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We study how much communication is needed to �nd a stable matching in a two-sided matching market with

private preferences when agents have some knowledge of the preference distribution. We show that in a

two-sided market with workers and �rms, when workers’ preferences are arbitrary and private and �rms’

preferences follow an additively separable latent utility model with commonly known and heterogeneous

parameters, there exists a communication protocol that �nds a stable matching with high probability and

requires at most O∗(
√
n) bits of communication per agent. (We show that this is the best achievable.) �e

protocol, which we call communication-e�cient deferred acceptance (CEDA), is a modi�cation of the workers

proposing deferred acceptance (DA) algorithm. Under CEDA, �rms signal workers they privately like and thus

help them to be�er target their applications while also broadcasting quali�cation requirements to discourage

workers who have no realistic chances of being hired. In the special case where the preferences of both workers

and �rms follow a tiered structure, we show that the signaling can be done in a parallel and decentralized way.

�e protocols we propose inherit the incentive properties of DA in large markets. Our �ndings yield insights

about how matching markets can be be�er organized to reduce congestion. Roughly, each agent should reach

out to her favorite “ge�ables” who are likely to consider her, while waiting for her dream matches to approach

her.

1 INTRODUCTION
Following the work of Gale and Shapley [1962], two-sided matching models have played an

important role in the analysis of two-sided markets, including, for example, labor markets, marriage

markets and college admissions. Stable matchings, which are matchings from which no pair of

agents has incentive to deviate, have been used to predict equilibrium outcomes in decentralized

markets [Hitsch et al., 2010a] and have been shown to be important to the success of centralized

clearinghouses [Roth, 2002].

However, forming a stable matching requires agents to learn and communicate their own

preferences to the market, and too much communication may result in market congestion, whereby

the market cannot process information quickly enough to converge to a satisfactory outcome. For

example, in a decentralized market, a stable matching may result from the equilibrium outcome of a

decentralized matchmaking process; in such a process, an agent may communicate his preferences

by o�ering to match with a partner. However, if many agents are making o�ers and time is

constrained, agents may be forced to make decisions before receiving all o�ers, or to avoid sending

o�ers to popular partners, both of which may result in a sub ptimal outcome.
1

Congestion can also be a problem in centralized clearinghouses, which compute a match on

everyone’s behalf a�er eliciting a preference ranking from everyone. Congestion may occur because

the process whereby agents learn and communicate their preferences may require time, e�ort, and

monetary costs, all of which are constrained. For example, in the National Residency Matching

Program (NRMP), a centralized clearinghouse that matches medical students with residency pro-

grams, an applicant ranks a program only if he or she travels to the program for an interview, and

1
See [Roth, 2008], [Kagel and Roth, 2000].
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the monetary and logistical cost of interviewing produces a cost to learning and communicating

preferences in this market. �erefore, for the market to be e�cient one must control how much

preference information needs to be learned and communicated.

In practice, we observe that agents do not communicate all their preferences. For example, in

the NRMP, a typical applicant submits a ranking of only about 15 programs, out of a total of more

than 20,000 possible programs. Similarly, academic departments do not create complete rankings

of all their job applicants, but focus only on a small subset. Hence, can we still expect the outcomes

of these markets to be approximately stable? �is paper addresses the following questions: What is

the minimum amount of communication needed for the market to reach a stable matching? Do

agents need to know their preferences over the entire market? How can a market designer help

the market reach a stable matching with low communication overhead, thus limiting congestion?

To address these questions, we adopt concepts from the communication complexity literature.
2

In a communication protocol, agents send messages to each other, each of which may depend on

the history of messages. �e communication complexity of solving a problem is the minimum

number of bits that must be communicated in order to �nd a solution. Segal [2007] studies the

communication complexity of computing various types of equilibria, including stable matchings.

He �nds that the worst-case number of bits (i.e., the maximum number of bits across all preference

pro�les) needed to �nd a stable matching is Θ(n), where n is the number of agents on each side of

the market.
3

In fact, this lower bound holds even if we allow the protocol to be randomized and to

fail with a small probability [Gonczarowski et al., 2015]. �ese �ndings imply that, in the worst

case, agents essentially need to know and communicate their complete preferences over the entire

market. If so much communication is typically required, one may question whether stability is an

appropriate solution concept.

In this paper, we study “typical markets” rather than worst-case markets. We model a typical

market as one in which the preferences of agents on one side of the market follow a certain distri-

bution, and agents possess some knowledge about this distribution. Our distributional assumptions

are mild, re�ecting the rich heterogeneity of preferences we observe in real markets. We also de�ne

a notion of preference learning cost by counting the number of queries to a certain preference

oracle, which returns an agent’s favorite option within a given set. For concreteness, we focus our

exposition on labor markets, and refer to the two sides of the market as workers and �rms.

Our main �nding is that in the set of markets we consider, the communication complexity of

�nding a stable matching is much less than what the previous worst-case analysis suggests. Our

assumptions on preferences are as follows. We allow the preferences of workers to be completely

arbitrary and privately known, and we assume that the preferences of �rms have the following

separable form: the utility of a �rm for a worker is the sum of a public score and a private score.

�e public score is known to both the �rm and the worker concerned and can di�er for every

worker-�rm pair,
4

thus allowing a rich heterogeneity of preferences. �e private score is known

only to the �rm, and is assumed to be independently and identically distributed (i.i.d.) according

to an arbitrary distribution with a bounded hazard rate (which includes all distributions with a

su�ciently fat tail, including the exponential, the type-I extreme value, the log-normal, and the

Pareto distributions).
5

We refer to such markets as separable markets. In such markets, we construct

2
See Kushilevitz and Nisan [2006] for a review.

3
Note that with n agents, one can encode a single agent using log

2
n bits of information. We write f (n) = Θ(д(n)) if there

exist constants a ≤ b and n0 such that aд(n) ≤ f (n) ≤ bд(n) for all n ≥ n0.

4
For instance, faculty candidate X who is a promising young theorist would have a large public score with CS department Y

that has a strong theory group, and is looking to hire in the area. Both X and Y would know of this compatibility beforehand.

5
�e private score of department Y for candidate X may consist of the new compatibility information they acquire during a

full-day interview.
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a communication protocol that �nds a stable matching with only O∗(
√
n) bits of communication

6

and O∗(
√
n) preference oracle queries, and we show that this is essentially the best possible for

separable markets.
7

In a market with tens of thousands of participants, one may argue that

√
n is a

reasonable level of communication and preference learning, thus providing a theoretical justi�cation

for using stable matchings as an approximation of the outcome in large markets.

�e protocol we construct illustrates the following insight: the key to achieving low commu-

nication cost is having agents send informative signals. �e protocol uses two types of signals,

which we refer to as “preference” signals and “quali�cation” signals. In a preference signal, a

�rm signals to a worker that it privately likes him or her based on a high private score. In a

quali�cation signal, a �rm broadcasts
8

to the market a minimum public score that it requires for

all future applicants to whom the �rm did not send a preference signal. �is minimum score is

called the �rm’s “quali�cation” requirement. A worker is said to publicly qualify to a �rm if the

worker’s public score for the �rm meets the quali�cation requirement, and a worker is said to

qualify to a �rm if the worker either publicly quali�es or receives a preference signal from the

�rm. �e protocol we construct, which we refer to as communication-e�cient deferred acceptance
(CEDA), embeds these two types of signals into the worker-proposing DA algorithm. Before the

protocol runs the DA algorithm, it instructs �rms to send preference signals. �en it applies the DA

algorithm while instructing workers to apply only to �rms they qualify for, and it instructs �rms

to increase the quali�cation requirement a�er receiving a certain number of publicly quali�ed

applicants. �e logic of the protocol is as follows: because we restrict the distribution of private

scores to be su�ciently fat-tailed, a�er a certain number of publicly quali�ed applications, the

�rm would have probably found a worker that it su�ciently likes. Once this happens, the �rm can

safely increase its quali�cation requirement and dissuade applications from workers that have li�le

chance of being accepted, thus reducing their communication and preference learning cost.

Moreover, we show that given additional structure on the preferences of both workers and �rms,

we can construct a protocol in which signals are sent in parallel and the only signals needed are

preference signals. In such markets, quali�cation signals are no longer important, as everyone has

a good understanding of which set of partners they have a chance of ge�ing, and simply signals

a certain number of their favorite partners within this set. �e additional structure that we use

to prove this result is as follows: agents are partitioned into tiers, and everyone prefers partners

from be�er tiers to worse tiers and have uniformly random preferences for partners within a given

tier. We call such markets tiered random markets. �ey are considerably more restrictive than

general separable markets, but the results we have are considerably stronger. For tiered random

markets, we construct a two-round protocol. In the �rst round, both workers and �rms signal

the partners they privately like within a certain target tier, which is de�ned as the tier with equal

or slightly lower ranking compared to the agent’s own tier (the target tier has “ge�ables” who

are likely to consider them); in the second round, workers and �rms respond to the signals they

receive by ranking the senders (these are “dream matches” who reached out to them) as well as the

partners they signaled to, and a matchmaker computes a matching based on these partial preference

rankings. �e number of partners an agent signals to in the �rst round depends on the agent’s

6
�e O∗ notation means that there exists a constant C > 0 such that the number of bits of communication per agent is

upper bounded by a function (C + log
C )
√
n.

7
We construct a separable market in which any protocol that �nds a stable matching with high probability requires at least

O (
√
n) bits of communication per agent. We say “essentially” the best possible because there is still potentially a log

2(n)
multiplicative gap between the upper and lower bounds.

8
If interaction is via a matching platform that can estimate the preference distribution parameters (e.g., Tinder maintains an

“Elo” rating for each user), the platform can implement quali�cation requirements, e.g., by �ltering search/recommendation

results, eliminating the need for broadcast messages.
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competitiveness in the market, which can be inferred directly from the tier of the agent. We show

that the protocol computes a stable matching using only O(log
4 n) bits of communication per agent

and O(log
3 n) preference queries per agent.

Such a two-round protocol has the advantage of further decreased congestion, as agents can

signal in parallel, without the need to wait for other agents. Moreover, such a protocol uses only

private messages, which are visible only to the sender and the receiver and not to the whole market.

As a result, the protocol may be plausibly implemented by a decentralized matchmaking process,

without the need for a centralized platform through which �rms broadcast quali�cation signals.

We also analyze incentive properties under all the protocols we propose and show that none of

them create additional incentive issues over what is already present in DA under full preference

elicitation
9
: with high probability in large markets, no agent can unilaterally deviate from any of

the protocols we propose and be matched with someone be�er than their best stable partner under

true preferences. �is implies that in CEDA, the probability that a worker can pro�tably deviate

from the protocol is vanishing in large markets. �e �rms, however, may pro�tably deviate by the

same type of truncation strategies as in DA.
10

We show a stronger result for the targeted signaling

protocol in tiered random markets that satisfy “general imbalance” and “large tiers” conditions: in

such markets, for each agent on either side, the probability that there exists a pro�table deviation

goes to zero when the minimum size of any tier is large.

Finally, we brie�y discuss some applications and the relevance to real markets. First note that

preference and quali�cation signals are observed in practice. Academic departments at Tel Aviv

University publish approximate acceptance thresholds for future students based on weighted

SAT and grade point averages.
11

Similarly, historical threshold information is made available in

college admissions in other countries such as India and Iran. Tinder, an online dating application,

allows users to send one special (preference) signal per day to a potential partner beyond regular

signals sent to multiple potential partners. �e American Economic Association allows job market

candidates to send two special signals to academic departments, and empirical evidence suggests

that candidates signal departments in tiers that lower than or similar to their own [Coles et al.,

2010a]. A similar form of preference signaling is documented in a �eld experiment on a Korean

dating website where users are allocated a few virtual roses [Lee and Niederle, 2015]. Applications

in colleges early admission programs can also be viewed as preference signals [Avery et al., 2009].

Our results for tiered random markets may be relevant for some applications such as college

admissions and academic labor markets. Our two-round protocol for tiered random markets

re�ects the situation in centralized matching markets such as the NRMP, in which a �rst round of

decentralized signaling determines the set of interviews, and a second round where preferences are

submi�ed to a clearinghouse determines the match. Our analysis further provides predictions on

how such markets will be organized and the amount of communication needed at di�erent tiers of

the market. For example, our �ndings may explain why we observe short preference lists in the

NRMP.

Our paper relates with many strands of previous literature. For clarity of exposition, we highlight

the most relevant papers in the main text and refer readers to Appendix A for a more systematic

literature review.

9
See chapter 4 of [Roth and Sotomayor, 1990] for a review of incentive issues for DA under full preference elicitation.

10
See chapter 4 of [Roth and Sotomayor, 1990].

11
In some departments these thresholds are not the same, in which case students with certain scores face uncertainty.
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2 MODEL
2.1 Background on stable matchings
In a two-sided matching market there is a set of workers I = {1, 2, . . . ,nI } and a set of �rms
J = {1, 2, . . . ,n J }. De�ne n = max{nI ,n J }. A matching µ is de�ned to be a set of pairs of the

form (i, j), where i ∈ I and j ∈ J , such that each worker and each �rm appear in at most one

pair. We refer to a tuple (i, j) in a matching as a matched pair and i and j are said to be matched
partners of one another. Agents (�rms or workers) who do not have a matched partner are said to

be unmatched.

