by definition. Hence assume 6 log n/(nδK−1) < 1. Divide [0, 1] into intervals

of length ∆ = f(n)/(3δK−1) = 3 log n/(nδK−1) (to simplify notation, we assume 1/∆ ≥ 2 is an

integer. The argument can easily be adapted to handle nδK−1/(3 log n) not an integer). The

probability that any particular interval of length ∆ does not contain a point is no more than

exp(−3 log n) = 1/n3. The number of intervals of length ∆ is 1/∆ = nδK−1/(3 log n) ≤ n for

large enough n. By union bound, with probability at least 1− 1/n2, each ∆-interval contains at

least one point, implying that Ṽ k(δ) ≤ 2∆ = f(n)/δK−1 with probability at least 1 − 1/n2, as

required.

In this section so far we considered the rate n Poisson process in [0, 1]K for convenience.

However, the results we proved can easily be transported to the closely related model of n

points distributed i.i.d. uniformly in [0, 1]K .

Lemma B.3. Consider n points distributed i.i.d. uniformly in [0, 1]K . Lemmas B.1 and B.2

hold for this model as well.

Proof. We use a standard coupling argument along with monotonicity of the considered random

variables with respect to additional points. Let P be a rate n/2 Poisson process in [0, 1]K . The

N points are distributed i.i.d. uniform [0, 1]K conditioned on the value of N . Let B be the event
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N ≤ n. Clearly, B occurs with probability at least 1− 1/n2. Let U be the process consisting of

n points distributed i.i.d. in [0, 1]K . Conditioned on B, we can couple the process P with the

process U such that for every point in the Poisson process, there is an identically located point

in U .

We now show how to establish Lemma B.2 for process U using such a coupling. Note that

maxk∈K Ṽ
k(δ) is monotone non-increasing as we add more points. As such, an upper bound on

this quantity continues to hold if more points are added. For instance, consider maxk∈K Ṽ
k(δ).

Let B′ be the event that

max
k∈K

Ṽ k(δ) ≤ f(n/2)/δK−1

under P. The proof of Lemma B.2 shows that Pr(B′) ≥ 1− (2/n)2. By union bound on B and

B′, we deduce that Pr(B ∩ B′) ≥ 1 − 5/n2 ≥ 1 − 1/n, for large enough n. We deduce, using a

coupling as described above, that with probability at least 1− 1/n, for process U we have

max
k∈K

Ṽ k(δ) ≤ f̃(n)/δK−1 ,

where f̃(n) = f(n/2), for large enough n. (For small values of n, we can simply choose f̃(n)

large enough to ensure that the bound holds with sufficient probability.) Thus we have shown

that Lemma B.2 holds for process U .

Lemma B.1 can similarly be established for process U using that

max

(
max
k∈K

V k, max
(k1,k2)∈K(2)

V k1,k2(δ)

)

is monotone non-increasing as we add more points.

We now establish another result about n points (εj)
n
j=1 distributed i.i.d. uniformly in [0, 1]K .

This result is key to the proof of the tightness of Theorem 1 (Proposition 3).
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For δ ∈ [0, 1] let

R̂k1,k2(δ) = {x ∈ [0, 1]K : xk1 ≥ xk2 − δ ; xk1 ≥ xk ∀k /∈ {k1, k2}, k ∈ K} (26)

Let nk1,k2(δ) be the number of points in R̂k1,k2(δ).

Lemma B.4. Let B3 be the event that there for all k1, k2 ∈ K we have nk1,k2 ≥ 1 + n/K. For

δ = δ(n) ≥ 1/n0.49, we have that B3 occurs with high probability.

Proof. A short calculation shows that the volume of R̂k1,k2(δ) is

v =
1

K − 1

(
1− (1− δ)K

K

)
(27)

≥ 1

K
+

δ

K − 1
− δ2

2
(28)

≥ 1 + δ

K
(29)

for δ ≤ 2/(K(K − 1)). Now, the probability of εj ∈ R̂k1,k2(δ) is exactly v. It follows that nk1,k2

is distributed as Binomial(n, v). Notice E[nk1,k2 ] = nv ≥ n(1 + δ)/K. We obtain

Pr(nk1,k2 < 1 + n/K) ≤ exp
{
− Ω

(
nδ2
)}

= exp
{
− Ω

(
n0.02

)}
= o(1) (30)

using a standard Chernoff bound (e.g., see Durrett (2010)). Using union bound over pairs k1, k2

we deduce that B3 occurs with probability o(1), i.e., event B3 occurs with high probability.

We now prove Theorem 4.

Proof of Theorem 4. By invoking Lemma B.1, Lemma B.2 and Lemma B.3, for each t we have

that w.p. at least 1− 2
nt

the event
(
B1(t, δ) ∩ B2(t, δ)

)
occurs. As the total number of types is

upper bounded by K +Q, we apply an union bound to conclude that w.p. at least 1− 2(K+Q)
n∗ ,

the event
⋂
t∈TL∪TE

(
B1(t, δ) ∩ B2(t, δ)

)
occurs.

C Proof of Theorem 1 upper bound

Proof of Proposition 1. The proposition follows immediately from stability.
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Throughout the rest of the appendix, we shall use the following characterization of C.

Lemma C.1 (Size of the core). Let M be the unique maximum weight type-matching. As-

sume Assumption 2, fixed type-type compatibilities u(·, ·), idiosyncratic productivities being i.i.d.

U(0, 1) and that at least one u(·, ·) is greater than −2 (otherwise there will no matched agent

pairs). For each pair of types (k, q) ∈ T , let N(k, q) denote the number of matches between

agents of type k and agents of type q. Then, with probability 1− 1/n, the size of the core C, cf.

Definition 1, is bounded as

C = Θ

(∑
k

∑
qN(k, q)|αmax

kq − αmin
kq |∑

k

∑
qN(k, q)

)
.

Proof. To prove this lemma, we need to show that the total number of matches
∑

k

∑
qN(k, q)

is within a constant factor of the social welfare with probability 1−1/n. The total social welfare

is bounded above by n(2 + maxu(·, ·)) = O(n) and total number of matches is bounded above

by n. We will show that both these quantities are also Ω(n) with probability 1 − 1/n, which

will then imply the lemma. Suppose u(k, q) > −2. By Assumption 2, we know that there are

at least Cn agents each of type k and type q. Let δ = (u(k, q) + 2)/3. Let

Mk =Mk(δ) = {i ∈ k : ηqi ≥ 1− δ} , (31)

and similarly,

Mq =Mq(δ) = {j ∈ q : εkj ≥ 1− δ} . (32)

Clearly, one can find a matching (not necessarily a stable outcome) consisting min(|Mk|, |Mq|)

pairs, each with one agent fromMk and the other agent fromMq. The weight of every edge/pair

in this matching is at least u(k, q) + 2(1 − δ) = δ, hence the total weight of the matching is at

least δmin(|Mk|, |Mq|). A standard Chernoff bound yields that |Mk| ≥ Cnmin(δ/2, 1) with

probability 1 − 1/n2, and similarly for |Mq|. It follows that the total weight of the matching

is at least Cnδmin(δ/2, 1) = Ω(n) with probability 1 − 1/n as needed. Since stable outcomes

maximize social welfare it follows that the total social welfare is Ω(n) in stable outcomes.
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It remains to bound the number of matches in stable outcomes. We claim that either all

agents in Mk are matched or all agents in Mq are matched. If not, there is a blocking pair

consisting of an unmatched agent from each set. It follows that there are at least min(|Mk|, |Mq|)

matched agents in maximum weight matching (the matching in all stable outcomes), and in

particular at least Cnδmin(δ/2, 1) = Ω(n) matched pairs under the lower bound obtained above

on |Mk| and |Mq|.

The above characterization only differs from the original definition (Definition 1) in that the

size of the core is scaled by the number of matched agents instead of being scaled by the social

welfare. Lemma C.1 allows us to bound C by controlling |αmax
kq − αmin

kq |.

We now present the complete proof of Theorem 1.

Before moving on to the key lemmas, we introduce some definitions. For every type t ∈

TL ∪ TE , we define ϑ(t) as ϑ(t) = {k ∈ TL : N(k, t) > 0} when t ∈ TE and ϑ(t) = {q ∈

TE : N(t, q) > 0} when t ∈ TL. That is, ϑ(t) is the set of neighbors of t in the graph G(M).

Recall that, given a type t ∈ TL ∪ TE we denote by D(t) the dimension of the idiosyncratic

productivity vector associated to agents of type t. That is, D(t) = K if t ∈ TE and D(t) = K if

t ∈ TL.

Given a type t ∈ TL ∪ TE we denote by ν(t) or simply ν, the points in t. That is, for each

agent j of type t, we define νj as follows:

νj =


εj if t ∈ TE

ηj if t ∈ TL

For a fixed t ∈ TL ∪ TE and t′ ∈ ϑ(t), let βtt′ be defined as:

βtt′ =


−αtt′ if t ∈ TE

αtt′ − u(t, t′) if t ∈ TL
(33)

Note that βtt′ can be interpreted as the price that agents of type t pay for matching with type

t′.

49



Using the above notation, we can re-write the conditions in Proposition 2 associated to a

fixed type t ∈ TL ∪ TE as follows:

(ST) For every k, k′ ∈ ϑ(t):

min
j∈t∩M(k)

νkj − νk
′
j ≥ βkt − βk′t ≥ max

j∈t∩M(k′)
νkj − νk

′
j .

(IM) For every k ∈ ϑ(t):

min
j∈t∩M(k)

νkj ≥ βkt ≥ max
j∈q∩U

νkj .

As all the ν variables are in [0, 1], then the above conditions can be interpreted as geometric

conditions in the [0, 1]D(t)-hypercube.

Lemma C.2. Consider the unique maximum weight type-matching M and a type t ∈ TL ∩ TE .

Let F1(t) be the event

F1(t) = {t is marked in G(M) and at least one agent in t is matched}, (34)

that is, t has at least one unmatched and one matched agent. Let the events B1(t, δ) and B2(t, δ)

be as defined by Eqs. (15) and (16) respectively. Under F1(t) ∩ B1(t, δ) ∩ B2(t, δ), we have

max
t′∈ϑ(t)

(
αmax
t,t′ − αmin

t,t′

)
≤ max

(
2f1(nt, D(t)) + δ, f2(nt)/δ

D(t)−1
)
,

where f1 and f2 agree with those in the definitions of events B1(t, δ) and B2(t, δ) respectively.

The proof of Lemma C.2 is partitioned into two lemmas. Given a core solution (M,α), let

the event D(t, δ) be defined as:

D(t, δ) = {βtz ≥ δ ∀z ∈ ϑ(t)}. (35)

We interpret D(t, δ) as the event that all prices seen by type t agents (weakly) exceed δ.