Each worker i ∈ I has a strict preference ranking RI (i) over �rms that is a permutation over

J ∪{0} where 0 denotes being unmatched. (One can interpret it as an outside option for the worker.)

Similarly, each �rm j ∈ J has a preference ranking R J (j) over workers that is a permutation over

I ∪ {0}. For any agent, a partner is said to be acceptable if the agent prefers being matched with

that partner to being unmatched.

For a matching µ de�ne µ I : I → J ∪ {0} to be a function that maps each worker to his/her

matched partner; if the worker i is unmatched, then µ I (i) = 0. Similarly de�ne µ J : J → I ∪ {0} to

be a mapping from the set of �rms to their matched partners. A blocking pair to the matching is a

pair (i, j) which is not a matched pair, but worker i prefers �rm j to µ I (i), and �rm j prefers worker

i to µ J (j). A matching is called stable if there is no blocking pair.

A stable matching always exists and can be found using the deferred acceptance (DA) algorithm

by [Gale and Shapley, 1962]. �e worker-proposing DA �nds a stable matching works as follows.

Protocol 1. �e deferred acceptance (DA) algorithm

�e algorithm begins without any matches and builds up a matching through a series of rounds.
(1) In each round, an unmatched worker (if any such remains) is selected arbitrarily and applies

to the worker’s favorite �rm that the worker has not yet applied to.
(2) If that �rm is unmatched, then it accepts the application and is said to be tentatively matched

to the worker. If that �rm is already tentatively matched to someone else, then it becomes
matched to the more preferred of these two workers, and rejects the less preferred of these two
workers. �e rejected worker becomes unmatched and can again be chosen in a future round
to apply to their next favorite �rm.

�e algorithm ends when every worker is either matched to a �rm or has already been rejected by all
�rms the worker �nds acceptable.

It can be shown that the result of this algorithm does not depend on the order in which unmatched

workers are chosen to apply. Furthermore, the worker-proposing DA algorithm gives every worker

the best possible outcome under any stable matching. �is optimal stable matching for workers is

called the worker-optimal stable match.

2.2 Separable markets
A two-sided matching market is called a separable market if for at least one side of the market,

preferences follow a latent random utility model with the following additive structure. (�e

preferences of the other side can be completely arbitrary and privately known.) Without loss of

generality, label the side with preference structure as the �rms. Assume that the latent utility of

�rm j for worker i is

uji = aji + ϵji , (1)

where aji is called the public score of worker i for �rm j and is known to this �rm and this worker.

ϵji is called the private score of worker i for �rm j, and is only privately known to �rm j. For
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each �rm j, we assume that the private scores ϵji are independently drawn from a continuous

distribution with CDF Fj with a bounded hazard rate. Precisely speaking, there exists a constant

B > 0 such that the hazard rate

hj (x) :=
F ′j (x)

1 − Fj (x)
≤ B.

�is assumption is satis�ed by distributions whose tail is as fat as the exponential distribution,

including the exponential distribution, the type-I extreme value distribution commonly used in

discrete choice modeling, the log-normal distribution, and the Pareto distributions. �e latent

utility of �rm j for the outside option, uj0, is privately known.

Assume that for each �rm j, the public scores have an additive range of at most polyloд(n).
Formally, we assume that there exists a constant C > 0, such that maxi ∈I {aji } − min∈I {aji } ≤
C log

C n for su�ciently large n.
12

Although some bound on the range of public scores is necessary

for our result, the precise expression of C log
C (n) allows for simplicity of exposition, and can be

relaxed to a general bound д(n) = o(n) with slight modi�cation to our results.
13

2.3 Communication and preference learning cost
We are interested in measuring the amount of communication and preference learning required to

construct a stable matching. In this section, we formally de�ne these measures, using terminology

from the communication complexity literature (see [Kushilevitz and Nisan, 2006] for an overview

of this literature).

In a communication protocol, agents communicate with each other through messages. For now,

we assume that messages are visible to all other agents, and protocols that satisfy this assumption

are called protocols with broadcast. (We remove this assumption in Section 4, allowing for protocols

without broadcast.) As a function of all messages sent so far, the protocol either terminates with

a �nal output, or uniquely determines the identity of the next agent who is supposed to send a

message. �e agent’s message is also uniquely determined by the agent’s private information as

well as the history of messages. For concreteness, the message space is {0, 1}, so the amount of

communication is measured in bits.
14

In this paper, all protocols are deterministic.

Given a separable market and a communication protocol, the sequence of messages is uniquely

determined given the preference realizations of workers and �rms. De�ne the communication cost
of agent i to be the total number of bits sent by agent i , given the preference realizations. Since the

preferences of �rms are random and independent of the preferences of workers, we can de�ne the

expected communication cost of agent i as the expectation of the above communication cost taken

over the randomness in the preferences. De�ne the average communication cost per agent as the

across-agent average of the expected communication cost for each agent. �is is the main quantity

we use to measure communication cost in this paper.

To quantify preference learning cost, we assume that agents do not know their preferences a

priori, but can uncover them only through querying a preference oracle. In each query to the

oracle, an agent gives as input a subset of partners and receives from the oracle the identity of the

12
Note that this still allows for signi�cant ex-ante vertical di�erentiation among workers. For example, if the private scores

are exponentially distributed with rate parameter B , then a di�erence in public scores of
3

B log(n) means that �rm j would

prefer the worker with the higher public score with probability of at least 1 − 1

n3
. �us, allowing for public scores to be as

large as
3k
B log(n) allows us to create k tiers of workers, so that with probability of at least 1 − 1

n , every �rm will always a

prefer a worker from a be�er tier to a worker from a worse tier.

13
Under a bound of д(n), we can modify parameters in our protocols and yield a version of �eorem 3.1 with every bound

multiplied by a factor of O (
√
д(n)). �is is shown in Appendix C.

14
Any other constant sized message space a�ects only constant factors in our result.
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agent’s most preferred partner within this subset. (We do not count the communication with the

oracle as part of the communication cost.) As before, since protocols are deterministic in this paper,

the sequence of preference oracle queries is �xed given the realization of preferences. De�ne the

preference learning cost for agent i as the number of such queries to the oracles that the agent makes

before the communication protocol terminates. De�ne similarly the average preference learning
cost per agent as the across-agent average of the expectation of the preference learning cost per

agent, when the expectation is taken over the randomness in the preferences.

De�ne a matching protocol to be a communication protocol that, upon termination, outputs a

matching. �e protocol is said to succeed if the produced matching is stable with respect to the true

preferences. We are interested in �nding matching protocols that succeed with high probability,

where the randomness is again induced by the randomness of the preferences.
15

A simple example of a matching protocol that always succeeds is the naive protocol that elicits

from every agent all of their private information and �nds a stable matching using the deferred

acceptance algorithm. Since every agent can be represented using O(logn) bits, this can be done

by eliciting O(n logn) bits of information from every agent. Segal [2007] shows that against an

adversarial distribution of preferences (RI ,R J ), any communication protocol that always succeeds

requires an average communication cost per agent of Ω(n), which is only a logarithmic factor

less than the naive protocol.
16

�is negative result was strengthened to protocols that need only

succeed with high probability.

Proposition 2.1 ([Gonczarowski et al., 2015]). �ere exists a distribution on (RI ,R J ) such
that any matching protocol that succeeds with probability of at least 2/3 requires at least an average
communication cost per agent of Ω(n).17

Observe that in any protocol with non trivial messages, for every logn bits of communication

there is at least one query to the preference oracle. �erefore, Proposition 2.1 implies the following

corollary, which states that against an adversarial distribution of preferences, the average preference

learning cost per agent is close to the maximum possible value of n. (Note that an agent can learn

her complete preference lists with n sequential oracle calls.)

Corollary 2.2. �ere exists a distribution on (RI ,R J ) such that any matching protocol that succeeds
in �nding a stable matching with probability of at least 2/3 must have an average preference learning
cost per agent of Ω(n/logn).

However, these negative results requires fairly contrived distribution of preferences. In this paper,

we restrict preferences to follow those of separable markets: one side can be completely arbitrary,

while the other side follows an additive structure allowing rich heterogeneities. As shown in the

next section, we �nd that under these assumptions, both the communication and the preference

learning costs can be reduced to O∗(
√
n), which is much less than the O∗(n) result suggested by the

above negative results.
18

3 MAIN RESULTS
For separable markets (de�ned in Section 2.2, we construct a matching protocol called the communication-

e�cient deferred acceptance (CEDA) protocol, which succeeds to �nd a stable matching with high

15
Formally, given a sequence of markets of n agents and given the preferences of workers, we want a sequence of protocols

such that the measure of �rm preferences for which the protocol fails tends to 0 as n →∞.

16
We say that a function f (n) = Ω(д(n)) if there exists a constant C > 0 such that f (n) ≥ Cд(n) for all su�ciently large n.

17
�e �nding of [Gonczarowski et al., 2015] is originally stated in terms of communication protocols that allows randomiza-

tion, but their result implies this proposition by Yao’s minimax theorem.

18
We say that a function f (n) = O∗(д(n)) if there exists a constantC > 0 such that f (n) ≤ C log

C (n)д(n) for all su�ciently

large n.
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probability and that has provably small communication and preference learning costs (costs that

are bounded byO(
√
n) up to logarithmic factors). �is suggests that a stable matching can be found

(or reached via an equilibrium process) in an e�cient manner.

Theorem 3.1. �e communication-e�cient deferred acceptance (CEDA) protocol (Protocol 3 in
Section 3.1.2) succeeds in �nding the worker-optimal stable matching with high probability in any
separable market. Its average communication cost per agent is at most O∗(

√
n) and its average

preference learning cost per agent is at most O∗(
√
n).

�e protocol, as presented in Section 3.1, has an intuitive two-phase structure: In the �rst phase,

�rms signal to workers they privately like. �e second-phase e�ciently simulates the worker

proposing deferred acceptance algorithms, with workers applying down their preference list but

skipping applications to �rms where they have no realistic chance of being accepted.

�e CEDA protocol also achieves approximately optimal worst-case communication and prefer-

ence learning costs.

Theorem 3.2. �ere exists a separable market such that any communication protocol with broadcast
that computes a stable matching with high probability requires an average communication cost of
Ω(
√
n) per agent and an average preference learning cost of Ω(

√
n/logn).

In the market constructed to establish �eorem 3.2, agents’ preferences on both sides of the

market are drawn from a latent random utility model. �e construction leading to this result and

intuition on the proof are given in Section 3.2.

3.1 Communication-e�icient deferred acceptance (CEDA)
�e key idea in the communication-e�cient deferred acceptance (CEDA) protocol is to allow

workers to be�er target their applications with the help of signals sent by �rms. �ere are two

types of signals:

• Preference signal: A �rm j signals to worker i , which intuitively speaking, indicates that

�rm j has high private score ϵji for worker i .
• �ali�cation signal: A �rm j broadcasts a quali�cation requirement zj to the entire

market, which speci�es the minimum public score for a worker who did not receive a

preference signal to apply to the �rm.

Although we formally allow every message to be public (see Section 2.3), this is not necessary.

�e protocol needs only quali�cation signals to be broadcast to every worker; preference signals

need to be seen only by the worker to whom it is addressed.

�e purpose of these signals is to help workers estimate at what �rms they have a non-negligible

chance of being accepted. For clarity of exposition, de�ne the following terms.

De�nition 3.3. A worker i is said to publicly qualify for �rm j if the worker’s public score meets

the quali�cation requirement, aji ≥ zj . �e worker is said to qualify for �rm j if the worker either

publicly quali�es or received a preference signal from the �rm.

Moreover, de�ne qj to be the top
1√
n

quantile of private scores, qj = F−1(1 − 1√
n
). De�ne aj to be

the minimum public score for �rm j, aj = mini {aji }. De�ne µ j to be �rm j’s latent utility for the

current worker the �rm is tentatively matched with. (�is is initialized to uj0 and monotonically

increases with each acceptance.)

Before describing the actual protocol, we give a simpli�ed version (Protocol 2 in Section 3.1.1)

to provide the main intuition. �is version assumes that �rms know µ j and qj . �e actual CEDA

protocol (Protocol 3 in Section 3.1.2) will be a modi�cation that uses only ordinal preference
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information, which agents obtain via queries to the preference oracle (de�ned in Section 2.3). It

also requires knowledge only of the bound B on the hazard rate, but no other information about

the distribution of private scores.

3.1.1 Simplified protocol with cardinal utilities. �e simpli�ed version of the protocol is as

follows.

Protocol 2. Simpli�ed CEDA

For �rm j, initialize the quali�cation requirement to zj = aj .
(1) Preference signaling: Each �rm j sends a preference signal to each worker i that it privately

likes, speci�cally, if ϵji ≥ qj .
(2) Deferred acceptance with quali�cation requirement: Run the worker-proposing de-

ferred acceptance algorithm (Protocol 1 in Section 2.1) with the following two modi�cations:
(a) �e worker applies only to �rms for which she quali�es. (So in Step 1 of Protocol 1, the

chosen worker applies to the worker’s favorite �rm for which the worker both quali�es
and has not yet been rejected.)