Lemma C.3 below deals with D(t, δ) whereas Lemma C.4 deals with the complement D(t, δ).

Together they imply Lemma C.2.

50



Lemma C.3. Consider a core solution (M,α) and a type t. Let the events F1(t), D(t, δ) and

B2(t, δ) be as defined by Eqs. (34), (35) and (16) respectively. Under F1(t) ∩ D(t, δ) ∩ B2(t, δ),

we have maxt′∈ϑ(t)

(
αmax
t,t′ − αmin

t,t′

)
≤ f2(nt)/δ

D(t)−1, where f2 is as defined in the statement of

Lemma B.2.

Proof. The intuition is that when all prices seen by type t agents (weakly) exceed δ, we can

individually bound the variation within the core of each price: For each type k ∈ ϑ(t) on the

other side, we consider agents of type t who are not interested in types other than k and bound

the gap between consecutive order statistics of νkj for such agents.

Let D = D(t). Fix k ∈ ϑ(t) and consider the orthotope R̃k = R̃k(t, δ) as defined by

Eq. (4). As D(t, δ) occurs, βtz ≥ δ for all z ∈ ϑ(t) and therefore R̃k can only contain points

corresponding to agents in M(k)∪U . By using the notation introduced above, condition (IM) in

Proposition 2 implies: αmax
kt −αmin

kt ≤ minj∈t∩M(k) ν
k
j −maxj∈q∩U ν

k
j . However, minj∈t∩M(k) ν

k
j −

maxj∈q∩U ν
k
j ≤ minj∈R̃k∩M(k) ν

k
j − maxj∈R̃k∩U ν

k
j ≤ Ṽ k(t, δ), where Ṽ k(t, δ) is as defined by

Eq. (6). Therefore, for each k ∈ ϑ(t) we must have αmax
kt − αmin

kt ≤ Ṽ k(t, δ). Finally, under

B2(t, δ) we have maxk∈ϑ(t) Ṽ
k(t, δ) ≤ f2(nt)/δ

D−1, which completes the result.

Lemma C.4. Consider a core solution (M,α) and a type t. Let F1(t) be the event defined

in Eq. (34). Let the event B1(t, δ) be as defined by Eq. (15), and let the event D(t, δ) de-

note the complement of the event defined by Eq. (35). Under F1(t) ∩ D(t, δ) ∩ B1(t, δ), we

have maxt′∈ϑ(t)

(
αmax
t,t′ − αmin

t,t′

)
≤ 2f1(nt, D(t)) + δ, where f1 is as defined in the statement of

Lemma B.1.

Proof. Here at least one price seen by type t is less than δ, since we consider D(t, δ). The first

part of our proof controls the variation in the core of the price which is the smallest at α; we

call the corresponding type k∗. The second part of our proof controls relative variation in prices

faced by type t, and then uses the control on the price of type k∗ from the first part to control

prices of other types k 6= k∗.

Suppose t ∈ TE . Consider the unit hypercube in RK . For each j ∈ E such that τ(j) = t,

let εj ∈ [0, 1]K denote the vector of realizations of εkj for every k ∈ TL. By condition (ST) in
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Proposition 2, we can partition the [0, 1]K hypercube into |ϑ(t)| regions such that all the points

ε corresponding to agents matched to k ∈ ϑ(t) must be contained in the corresponding region.

In particular, for each k ∈ ϑ(t), we define Z(k) ⊆ [0, 1]K to be the region corresponding to type

k, with Z(k) = ∩k′∈ϑ(t), k′ 6=k{x ∈ [0, 1]K : xk − xk′ ≥ αk′t −αkt}. Note that the region Z(k) can

only contain points corresponding to agents matched to k or unmatched.

Let k∗ = argmaxk∈TL{αtk∗ : k ∈ ϑ(t)}, and let Rk∗ = Rk∗(t) be as defined by Eq. (9). By

condition (ST) in Proposition 2, we have that for all k ∈ ϑ(t):

min
j∈t∩M(k∗)

εk
∗
j − εkj ≥ αkt − αk∗t ≥ max

j∈q∩M(k)
εk
∗
j − εkj .

As αkt−αk∗t ≤ 0 for all k ∈ ϑ(t), we must have Rk∗ ⊆ Z(k∗). Let V k∗ = V k∗(t) be as defined

in Eq. (12). We claim that αmax
k∗,t − αmin

k∗,t ≤ V k∗ . To see why this holds, consider two separate

cases. First, suppose there is at least one point corresponding to an unmatched agent in Rk∗ .

By condition (IM) in Proposition 2, we must have minj∈t∩M(k∗) ε
k∗
j ≥ −αk∗t ≥ maxj∈t∩U ε

k∗
j .

Hence, αmax
k∗,t − αmin

k∗,t ≤ minj∈t∩M(k∗) ε
k∗
j −maxj∈t∩U ε

k∗
j ≤ V k∗ as desired. For the second case,

suppose that all points in Rk∗ correspond to matched agents. As maxj∈t∩U ε
k∗
j ≥ 0, we must

have αmax
k∗,t −αmin

k∗,t ≤ minj∈t∩M(k∗) ε
k∗
j ≤ minj∈Rk∗ ε

k∗
j ≤ V k∗ , as the difference between 0 and the

minj∈Rk∗ ε
k∗
j is upper bounded by V k∗ . Therefore, we conclude αmax

k∗,t − αmin
k∗,t ≤ V k∗ .

Next, we consider the bound for any arbitrary type k ∈ ϑ(t). By condition (ST) in Proposi-

tion 2, we have that for all k ∈ ϑ(t):

αmax
k∗t + min

j∈t∩M(k∗)
εk
∗
j − εkj ≥ αkt ≥ αmin

k∗t + max
j∈q∩M(k)

εk
∗
j − εkj .

Therefore,

αmax
kt − αmin

kt ≤ αmax
k∗t − αmin

k∗t + min
j∈t∩M(k∗)

(
εk
∗
j − εkj

)
− max
j∈q∩M(k)

(
εk
∗
j − εkj

)
.

From our previous bound, we have that αmax
k∗t −αmin

k∗t ≤ V k∗ . We now want an upper bound on

minj∈t∩M(k∗)(ε
k∗
j − εkj )−maxj∈q∩M(k)(ε

k∗
j − εkj ). Let Rk∗,k = Rk∗,k(t, δ) and V k∗,k = V k∗,k(t) be

as defined by Eqs. (10) and (14). We shall show that minj∈t∩M(k∗)(ε
k∗
j −εkj )−maxj∈q∩M(k)(ε

k∗
j −
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εkj ) ≤ V k∗,k + δ. Recall that, under D(t, δ), we have δ ≥ −αk∗t.

To that end, note that all points in Rk∗,k must correspond to agents matched to k∗ or

matched to k, as the region Rk∗,k cannot contain unmatched agents without violating condition

(IM). Furthermore, as Rk∗ ⊆ Z(k∗) and Rk∗ ∩Rk∗,k 6= ∅, at least one point in Rk∗,k corresponds

to an agent matched to k∗. We now consider two separate cases, depending on whether Rk∗,k

contains at least one point matched to k. First, suppose Rk∗,k contains at least one point

matched to k. Then, the bound trivially applies as

min
j∈t∩M(k∗)

εk
∗
j − εkj − max

j∈t∩M(k)
εk
∗
j − εkj ≤ min

j∈Rk∗,k∩M(k∗)
εk
∗
j − εkj − max

j∈Rk∗,k∩M(k)
εk
∗
j − εkj ≤ V k∗,k.

Otherwise, Rk∗,k contains only points matched to k∗. In that case,

min
j∈t∩M(k∗)

εk
∗
j − εkj − max

j∈q∩M(k)
εk
∗
j − εkj ≤ min

j∈Rk∗,k
εk
∗
j − εkj − (1 + αk∗t) ≤ V k∗,k + δ,

as desired. Overall, we have shown that:

max
k∈ϑ(t)

(
αmax
tk − αmin

tk

)
≤ max

(
V k∗ , max

k∈ϑ(t)

(
V k∗ + V k∗,k + δ

))
.

Under B1(t, δ) we have max
(
V k∗ ,maxk V

k∗,k
)
≤ f1(nt,K), implying

max

(
V k∗ , max

k∈ϑ(t)

(
V k∗ + V k∗,k + δ

))
≤ 2f1(nt,K) + δ,

as desired.

To conclude, we briefly discuss the changes when t ∈ TL. Consider the unit hypercube in

RQ. For each j ∈ L such that τ(j) = t, let ηj ∈ [0, 1]Q denote the vector of realizations of ηqj for

every q ∈ TE . For each q ∈ ϑ(t), we define Z(q) ⊆ [0, 1]Q to be the region corresponding to type

q. The main difference with the case in which t ∈ TE is that we need to define the regions Z(q)

in terms of the η̃ instead of η. To that end, let βkq = αkq − u(k, q). By the (ST) condition in
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Proposition 2, we must have:

min
i∈t∩M(q′)

η̃q
′

i − η̃
q
i ≥ αtq′ − αtq ≥ max

i∈t∩M(q)
η̃q
′

i − η̃
q
i ,

or equivalently,

min
i∈t∩M(q′)

ηq
′

i − η
q
i ≥ βtq′ − βtq ≥ max

i∈t∩M(q)
ηq
′

i − η
q
i .

By using β instead of α, the same geometric intuition as before applies. Then, we define

Z(q) = ∩q′∈ϑ(t), q′ 6=q{x ∈ [0, 1]Q : xq − xq′ ≥ βqt− βq′t}. To select q∗, we just select the one with

smallest βqt. The rest of the proof remains the same.

Proof of Lemma C.2. Lemma C.2 immediately follows from Lemmas C.3 and C.4.

Lemma C.5. Consider the unique maximum weight type-matching M and a type t ∈ TL ∩ TE .

Let F2(t) be the event

F2(t) = {all agents in t are matched}.

Let the event B1(t, δ) be as defined by Eq. (15). Under F2(t) ∩ B1(t, δ), for every t∗ ∈ ϑ(t) we

have maxt′∈ϑ(t)

(
αmax
t,t′ − αmin

t,t′

)
≤
(
αmax
t,t∗ − αmin

t,t∗

)
+ 2f1(nt, D(t)) + 2δ, where f1 agrees with the

one in the definition of B1(t, δ).

Proof. This proof is similar to the proof of Lemma C.4. Consider a core solution (M,α). Let

D = D(t). Fix a type t∗ ∈ ϑ(t), and let k∗ = argmaxk∈ϑ(t)βtk. We start by showing that, under

F2(t)∩B1(t, δ), we must have αmax
tk∗ −αmin

tk∗ ≤
(
αmax
t,t∗ − αmin

t,t∗

)
+ f1(nt, D(t)) + 2δ. If k∗ = t∗, the

claim follows trivially. Otherwise, let Rk∗,t∗ = Rk∗,t∗(t, δ) and V k∗,t∗ = V k∗,t∗(t, δ) be as defined

by Eqs. (10) and (14). We show that minj∈t∩M(k∗) ν
k∗
j −νt

∗
j −maxj∈q∩M(t∗) ν

k∗
j −νt

∗
j ≤ V k∗,t∗+δ.

To that end, note that all points in Rk∗,t∗ must correspond to agents matched to k∗ or

matched to t∗, as under F2(t) all agents in t are matched. Furthermore, by the definition of

k∗, Rk∗,t∗ must contain a point corresponding to an agent matched to k∗. We now consider

two separate cases, depending on whether Rk∗,t∗ contains at least one point corresponding to
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an agent matched to t∗. First, suppose Rk∗,t∗ contains at least one point corresponding to an

agent matched to t∗. Then,

min
j∈t∩M(k∗)

νk
∗
j −νt

∗
j − max

j∈t∩M(t∗)
νk
∗
j −νt

∗
j ≤ min

j∈Rk∗,t∗∩M(k∗)
νk
∗
j −νt

∗
j − max

j∈Rk∗,t∗∩M(k)
νk
∗
j −νt

∗
j ≤ V k∗,t∗ .

Otherwise, Rk∗,t∗ contains only points matched to k∗. In that case,

min
j∈t∩M(k∗)

(νk
∗
j − νt

∗
j )− max

j∈t∩M(t∗)
(νk

∗
j − νt

∗
j ) ≤ min

j∈Rk∗,t∗
(νk

∗
j − νt

∗
j )− 1 ≤ V k∗,t∗ + δ,

as desired. By condition (ST) in Proposition 2, we must have:

αmax
tk∗ −αmin

tk∗ ≤ αmax
tt∗ −αmin

tt∗ + min
j∈t∩M(k∗)

(νk
∗
j −νt

∗
j )− max

j∈t∩M(t∗)
(νk

∗
j −νt

∗
j ) ≤ αmax

tt∗ −αmin
tt∗ +V k∗,t∗+δ

Next, consider an arbitrary k ∈ ϑ(t) with k 6= t∗, k∗. By condition (ST) in Proposition 2, we

must have:

αmax
kt − αmin

kt ≤ αmax
k∗t − αmin

k∗t + min
j∈t∩M(k∗)

(νk
∗
j − νkj )− max

j∈q∩M(k)
(νk

∗
j − νkj ).

Let Rk∗,k = Rk∗,k(t, δ) and V k∗,k = V k∗,k(t) be as defined by Eqs. (10) and (14). By repeat-

ing the same arguments as before, we can show that minj∈t∩M(k∗)(ν
k∗
j −νkj )−maxj∈q∩M(k)(ν

k∗
j −

νkj ) ≤ V k∗,k + 2δ. Hence,

αmax
kt − αmin

kt ≤ αmax
k∗t − αmin

k∗t + V k∗,k + δ ≤ αmax
tt∗ − αmin

tt∗ + V k∗,t∗ + V k∗,k + 2δ.

To conclude, note that

max
k∈ϑ(t)

(
αmax
kt − αmin

kt

)
≤
(
αmax
tt∗ − αmin

tt∗

)
+2

(
max
k∈ϑ(t)

V k∗,k

)
+2δ ≤

(
αmax
tt∗ − αmin

tt∗

)
+2f1(nt, D)+2δ,

where the last inequality follows from the fact that B1(t, δ) occurs by hypothesis.

We can now proceed to the proof of the main theorem.
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Proof of Theorem 1 (upper bound). Let n∗ = mint∈TL∪TE nt. Under Assumption 2, we have that

n∗ = Θ(n). Let δ = 1/(n∗)1/max(K,Q). For each t ∈ TL ∪ TE , let the events B1(t, δ) and

B2(t, δ) be as defined by Eqs. (15) and (16) respectively. We start by showing that, under⋂
t∈TL∪TE

(
B1(t, δ) ∩ B2(t, δ)

)
, we must have C ≤ O∗

(
1

max(K,Q)√n

)
.

To that end, construct the type-adjacency graph G(M) as defined in Section 4. For each

vertex v, we denote by d(v) the minimum distance between v and any marked vertex (that is,

d(v) = 0 if v is marked, d(v) = 1 if v is unmarked and has a marked neighbour, and so on). By

Lemma 1, we know that w.p. 1, each connected component of G(M) must contain at least one

marked vertex, so d(v) is well-defined for all v. Let Cd = {v ∈ C : d(v) = d}, that is Cd is the set

of vertices that are at distance d from a marked vertex. We now show the result by induction in

d. In particular, we show that, under
⋂
t∈TL∪TE

(
B1(t, δ) ∩ B2(t, δ)

)
, for each t ∈ Cd we have that

maxk∈ϑ(t)

(
αmax
tk − αmin

tk

)
≤ gd(n∗,max(K,Q)) for some gd(n

∗,max(K,Q)) = O∗( 1
n1/max(K,Q) ).

We start by showing that the claim holds for the base case d = 0. For each t ∈ C0, either all

agents in t are unmatched or at least one agent is matched. In the former case, we can just ignore

type t as it will not contribute to the size of the core. In the latter, we note that w.p.1 the event

F1(t) as defined in the statement of Lemma C.2 must hold. Therefore, we can apply Lemma C.2

to obtain maxt′∈ϑ(t)

(
αmax
t,t′ − αmin

t,t′

)
≤ max

(
2f1(nt, D(t)) + δ, f2(nt)/δ

D(t)−1
)

, where f1 and f2

are as defined in the statement of the lemma. To conclude the proof of the base case, let

g0(n∗,max(K,Q)) = max
(

2f1(n∗,max(K,Q)) + δ, f2(n∗)/δmax(K,Q)−1
)
.

By the definition of f1, f2, and δ, together with Assumption 2, we have g0(n∗,max(K,Q)) =

O∗( 1
n1/max(K,Q) ). Therefore, we have shown that, for every t ∈ C0, we have

max
k∈ϑ(t)

(
αmax
tk − αmin

tk

)
≤ g0(n∗,max(K,Q)).

Now suppose the result holds for all d′ ≤ d, we want to show it holds for d + 1. Fix

t ∈ Cd+1. By definition of Cd+1, we have that all agents in t must be matched and therefore

w.p. 1, the event F2(t) as defined in the statement of Lemma C.5 occurs. Moreover, there

must exist a t∗ such that the vertex corresponding to t∗ is Cd and t∗ ∈ ϑ(t). By induction,
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we have that
(
αmax
tt∗ − αmin

tt∗

)
≤ gd(n

∗,max(K,Q)) for gd(n
∗,max(K,Q)) = O∗( 1

n1/max(K,Q) ).

Further, by Lemma C.5, we know that under F2(t)∩B1(t, δ), we have maxt′∈ϑ(t)

(
αmax
t,t′ − αmin

t,t′

)
≤(

αmax
t,t∗ − αmin

t,t∗

)
+ 2f1(nt, D(t)) + 2δ, where B1(t, δ) as defined by Eq. (17) and f is as defined in

the statement of Lemma B.1. Therefore, by letting gd+1(n∗,max(K,Q)) = gd(n
∗,max(K,Q)) +

2f1(n∗,max(K,Q)) + 2δ, we have show that with probability at least 1− d+1
n∗ , we have

max
k∈ϑ(t)

(
αmax
tk − αmin

tk

)
≤ gd+1(n∗,max(K,Q)) ,

with gd+1(n∗,max(K,Q)) = O∗( 1
n1/max(K,Q) ).

Next, we note that maxv d(v) is upper bounded by K + Q. Hence, for every t ∈ TL ∪

TE , we have maxk∈ϑ(t)

(
αmax
tk − αmin

tk

)
≤ gK+Q(n∗,max(K,Q)) for gK+Q(n∗,max(K,Q)) =

O∗( 1
n1/max(K,Q) ) and therefore

max
t∈TL∪TE

max
k∈ϑ(t)

(
αmax
tk − αmin

tk

)
≤ gK+Q(n∗,max(K,Q)).

To conclude, by Theorem 4 we have that with probability at least 1 − 2(K+Q)
n∗ , the event⋂

t∈TL∪TE
(
B1(t, δ) ∩ B2(t, δ)

)
occurs. In all other cases, we just use the fact that the size of the

core is upper-bounded by a constant C <∞. Hence,

E[C] =

∑
(k,q)∈TL×TE N(k, q)

(
αmax
kq − αmin

kq

)
∑

(k,q)∈TL×TE N(k, q)

≤ (K +Q)gK+Q(n∗,max(K,Q)) + C
2(K +Q)

n∗

= O∗
(

1
max(K,Q)

√
n

)

implying the main result for large enough n (note that 2(K+Q)
n∗ = Θ∗(1/n)).

D Theorem 1 lower bound: Proof of Proposition 3

Again, we make use of the characterization of C in Lemma C.1.
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Proof of Proposition 3. We consider the sequence of markets described in Section 4.2. We re-

mark that the gaps in values of n in the described sequence can easily be filled in, leaving the

core and its size essentially unaffected.34

Claim D.1. For this market, all labor agents of types different from k∗ will be matched in the

core.

Proof. We know that there is some employer j who is either unmatched or matched to a labor

agent i′ of type k∗. Consider any matching where a labor agent i of type k 6= k∗ is unmatched.

Now Φ(i′, j) = εi′ + ηk∗j ≤ 1 + 1 = 2, whereas Φ(i, j) ≥ u(k, 1) = 3, hence the weight of such a

matching can be increased by instead matching j to i. It follows that in any maximum weight

matching, all labor agents with type different from k∗ are matched. Finally, recall that every

core outcome lives on a maximum weight matching, cf. Proposition 2

Among agents i ∈ k∗, exactly one agent will be matched, specifically agent i∗ = arg maxi∈k∗ ηi.

Let j∗ be the agent matched to i∗ (break ties arbitrarily). Recall that core solutions always live

on a maximum weight matching, and in case of multiple maximum weight matchings, the set

of vectors α such that (M,α) is a core solution is the same for any maximum weight matching

M . This allows us to suppress the matching, and talk about a vector α being in the core, cf.