(b) Whenever a �rm tentatively accepts an application, let the latent utility for the tentatively
matched option be µ j . If the quali�cation requirement zj is less than µ j − qj , then send a
quali�cation signal to update it to zj = µ j − qj .19

Lemma 3.4. Protocol 2 always �nds the worker-optimal stable matching and, with high probability,
the average communication cost per agent is at most O∗(

√
n).20

�e proof of Lemma 3.4 is given in Appendix C. We describe the main ideas below. Observe that,

by construction, if a worker i is not quali�ed for �rm j, then the �rm would not accept the worker

even if the worker applies (because the worker’s not qualifying means that her public and private

scores are both low). �us, the above protocol implements the DA worker-proposing DA algorithm,

except that it skips workers’ proposals that would have never have been accepted. �erefore, the

protocol always yields the worker-optimal stable match.

�e main part of the proof of the lemma is to establish the bound on communication cost. �is can

be done by bounding the total number of preferences signals and the total number of applications.

By construction, the number of preference signals per �rm is O(
√
n) with high probability, and this

bounds the number of applications from workers who do not publicly qualify. It su�ces then to

bound the number of applications from workers who publicly qualify.

For �rm j , de�ne Phase 1 as the period before the tentative match value µ j reaches the threshold

aj + qj . Note that during Phase 1, no acceptance results in a quali�cation update, but a�er Phase 1,

every acceptance results in a quali�cation update. Now, using the fact that qj is de�ned to be the

top
1√
n

th quantile, we show that Phase 1 ends with high probability a�er 2 log(n)
√
n applications.

A�er Phase 1, we see that by the bounded hazard rate assumption, every application from a publicly

quali�ed applicant will cause the quali�cation requirement to increase by at least 1 with probability

at least
1

exp(B)
√
n

. Since the total increase in quali�cation requirement is bounded by the range of

public scores, which is at most C log
C (n), we obtain that with high probability, the total number of

publicly quali�ed applications to �rm j is at most O∗(
√
n).

19
In practice, when updating the quali�cation requirement, we update it to the minimum public score that is above the

current quali�cation requirement, as this allows us to communicate each quali�cation signal in O (log(n)) bits by indicating

the identity of the worker whose public score we set as the threshold.

20
Note that one can terminate the above protocol with a failure message when the communication cost reaches a threshold

of O∗(
√
n) to yield a protocol that is always bounded in communication and succeeds in �nding a stable match with high

probability.
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3.1.2 Complete protocol with preference oracle only. �e complete protocol that we propose is a

modi�cation of the previous protocol that can be implemented without �rms having knowledge of

their private scores. Furthermore, agents do not know their preferences a priori, but learn them

by querying the preference oracle de�ned in Section 2.3 (i.e., with each query, they learn their

most preferred partner within a certain set). Finally, we no longer need any information about the

distribution of private scores other than the bound B on the hazard rate.

Protocol 3. Communication-e�cient deferred acceptance (CEDA)

Initialize the quali�cation requirement for each �rm j to be zj = aj .

(1) Preference signaling: Each �rm j bins workers according to public scores into bins [a, a+1),
[a+1, a+2), · · · . In each bin, let the number of workers be l . �e �rm sends a preference signal
to its top k1(n, l) := 2 exp(B)max(log

2(n), l√
n
) workers from that bin. (If there are fewer than

this number of workers in the bin, then the �rm sends a preference signal to all of them.)
(2) Deferred acceptance with quali�cation requirement: Run the worker-proposing de-

ferred acceptance algorithm (Protocol 1 in Section 2.1) with the following two modi�cations:
(a) Workers apply only �rms for which they are quali�ed.
(b) Each �rm j updates the quali�cation requirement zj as follows: it keeps zj equal to the

minimum value of aj for the �rst k2(n) := 3 exp(B)
√
n applications that it receives. Call

this Phase 1. A�er Phase 1, the �rm sends a quali�cation signal to increase zj by 1

a�er every k3(n) := 3 exp(B) log(n)
√
n applications it receives from workers that publicly

qualify.21

�e above protocol eliminates �rms’ need to know their cardinal utilities using two techniques:

signaling by binning and updating quali�cation signals zj based on receiving many applications.

�e binning in the preference signaling phase is designed so that, with high probability, a �rm

sends a preference signal to every worker that it would have signaled under the simpler protocol.

�e updating of quali�cation signals is designed so that the signal zj is always lower than what it

would have been under the simpler protocol. �e idea is that because private scores are relatively

fat-tailed, if a �rm receives many applications, then the private score of at least one of them must

be fairly high. And since these are applicants who publicly qualify, their public scores are also

reasonably high, so the �rm likely have found a good candidate. When this happens, workers who

are not as competitive in terms of public score and who did not receive a preference signal have

negligible chance of being accepted, so they might as well not apply.

3.2 The lower bound: Theorem 3.2
We use a natural distribution over preferences to prove the lower bound. For simplicity, we assume

that preferences of both sides follow a separable structure, with the private component distributed

according to an exponential distribution with rate parameter 1. �ere are n workers, ex ante

identical to each other, and n �rms, ex ante identical to each other. Each agent has an outside

option of value
logn

2
, and the public score between every worker and every �rm is 0. We show that

in this market, any matching protocol that succeeds with high probability requires Ω(
√
n) bits of

communication and Ω(
√
n/logn) preference queries per agent.

Note that this is close to what is achieved under the naive protocol in which �rms and work-

ers simply communicate their entire preference lists. �e reason is that in this market, each

21
Note that if workers can observe the number of applications a �rm receives from publicly quali�ed applicants, then the

�rms does not need to send quali�cation signal. Either the workers themselves or the platform can use the number of

applications already received to infer that certain workers do not have a chance.
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agent �nds roughly O(
√
n) partners acceptable (whom they prefer over their outside option), and

communicating the entire preference list over acceptable partners requires only

√
n logn bits.

�e formal proof is deferred to Appendix B. �e main ideas are as follows. First, we make the

problem simpler and allow workers to communicate with each other without cost (e�ectively

creating a “super-worker” for communication purposes, who possesses all information known to

workers), and allow �rms to communicate with each other without cost (creating a “super-�rm”).
22

In this simpli�ed communication problem, we prove an Ω(n3/2) lower bound on the number of

bits of communication needed between the super-worker and the super-�rm, to compute a stable

matching with high probability. �is implies an Ω(
√
n) lower bound on the average communication

cost per agent. We infer an Ω(
√
n/logn) lower bound on the preference learning cost per agent,

since any protocol that usesK preference learning oracle calls can be modi�ed into a communication

protocol that has a communication cost of O(K log(n)).
To show the above bounds, we �rst show that for a matching protocol to succeed with high

probability, it must identify approximately if each worker-�rm pair �nds each other mutually

acceptable. �e reason is that a signi�cant fraction of these mutually acceptable pairs must be

matched in all stable matchings. �ere are n2
worker-�rm pairs in total. For each pair, we use ideas

from information complexity theory (see [Braverman, 2015]) to show that the protocol must use

Ω(1/
√
n) bits of communication on average to approximately determine mutual acceptability,

23

leading to a bound of Ω(n2/
√
n) = Ω(n3/2) on the total amount of communication.

4 TWO-ROUND PROTOCOLWITH PRIVATE COMMUNICATION
�e CEDA protocol in Section 3.1 is sequential: a worker’s decision about which �rm to apply to

depends on the �rms’ current quali�cation requirements, which in turn depends on other workers’

application decisions. Implementing such a protocol may create undesirable congestion, as agents

need to wait for other agents to act before knowing what preference information to learn next

and how to act next. In this section, we explore the possibility of simultaneous protocols, in which

the dependence of each agent’s action on prior actions is minimized. In particular, we consider

two-round protocols24
: in the �rst round, agents simultaneously signal to various partners, and

in the second round everyone reports a partial preference list to a central matchmaker, based on

signals received from the �rst round. One interpretation of the central matchmaker is a centralized

clearinghouse such as in the National Residency Matching Program (NRMP). Another interpretation

is that it is a proxy for decentralized matchmaking. Signaling then would intuitively correspond to

initiating contact, and we assume that a�er a decentralized matchmaking process, agents arrive at

a matching with no blocking pair of agents who are in contact with one another.
25

It turns out one can construct a separable market in which any two-round protocol that �nds a

stable matching with high probability requires Ω(n) bits of communication per agent (see Appen-

dix D). As a result, we se�le for a simpler model of matching markets, which we call tiered random
markets. In such markets, agents are partitioned into tiers, and everyone prefers be�er tiers to

worse tiers and has uniformly random preferences among partners of a given tier (see Section 4.1).

�is model still allows both vertical and horizontal di�erentiation, and it yields clean insights into

22
Further, we allow the public scores to be common knowledge among agents.

23
Note that in this setup, i �nds j acceptable with probability 1/

√
n, and the same with i and j swapped. Each of i and

j can communicate this exactly using O (logn/
√
n) bits (on average). In Appendix B, we show that one cannot do much

be�er, in particular, Ω(1/
√
n) bits of communication are required to approximately determine mutual compatibility.

24
We need at least two rounds for agents to be able to respond to signals from others.

25
In the labor market, either the worker needs to reach out to the �rm, or the �rm needs to reach out to the worker (perhaps

through a headhunter) before the formal screening process can commence.



Itai Ashlagi, Mark Braverman, Yash Kanoria, and Peng Shi 12

the relative competitive positions of agents and what kinds of signals are the most informative (see

Section 4.2 for an example). We present our two-round protocol in Section 4.3.

An additional advantage of the protocol we present is that it uses only private messages, which

are messages that are visible only to a sender and a receiver, but not to anyone else. (�is is

in contrast with the messages de�ned in Section 2.3, which are visible to everyone.) Requiring

messages to be private models communication in decentralized markets, in which there is no

central platform to �lter for each agent communication relevant for that agent.
26

Requiring private

messages automatically controls for the amount of information agents receive through the protocol.

4.1 Tiered random markets
A tiered market is a two-sided matching market with certain restrictions on preferences. Let agents

be partitioned into disjoint tiers, and restrict the preferences of agents so that each agent strictly

prefers partners of be�er tiers to worse tiers. For general tiered markets, the preference of agents

for partners of the same tier can be arbitrary. Let I1 denote the �rst (best) tier of workers, I2 the

second tier, and so on. We have that the set of workers, I =
⋃

k Ik , where index k is called the

tier index of workers. Similarly de�ne Jk as the kth tier of �rms, with J =
⋃

k Jk . For each k , let

mk = |Ik | and nk = |Jk |. Letm =
∑

k mk be the total number of workers and n =
∑

k nk be the total

number of �rms. (In Section 2, we denotedm and n by nI and n J respectively, but we alter notation

slightly for simplicity in the tiered random case.)

For any tiered market, de�ne sk to be the number of workers in tiers 1 through k , sk =
∑k

i=1
mk .

Similarly, de�ne tk =
∑k

i=1
nk . We say that tiers Ik and Jl are overlapping if sk > tl−1 and tl > sk−1.

Note that only agents from overlapping tiers can be matched in any stable matching.

A uniformly random market is a two-sided matching market in which the preferences of agents

are uniformly random and independent, and every agent �nds every partner acceptable.
27

�e

uniformly random market is the most well-studied stochastic model of matching in the literature.
28

A tiered random market is a tiered market in which the preferences of agents between any

individual tier Ik of workers and Jl of �rms follow that of a uniformly random market. In other

words, agents strictly prefer partners of be�er tiers, but have uniformly random and independent

preferences for partners within a given tier. Furthermore, everyone prefers being matched to

anyone over being unmatched.

4.2 Example and intuition
Before giving the full protocol, we consider a simple numerical example, which will illustrate the

main insights. Suppose that there are two tiers of workers, of 50 workers each. �ere are also two

tiers of �rms, the top tier with 20 �rms, and the second with 90 �rms. �is is illustrated in Figure 1.

�e �rst observation is that the tier structure precludes certain matches in stable matching. For

example, �rms in J1 are guaranteed to be able to get workers in I1, so workers in lower tier I2
cannot hope to be matched to the top tier �rms in J1.

�e second observation is that we can infer whose preferences ma�er more. One insight from

the theory of uniformly random markets is that it is most e�cient in terms of communications for

the short side to propose to the long side. (For example, [Ashlagi et al., 2016] show that in a market

26
In CEDA, it may be realistic to think that a central platform noti�es workers whenever they are no longer quali�ed for a

�rm, or that there is a central place where workers can see which �rms they are currently quali�ed for. But it would be

unrealistic to expect every agent to keep checking the website of each �rm individually for updates to the quali�cation

requirements.

27
Precisely speaking, for every worker i ∈ I , the preference ranking R I (i) is a uniformly random and independent

permutation of J . An analogous statement holds for �rms.