Proposition 2. The (IM) condition in Proposition 2 for the pair of types (k∗, 1) are

ηi∗ ≥ αk∗ ≥ max
i∈k∗\i∗

ηi , (36)

and the slack condition αk∗ ≥ −ε
k∗
j∗

. The (IM) conditions for types (k, 1) for k 6= k∗ are

3 + min
i∈k

ηi∗ ≥ αk ≥ − min
j∈M(k)

εkj . (37)

The stability conditions are

min
j∈M(k)

εkj − εk
′
j ≥ αk′ − αk ≥ max

j∈M(k′)
εkj − εk

′
j , (38)

34In the described construction, we have n = (2K − 1)ñ + 1 for ñ = 1, 2, . . . but intermediate values of n can
be handled by having slightly fewer workers of type k∗, which leaves our analysis essentially unaffected.
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for all k 6= k′. It is easy to see that Eq. (38) with k′ = k∗ implies αk ≤ 2 for all k 6= k∗. Hence,

the upper bound in Eq. (37) is slack. Consider the left stability inequality with k′ = k∗. As

Eq.(36) implies αk∗ ≥ 0, we must have

αk ≥ − min
j∈M(k)

εkj − ε
k∗
j ≥ − min

j∈M(k)
εkj

implying that the lower bound in (37) is also slack. Thus a vector α is in the core if and only if

conditions (36) and (38) are satisfied.

For simplicity, we start with the special case K = 2, with the two types of labor being k and

k∗. To obtain intuition, notice that from Eq. (36) we have αk∗
ñ→∞−−−→ 1 in probability, and when

we use this together with Eq. (38) we obtain αk
ñ→∞−−−→ 2 in probability. (We do not use these

limits in our formal analysis below.) Hence, we focus on Eq. (36) together with

min
j 6=j∗

εkj − ε
k∗
j ≥ αk∗ − αk ≥ ε

k
j∗ − ε

k∗
j∗
. (39)

where j∗ = arg minj ε
k
j − ε

k∗
j . Now, Xj = εkj − ε

k∗
j are distributed i.i.d. with density U [0, 1] ∗

U [−1, 0] which is

f(x) =


1− |x| for |x| ≤ 1

0 otherwise.
(40)

(Note that if we draw ñ+1 samples from this distribution, it is not hard to see that E[(minj 6=j∗ Xj)−

Xj∗ ] = Θ(1/
√
ñ).) We lower bound the expected core size as follows: Let Xj = εkj − εk∗j .

Let B be the event that exactly one of the Xj ’s is in [−1,−1 + 1/
√
ñ], and no Xj is in

[−1 + 1/
√
ñ,−1 + 2/

√
ñ]. Under f the probability of being in [−1,−1 + 1/

√
ñ] is 1/(2ñ) and

the probability of being in [−1 + 1/
√
ñ,−1 + 2/

√
ñ] is 3/(2ñ). It follows that

Pr(B) =

(
ñ+ 1

1, 0, ñ

)
1

2n

(
1− 2/ñ

)ñ
= Ω(1) . (41)

Claim D.2. Consider the case K = 2. Under event B, for any core vector (αk∗ , αk), for any
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value α′k ∈ [αk∗ + 1 − 2/
√
ñ, αk∗ + 1 − 1/

√
ñ], we have that vector (αk∗ , α

′
k) is in the core. In

particular, C = Ω(1/
√
ñ).

Proof. Eq. (39) is satisfied since event B holds. Since, αk′ can take any value in an interval of

length 1/
√
ñ, it follows that C = Ω(1/

√
ñ) under B.

Combining Claim D.2 with Eq. (41), we obtain that E[C] = Ω(1/
√
ñ) as desired.

We now construct a similar argument for K > 2, with K = TL\{k∗} being the other labor

types, all of whose agents are matched. It again turns out that αk∗
ñ→∞−−−→ 1 in probability, and

when we use this together with Eq. (38) we obtain αk
ñ→∞−−−→ 2 ∀k ∈ K in probability (but we

do not prove or use these limits).

Considering only the dimensions in K (recall |K| = K − 1 here) of each εj , let B3 be the

event as defined in Lemma B.4 with δ = 1/n0.51.

Claim D.3. Let k = arg mink∈K αk and let k̄ = arg maxk∈K αk. Under event B3, we claim that

αk̄ − αk ≤ δ (42)

Proof. From Proposition 2, we know that the set of core α’s is a linear polytope, hence it

is immediate to see that the set of θ’s is an interval. Let k = arg mink∈K αk and let k̄ =

arg maxk∈K αk. Under event B3, we claim that αk̄−αk ≤ δ. We can argue this by contradiction:

Suppose αk̄ − αk > δ. One can see that all j’s such that εKj ∈ R̂k̄,k(δ), cf. (26), will be matched

to type k̄, with the possible exception of j∗. Thus, under B3, the number of employers matched

to type k̄ is bounded below by

nk̄,k − 1 ≥ ((K − 1)ñ+ 1)/(K − 1) > ñ ,

which is a contradiction, implying (42).

The above claim bounds the maximum difference between α’s corresponding to any pair

of types in K. Intuitively, note that all types in K have the same u and therefore the same

distribution for the θ variables of the agents in such type. Moreover, all types in K have the
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same number of agents. Hence, one would expect the α’s to be equal. While true in the limit, for

each finite n we need to account for the stochastic fluctuations in given realization. Therefore, we

can show that no pair of α’s in K can differ by more than δ. The next claim follows immediately

from Claim D.3.

Claim D.4. Let k ∈ K be an arbitrary type. Under event B3, we claim that

max
k′∈K

(
εk
′
j − εkj

)
≤ δ ∀j ∈M(k) (43)

Proof. By Claim D.3, we have that under B3, |αk − αk′ | ≤ δ for all k′ ∈ cK. By the stability

condition in Eq. (38), we have

δ ≥ αk − αk′ ≥ εk
′
j − εkj ∀j ∈M(k), ∀k′ ∈ K.

Therefore, for every j ∈M(k) we must have δ ≥ maxk′∈K ε
k′
j − εkj as desired.

Next, we focus on the stability conditions involving type k∗. For each k ∈ K, the stability

condition is:

εk∗j∗ − ε
k
j∗ ≥ αk − αk∗ ≥ max

j∈M(k)
εk∗j − ε

k
j , . (44)

where j∗ is the employer matched to i∗. For each j ∈ E , let Xj be defined as Xj = (maxk∈K ε
k
j )−

εk∗j . The Xj are distributed i.i.d. with cumulative distribution F (−1 + θ) = θK/K for θ ∈ [0, 1]

(we will not be concerned with the cumulative for positive values). Let B be the event that

exactly one of the Xj ’s is in [−1,−1 + 1/ñ1/K ] (this will be Xj∗), and no Xj is in [−1 +

1/ñ1/K ,−1 + 2/ñ1/K ]. Under cumulative F , the probability of being in [−1,−1 + 1/ñ1/K ] is

1/(Kñ) and the probability of being in [−1 + 1/ñ1/K ,−1 + 2/ñ1/K ] is 2K/(Kñ). It follows that

Pr(B) =

(
ñ+ 1

1, 0, ñ

)
1

Kn

(
1− 2K/(Kñ)

)ñ
= Ω(1) . (45)

Clearly, under B, we must have j∗ = arg minj∈E Xj . Keeping this in mind, we state and

prove our last claim.
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Claim D.5. Suppose B3 ∩ B occurs. Take any core vector (αk∗ , (αk)k∈K). Then

{θ ∈ R : (αk∗ , (αk + θ)k∈K) is in the core} (46)

is an interval of length at least 1/n1/K − 2δ = Ω(1/n1/K). In particular, C ≥ Ω(1/n1/K).

Proof. Define

θ = 1− 2/ñ1/K + δ − αk + αk∗

θ = 1− 1/ñ1/K − αk̄ + αk∗

We claim that, under B3 ∩ B, we have that α(θ) = (αk∗ , (αk + θ)k∈K) is in the core for all

θ ∈ [θ, θ]. To establish this, we need to show that conditions (36) and (38) are satisfied. Since

α belongs to the core, we immediately infer that (36) holds, and also (38) when k∗ /∈ {k, k′} by

definition of α(θ). That leaves us with (44). Now, for any k ∈ K and θ ∈ [θ, θ] we have

αk(θ) = αk + θ ≤ αk̄ + θ ≤ αk̄ + θ = 1− 1/ñ1/K + αk∗ ≤ ε
k∗
j∗
− εkj∗ + αk∗ ,

where used the definitions of k̄ and θ, and the fact that B occurs (so 1 − 1/ñ1/K ≤ εk∗j∗ − ε
k
j∗).

This establishes the left inequality in (44). Similarly, for any k ∈ K we have

αk(θ) = αk + θ ≥ αk + θ ≥ αk + θ = 1− 2/ñ1/K + δ + αk∗

≥ εk∗j −max
k′∈K

εk
′
j + δ + αk∗ ≥ ε

k∗
j − ε

k
j + αk∗ ∀j ∈M(k) ,

where used the definitions of k and θ for the first two inqualities, and the fact that B occurs (so

1 − 2/ñ1/K ≥ εk∗j − maxk′∈K ε
k′
j , ∀j ∈ M(k)). Finally, the last inequality follows from B3 and

Claim D.4 (which implies −maxk′∈K ε
k′
j + δ ≥ −εkj for j ∈ M(k)). This establishes the right

inequality in (44). Thus, we have shown that α(θ) is in the core for all θ ∈ [θ, θ]. The length of

this interval is 1/ñ1/K − (αk̄ − αk)− δ ≥ 1/ñ1/K − 2δ = Ω(1/ñ1/K), using (42). Therefore, that

E[C] = Ω(1/ñ1/K) under B3 ∩ B.
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Using Lemma B.4 and Eq. (45) we have

Pr(B3 ∩ B) = Ω(1) .

Combining with the claim above we obtain that E[C] = Ω(1/n1/K).

E Proof of Theorem 2

We start by restating Theorem 2 and discussing the structure of the proof. Recall that we use

the characterization of the size of the core from Lemma C.1.

Theorem (Theorem 2). Let idiosyncratic productivities be drawn i.i.d. from any fixed distribu-

tion F that is supported on an interval of the form [0, Cu] or [0,∞) where Cu <∞, and whose

density f is strictly positive and continuous everywhere on the support.35 In addition, suppose

that u(k, 1) ≥ 0 for all k ∈ TL. Consider the setting in which K ≥ 2, Q = 1, nE > nL and let

m = nE − nL. Under Assumption 2, we have, with high probability, that C ≤ O∗
(

1

n
1
Km

K−1
K

)
.

Also, E[C] ≤ O∗
(

1

n
1
Km

K−1
K

)
.

Note that Assumption 1 is automatically satisfied under the hypotheses of the theorem.

As in the proof of Theorem 1, we first prove the result for F being Uniform(0, 1), and

later extend our proof to more general F . The idea of the proof is as follows. First, we

show a bound on the expectation of mink∈TL{αmax
k − αmin

k }. In particular, we show that

E
[
mink∈TL{αmax

k − αmin
k }

]
= O∗

(
1

n
1
Km

K−1
K

)
. To do so, we note that by condition (IM) in

Proposition 2, we must have

min
k

(
αmax
k − αmin

k

)
≤ min

k∈TL

(
min

j∈M(k)
εkj −max

j∈U
εkj

)
.

Then, we consider two separate cases to prove the result, depending the size of the imbalance.

When m ≤ log(n), the result is shown in Lemma E.1, which we prove via an upper bound on

mink∈TL

(
minj∈M(k) ε

k
j

)
. On the contrary, when m ≥ log(n), the result is shown in Lemma E.4.

35If the lower limit of the support of F is positive, this can be absorbed into the u’s, hence this case is covered.
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The proof of Lemma E.4 relies mainly on the geometry of a core solution which (roughly) allows

us to first control the largest of the α’s (all α’s must be negative i in the core since some employers

are unmatched, and we control, roughly, the least negative α).

Next, we then show that, for every pair of types k, q ∈ TL we must have

E

[
min

j∈M(k)
(εkj − ε

q
j)− max

j∈M(q)
(εkj − ε

q
j)

]
= O∗

(
1

n

)
.

By Condition (ST) in Proposition 2, this implies that for fixed k, q ∈ TL, the expected maximum

variation in αk − αq in the core is bounded by O∗
(

1
n

)
.

Finally, we use the bounds in the first two steps to argue that, for every type k ∈ TL,

E
[
αmax
k − αmin

k }
]

= O∗

(
1

n
1
Km

K−1
K

)
,

which implies E[C] = O∗
(

1

n
1
Km

K−1
K

)
. This is done in the proof of Theorem 2.

We now show our bound on E
[
mink{αmax

k − αmin
k }

]
. To that end, let Zk = minj∈M(k) ε

k
j and

Uk = maxj∈U ε
k
j . By Condition (IM) in Proposition 2, E

[
mink |αmax

k − αmin
k |

]
≤ E[mink{Zk −

Uk}], and therefore we will focus on bounding E[mink{Zk−Uk}]. As a reminder, we have defined

m = nE − nL and δn = log(n)

n
1
Km

K−1
K

. Also, in all lemmas we are working under the assumptions of

the theorem, that is, K ≥ 2, Q = 1, nE > nL and Assumption 2.

Lemma E.1. Suppose m ≤ 6K log(nE). Then, there exists a constant C3 = C3(K) < ∞ such

that E
[
mink{αmax

k − αmin
k }

]
≤ 2C3

log(n)

n
1
Km

K−1
K

.

Proof. Let Zk = minj∈M(k) ε
k
j , Uk = maxj∈U ε

k
j and δn = log(n)

n
1
Km

K−1
K

. By Condition (IM) in

Proposition 2, E[mink{αmax
k − αmin

k }] ≤ E[mink{Zk − Uk}]. As Uk is a non-negative random

variable, we have E[mink{Zk − Uk}] ≤ E[mink{Zk}]. Therefore,

E[min
k
{αmax

k − αmin
k }] ≤ E

[
min
k
{Zk − Uk}

]
≤ E

[
min
k
{Zk}

]
≤ C3δn + Pr

(
min
k
Zk ≥ C3δn

)
,
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using Zk ≤ 1.

To finish the proof, it suffices to show that Pr (mink Zk ≥ C3δn) ≤ C3δn. Hence, our next

step is to bound Pr (mink Zk ≥ C3δn). Now mink Zk ≥ C3δn implies that all j such that εj ∈

[0, C3δn]K are unmatched. But there are only m unmatched employers. It follows that

Pr

(
min
k
Zk ≥ C3δn

)
≤ Pr

(
at most m points in the hypercube [0, C3δn]K

)

Let X ∼ Bin
(
nE , (C3δn)K

)
be defined as the number of points, out of nE in total, that fall

in the hypercube [0, C3δn]K . By assumption, m ≤ 6K log(n)⇒ (C3δn)K ≥ (C3 log n/m)K/n ≥

2K log nK/n ≥ 4(log n)2/n defining C3 ≥ 12K and using K ≥ 2. Further using n ≤ 2nE we

obtain E[X] = nE (C3δn)K ≥ (n/2)4(log n)2/n = 2(log n)2. It follows that

Pr

(
min
k
Zk ≥ C3δn

)
≤ Pr

(
X ≤ 6K log(n)

)
≤ exp(−Ω((log n)2)) ≤ 1

n
≤ C3δn

where the second inequality was obtained by applying the Chernoff bound. Hence, we have

shown that

E[min
k
{αmax

k − αmin
k }] ≤ E

[
min
k
{Zk}

]
≤ C3δn + Pr

(
min
k
Zk ≥ C3δn

)
≤ 2C3δn,

which completes the proof.

We now establish an upper bound for the case in which m ≥ 6K log(nE). For the following

results up to Lemma E.4 we shall assume m ≥ 6K log(nE).

Before we move on, we briefly give some geometric intuition regarding the problem. For

each agent j ∈ E , let εj = (ε1j , . . . , ε
K
j ) denote the profile of values assigned by the K types of

agents in L to agent j. Given our stochastic assumptions, all points εj will be distributed in

the [0, 1]K hypercube. Using Proposition 2, we can partition the [0, 1]K-hypercube into K + 1

disjoint regions: K of them containing the nk points corresponding to agents matched to type

k (1 ≤ k ≤ K), and one region containing all unmatched agents. Furthermore, the region
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containing the unmatched agents is an orthotope36 that has the origin as a vertex. This follows

for the (IM) constraints in Proposition 2.

To that end, let O be the set of K-orthotopes contained in [0, 1]K that have the origin as

a vertex. Suppose R is expanded by the same amount θ in each coordinate direction. Define

D(R) as the smallest value of θ such that an additional point εj is contained in the expanded

orthotope. (If one of the side lengths becomes 1 before an additional point is reached, then define

D(R) = 0. This will never occur for R that contains only the unmatched agents.) As usual, let

Zk = minj∈M(k) ε
k
j and Uk = maxj∈U ε

k
j . We want to show that E

[
mink{Zk − Uk}

]
≤ C5δn, for

some constant C5 = C5(K) < ∞. To that end, note that mink{Zk − Uk} is equal to D(R) for

some orthotope R ∈ O. In particular, mink{Zk−Uk} is equal to D(R) when R is the orthotope

that “tightly” contains all the m points in U .

For R ∈ O, let V (R) be defined as the volume of R. In addition, we define |R| to be the

number of points contained in R. We start by showing that, given that m ≥ 6K log(n), an

orthotope in O of volume less than m
4nE

in extremely unlikely to contain m points.

Lemma E.2. Suppose m ≥ 6K log(n). For R ∈ O such that V (R) < m
4nE

, we have Pr
(
|R| = m

)
≤

1
nK+1 , where V (R) denotes the volume and |R| denotes the number of points in R.

Proof. Let X denote number of points in an orthotope in O of volume m
4nE

. Then, X ∼

Bin
(
nE ,

m
4nE

)
. We have µ = E[X] = m/4. Using a Chernoff bound we have,

Pr(X ≥ m) = Pr(X ≥ 4µ) ≤ (e3/44)m/4 ≤ exp(−m/4)

Now m/4 ≥ 6K log n/4 ≥ (K + 1) log n, using K ≥ 2. Substituting back we obtain Pr(X ≥

m) ≤ exp(−(K + 1) log n) = 1/nK+1. But |X| stochastically dominates |R| since V (R) < m
4nE

.

The result follows.

Our next step will be to bound Pr
(
D(R) > C4δ

∣∣∣ E) , for R ∈ O and some constant C4 =

C4(K) <∞ where E is the event defined as E = {|R| = m, V (R) ≥ m
4nE
}.

36An orthotope (also called a hyperrectangle or a box) is the generalization of a rectangle for higher dimensions
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Lemma E.3. There exists some constant C4 = C4(K) < ∞ such that, for all R ∈ O with

V (R) ≥ m
4nE

, we have that P
(
D(R) > C4δn

∣∣∣ |R| = m
)
≤ 1

nK+1 , where δn = log(n)

n
1
Km

K−1
K

.

Proof. Conditioned on |R| = m, the remaining nL = nE −m points are distributed uniformly

i.i.d. in the complementary region of volume (1− V (R)).

Let FC4δn denote the region swept when R is expanded by C4δn along each coordinate axis.

Clearly, D(R) > C4δn if and only if region FC4δn contains no points.

Let X denote the number of points in FC4δn , and let p denote the volume of FC4δn . Then,

X ∼ Bin(nL, p/(1 − V (R))) and hence stochastically dominates Bin(nL, p)). Note that such a

volume p is at least the volume obtained when expanding the hypercube of side ` = K

√
m

4nE
by

C4δn along each direction and therefore, p ≥ K`(K−1)C4δn. Hence,

P (D(R) > C4δn) = Pr(X = 0) ≤ (1− p)L ≤ exp
{
−Ω(np)

}
≤ exp{−Ω(n(

m

n
)(K−1)/KC4δn)} = exp{−Ω(C4 log n)} ≤ 1

nK+1
,

for appropriate C4, where we have used Assumption 2.

Lemma E.4. Suppose m ≥ 6K log(n). Then, there exists a constant C5 = C5(K) < ∞, such

that E
[
mink{αmax

k − αmin
k }

]
≤ C5

log(n)

n
1
Km

K−1
K

.

Proof. Let Zk = minj∈M(k) ε
k
j , Uk = maxj∈U ε

k
j and δn = log(n)

n
1
Km

K−1
K

. By Condition (IM) in

Proposition 2, we know that αmax
k − αmin

k ≤ Zk − Uk. Then,

E

[
min
k
{αmax

k − αmin
k }

]
≤ E

[
min
k
{Zk − Uk}

]
.

In addition, mink{Zk−Uk} is equal to D(R) for some orthotope R ∈ O. In particular, mink{Zk−

Uk} is equal to D(R) when R is the orthotope that “tightly” contains all the m points in U .
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Define R = {R ∈ O : |R| = m}. Then,

E

[
min
k
{Zk − Uk}

]
≤ E

[
max
R∈R

{
D(R)

}]
.

To bound E
[
maxR∈R

{
D(R)

}]
, consider the grid that results from dividing each of the K

coordinate axes in the hypercube into intervals of length 1/n. Let ∆ denote that grid. Suppose

we just consider orthotopes in the grid, that is, the orthotopes whose sides are multiples of 1
n .

Let R∆ = {R ∈ R : R ∈ ∆}. Then,

max
R∈R

{
D(R)

}
≤ max

R∈R∆

{
D(R)

}
+

1

n
,

and,

E

[
max
R∈R

{
D(R)

}]
≤ E

[
max
R∈R∆

{
D(R)

}]
+

1

n
.