28
See for example [Wilson, 1972], [Knuth, 1976], [Pi�el, 1989], [Ashlagi et al., 2016].
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workers firms

Fig. 1. An example of a tiered random market (see Section 4.2). There are two tiers of workers, I1 and I2, and
two tiers of firms, J1 and J2. The height of each rectangle corresponds to the number of agents in that tier.
The arrows show the direction of the most informative signaling. The diagram highlights the situation of
worker tier I2: these workers should signal to the firms in J2 since they are in a be�er competitive position.
However, they should amplify the number of signals they send to account for the fact that some signals
would be “wasted” on the firms (represented by stripes) that received o�ers from be�er workers from I1.

with n − 1 workers and n �rms, the number of applications in the worker-proposing DA algorithm

is about log(n) per agent, whereas the number of applications in the �rm-proposing DA is about

n
log(n) per agent.) Hence, it makes the most sense for the top �rms in J1 to signal to the workers in

I1 rather than the other way around. (See the arrows in Figure 1.)

�e third observation is that because preference signals are sent in parallel, certain agents may

have to send extra signals to account for the fact that many partners they signal would be taken up

by agents from be�er tiers, against whom they do not have a chance. For example, for the second

tier of workers I2, there are 90 �rms in J2 they can signal, but 30 of them would receive be�er o�ers

from workers in I1, so for every three signals they send, one would be essentially wasted. �is

means that they should amplify the number of signals they send by a factor of
3

2
.

For certain agents under certain tier structures, this ampli�cation e�ect may be large. For

example, consider the case in which there is one single tier of n �rms and there are n tiers of one

worker each, so that the workers are completely vertically di�erentiated. In this example, the

bo�om workers may need to signal up to O(n) number of �rms, because of the ampli�cation e�ect.

However, one can show that the average ampli�cation needed is only O(logn).29
For arbitrary tier

structures, one can show that this is always the case: the average ampli�cation needed is small.

�ese insights are illustrated in Figure 1, and they form the basis of our protocol in Section 4.3.

4.3 The targeted signaling protocol
In this section, we derive a two round protocol for tiered random markets called the targeted
signaling protocol. It elicits information in a simultaneous way, having agents signal to those they

idiosyncratically like via private messages in parallel.

We �rst present a high-level summary of the protocol. First, we designate for each agent a target
tier based on the tier structure alone, which intuitively represents the best partners for whom the

agent has high chances of ge�ing. �e protocol requires every agent to signal his favorite partners

within his target tier, with the number of signals being determined by a formula that incorporates

the agent’s competitiveness in the market (see De�nition 4.3). A�er all the signals have been sent,

the protocol then collects partial preferences among agents between whom a signal was sent, and

runs the DA algorithm on the partial preferences collected. (�e DA algorithm is for concreteness;

any process that results in a stable matching restricted to the partial preferences can be used.)

29
�e reason is that the worker ranked number k needs to send only O ( n

n−k+1
) signals.
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More precisely, we de�ne the following notions for a tiered random market. For any tier of

workers Ik , we say that the tier of �rms Jl is in a (weakly) worse competitive position if tl ≥ sk .

De�nition 4.1. For each worker i in tier Ik , de�ne the target tier of the worker as best tier of �rms

that is in a (weakly) worse competitive position. In other words, this is Jl , where

l = min{l : tl ≥ sk }.
Similarly de�ne the target tier of �rms by switching the role of I and J , s and t .

De�nition 4.2. For each worker i ∈ I in tier Ik with target tier Jl , de�ne the worker’s target tier
competitiveness as

ρ(i) = tl − sk−1

nl
.

�is is the proportion of the target tier Jl that will not be matched to workers of be�er tiers.

Similarly de�ne ρ(j) for �rms.

In the example in Figure 1, the target tiers are indicated by the arrows, so that the target tier of

�rm-tier J1 is worker-tier I1, the target tier of worker-tier I1 is �rm-tier J2 and so on. Firms J2 do

not have a target tier because they are in the worst competitive position possible. �e target tier

competitiveness of the worker-tier I1 and �rm-tier J1 are both 1, since these are the best tiers on

each side. �e target tier competitiveness of I2 is the proportion of agents in J2 who are not shaded,

and is equal to
60

90
= 2

3
in this example.

De�nition 4.3. De�ne the target number of an agent a ∈ I ∪ J as

r (a) = 24 log
2(n)

ρ(a) .

Note that the target number is higher for agents with lower target tier competitiveness.

De�nition 4.4. A redundant �rm-tier is a �rm-tier l whose target tier k satis�es sk = tl .

�e targeted signaling protocol is de�ned precisely as follows. Beside the workers and �rms,

there is an additional agent called the matchmaker, who synchronizes the market into two rounds

and runs the DA algorithm on partial preference submissions. (�is is a theoretical construct and

can be interpreted as a proxy for a decentralized matching process.)

(1) Signaling round: Each agent a ∈ I ∪ J , except those in redundant �rm-tiers, signals to its

favorite r (a) partners in the agent’s target tier. A�er this, the agent sends a noti�cation to

the matchmaker indicating that the signaling is done.

(2) Matching round: Once the matchmaker receives the noti�cation from everyone, he elicits

from each agent a partial preference ranking of partners, with the ranking restricted to

partners who either signaled to the agent or to whom the agent signaled. �e matchmaker

then runs the DA algorithm (either worker-proposing or �rm-proposing) based on the

partial rankings. If the result contains fewer than min(m,n) matches, then output a failure

message. Otherwise, output the resultant matching.

Theorem 4.5. For any tiered random market, the targeted signaling protocol is a stable matching
protocol that uses only private messages and succeeds with high probability.30 Without loss of generality,
let n ≥ m. �e protocol’s average communication cost isΘ(log

4(n)) per agent and its average preference
learning cost is Θ(log

3(n)) per agent.
30

�e protocol is deterministic, so the probability is taken over the randomness in the preferences.
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�e proof of �eorem 4.5 is in Appendix F. �e main steps are as follows: First, we show that,

with high probability, the set of signals sent in the signaling round contains a stable matching.

�is result, stated in Lemma F.2, can be interpreted as a generalization of �eorem 6.1 b) of [Pi�el,

1992] to markets with richer structures. �e proof of this uses a new bound on the average rank of

agents in any stable matching in unbalanced uniform random markets.
31

Second, we show that

whenever the set of signals contains a stable matching, running DA on the partial preferences as in

the matching round would also return a stable matching.
32

�ird, we count the total number of

signals and show that it is no more than O(log
3(n)) per agent.

Remark 1. We also have a variant of the targeted signaling protocol with a lower average commu-
nication cost of Θ(log

3(n)) per agent and a preference learning cost of Θ(log
2(n)) per agent, but that

involves a much more complicated formula for the target number than De�nition 4.3. We think that
the gain is minimal, so we show the simpler and more intuitive version here.

Remark 2. In Appendix H, we show that any stable matching protocol that uses only private
communication and succeeds with high probability uses at least Ω(log

2(n)) bits of communication per
agent. �is lower bound can be a�ained by a protocol that uses sequential signaling, which means it
is not a two-round protocol. �e targeted signaling protocol presented above achieves near optimal
communication cost, while having the added advantage of being a two-round protocol.

5 INCENTIVE COMPATIBILITY
�e deferred acceptance (DA) algorithm, even in the se�ing with full preference elicitation, is not

completely incentive compatible: an agent on the non-proposing side may pro�tably deviate from

truthful reporting by truncating his or her preference ranking.
33

Nevertheless, the DA algorithm

is known to be strategyproof for the proposing side.
34

Moreover, assuming truthful reporting

by other agents, an agent on the non-proposing side cannot unilaterally deviate and be matched

with someone be�er than her best stable partner,
35

, which implies that DA is incentive compatible

for these agents if they have a unique stable partner. In summary, under DA agents can never

unilaterally deviate from truthful reporting and get someone be�er than their best stable partner,

and under full information of the preferences of others, they can always unilaterally deviate to get

matched to one of their stable partners.

In a communication protocol, we say that the agent complies with the protocol if she truthfully

participates according to what is prescribed, and that the agent deviates from the protocol otherwise.

We show that all the communication protocols proposed in this paper are in a certain sense “as

incentive compatible” as DA with full preference elicitation, in large markets.

De�nition 5.1. A stable-matching protocol is as incentive compatible as DA if no agent can

unilaterally deviate from the protocol and be matched with someone be�er than their best stable

partner (under true preferences). Similarly, a protocol is as incentive compatible as DA with high
probability if there exists a function δ (n) with δ (n) → 0 as n →∞, such that for any �xed agent,

31
�e bound, stated in Proposition G.1, is analogous to �eorem 1(i) of [Ashlagi et al., 2016], except that the constant

is worse but the notion of “high probability” is stronger. �e proof of Proposition G.1 is based on the integral formula

technique of [Pi�el, 1992] and is therefore much cleaner than the analysis in [Ashlagi et al., 2016].

32
�is result uses the structure of tiered markets and the de�nition of target tier, and is not true in general: even if a set of

partial preferences contains a stable matching, running DA on these partial preferences may result in a matching that is

stable only with respect to the partial preferences but not with respect to the whole market.

33
See Chapter 4 of [Roth and Sotomayor, 1990] for a thorough exposition of all these incentive properties of DA.

34
See [Roth, 1982] and [Dubins and Freedman, 1981].

35I.e., their most preferred partner in all stable matchings. For a proof, see �eorem 4.11 in [Roth and Sotomayor, 1990]

which is originally credited to [Demange et al., 1987].
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the probability that the agent can unilaterally deviate from the the protocol and be matched with

someone be�er than her best stable partner (under the true underlying preferences) is at most δ (n).

Theorem 5.2. �e simple version of the CEDA protocol (from Section 3.1.1) is as incentive compatible
as DA. �e modi�ed version of the CEDA protocol (from Section 3.1.2) and the targeted signaling
protocol (from Section 4.3) are as incentive compatible as DA with high probability.

�e “high probability” quali�cations are needed for the la�er two protocols because, with a small

probability, they may fail to �nd a stable matching. �e proof of �eorem 5.2 is in Appendix I with

an outline of the main argument here: we �rst observe that all these protocols can be described as

running the worker-proposing DA on a suitable “subgraph of signals”G . When an agent unilaterally

deviates from the protocol, she may in�uence the �nal subgraph to be some other G ′ and induce

a matching µ ′ outpu�ed by the protocol. We then apply a blocking lemma
36

as in [Gale and

Sotomayor, 1985] on µ ′ and G and argue that there must be an edge (i, j) ∈ G that blocks µ ′, and

we argue that this same edge must be present in G ′, which contradicts µ ′ being the output of the

protocol.

Corollary 5.3. �e simple version of the CEDA protocol is strategyproof for workers. In the
modi�ed version of the CEDA protocol, for each worker, with high probability she cannot pro�tably
deviate from the protocol with high probability.

�eorem 5.2 also implies that whenever an agent has a unique stable partner, the probability

that the agent can pro�tably deviate from the protocol vanishes in large markets. �us, if for each

agent, the probability that the agent has multiple stable partners is small, then complying with the

protocol is an ϵ-Bayes Nash equilibrium for all parties. In tiered-random markets, we can prove

this second condition for “typical” markets when the size of each tier is large. �is is made precise

as follows.

De�nition 5.4. A tiered market satis�es general imbalance if the sets {t1, t2, · · · } and {s1, s2, · · · }
are disjoint.

Theorem 5.5. �ere exists a function δ : N → R satisfying δ (y) → 0 as y → ∞ such that the
following holds. For any y ∈ N, consider any tiered random market satisfying general imbalance in
which the number of agents in each tier is at least y. �en for each agent, the probability that the
agent can pro�tably deviate from the targeted signaling protocol is at most δ (y).

6 DISCUSSION
�is paper studies the communication requirements in two-sided matching markets. We �nd that the

communication cost for reaching a stable matching is typically very low. For markets in which �rms

have separable preferences and workers have arbitrary preferences, we construct a communication

protocol (CEDA), under which each agent only needs to send O∗(
√
n) messages on average, which

vastly reduces congestion compared to the O(n) benchmark of a naive implementation of deferred

acceptance. With additional structure over preferences (as in tiered-random markets), we identify

a two-round protocol, which allows for parallel signaling and requires only Θ(log
4 n) bits of

communication per agent. In each of these protocol, the main idea is to encourage agents to send

signals that help other agents understand with whom they have a realistic chance of matching

with.

36
�e same blocking lemma can be used to prove the incentive results for DA. See pages 92–93 of [Roth and Sotomayor,

1990].
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Our results provide some theoretical justi�cation for applying the solution concept of stability

to real world matching markets. �ey can also help guide improved designs for matching markets.

For example, in school choice a student may �nd it very useful to know which set of schools she is

likely to be accepted at, as this can reduce her search costs. So our results motivate school choice

systems providing more information about chances of matching, similar to what is currently done

for university admission in Israel. Online matching markets (labor markets, dating platforms) may

also use prior knowledge to guide match recommendations, facilitate appropriate signalling, and

so on.

Our paper suggests directions for future research on the nature of congestion. For example, in

Appendix D, we give a simple example of a separable market in which no two-round protocol can

reach a stable matching with low communication cost. In that example, the problem would be

solved by having an additional round of an a�ermarket (as done, for example, in the scramble a�er

the main match conducted by the NRMP). �is raises the question of how many agents may remain

unmatched a�er a two-round protocol, or alternatively, how many rounds are needed to �nd a

stable matching.
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A RELATED LITERATURE
�is paper relates to several strands of literature. First is the literature on communication complexity

in economic models. �e amount of communication required to reach e�cient outcomes in markets

with prices was �rst studied formally by Hurwicz [1973] and Mount and Reiter [1974].
37

Segal

[2007] studies more generally the communication requirements for social choice rules, including

stable matching, and shows that minimal information is captured by “budget sets,” which can be

viewed as analogs of budget sets in convex economies.
38

A number of papers analyze the communication requirements for reaching or verifying stability

in two-sided matching markets under di�erent models of communication (Chou and Lu [2010],

Gonczarowski et al. [2015], Ng and Hirschberg [1991]).
39

�ese studies, including Segal [2007],

make no assumptions about agents’ preferences and �nd that Ω(n) bits of information are needed

per agent in the worst case.

�e next strand of literature concerns large two-sided matching markets. Various papers investi-

gate the size of the core and incentive compatibility of stable mechanisms (Ashlagi et al. [2016],

Immorlica and Mahdian [2005], Kojima and Pathak [2009], Lee [2016]). Knowing that the core is

small does not imply, however, that the communication cost for �nding a stable matching is small.

Close to our paper are Ashlagi et al. [2016] and Pi�el [1992] who study random markets with a

single tier on each side. Ashlagi et al. [2016] �nd that in slightly unbalanced markets, agents on the

short side get matched, on average, to their O(logn)-th ranked partner. �eir results imply that on

average the amount of information needed is O(log
2 n) per agent, since a communication protocol

can query preferences of agents on the short side and send application messages to agents on the

long side. �eir analysis can be extended to tiered markets with a constant number of large tiers on

each side, but it is unclear what happens when the number of tiers grows with n. Our protocol for

tiered markets achieves O(log
4 n) bits of communication per agent for an arbitrary tier structure,

and this protocol has the additional advantage of allowing signals in parallel. �e analysis builds

on techniques from Pi�el [1992] and thus can be viewed as a generalization of his work to more

complex preferences. Various papers ask under what conditions a decentralized market is likely to

reach a stable outcome (Echenique and Yariv [2012], Haeringer and Wooders [2011], Niederle and

Yariv [2009], Pais [2008]). �ese papers �nd that complete information enables stable matchings to

arise in equilibrium, but more structure over preferences is required under incomplete information.

Structural assumptions on agents’ preferences in large matching market is not novels. Numerous

papers take this approach for the purposes of identi�cation and analysis of equilibrium properties

(see Diamond and Agarwal [2016], Hitsch et al. [2010b], Lee [2016], Menzel [2015], Peski [2015]). It

is worth noting that Menzel [2015] and Peski [2015] assume agents have only O(
√
n) acceptable

partners, so agents in their model have only O∗(
√
n) communication cost. We show that the same

low level of communication is achievable under much more general assumptions about preferences.

Our paper also connects with the literature on congestion and signaling in matching markets, and

we contribute to this literature by giving a mathematically precise measure of congestion in terms

of communication complexity. Previous work document congestion and how agents deal with it

in practice, but do not give a mathematically precise measure. Roth and Xing [1994] and Avery

37
�ese studies stemmed from Hayek [1945], who asked how decentralized information can be utilized to reach economic

e�ciency.

38
Various papers implicitly study budget sets to characterize core outcomes in two-sided markets (Kelso Jr. and Crawford

[1982], Shapley and Shubik [1971]) and in trading networks (Hat�eld et al. [2015]).

39
Prior to these studies, Knuth [1976] asked whether stability can be reached in faster than n2

steps as required by DA in

the worst-case scenario and Gus�eld [1987] asked whether verifying stability can be done in faster than quadratic time.
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et al. [2001] document congestion in labor markets, initiating a large literature on unraveling.
40

Echenique et al. [2016] study the performance of a centralized deferred acceptance mechanism in

the lab and �nd that many agents on the proposing side tend to skip potential partners, which

resembles our protocol if such skipping arises from agents’ pessimism about the likelihood of

being accepted. Previous papers that study signaling in matching markets include Lee and Schwarz

[2009], Coles et al. [2010b], Lee and Niederle [2015], and Abdulkadiroğlu et al. [2015]. However, in

all these papers, signaling improves the cardinal e�ciency over stable matchings, whereas in our

work, signaling still leads to a stable matching but the communication overhead is decreased.

Finally, our work builds on tools developed in the computer science literature on communication

complexity. Our proof for the lower bound in separable markets uses the theory of information

complexity, which is a relatively recent approach that uses Shannon’s information theory to derive

tight communication complexity bounds.
41

�e

√
n expression in the lower bound is related to

results established for the communication complexity of set disjointness, one of the most studied

problems in communication complexity theory (see [Kalyanasundaram and Schnitger, 1992] and

[Razborov, 1992]).

B PROOF OF LOWER BOUNDWITH BROADCAST
We obtain the communication lower bound in a model that is even stronger than the broadcast

model. Consider the following two-party relaxation of the problem of �nding a stable matching.

Alice controls all the workers and Bob controls all the �rms. �e workers’ and �rms’ preferences

are generated according to the model. Alice and Bob want to �gure out a stable matching by

communicating with each other. Note that if there is a distributed broadcasting protocol that uses a

total of B bits of communication, then Alice and Bob can simulate it using B bits of communication:

Alice will simulate all the workers’ messages, and Bob will simulate all the �rms’ messages. Note

that the converse is not true, since Alice’s messages are allowed to depend on the preferences of all

workers simultaneously (which amounts to having “free” communication among workers). We

will show an example where Ω(n3/2) communication between Alice and Bob is necessary, which

will immediately imply an Ω(n3/2/n) = Ω(
√
n) lower bound on average communication per agent

needed to solve the original (harder) problem.

In fact, we show our lower bound under a further restriction of the model with the workers’

preferences being stochastic and similar to the �rms’ preferences. �e construction is as follows.

�ere are n workers and n �rms. Let vi j be worker i’s latent utility for �rm j and uji be �rm j’s
latent utility for worker i . Let both be distributed independently according Exp(1), which is the

exponential distribution with rate parameter 1. (i.e., the public scores are zero, and the private

scores are exponentially distributed.) Let the the value of the outside option be
logn

2
for every agent.

Note that P(vi j ≥ logn
2
) = 1√

n
. �erefore, we expect every agent to have around

√
n acceptable

partners.

Let Alice be given all the workers’ preferences, and Bob be given all the �rms’ preferences. Let π
be the communication protocol, at the end of which Alice and Bob output a matching µπ that is

stable with probability at least .9 (that is, the matching protocol is successful with a high constant

probability). We claim that it must be the case that the length of the protocol (i.e., the number of

40
In the the market for clinical psychologists, which was organized in the early 1990’s in a decentralized match day,

numerous program directors skipped their rankings and made o�ers to applicants that indicated they would accept the

o�er (Roth and Xing [1994]).

41
A more detailed account of information complexity and its connections to communication complexity can be found in

[Braverman, 2015].
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bits of communication), is bounded as |π | = E[|Π |] = Ω(n3/2), where Π is the realization of the

protocol π .

We will focus only on whether a pair of agents �nd each other mutually acceptable (ignoring

other ordinal information), such mutually acceptable pairs being the only pairs that can be matched

under any stable matching (this will lead to Claim B.2 below). If worker i and �rm j are a mutually

acceptable pair, and moreover, this is the only mutually acceptable pair that each of i and j is a

member of, then (i, j) must be a matched pair under any stable matching. �is will yield Claim B.1

below. We will draw on ideas from information complexity theory (see, e.g., [Braverman, 2015]),

together with Claims B.1 and B.2, to establish Claim B.3 and hence our lower bounds. Note that

our proof is short and self contained, using only basic facts from information theory [Cover and

�omas, 2012].

We de�ne the following boolean random variables for each worker-�rm pair (i, j):

Ai j :=

{
1 if vi j ≥ logn

2

0 otherwise

and Bi j :=

{
1 if uji ≥ logn

2

0 otherwise

(2)

In other words, Ai j = 1 means that worker i likes �rm j more than the outside option, and Bi j = 1

means that �rm j likes worker i more than the outside option. Note that all Ai j , Bi j are distributed

as Bernoulli(α), where α = 1/
√
n, and are independent of each other. In addition, let Mi j be the

indicator random variable of whether worker i is matched to �rm j under µπ .

Claim B.1. For su�ciently large n, we have P[Mi j = 1|Ai j = Bi j = 1] > 10
−2.

Proof. Assume Ai j = Bi j = 1, so worker i and �rm j �nd one another acceptable. By a standard

Cherno� bound, the probability that worker i has more than 2

√
n acceptable partners is at most

exp(−
√
n

3
). Since the probability that each of these �rms �nd worker i to be acceptable is exactly

1√
n

, the probability that another �rm out of these other than j �nds worker i acceptable is at most

1 − (1 − 1√
n
)2
√
n

, which converges to 1 − e−2
for large n. For su�ciently large n, the sum of these

two probabilities is no more than 1 − e−2.1
, so the chance that j is the unique �rm that both �nds i

acceptable and also is acceptable to i is at least e−2.1
. Since the preferences of workers and �rms

are independent, the chance that both i and j are the unique mutually acceptable partners for one

another is at least e−4.2
for su�ciently large n. �erefore, for su�ciently large n,

P[Mi j = 1|Ai j = Bi j = 1]
≥ P[π outputs a stable match] · P[i is with j in all stable matches|Ai j = Bi j = 1]
> (.9) · e−4.2

> 10
−2 .

�

Claim B.2. P[Mi j = 1|Ai j = 1,Bi j = 0] = 0, P[Mi j = 1|Ai j = 0,Bi j = 1] = 0, and P[Mi j =

1|Ai j = 0,Bi j = 0] = 0.

Proof. �is follows from the fact that two agents can only be matched with one another in a

stable matching if both �nd one another acceptable (more preferable that the outside option). �

Note that Claims B.1 and B.2 together imply that π must approximately compute the value of

the AND function Ai j ∧ Bi j in the sense that knowing that Mi j = 1 implies that Ai j ∧ Bi j = 1,

and when Ai j ∧ Bi j = 1, we know that Mi j = 1 with at least a constant probability. Next, we

make the following information-theoretic claim, which quanti�es the information complexity of
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approximately computing the boolean AND function (this line of reasoning is similar to Braverman

et al. [2013]).

Claim B.3. We have
I (Ai jBi j ;Π) = Ω(α) = Ω(1/

√
n). (3)

Here Π is the again the random variable representing the realization of the protocol π , and

I (X ;Y ) is Shannon’s mutual information, which, informally, measures the amount of information a

random variable X contains about a variable Y (and vice-versa). In terms of Shannon’s entropy

H (·), the mutual information is I (X ;Y ) = H (X ) − H (X |Y ) = H (Y ) − H (Y |X ). In other words, Alice

and Bob cannot hope to even approximate the value of Ai j ∧ Bi j without revealing a substantial

amount of information about them. Note that fully revealing the values of Ai j ,Bi j corresponds to

Shannon’s entropy H (Ai j ,Bi j ) = Θ((logn)/
√
n). Let us prove Claim B.3.

Proof. We rely on the following basic facts about protocols and about mutual information.

(1) If Ai j and Bi j are independent, and independent of the players’ other inputs, then for

each transcript realization π of Π, the variables (Ai j |Π = π ) and (Bi j |Π = π ) are also

independent. �is is because one player speaking at a time cannot introduce a dependence

between these variables (the formal proof is by induction on protocol rounds).

(2) �erefore, we have by the Chain Rule (see e.g. [Cover and �omas, 2012] for information

theory basics):

I (Ai jBi j ;Π) = I (Ai j ;Π) + I (Bi j ;Π |Ai j ) = I (Ai j ;Π) + I (Bi j ;ΠAi j ) − I (Bi j ;Ai j ) =
I (Ai j ;Π) + I (Bi j ;ΠAi j ) = I (Ai j ;Π) + I (Bi j ;Π) + I (Bi j ;Ai j |Π) = I (Ai j ;Π) + I (Bi j ;Π).

�erefore, it will be enough to lower bound I (Ai j ;Π) + I (Bi j ;Π).
(3) We can write the mutual information expression we are interested in in terms of KL-

divergence as follows:

I (Ai j ;Π) = Eπ∼ΠDKL(Ai j |Π=π ‖Ai j ). (4)

A similar expression holds for Bi j . Again, a proof and further discussion can be found in

information theory texts such as [Cover and �omas, 2012].

(4) It can be shown by direct calculation that for any constant c < 1, and x < 1/2, it is the case

that for c ′ < c

DKL(Bernoulli(c ′ · x)‖Bernoulli(x)) = Ωc (x), (5)

where the Bernoulli random variable Bernoulli(x) takes the value 1 w.p. x , and the value 0

w.p. 1 − x .