Hence, we just need a bound for E
[
maxR∈R∆

{
D(R)

}]
. Let V∗ = m

4n . Note that D(R) ≤ 1

for all R ∈ O and therefore,

E

[
max
R∈R∆

{
D(R)

}]
≤ E

[
max
R∈R′∆

{
D(R)

}]
+ Pr

(
min
R∈R∆

V (R) < V∗

)

where R′∆ = {R ∈ R∆ : V (R) ≥ V∗}. Now, by union bound

Pr

(
min
R∈R∆

V (R) < V∗

)
≤

∑
R∈∆:V (R)<V∗

Pr(|R| = m) ≤ nK · 1/nK+1 = 1/n .

using |{R ∈ ∆ : V (R) < V∗}| ≤ |{R ∈ ∆}| = nK and Lemma E.2.

Further,

E

[
max
R∈R′∆

{
D(R)

}]
≤ E

[
max

R∈∆:V (R)≥V∗

{
D(R)I(|R| = m)

}]
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Now,

Pr

[
max

R∈∆:V (R)≥V∗

{
D(R)I(|R| = m)

}
> C4δn

]

≤
∑

R∈∆:V (R)≥V∗

Pr(|R| = m) Pr[D(R) > C4δn||R| = m]

≤
∑

R∈∆:V (R)≥V∗

1 · 1/nK+1 ≤ nK/nK+1 = 1/n

using a union bound and Lemma E.3 to bound the probability of D(R) ≥ C4δn. It follows that

E

[
max
R∈R′∆

{
D(R)

}]
≤ 1 · Pr

[
max

R∈∆:V (R)≥V∗

{
D(R)I(|R| = m)

}
> C4δn

]
+ C4δn = 1/n+ C4δn

Substituting the individual bounds back, we obtain

E

[
max
R∈R

{
D(R)

}]
= C4δn + 2/n ≤ C5δn .

defining C5 = C4 + 2 and using 1/n ≤ δn.

Overall,

E

[
min
k
{αmax

k − αmin
k }

]
≤ E

[
min
k
{Zk − Uk}

]
≤ E

[
max
R∈R

{
D(R)

}]
≤ C5δn

as claimed.

We now proceed to show that, for every pair of types k, q ∈ TL we have

E

[
min

j∈M(k)
(εkj − ε

q
j)− max

j∈M(q)
(εkj − ε

q
j)

]
≤ C2

log(nE)

nE
.

for appropriate C2 = C2(K) < ∞. This result is shown in Lemma E.7. Along the way, we

establish a couple of intermediate results.

Let Zk = minj∈M(k) ε
k
j and Uk = maxj∈U ε

k
j . Note that Zk is an upper bound for −αk. By the
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definition of Zk, all the points corresponding agents in M(k) must be contained in the orthotope

[1−Zk, 1]× [0, 1]K−1. The following proposition establishes that Zk cannot be arbitrarily close

to 1.

Lemma E.5. Given a constant c ∈ R, let the event Ec be defined as Ec = {maxk minj∈M(k) ε
k
j ≤

1 − c}. Then, there exist constants θ = θ(K) > 0 and C6 = C6(K) > 0 such that, for large

enough n, Eθ occurs with probability at least 1− exp (−C6n).

Proof. Let Zk = minj∈M(k) ε
k
j . The proof follows from the previous observation that all the

points corresponding to agents in M(k) must be contained in the orthotope of volume (1−Zk).

Let C < ∞ be such that
nE
nL
≤ C. By Assumption 2, such a C must exist. Furthermore, by

Assumption 2, there must exists CK ∈ R such that nk ≥ CKn for all k ∈ TL. Let nE be the

total number of points in the cube [0, 1]K . Let X denote the number of points out of the nE

ones that fall in the rectangle defined by [1− θ, 1][0, 1]K−1. Then, X ∼ Bin(nE , θ). Suppose we

set θ < CK
2C .Then, for large enough n and appropriate C6 > 0 we have

Pr(Zk > 1− θ) ≤ Pr(X ≥ CKnL) ≤ Pr

(
X ≥ CKnE

C

)
≤ exp (−2C6n) ≤ (1/K) exp (−C6n)

where we have used a Chernoff bound, 2nE ≥ n, and exp(−C6n) ≤ (1/K) for large enough n.

The result follows from a union bound over possible k.

Remark E.1. Let θ, Eθ and C6 be as defined in the statement of Lemma E.5. Define Gk,q as

Gk,q =

{
x ∈ [0, 1]K :

(
xk ≥ 1− θ

2
or xq ≥ 1− θ

2

)
and xr <

θ

2
for all 1 ≤ r ≤ K, r 6= k, q

}
.

Under event Eθ, we must have Gk,q ⊆M(k) ∪M(q).

The above remark follows from Lemma E.5 and the definition of Gk,q. If j : εj ∈ Gk,q

were matched to a type k′ /∈ {k, q}, that will contradict maximality of the matching as, by
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swapping the matches of j′ : j′ ∈ M(k), εkj′ = Zk and j, the overall weight of the matching

strictly increases. A similar argument rules out j being unmatched.

Lemma E.6. Let Gk,q be as in Remark E.1, and let θ be as defined in Lemma E.5. Define G′k,q

as follows:

G′k,q = Gk,q ∩ {x ∈ [0, 1]K , |xk − xq| ≤ 1− θ}

Let Vkq = {x : x = εkj − ε
q
j , εj ∈ G′k,q}, and let

V kq = max(Difference between consecutive values in Vkq ∪ {−1 + θ, 1− θ}).

Then, there exists a function f(n) = O∗(1/n) such that Pr
(
Bkq
)
≤ 1/n where Bkq is the event

that V kq ≤ f(n).

The proof of Lemma E.6 is omitted as the required analysis is similar to (and much simpler

than) that leading to Lemma B.1. Essentially, V kq consists of values taken by Θ(n) points

distributed uniformly and independently in [−1 + θ, 1 − θ], so, with high probability, no two

consecutive values are separated by more than f(n) = O(log n/n).

In the next lemma we bound the difference between every pair of α’s.

Lemma E.7. Consider types k, q ∈ TL and let f be as defined in the statement of Lemma E.6.

Under event Eθ ∩ Bkq, in every stable solution we must have that (αmax
q − αmin

q ) ≤ 2f(n) +

(αmax
k − αmin

k ).

Proof. We claim that under Eθ, we must have αq − αk varies within a range of no more than

V kq within the core, where V kq is as defined in the statement of Lemma E.6. By Remark E.1,

under event Eθ we must have G′kq ⊂M(k) ∪M(q), where G′kq is as defined in the statement of

Lemma E.6. Suppose that G′kq contains at least one vertex matched to type k and one to type
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q. Then, by Condition (ST) in Proposition 2 we must have:

(αq − αk)max − (αq − αk)min ≤ min
j∈M(k)

{εkj − ε
q
j} − max

j∈M(q)
{εkj − ε

q
j}

≤ min
j∈M(k)∩G′k,q

{εkj − ε
q
j} − max

j∈M(q)∩G′k,q
{εkj − ε

q
j}

≤ V kq

Next, consider the case in which all vertices in G′kq are matched to type k (the analogous

argument follows if they are all matched to type q). Under event Eθ, by Condition (IM) in

Proposition 2 we must have 0 ≤ −αk ≤ 1 − θ and 0 ≤ −αq ≤ 1 − θ. Therefore, αq − αk ∈

[−1 + θ, 1 − θ]. In addition, by Condition (ST) in Proposition 2 we must have αq − αk ≤

minj∈M(k){εkj − ε
q
j}. However,

(αq − αk)max − (αq − αk)min ≤ min
j∈M(k)

{εkj − ε
q
j} − (−1 + θ)

≤ min
j∈M(k)∩G′k,q

{εkj − ε
q
j} − (−1 + θ)

= min
j∈G′k,q

{εkj − ε
q
j} − (−1 + θ)

≤ V kq

It follows that (αmax
q − αmin

q ) ≤ 2V kq + (αmax
k − αmin

k ). By definition, under Bkq we have

V kq ≤ f(n), which completes the proof.

Finally, we complete the last step of the proof by showing the main theorem.

Proof of Theorem 2. By definition, C =
∑K

k=1

N(k)|αmax
k − αmin

k |
nL

, where N(k) is defined to be

the number of agents of type k that are matched. For a given instance, let k∗ = argmink{αmax
k − αmin

k }.

Let B = Eθ ∩ (∩k,qBk,q). Note that using Lemmas E.1 and E.6 and a union bound, we obtain

that

Pr(B) ≤ Pr(Eθ) +
∑

k,q∈K:k 6=q
Pr(Bkq) = O(1/n) .
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By Lemma E.7, under B, for every k ∈ TL we have

αmax
k − αmin

k ≤ 2f(n) + αmax
k∗ − αmin

k∗ .

Therefore,

E[C] ≤ E
[
αmax
k∗ − αmin

k∗

]
+ 2f(n) + Pr(B) ·O(1)

≤ O

(
log(n)

n
1
Km

K−1
K

)
+O∗(1/n) +O(1/n)

= O∗

(
1

n
1
Km

K−1
K

)

where the first inequality follows from the above together with using the upperbound of O(1)

for the core size; the second inequality is obtained by using the bound on E
[
αmax
k∗ − αmin

k∗

]
from

Lemma E.1 for m ≤ 6K log(n) and Lemma E.4 for m ≥ 6K log(n), as well as the definition of

f(n) and Pr(B) = O(1/n) shown above. Finally, we note that each of the steps yields a bound

that holds with high probability (instead of a bound on expected value) if we multiply by an

additional log n factor. This yields that, with high probability,

C ≤ O∗
(

1

n
1
Km

K−1
K

)
.

This completes the proof for F being Uniform(0, 1).

Now consider general F satisfying the conditions stated in the theorem. We extend our proof

just as we extended the proof of Theorem 1 to general F . Lemma 2 gives us a lower bound of

−U ≤ αkq for any core α, whereas we already know that −Cu ≥ αkq ≤ 0, since some employers

are unmatched and others are matched. Overall, we know αkq ∈ [−min(U,Cu), 0]. We scale

utilities down by a factor min(U,Cu). Now the density of firm productivities is uniformly lower

bounded in [0, 1], and firm productivities values in [0, 1] are the only relevant ones. Moreover,

Ω(n) firms have all productivities lying in [0, 1]. Hence, our bound on the gap between consecu-

tive order statistics and their linear combinations in the unit hypercube implies the same bound

(up to constant factors) for general F , and hence we get the same bound on core size for general
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F .

F Proof of Theorem 3

In this appendix, we state and prove a more detailed version of Theorem 3.

Theorem 5. Fix K and Q and a distribution F . Also fix the fraction ρk of each agent type

k, where k can be a type of worker or a type of employer. We draw a market with n agents by

independently drawing the type of each agent, and then independently drawing the idiosyncratic

productivities from the distribution F . We obtain the following bounds as a function of n.