By Claims B.1 and B.2 we have that

P[Mi j = 0] ≥ P[(Ai j ,Bi j ) , (1, 1)] = (1 − α2), (6)

and

P[Mi j = 0, (Ai j ,Bi j ) = (1, 1)] < α2 · (1 − 10
−2). (7)

�erefore, for a su�ciently large n (and thus a su�ciently small α ),

P[(Ai j ,Bi j ) = (1, 1)|Mi j = 0] < α2(1 − 10
−2)

1 − α2
≤ α2 · (1 − 9 · 10

−3). (8)

Let ΠMi j=0 be the distribution of the history of the protocol, conditional on Mi j = 0, we have by

observation 1 above that

Eπ∼ΠMij =0
P[(Ai j ,Bi j ) = (1, 1)|Π = π ] = P[(Ai j ,Bi j ) = (1, 1)|Mi j = 0],
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and thus by Markov’s inequality

Pπ∼ΠMij =0
[P[(Ai j ,Bi j ) = (1, 1)|Π = π ] < α2 · (1 − 2 · 10

−3)] ≥ 1 − 0.991

0.998

> 7 · 10
−3. (9)

Note that P[(Ai j ,Bi j ) = (1, 1)|Π = π ] < α2 · (1 − 2 · 10
−3) implies that either P[Ai j = 1|Π = π ] <

α · (1 − 10
−3) or P[Bi j = 1|Π = π ] < α · (1 − 10

−3), and by (5) above, for any π ∈ ΠMi j=0,

DKL(Ai j |Π=π ‖Ai j ) + DKL(Bi j |Π=π ‖Bi j ) = Ω(α). (10)

By (6) and (9), the probability of such a π is at least 7 · 10
−3 · (1 − α2) > 6 · 10

−3
for su�ciently

large n. �e contribution of such π ’s to the expectation of DKL(Ai j |Π=π ‖Ai j ) + DKL(Bi j |Π=π ‖Bi j )
is therefore at least Ω(α), since DKL is always non-negative, this implies by (4) that

I (Ai j ;Π) + I (Bi j ;Π) = Eπ∼Π
[
DKL(Ai j |Π=π ‖Ai j ) + DKL(Bi j |Π=π ‖Bi j )

]
= Ω(α),

concluding the proof. �

Fact 1. If X and Y are independent, then I (X ,Y ;Z ) ≥ I (X ;Z ) + I (Y ;Z ).

We can now conclude the proof of �eorem 3.2. Since Ai j ,Bi j are mutually independent for the

di�erent values if (i, j), we get using the above fact, and the fact that entropy is always an upper

bound on mutual information,

H (Π) ≥ I (A11B11 . . .AnnBnn ;Π) ≥
n∑
i=1

n∑
j=1

I (Ai jBi j ;Π) = n2 · Ω(1/
√
n) = Ω(n3/2).

(We have used Claim B.3 here.) Observing that |π | ≥ H (Π) = Ω(n3/2) concludes the proof of the

lower bound on communication cost.

�e preference learning lower bound follows, since if there is a protocol of preference learning

cost R, each time a preference oracle call is made, Alice (or Bob) can share the learned preference

with the other player at cost O(logn), yielding a communication protocol with cost C = O(R logn).
�erefore R = Ω(n3/2/logn).

C PROOF OF CORRECTNESS AND EFFICIENCY OF CEDA
In this appendix, we prove more general versions of Lemma 3.4 and �eorem 3.1 in Section 3.1.

�e generality allows us to relax the C log
C (n) bound on the range of public scores to a general

function д(n). �e more general results are stated below.

Let s(n) and д(n) be functions of n. In the main text of the paper, s(n) =
√
n and д(n) = C log

C (n).
In this section, let them be general functions with s(n) = Ω(

√
n), s(n) = o( n

logn ), д(n) = Ω(logn),
and д(n) = o(n).42

Let B be the upper bound on the hazard rate of the distribution of private scores.

We have the following results which subsume Lemma 3.4 and �eorem 3.1.

Theorem C.1. Assume that the public scores satisfy maxi aji ≤ mini aji + д(n) for all �rms j.
�e simpli�ed CEDA protocol (Protocol 2 in Section 3.1.1) using qj = F−1

j (1 − 1

s(n) ) always �nds the
worker-optimal stable match. Its communication cost is at most

O(max(д(n)s(n), n

s(n) ) logn)

with probability at least 1 −O( 1

n ).
42

We say that a function f (n) = Ω(д(n)) if there exists constant c > 0 such that f (n) ≥ cд(n) for all su�ciently large n.

We say that a function f (n) = o(д(n)) if limn→∞
f (n)
д(n) → 0. We say that f (n) = O (д(n)) if there is a constant c > 0 such

that f (n) ≤ cд(n) for all su�ciently large n.



Itai Ashlagi, Mark Braverman, Yash Kanoria, and Peng Shi 24

Theorem C.2. Assume that the public scores satisfy maxi aji ≤ mini aji + д(n) for all �rms j.
�e full CEDA protocol (Protocol 3 in Section 3.1.2) with the parameters k1(n, l), k2(n) and k3(n) in
the protocol replaced by k1(n, l) = 2 exp(B)max(loд2(n), l

s(n) ), k2(n) = 3 log(n)s(n), and k3(n) =
3 exp(B) log(n)s(n) achieves communication cost at most

O(max(log(n)д(n)s(n), n

s(n) ) log(n))

and preference learning cost at most

O(max(log(n)д(n)s(n), n

s(n) ))

and succeeds to �nd the worker-proposing stable match with probability at least 1 −O( 1

n ).

When s(n) =
√
n and д(n) = C log

C (n), these imply Lemma 3.4 and �eorem 3.1. More generally,

se�ing s(n) =
√

n
д(n) , we have the when public scores have an additive range of д(n), the bounds in

the above results become O∗(
√
nд(n)) for both simpli�ed and full CEDA.

43

One key assumption that both proofs use is that the private scores have bounded hazard rate,

and the key implication of this assumption is as follows.

Lemma C.3. If random variable z is distributed according to CDE F with hazard rate

h(x) = F ′(x)
1 − F (x) ≤ B ∀x ∈ R.

�en for all x ∈ R,
P(z ≥ x + 1|z ≥ x) ≥ exp(−B).

Proof of Lemma C.3. De�ne ϕ(x) = log(1 − F (x)). Note that bounded hazard rate implies that

the derivative ϕ ′(x) ≥ −B. �e desired result follows from the fact that the desired conditional

probability is simply exp(ϕ(x + 1) − ϕ(x)). �

Proof of Theorem C.1. We �rst show that the simpli�ed CEDA protocol always produces a

stable matching. We then bound the total number of preference signals and applications, which

will yield the desired result.

Let µ j be �rm j’s utility for the partner the �rm is currently tentatively matched with. �is is

initialized to uj0 and steadily increases as the �rm accepts each application. �e key of the protocol

is the interplay between µ j with the quali�cation requirement zj , as well as the threshold on private

score for sending preference signals qj (which is de�ned to be the top
1

s(n) quantile of private

scores). De�ne aj = mini aji . Recall also the de�nitions for “qualify” and “publicly qualify” in the

beginning of Section 3.1.

Claim C.1. �e simpli�ed CEDA protocol produces the worker-optimal stable match.

Proof of Claim C.1. �is follows from the observation that if a worker i does not qualify for

�rm j, then i would not have been accepted anyway. �is is because by not qualifying, the public

score aji < µ j − qj and the private score ϵji < qj , so

uji = aji + ϵji < µ j .

�

43
Recall that f (n) = O∗(д(n)) if there exists constant C > 0 such that f (n) ≤ C log

C (n)д(n) for all su�ciently large n.
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Claim C.2. With probability at most exp(− n
3s(n) ), a �rm j sends more than 2n

s(n) preference signals.

Proof of Claim C.2. �is follows from a simple Cherno� bound, since the chance that a �rm

will send a certain worker a preference signal is exactly
1

s(n) , so the expected total number sent by

the �rm is
n

s(n) , and signals are independent. �

De�ne the event S j as the �rst time that µ j is at least aj + qj . In the simpli�ed CEDA protocol,

this is the �rst time a quali�cation signal is sent by �rm j.

Claim C.3. �e chance that a �rm j receives more than 2 log(n)s(n) applications before event S j is
at most 1

n2
.

Proof of Claim C.3. Before S j , everyone publicly quali�es to �rm j , so preference signals from

the �rm would not have made any di�erence to the application decisions of workers. S j will happen

whenever the �rm receives an application from a worker whose private score is at least qj . By

independence of private scores, the chance that this does not happen for 2 log(n)s(n) applications is

(1 − 1

s(n) )
2 log(n)s(n) ≤ 1

n2
.

�

Claim C.4. A�er S j , every application from a worker who publicly quali�es will cause zj to increase
by 1 with probability at least 1

exp(B)s(n) , independent of whatever has happened before in the protocol.

Proof of Claim C.4. If worker i publicly quali�es for �rm j , then the worker would have applied

regardless of whether the worker received a preference signal. Now, the worker will cause zj to

increase by 1 whenever ϵji ≥ qj +1, which happens with probability at least
1

exp(B)s(n) by Lemma C.3,

since qj is the top
1

s(n) quantile by de�nition. Furthermore, by independence of private scores, this

is independent of everything that has happened before. �

Claim C.5. �e total number of application received by a �rm j from workers who publicly qualify
is more than α(n) := 2 exp(B)s(n)max(д(n), 8 log(n)) with probability at most 1

n2
.

Proof of Claim C.5. �is follows from a simple Cherno� bound by Claim C.4, using the fact

that the chance that the sum of α(n) Bernoulli( 1

exp(B)s(n) ) random variables is more than half the

mean,
α (n)

2 exp(B)s(n) ≥ д(n), with probability at least 1 − exp(− α (n)
8 exp(B)s(n) ) ≥ 1 − 1

n2
. However, when

this happens, the quali�cation requirement would have exceeded the maximum possible public

score maxi aji and no one publicly quali�es any more. �

To �nish the proof, de�ne a failure event as one of

• �e number of preference signal of some �rm is more than
2n
s(n) .

• �e number of applications from workers who publicly qualify is more than 2 log(n)s(n) +
α(n) = O(д(n)s(n)).

By Claims C.2, C.3, and C.5, the probability that no failure event occurs is at least

1 − [n exp(− n

3s(n) ) + n(
1

n2
+

1

n2
)] ≥ 1 −O( 1

n
).

Since applications from workers that do not publicly qualify can be bounded by the number

of preference signals, when there are no failures, the total number of preference signals and

applications per agent is at most

4n

s(n) + 2 log(n)s(n) + α(n) = O(max(д(n)s(n), n

s(n) )).
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Since the number of quali�cation signals is bounded by the number of applications, and since

each application, application decision, preference signal, and quali�cation signal can be sent using

O(log(n)) bits, this proves the desired bound.
44 �

Proof of Theorem C.2. �e proof of �eorem C.2 is analogous to C.1. �e di�erence is that

while the simpli�ed CEDA protocol always yields a stable matching, but only achieves low commu-

nication cost with high probability, the full CEDA protocol always achieves low communication

cost, but only yields a stable matching with high probability.

To see that CEDA always achieves low preference learning and communication cost, observe

that the total number of preference signals is at most O( n
s(n) + log(n)д(n)), and the total number of

applications is at most O(log(n)s(n)д(n)). �erefore, the average number of preference signals or

applications per agent is at most O(max( n
s(n) , log(n)s(n)д(n))), which upper-bounds the number of

preference oracle queries. �e communication cost is upper-bounded by O(log(n)) this amount,

because each signal or application can be communicated using O(log(n)) bits.

We now prove that CEDA yields the worker-optimal stable match with high probability. As in

the proof of Claim C.1, it su�ces to show that with high probability, throughout the running of

CEDA, there never exists a time in which a worker i is not quali�ed to �rm j, but the �rm would

have accepted i if the worker applied at that instant, or uji > µ j . If such a scenario arises, then it

must be that either

(1) worker i did not get a preference signal from �rm j, but ϵji ≥ qj ;
(2) or worker i did not publicly qualify, zj > aji , but aji ≥ µ j − qj .

It su�ces to show that both of these events occur with vanishing probability in CEDA.

Claim C.6. �e chance that there exists a worker i and �rm j such that ϵji ≥ qj but i does not get a
preference signal from j is at most O( 1

n ).

Proof of Claim C.6. For each worker j and each bin of public scores or range 1, suppose that

there are l workers in this bin, if there is a worker i in this bin with ϵji ≥ qj but the worker does

not get a preference signal from j, then there must be at least k1(n) = 2 exp(B)max(log
2(n), l

s(n) )
other workers in that bin with private score of at least qj + 1. By Lemma C.3 and the de�nition of

qj as the top
1

s(n) th quantile of private scores, the chance that any given worker in that bin has such

a high private score is at most
exp(B)
s(n) , independent of everything else. If

l
s(n) < log

2(n), then this

mean is less than exp(B) log
2(n), so by a Cherno� bound, the number of such workers is as high as

k1(n) with probability at most exp(− exp

3
log

2(n)) = exp(−O(log
2 n)). If

l
s(n) ≥ log

2(n), then a similar

Cherno� bound yields that the number of such workers is as high as k1(n) with probability at most

exp(−k1

3
), which is also bounded by exp(−O(log

2 n)). Using a union bound over the n workers and

д(n) = O(n) bins, the total probability is at most O(n2
exp(−O(log

2(n)))) = O( 1

n ). �

Claim C.7. �e chance that at some point in the running of CEDA, we have that there exists a �rm
such that zj > aj , zj > µ j − qj is at most O( 1

n )

Proof of Claim C.7. For each �rm j, there are by de�nition at most д(n) increase to the quali-

�cation requirement zj . It su�ces to upper-bound the probability that zj > µ j + qj a�er each of

these increases.

44
�ali�cation signals can also be sent using O (log(n)) bits because each quali�cation signal zj can be round up to the

smallest public score of workers for this �rm that is at least zj , and the identity of this worker can be speci�ed using

O (log(n)) bits.
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First note that with probability at least 1 − 1

n3
, µ j ≥ aj + qj at the end of Phase 1. �is follows

from the fact that everyone publicly quali�es at this point, so every application has private score

ϵji ≥ qj with probability exactly
1

s(n) , independent of everything else, so the chance that none of

the �rst k2(n) = 3 log(n)s(n) applicants have such a high private score to �rm j is at most

(1 − 1

s(n) )
3 log(n)s(n) ≤ 1

n3
.

Now, suppose that µ j ≥ z + qj and z is the current quali�cation requirement for �rm j . We show

that with high probability, a�er the next k3(n) = 3 exp(B) log(n)s(n) publicly quali�ed applications,

the latent tentative match value µ j must have increased to at least z + qj + 1. �is is because if µ j
has not increased to this amount, it means that none of the k3(n) publicly quali�ed applicants had

a private score at least qj + 1. Now, for publicly quali�ed applicants, their private score from the

perspective of an outside observer is still distributed according to Fj , since they qualify for �rm j
regardless of whether they receive a preference signal. �us, the probability that their private score

is at least qj + 1 is at least
1

exp(B)s(n) by Lemma C.3. So the chance that none of the k3(n) applicants

had such a high private score is at most

(1 − 1

exp(B)s(n) )
3 exp(B)s(n) log(n) ≤ 1

n3
.

�us, with probability at least 1 − д(n)+1

n3
, �rm j never experiences zj > µ j + qj a�er Phase 1. A

union bound over the n �rms shows the desired result.

�

Combining Claims C.6 and C.7, we get that with probability at least 1 −O( 1

n ), CEDA succeeds to

yield the worker-optimal stable match.

�

D IMPOSSIBILITY OF TWO-ROUND PROTOCOL
In this section, we show a simple example of a separable market for which no two-round protocol

that uses o(n) bits of communication per agent computes a stable matching with high probability.

For clarity of exposition, the example is described with certain agents preferring any partner of

a speci�c type over any partner of another type. �is can be approximated with high probability

with private scores distributed as Exp(1) by having a public score di�erence of 3 log(n) for the type

that one prefers.

Example D.1. Consider an academic job market with two types of departments and two types

of applicants. �e types are teaching-focused departments and applicants, and research-focused

departments and applicants. An agent prefers to be matched with a partner of his or her own focus,

and otherwise preferences are drawn uniformly at random. Research-focused departments and

teaching focused candidates are in short supply: here are n research-focused departments, n + 2

teaching-focused departments, n + 2 research-focused applicants and n teaching-focused applicants.

In this example, in any stable matching, there are two research-focused applicants and two

teaching-focused departments who are matched with each other. However, a priori, the chance that

any two agents of di�erent focus are matched in a stable matching is
2

n . So in a two-round protocol,

it’s never worthwhile for agents to signal across their own focus. �e communication-e�cient

method is to �rst let research-focused departments and teaching-focused applicants pick their

partners in a two-round protocol, and then run an additional a�ermarket to match the remaining

agents.
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E A GENERIC ALGORITHM FOR STABLE MATCHINGS IN TIERED MARKETS
In this section, we present a generic algorithm for computing stable matchings in tiered markets,

based on the ability to compute stable matchings between single tiers of workers and �rms. One

corollary of this is that the CEDA protocol in Section 3.1 can be generalized to tiered separable
markets, which are tiered markets in which the preferences between any tier of workers and any tier

of �rms follow assumptions of the separable market as in Section 2.2. �is implies that the O∗(
√
n)

average communication cost of computing a stable matching can also be a�ained for generalizations

of separable markets that allow for arbitrarily many tiers. (Recall that the assumptions on separable

markets in Section 2.2 restrict it to having only a constant number of tiers.)

Before presenting the algorithm (�eorem E.1), we �rst de�ne the concept of sub-matching. For

any matching µ, any subset A ⊆ I of workers and B ⊆ J of �rms, let µ(A,B) be the sub-matching
restricted to agents A × B, which is de�ned as {(i, j) ∈ µ : i ∈ A, j ∈ B}. We say that the sub-

matching µ(A,B) is stable if everyone prefers to be matched to their partner over being unmatched

and there are no blocking pairs in A × B.

Theorem E.1. A stable matching in a tiered market can be constructed as follows. Initialize µ = ∅.
(1) Construct a stable sub-matching between the top tiers I1 and J1. Add these matches to µ.
(2) Remove any matched agent in the sub-matching found above, as well as any unmatched agent

in I1 or J1 who �nds someone in J1 or I1 unacceptable. (�ese agents will �nd all agents in
worse tiers unacceptable.) A�er this, either I1 or J1 would have been completely removed.

(3) If either all of the workers or all of the �rms have been removed, then return µ. Otherwise
repeat step 1 for the top remaining tiers on both sides.

Moreover, every stable matching can be constructed in the above way.

Proof. �e theorem follows from the following claim, which implies that the set of stable

matchings in tiered markets can be decomposed into the Cartesian product of stable sub-matchings

for the top tiers and stable sub-matchings for the rest of market.

Claim E.1. In a tiered market, a matching µ is stable if and only if

(1) Sub-matching µ(I1, J1) is stable.
(2) Sub-matching µ(I1\(Im1 ∪ Iu

1
), J1\(Jm1 ∪ Ju1 )) is stable, where Im1 ⊆ I1 denotes the matched

workers in µ(I1, J1), and Iu
1
⊆ I1 denotes the unmatched workers who �nd someone in J1

unacceptable. �e sets of �rms Jm
1

and Ju
1
are similarly de�ned.

Given this claim, both directions of �eorem E.1 follow from straightforward induction. To show

the �rst direction of this claim, assume that µ is a stable matching for the tiered market. Note that

in any stable matching µ, for a �xed set A of workers and �xed set B of �rms, the sub-matching

µ(A,B) must be stable. �erefore, sub-matching µ(I1, J1) must be stable. Apply the Rural Hospital

�eorem on this sub-market, we have that the sets Im
1

, Iu
1

, Jm
1

and Ju
1

are �xed in all possible

stable matchings µ. Hence, the sets I1\(Im1 ∪ Iu1 ) and J1\(Jm1 ∪ Ju1 ) are �xed and the sub-matching

µ(I1\(Im1 ∪ Iu1 ), J1\(Jm1 ∪ Ju1 )) must be stable.

For the second direction of the claim, suppose that the designated sub-matchings are stable, we

show that µ must be stable. To do this, we need to show that workers in Iu
1

and �rms in Ju
1

cannot

be matched in any stable matching, and that there can be no blocking pairs between workers Im
1

and any �rm in J , and no blocking pairs between �rms Jm
1

and any worker in I .
First, observe that workers Iu

1
are unmatched in the stable sub-matching µ(I1, J1), which implies

that these workers cannot be matched to anyone in J1 in a stable matching for the whole market.

However, because they �nd certain �rms in the top tier J1 unacceptable, they must �nd every �rm
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in worse tiers unacceptable, so cannot be matched to them either. A similar statement can be made

for �rms in Ju
1

.

Now, there can be no blocking pairs between workers in Im
1

and �rms in J1 by the fact that

sub-matching µ(I1, J1) is stable. Moreover, there cannot be any blocking pairs between workers in

Im
1

and �rms in J\J1 because the worker is already matched to someone of a be�er tier. �is implies

that there cannot be blocking pairs between workers in Im
1

and any �rm. A similar statment can be

made for �rms in Jm
1

. �is implies that µ is stable, as desired. �

Corollary E.2 (Generalization of the Rural Hospital Theorem). In a tiered market, if we
de�ne the partner tier of a given agent in a matching as the tier index of the agent’s matched partner
(and zero if the agent is unmatched), then for every agent, the partner tier of that agent is the same in
every stable matching.

F PROOF OF CORRECTNESS AND EFFICIENCY OF THE TARGETED SIGNALING
PROTOCOL

In this section, we prove �eorem 4.5, which claims that the targeted signaling protocol succeeds

with high probability and bounds its communication and preference learnings costs. Without loss

of generality, let n ≥ m. De�ne the subgraph of signals as the collection of tuples (i, j) for which

either worker i signals to j or �rm j signals to i during the signaling round of the targeted signaling

protocol. We break the proof of �eorem 4.5 into 3 claims.

• Claim 1: With probability at least 1− 18

n , the subgraph of signals contains a stable matching.

• Claim 2: Whenever the subgraph of signals contains a stable matching, running DA with

preferences restricted to the subgraph (as in the matching round of the targeted signaling

protocol) returns a stable matching (for the whole market).

• Claim 3: �e total number of signals is at most Θ(n log
3(n)).

Claims 1 and 2 imply that the targeted signaling protocol succeeds with probability at least

1 − 18

n . Claim 3 implies the desired bounds on communication and preference learning costs. �is

is because in the signaling round, sending each signal requires O(log(n)) communication cost and

O(1) preference learning cost. In the matching round, the sum of the length of everyone’s partial

rankings is exactly twice the total number of signals, and producing each ranking of length k
requires O(k log(n)) communication cost and O(k) preference learning cost.

De�nition F.1. De�ne the tiered DA matching as the matching produced when running the

algorithm from �eorem E.1 on the tiered random market, with the stable sub-matching between

top tiers I1 and J1 in step 1 being produced by the following algorithm: if |I1 | ≤ |J1 |, run the

worker-proposing DA algorithm in the sub-market with only tiers I1 and J1; otherwise, run the

�rm-proposing DA algorithm in this sub-market.

We prove claim 1 by proving that with probability 1− 18

n , the tiered DA matching is contained in

the subgraph of signals. �e crux is proving the following lemma, which gives a bound on the rank

obtained by a given agent in a uniformly random matching market with certain partners being

unavailable. (Intuitively, the unavailable partners represent those that have been matched to be�er

tiers in the tiered DA matching). As in the whole paper, log here denotes the natural logarithm.

Lemma F.2. Consider a matching market withm workers, n ≥ m available �rms and u unavailable
�rms. �e preferences of workers for the n + u �rms are uniformly random, and the preference of
available �rms for workers are uniformly random. �e unavailable �rms prefer to be unmatched. Let
N ≥ 2 be such that N ≥ n +u. For any given worker, with probability at least 1 − 9

N 2
, we have that in
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the worker-proposing DA algorithm, the given worker is matched to one of his top r �rms, where

r = 24

n + u

n
log

2(N ).

Proof of Lemma F.2. First, note that without loss of generality, N ≥ 100 because otherwise,

r > N .

Label the �xed worker to be worker 1. Label the available �rms 1 through n, and the unavailable

�rms n+1 through n+u. Consider the �rm-optimal stable match in the sub-market without worker

1 and without the unavailable �rms, and call this matching µ1. Note that µ1 does not depend on

worker 1’s preferences, nor does it depend on the preference of �rms for worker 1. De�ne E1 as

the event that the total rank of workers in matching µ1 (ignoring the unavailable �rms) does not

exceed R = 4e(m − 1) log(N ). We lower bound the probability of E1 using a proposition we prove

in Appendix G about the average rank of workers in this se�ing (Proposition G.1). By plugging in

z = 2 log(N ) into Proposition G.1, we have that the probability of event E1 is at least 1 − 8

N 2
.

Let µ2 be the matching formed by running the worker-proposing DA algorithm from initialization

µ1. In other words, suppose that we start with everyone else matched according to µ1 and have

worker 1 propose to his top choice as in the DA algorithm. �is may cause a previously matched

worker to be rejected from a �rm, and we will have this worker apply to his next choice, which

may result in a chain of rejections leading to someone applying to one of the n −m + 1 unmatched

available �rms. µ2 is a stable matching (with respect to the entire market). Because the rank of

worker 1 in µ2 is no be�er than in the worker-optimal stable match, it su�ces to upper-bound the

rank obtained by worker 1 in µ2.