• Limit characterization of α. There exists α∗ = α∗(K,Q, ρ, F ) such that as n→∞, we

have that both αmax and αmin converge (in probability and almost surely) to α∗. In fact,

for any hn = ω(1) we have that with high probability, for every core outcome (M,α),

‖α− α∗‖ ≤ hn/
√
n . (47)

• Size of the core. There exists C = C(K,Q, ρ, F ) < ∞ such that with high probability,

the size of the core is bounded as

C ≤ C log n/n . (48)

We formally establish the claims stated as part of the proof at the end of this appendix.

Proof of Theorem 5. We define a discrete tatonnement operator T : RK+Q → RK+Q that takes

a price vector α to an updated price vector Tα in a limit market (we do not formally define the

limit market, but it guides our intuition). The operator T will be monotone, as a result of a

gross substitutes property on both sides of the market. Its fixed point α∗ will be turn out to be

the limiting core solution. We also define a corresponding operator Tn for the n-th market to

relate core outcomes α in that market to α∗. Our approach draws on the order-theoretic/lattice-

theoretic approach that has yielded rich dividends in matching theory (Gale and Shapley 1962,
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Kelso and Crawford 1982, Hatfield and Milgrom 2005) and in the study of equilibrium more

broadly.

We start by defining the “limit” operator T. The idea is that when T acts on a price vector

α to produce an updated price vector Tα, it computes each price (Tα)kq as follows: treating all

other prices as given, it computes the limiting “demand curve” Dkq(p) of the number of type k

workers who want to match with type q employers as a function of the price between type-pair

(k, q) (here p is the dummy variable for this price), and the limiting “supply curve” Skq(p) of

the number of type q employers who want to match with type k workers. Then (Tα)kq is set to

the value of p at which the demand and supply curves intersect. (There will be a unique such

point, since Dkq(p) will be strictly decreasing in p and Skq(p) will be strictly increasing in p.)

We define

Dkq(p;α) = ρk

∫ ∞
0

f(z + p− u(k, q))
∏
q′ 6=q

F (z + αkq′ − u(k, q′)) dz (49)

(where z serves as a dummy variable for the utility earned by an agent of type k, who finds type

q at price p more attractive to match with than any other type q′ at price αkq′) and

Skq(p;α) = ρq

∫ ∞
0

f(z − p)
∏
k′ 6=k

F (z − αk′q) dz . (50)

We now suppress the α dependence, simply writing Dkq(p) and Skq(p). It is easy to verify that

Dkq(·) is strictly monotone decreasing and that Skq(·) is strictly monotone increasing, given

that f(·) is positive everywhere. Further, both Dkq(·) and Skq(·) are positive everywhere, and

limp→∞Dkq(·) = 0 and limp→−∞ Skq(·) = 0. Combining, we deduce that there is a unique price

where the demand curve Dkq(·) and the supply curve Skq(·) intersect, and we define (Tα)kq to

be equal to this price.

Strict gross substitutes property on both sides of the limit market: Write α � α′

if αkq ≤ α′kq for all k ∈ TL, q ∈ TE , and α ≺ α′ if at least one of these inequalities is strict. Now

viewing Dkq(p; ·) as a function of α, it is easy to verify that Dkq(p; ·) is monotone increasing

with respect to the defined ordering on α’s (the demand for type q increases if the price of other
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employer types increases); i.e., if α � α′, then Dkq(p;α) ≤ Dkq(p;α
′) for all p. In other words,

the demand from each type of worker satisfies strict gross substitutes. Similarly, Skq(p; ·) is

monotone decreasing, by the strict gross substitutes property for each type of employer.

Thus, increasing α causes the demand curve to move up and the supply curve to move down,

and hence it causes the price at which they intersect to move up. It follows that T is monotone

increasing in α.

Fact F.8. If α � α′ then Tα � Tα′.

We now show existence of a fixed point of T, thereby overcoming the challenge that the set

of possible α’s is not compact. To do this, we show that there is a (large) price P such that with

αP := (P, P, . . . , P ) we have TαP � αP , and another (large negative) price P ′ such that with

αP ′ := (P ′, P ′, . . . , P ′) we have TαP ′ � αP ′ . Then, starting with αP and iteratively applying T,

we get a fixed point α∗ using monotonicity.

Set all prices to be equal to P . Now P is the only variable. We have

Dkq(P ;αP ) = ρk

∫ ∞
P

f(w − u(k, q))
∏
q′ 6=q

F (w − u(k, q′)) dw . (51)

Note that Dkq(P ;αP ) is positive everywhere, decreasing in P , and limP→∞Dkq(P ;αP ) = 0. We

also have that mink,qDkq(P ;αP ) is positive everywhere, decreasing in P , and

lim
P→∞

min
k,q

Dkq(P ;αP ) = 0 .

Similarly,

Skq(P ;αP ) = ρq

∫ ∞
−P

f(w)
∏
k′ 6=k

F (w) dw . (52)

Note that Skq(P ;αP ) is positive everywhere, increasing in P and limP→−∞ Skq(P ;αP ) = 0. We

also have mink,q Skq(P ;αP ) is positive everywhere, increasing in P and

lim
P→−∞

min
k,q

Skq(P ;αP ) = 0 .
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It follows that for large enough P we have TαP � αP and for small enough P ′ we have TαP ′ �

αP ′ . We deduce that T is a monotone self-mapping of [P ′, P ]K+Q, and it follows that it has

a fixed point, and that the set of fixed points forms a complete lattice. (A fixed point can

be computed by starting with αP and iteratively applying T until convergence.) Combining

this with the fact that any fixed point must balance supply and demand, we obtain uniqueness

(proofs of all claims are at the end of this appendix).

Claim F.1. The operator T has a unique fixed point α∗.

Consider the fixed point α∗ of T. Let g(n) = hn/
√
n for any hn = ω(1). In the argument

below we use hn =
√

log n ⇒ g(n) =
√

log n/n, but this is only an example of a possible hn

that can be used. Define αlb by αlb
kq = α∗kq − g(n) for all k, q and αub by αub

kq = α∗kq + g(n).

We will show that, for appropriate C, there is a core outcome in the n-th market satisfying

αlb � α � αub, and that all core outcomes are within C log n/n of α. Define ν∗kq = Dkq(α
∗
kq;α

∗),

and show that N(k, q)/n approaches ν∗kq.

We now define an operator Tn such that its fixed point will capture a core solution in the

n-th market. Analogous to Eq. (51) and Eq. (52), we define demand and supply for the n-the

market to be37

D̂kq(p;α) =
∣∣{i : τ(i) = k, u(k, q)− p+ ηqi ≥ u(k, q′)− αkq′ + ηq

′

i for all q′ 6= q
}∣∣ (53)

and

Ŝkq(p;α) =
∣∣{j : τ(j) = q, p+ εkj ≥ αk′q + εk

′
j for all k′ 6= k

}∣∣ (54)

for the n-th market. We define (Tnα)kq = inf{p : Ŝkq(p;α) > D̂kq(p;α)}. As before, Dkq

is (weakly) monotone decreasing in p and (weakly) monotone increasing in α, whereas Skq is

(weakly) monotone increasing in p and (weakly) monotone decreasing in α. (The monotonicities

in α constitute a weak gross substitutes property for each type of agent on both sides of the

37To be perfectly precise, we should ensure that each worker counts toward exactly one unit of total demand by
using a mix of strict and weak inequalities in the definition of Dkq, based on the direction in which ties between
q and q′ are broken in each case. To make all the details work out, we require agents to break ties in favor of the
type they are matched to under the maximum weight matching M .
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market.) We deduce monotonicity of Tn.

Fact F.9. If α � α′ then Tnα � Tnα
′.

Our next claim implies that Tn has a fixed point that lies between αlb and αub.

Claim F.2. With high probability, we have Tnα
ub � αub and Tnα

lb � αlb. Hence, Tn has a

fixed point α satisfying αlb � α � αub.

The proof of this claim uses the convergence of the empirical distribution of (type, produc-

tivity vector) for agents to the limiting distribution. The main part of the proof is to show

that w.h.p., at prices αub, the demand is less than the supply for each type pair (whereas the

opposite is true at αlb). This is accomplished by showing that the realized demand (supply) at

αub is less (more) than the limiting demand (supply) at α∗. In turn, the definition of αub helps

us show this, because the relative prices of different types are the same as under α∗, but each

of them is now more expensive relative to remaining unmatched.

It is not hard to show that the fixed points of T correspond to core price vectors.

Claim F.3. Let α be a fixed point of Tn. Then (M,α) is a core outcome, where M is the

maximum weight matching.

Though we don’t need the converse, we remark that it holds: for any core outcome (M,α),

the prices α are a fixed point of Tn.

Combining Claims F.2 and F.3 immediately gives a core solution α close to α∗, i.e., the bound

(1) for some core solution. We are also in a position to prove (2), leveraging the following claim

that controls the demand and supply in the n-th market for all price vectors between αlb and

αub. In particular, the bounds in the claim apply to the core solution α, where D̂kq(αkq;α) =

Ŝkq(αkq;α) = N(k, q), thus yielding (2).

Claim F.4. Let ν∗kq = Dkq(α
∗
kq;α

∗). Then, there exists f(n) = O∗(
√
n) such that, with high

probability, for all αlb � α � αub we have, for all (k, q) ∈ T , that

∣∣D̂kq(αkq;α)− nν∗kq
∣∣ ≤ f(n) ,∣∣Ŝkq(αkq;α)− nν∗kq
∣∣ ≤ f(n) .
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For the second part of the theorem (the bound (3)), we prove the following claim, and use it

together with the fact that weight(M) = Ω(n) with high probability, which follows from ρk > 0

for all k, and f(x) > 0 for all x. The claim also completes the proof of (1) for all core solutions.

Claim F.5. There exists C = C(K,Q, ρ, f) <∞ such that for all k, q we have

|αmax
kq − αmin

kq | ≤ C
log n

n
. (55)

The proof of this claim relies on the fact that all core αkq’s must lie between some consecutive

order statistics of εqi ’s for workers i who are type k, and are either unmatched or matched to

type q. Further, these order statistics are close together in the vicinity of α∗, and we already

know that it is sufficient to consider this vicinity.

We now provide proofs of all the claims above that facilitated our proof of Theorem 5.

Proof of Claim F.1. The set of α ∈ [P ′, P ]K+Q is a complete sublattice. Since T is a monotone

self-mapping of this set, it has a nonempty set of fixed points that themselves form a complete

lattice. Take the two extreme fixed points αmax(T ) and αmin(T ). Suppose αmax(T ) � αmin(T ).

Fix a price vector α. A direct calculation yields the following intuitive expression for the total

demand from worker type k:

∑
q

Dkq(αkq;α) = ρk

(
1−

∏
q

F (αkq − u(k, q))
)
. (56)

Similarly, the total supply from employer type q is

∑
k

Skq(αkq;α) = ρq

(
1−

∏
k

F (−αkq)
)
. (57)

For ease of notation, we write Dmax
kq =

∑
qDkq(α

max
kq (T);αmax(T)), and so on. It follows from
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αmax(T ) � αmin(T ) and Eqs. (56) and (57) that

∑
k

∑
q

Dmax
kq <

∑
k

∑
q

Dmin
kq

∑
k

∑
q

Smax
kq >

∑
k

∑
q

Smin
kq .

At any fixed point of T, we know that Dkq = Skq ⇒
∑

k

∑
qDkq =

∑
k

∑
q Skq. Hence,

∑
k

∑
q

Dmin
kq =

∑
k

∑
q

Smin
kq

⇒
∑
k

∑
q

Dmax
kq <

∑
k

∑
q

Smax
kq ,

a contradiction.

Proof of Claim F.2. We will use the fact that E[D̂kq(p;α)] = nDkq(p;α) for any p and α,

along with concentration bounds, to obtain the claim. We will show that w.h.p., we have

D̂kq(α
ub
kq ;αub) < Ŝkq(α

ub
kq ;αub) which will immediately imply (Tnα

ub)kq ≤ αub
kq , i.e., Tnα

ub �

αub. (The proof of Tnα
lb � αlb is analogous and we omit it.) The existence of the fixed

point will immediately follow by starting with αub and iteratively using Tn until (monotone)

convergence to α is obtained.

Note that D̂kq(α
ub
kq ;αub) is distributed as Binomial(n,Dkq(α

ub
kq ;αub)). It follows that

Pr[D̂kq(α
ub
kq ;αub) < n(Dkq(α

ub
kq ;αub) + cn)] ≥ 1− exp(−2nc2

n) , (58)

for any c using a standard Chernoff bound. Further, a direct calculation38 gives

Dkq(α
∗
kq;α

∗)−Dkq(α
ub
kq ;αub) = ρk

∫ g(n)

0
f(z + α∗kq − u(k, q))

∏
q′ 6=q

F (z + α∗kq′ − u(k, q′)) dz

⇒ lim
n→∞

Dkq(α
∗
kq;α

∗)−Dkq(α
ub
kq ;αub)

g(n)
= ρkf(α∗kq − u(k, q))

∏
q′ 6=q

F (α∗kq′ − u(k, q′)),

38It is important here that αub and α∗ differ by the same amount in each coordinate, meaning that the relative
attractiveness of types on the other side is unchanged.
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using the continuity of f(·) and that limn→∞ g(n) = 0. Define

cn =
g(n)

2
min
k,q

[
ρkf(α∗kq − u(k, q))

∏
q′ 6=q

F (α∗kq′ − u(k, q′))
]

Note that nc2
n = Ω((log n)2). Then, for large enough n, we have

Dkq(α
∗
kq;α

∗) ≤ Dkq(α
ub
kq ;αub) + cn for all k, q .

Substituting in Eq. (58), we obtain

Pr[D̂kq(α
ub
kq ;αub) < nDkq(α

∗
kq;α

∗)] ≥ 1− exp
(
− Ω(log n)

)
= 1− o(1) for all k, q ; (59)

i.e., with high probability,

D̂kq(α
ub
kq ;αub) < nDkq(α

∗
kq;α

∗) for all k, q .

Using an analogous argument, we establish that with high probability,

Ŝkq(α
ub
kq ;αub) > nSkq(α

∗
kq;α

∗) for all k, q .

Now, by definition of α∗ we have Dkq(α
∗
kq;α

∗) = Skq(α
∗
kq;α

∗) for all k, q. We deduce that,

w.h.p.,

Ŝkq(α
ub
kq ;αub) > D̂kq(α

ub
kq ;αub) for all k, q ,

as needed.

Proof of Claim F.3. Let α be a fixed point of Tn. Then α clears the market up to tie-breaking,

and using the fact that this is a two-sided matching setting, the tie-breaking can be done so as

to obtain a matching M ′ such that (M ′, α) is a core outcome. This also means that M ′ = M ,

the maximum weight matching.
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Proof of Claim F.4. Consider Ŝkq(αkq;α). Let Ŝmax
kq and Ŝmin

kq be the largest and smallest values,

respectively, of Ŝkq for α in the specified range. Using the monotonicities of Ŝkq in its arguments,

we have

Ŝmax
kq = Ŝkq(α

ub
kq ;αlb) ,

Ŝmin
kq = Ŝkq(α

lb
kq;α

ub) .

Using the definition (54) of Ŝkq, we have that

Ŝmax
kq − Ŝmin

kq ≤
∣∣{j : τ(j) = q, |α∗kq + εkj | ≤ g(n)

}∣∣
+
∑
k′ 6=k

∣∣{j : τ(j) = q, |εkj − εk
′
j + α∗kq − α∗k′q| ≤ g(n)

}∣∣ . (60)

Now,

∣∣{j : τ(j) = q, |α∗kq + εkj | ≤ g(n)
}∣∣ = Binomial(nρq, F (−α∗kq + g(n))− F (−α∗kq − g(n)))

≤ O∗(
√
n) ,

w.h.p., using that g(n) =
√

log n/n. Let F1 be the distribution of the difference between two i.i.d.

draws from F . The F1 is also a distribution with positive and continuous density everywhere in

(−∞,∞). We can bound each of the other terms in Eq. (60) as

∣∣{j : τ(j) = q, |εkj − εk
′
j + α∗kq − αk′q| ≤ g(n)

}∣∣
= Binomial(nρq, F1(−α∗kq + α∗k′q + g(n))− F1(−α∗kq + α∗k′q − g(n)))

≤ O∗(
√
n) .
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Combining, we obtain that, with high probability,

Ŝmax
kq − Ŝmin

kq ≤ O∗(
√
n)

⇒ |Ŝkq(αkq;α)− Ŝkq(α∗kq;α∗)| ≤ O∗(
√
n) (61)

for all αlb � α � αub.

Recall that ν∗kq = Dkq(α
∗
kq;α

∗) = Skq(α
∗
kq;α

∗) and E[Ŝkq(α
∗
kq;α

∗)] = nSkq(α
∗
kq;α

∗). A

Chernoff bound gives that, with high probability,

|Ŝkq(α∗kq;α∗)− nν∗kq| ≤ O∗(
√
n) . (62)

Combining Eqs. (61) and (62) yields

|Ŝkq(αkq;α)− nν∗kq| ≤ O∗(
√
n) , (63)

for all αlb � α � αub.

The proof of the corresponding bound on D̂kq(αkq;α) is analogous.

Proof of Claim F.5. Having found a core solution α (the fixed point of Tn) that moreover sat-

isfies αlb � α � αub, we now use these bounds on α to control the size of the core.

Recall that there is (with probability 1), a unique39 maximum weight matching M . We focus

on a subset of agents S that are of type k and either matched to type q or unmatched under M .

We show that, w.h.p., the largest value of ηqi among i ∈ S\M is within C log n/n of the smallest

value of ηqi among i ∈ S ∩M , yielding the desired bound on |αmax
kq − αmin

kq |.

Define

S = {i : τ(i) = k, ηq
′

i < α∗kq′ − g(n)− u(k, q′) ∀ q′ 6= q}. (64)

If α � αlb (which holds w.h.p.), we know that no agent in S is matched to q′ 6= q. Now, the

39We do not need uniqueness of M to bound the core size, but we use it to simplify the argument.
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likelihood of an agent being in S is

ρk
∏
q′ 6=q

F (α∗kq′ − g(n)− u(k, q′)) ≥ 0.9ρk
∏
q′ 6=q

F (α∗kq′ − u(k, q′))

for large enough n, using continuity of F and limn→∞ g(n) = 0. (Note that we do not need to

reveal ηqi to compute whether i ∈ S.) Now divide [α∗kq − u(k, q) − 2g(n), α∗kq − u(k, q) + 2g(n)]

into intervals of length ∆ = (C/3) log n/n, where

C = 4
/

min
k,q

[
ρkf(α∗kq − u(k, q))

∏
q′ 6=q

F (α∗kq′ − u(k, q′))
]
.

Using continuity of f(·), we have that

inf
x∈[α∗kq−u(k,q)−2g(n),α∗kq−u(k,q)+2g(n)]

f(x) ≥ 0.9f(α∗kq − u(k, q)) .

Using the previous three equations, and independence between membership in a subinterval

and membership in S, it follows that the number of agents in S who belong to any individual

subinterval is Binomial(n, p1) for

p1 ≥ ∆ · 0.9f(α∗kq − u(k, q)) · 0.9ρk
∏
q′ 6=q

F (α∗kq′ − u(k, q′)) ≥ log n/n ,

and hence each subinterval has at least one agent in S with probability at least 1 − 1/n. We

deduce using a union bound that w.h.p., all subintervals have at least one member of S. Now,

in any core solution, each i such that ηi < αkq−u(k, q) must remain unmatched, and ηi > αkq−

u(k, q) must be matched to type q. Further, we have that w.h.p., αkq ∈ (α∗kq− g(n), α∗kq + g(n)).

Considering the subintervals on each side of the one in which αkq occurs, since each of them has

at least one agent (who also belongs to S), and considering that M is unique, we deduce that

|αmax
kq − αmin

kq | ≤ 3∆ = C
log n

n
.

Using a union bound, we deduce that w.h.p., this holds simultaneously for all k, q.
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G Proof of Lemma 2

Proof of Lemma 2. Let (M,α) be a core solution. Suppose αk∗q∗ = maxk,q αkq. Consider worker

type q∗. Since αk∗q∗ ≥ αkq∗ for all k 6= k∗, we obtain that each agent i of type q∗ has likelihood

at least 1/K of counting toward Ŝk∗q∗ = Ŝk∗q∗(αk∗q∗ ;α); see Eq. (54). It follows that w.h.p.,

Ŝk∗q∗ ≥ (# agents of type q∗)/K−O∗(
√
n) > Cn/2, using Assumption 2. At prices α, an agent

of type k∗ prefers being unmatched to matching with type q∗ with likelihood F (αk∗q∗−u(k∗, q∗)).

Hence, w.h.p., we have D̂k∗q∗ = D̂k∗q∗(αk∗q∗ ;α) < (number of agents of type k∗)(1− F (αk∗q∗ −

u(k∗, q∗)))+O∗(
√
n) ≤ n(1−F (αk∗q∗−u(k∗, q∗)))+O∗(

√
n) < Cn/2 if αk∗q∗ > U for some U <

∞. (Here we used that limP→∞ 1− F (P − u(k∗, q∗)) = 0.) But D̂k∗q∗ = Ŝk∗q∗ , a contradiction.

It follows that αk∗q∗ ≤ U , and hence αkq ≤ U for all k, q. The lower bound of −U ≤ αkq can be

similarly established.
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