First, let us make a few structural observations on µ1 and µ2 under event E1. For each �rm j ≤ n,

let Bj be the set of workers who weakly prefer �rm j to their partner in µ1. (We use the le�er

B because this is the set of workers who want to block with j in µ1.) In µ1, �rm j is matched to

the �rm’s favorite worker in Bj . Furthermore, the sum

∑n
j=1

Bj ≤ R = 4e(m − 1) log(N ), as this

sum always equals the total rank obtained by workers in µ1 (ignoring the unavailable �rms). Now,

consider running the DA algorithm with initialization µ1, drawing only as needed the preference of

�rms for worker 1. When worker 1 applies to an available �rm j , the probability that he is accepted

is exactly pj =
1

1+ |Bj | , because this is his chance of being the �rm’s favorite worker among a set

of size 1 + |Bj |. If the worker is rejected, then the worker apply to his next choice, and the same

formula for acceptance probability will apply. If the worker is accepted, then this will trigger a

rejection chain that ends with one of the n −m + 1 unmatched available �rms. Note that this

rejection chain can never circle back to �rm j and cause worker 1 to be rejected, because that

would contradict the assumption that µ1 is the �rm-optimal stable match in the sub-market without

worker 1. For the unavailable �rms j ≥ n, de�ne pj = 0. We have that by Jensen’s inequality,

n+u∑
j=1

pj =
n∑
j=1

pj ≥
n

4e log(N ) + 1

. (11)

Now, conditional on event E1, let P be the probability that worker 1 is not matched to his top r
�rms in the worker-proposing DA algorithm. Let A be all subsets of the n + u �rms of cardinality
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brc. We have,

P ≤ 1

|A|
∑
S ∈A

∏
j ∈S
(1 − pj ) (12)

≤
(
1 −

∑n
j=1

pj

n + u

)r
(13)

≤ exp

(
− nr

(n + u)(4e log(N ) + 1)

)
(14)

<
1

N 2
(15)

Inequality (12) follows from the independence between the preference of worker 1, the event E1,

and each �rm j’s preference for worker 1. Inequality (13) follows from the fact that the sum of

product in the inner part of equation 12 increases if we replace any two di�erent pi , pj with their

average
pi+pj

2
, so the maximum is a�ained when all of them are equal. Inequality (14) follows from

inequality 11 and the bound (1 − x) ≤ exp(−x), and inequality (15) follows from the fact that when

N ≥ 100, we have
24 log

2(N )
4e log(N )+1

> 2 log(N ).
Since the probability that E1 does not occur is at most

8

N 2
, we have that the total probability

that worker 1 does not get one of his top r choices is at most
8

N 2
+ 1

N 2
= 9

N 2
, which is what we

needed. �

Claim 1 follows from Lemma F.2 and taking an union bound over them+n ≤ 2n agents, observing

that in the tiered DA matching, every agent is in a scenario described by Lemma F.2. So with

probability at least 1 − 18

N , the tiered DA matching is contained in the subgraph of signals.

Claim 2 follows from the following structural result (Lemma F.3) on the subgraph of signals.

First, let us give a few de�nitions. For any subgraph (de�ned as a collection of worker-�rm tuples

(i, j)), we say that a matching µ is stable with respect to the subgraph if every matched agent in µ
prefers to be matched than unmatched, and there are no blocking pairs to µ within the subgraph.

De�ne the complete graph as the Cartesian product I × J . (�e original de�nition of stability is

equivalent to stability with respect to the complete graph.) De�ne a matching to be full if it has

cardinality min(m,n), which corresponds to matching all agents of at least one of the sides.

Lemma F.3. Any matching µ that is full and stable with respect to the subgraph of signals is stable
with respect to the complete graph.

To see why Claim 2 follows from Lemma F.3, note that when the subgraph of signals contains

a stable matching, then running DA (or any other stable matching algorithm) with preferences

restricted to the subgraph returns a matching that is full and that is stable with respect to the

subgraph. Lemma F.3 implies that this matching is stable with respect to the complete graph.

Proof of Lemma F.3. Let the subgraph of signals be G. let µ be a full matching stable with

respect to G , we show that µ is stable with respect to the complete graph. It su�ces to show that µ
does not contain any blocking pairs.

We show that no tuple (i, j) in the complete graph can be a blocking pair. Let worker i be in

worker-tier k and �rm be j in �rm-tier l . Firstly, any (i, j) ∈ G cannot be a blocking pair by the

de�nition of µ being stable in G.

Suppose �rst that sk , tl . Without loss of generality, let sk < tl . In this case, worker i must be

matched in µ, say to �rm j ′. Let
˜l be the target tier of worker i and let l ′ be the tier of �rm j ′. Note

that l ′ ≤ ˜l because G can only contain edges between i and weakly be�er tiers than
˜l . Moreover,
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we have
˜l ≤ l , since

˜l = min{l : tl ≥ sk } by de�nition. Combining the two inequalities, we have

l ′ ≤ ˜l ≤ l . Suppose that l ′ < l , then i would prefer j ′ to j , so (i, j) cannot be a blocking pair. Suppose

that l ′ = l , then both must equal
˜l , which is the target tier of workers Ik . �is means that the target

tier of �rms Jl must be a strictly worse tier of workers than Ik . (Otherwise, we would need sk = tl .)
So the only reason that (i, j ′) ∈ µ is in the subgraph of signals G is that i signals to j ′. But i does

not send a signal to j, and both j and j ′ are in the same tier, so i must prefer j ′ to j, so (i, j) cannot

be a blocking pair.

�e only remaining case is sk = tl . In this case, �rm-tier l is one of the redundant tiers (see

De�nition 4.4). As before, i must be matched in µ, say to j ′, and we have that j ′ is either in a be�er

tier than j or is signaled to by i . In either cases, i must prefer j ′ to j, so (i, j) cannot be a blocking

pair.

Since there are no blocking pairs, µ must be stable with respect to the complete graph. �

We complete the proof of �eorem 4.5 by proving Claim 3.

Lemma F.4. �e total number of signals sent during the signaling round of the targeted signaling
protocol is at most 60n log

3 n.

Proof of Lemma F.4. �e result is trivially true if n ≤ e4 < 60, since the average number of

signals is at most n. Assume now that logn ≥ 4.

De�ne a grouping of tiers as the set of all tiers of agents that share the same target tier. For

example, if the shared target tier is �rm-tier Jl , then the grouping is all worker-tiers Ik such that

tl−1 < sk ≤ tl .
Consider an arbitrary grouping. Without loss of generality, let the shared target tier be Jl as

above. Let K = {k : tl−1 < sk ≤ tl } as above. Let the minimum and maximum element of K be

k0 and k1 respectively. For each k ∈ K , de�ne rk as the target number of workers in tier Ik (see

De�nition 4.3).

Let the total number of signals sent by this grouping be σ =
∑k1

k=k0

mkrk . Note �rst that

rk0
= 24 log

2 n since the competitiveness of workers (see De�nition 4.2) in Ik0
must be 1. For

K\{k0}, we have

k1∑
k=k0+1

mkrk = 24nl log
2(n)

k1∑
k=k0+1

mk

tl − sk−1

≤ 24nl log
2(n)

k1∑
k=k0+1

(
1

tl − sk−1

+ · · · + 1

tl − sk + 1

)
≤ 24nl log

2(n)
(

1

tl − sk0

+
1

tl − sk0
− 1

+ · · · + 1

2

+
1

1

)
≤ 24nl log

2(n) log(tl − sk0
+ 1)

≤ 24nl log
3(n)

�is shows that

σ ≤ 24mk0
log

2 n + 24nl log
3 n ≤ (6mk0

+ 24nl ) log
3 n.

From this the desired result follows because the sum of all possible mk0
is at most 2n, and the same

holds for the sum of all possible nl . �
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G AVERAGE RANK IN UNBALANCED MATCHING MARKET
�e proof of Lemma F.2 requires a concentration bound for the average rank obtained by workers in

any stable matching in a uniformly random matching market with strictly more �rms than workers.

When there are n − 1 workers and n �rms, [Ashlagi et al., 2016] implies that this is asymptotically

log(n) as n → ∞. Compared to their result, the following proposition gives up a constant factor

of 2e in the asymptotics, but obtains a stronger probabilistic guarantee that holds for any n. �e

proof builds on the techinques from [Pi�el, 1989] and [Pi�el, 1992], which are based on an Integral

formula due to Knuth.

Proposition G.1. Consider a uniformly random matching market with n − 1 workers and n �rms.
For any z ≥ 2, we have that with probability at least 1 − 8 exp(−z), the average rank obtained by
workers in any stable matching is no more than

r̄ = e(2 log(n) + z).

Proof. De�nem = n − 1. Let P0 be the probability that a uniformly random matching market

with m workers and n �rms has a stable matching in which the average rank of workers is greater

than r̄ . We upper-bound P0 by 8 exp(−z). Observe that this is trivially true if m ≤ 7 because

r̄ ≥ 3e > 8, so we assume from now on thatm ≥ 8.

As in [Pi�el, 1989], de�ne the standard matching µ0 as the matching in which for each 1 ≤ i ≤ m,

worker i is matched to �rm i . �e unmatched �rms are denoted by indices j > m. For each tuple

(i, j), 1 ≤ i ≤ m, 1 ≤ j ≤ n, let Xi j and Yi j be i.i.d. draws from Uniform[0, 1]. �ese values induce

the preferences of workers and �rms as follows: the smaller the value of Xi j , the more worker i
prefers �rm j . Similarly, the smaller the value of Yi j , the more �rm j prefers worker i . For simplicity,

de�ne xi = Xii and yi = Yii for 1 ≤ i ≤ m. We call the matrices X and Y the cardinal preferences

of workers and �rms, and the vectors x and y the matching values of workers and �rms.

Adapting Equation (2.2) of [Pi�el, 1989], we have that given the matching values x and y, the

probability the standard matching is stable and the total rank of workers equals R is exactly

[ξ R−m]{
m∏
i=1

(1 − xi )
∏

1≤i,j≤m
(1 − xi + ξxi (1 − yj ))}, (16)

where [ξ a]{ f (ξ )} denotes the coe�cient of ξ a in the expansion of polynomial f (ξ ). �is formula

is analogous to Equation (2.2) of [Pi�el, 1989], and we provide a brief explanation below. �e rank

obtained by each worker is exactly one plus the number of �rms the worker wants to block with,

so the total rank of workers is R if and only if the total number �rms workers want to block with

is R −m, counting with multiplicity. �e expression in the braces computes the probability the

standard matching µ0 is stable while keeping track of who wants to block with whom using dummy

variable ξ . �e expression is a product of various terms, and is based on the i.i.d. assumptions of

entries of X and Y . In the �rst product, (1 − xi ) is the probability that worker i does not want to

block with the unmatched �rm, as P(Xin > Xii ) = 1 − xi . In the second product, we have the linear

combination of two terms: 1 − xi is the probability that worker i does not want to block with �rm

j, and xi (1 − yj ) is the probability that worker i wants to block with j but j does not reciprocate.

Expanding the product as a polynomial in ξ and examining the coe�cient of ξ R−m obtains exactly

the probability that the matching is stable and the total rank of workers is R.
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De�ne A = {(x ,y) : 0 ≤ xi ,yi ≤ 1, 1 ≤ i ≤ m}. We have

P0 ≤ n!

∫
A

∞∑
R= bmr̄ c+1

[ξ R−m]
{

m∏
i=1

(1 − xi )
∏

1≤i,j≤m
(1 − xi + ξxi (1 − yj ))

}
dx dy (17)

≤ n!

∫
A

inf

ξ ≥1

{
ξm(1−r̄ ) exp(−m

m∑
i=1

xi + ξ
∑

1≤i,j≤m
xi (1 − yj ))

}
dx dy (18)

Inequality (17) follows from integrating equation (16) over the uniform distribution of matching

values, then using a union bound over alln! matchings based on symmetry. Inequality 18 comes from

the Cherno� method of bounding the tail of power series
45

, and using the fact that bmr̄c + 1 ≥ mr̄ .

De�ne µ = r̄
e = 2 log(n)+z. Partition the region of integrationA intoA1 = {(x ,y) ∈ A :

∑m
i=1

xi ≥
µ}, and A2 = A\A1. De�ne the above integral in regions A1 and A2 to be P1 and P2 respectively. It

su�ces to bound P1 and P2. For convenience, de�ne s =
∑m

i=1
xi .

To bound P1, we set ξ = 1. Let si = s − xi , Ψ(x) =
∫

1

0
exp(−xy)dy = 1−exp(−x )

x , and Ax
1
= {x : 1 ≤

xi ≤ 1,
∑m

i=1
xi ≤ µ}. For clarity, we write a series of inequalities and explain them one by one

a�erward.

P1 ≤ n!

∫
A1

exp(−s −
m∑
i=1

siyi )dx dy (19)

= n!

∫
Ax

1

exp(−s)
m∏
i=1

Ψ(si )dx (20)

≤ e2n!

∫
Ax

1

exp(−s) 1

sm
dx (21)

≤ e2n!

∫ m

µ
exp(−s) 1

sm
sm−1

(m − 1)! ds (22)

≤ e2n(n − 1)
∫ m

µ
exp(−s)dx (23)

≤ e2
exp(−z) (24)

Inequality (19) follows from plugging in ξ = 1 into inequality (18). In equation (20), we integrate

with respect to each yi . In inequality (21), we make use of the fact that for each a > 0,

(logΨ(a))′ = 1

exp(a) − 1

− 1

a
≥ − 2

a + 2

.

45
For any power series f (ξ ) with positive coe�cients,

∑∞
a [ξ a ]{f (ξ )} ≤ ξ −a infξ ≥1

{f (ξ )}.
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So

log

(
m∏
i=1

Ψ(si )
)
≤ 2 +

m∑
i=1

(
log(Ψ(si )) −

2xi
s + 1

)
≤ 2 +

m∑
i=1

(
log(Ψ(si )) −

2xi
si + 2

)
≤ 2 +

m∑
i=1

log(Ψ(si + xi ))

= 2 +m log(Ψ(s))
≤ 2 −m log(s)

In inequality (22), we use a standard change of variable from x to s (see equation (3.2) and inequality

(3.3) of [Pi�el, 1989]). In inequality (23), we use the fact that
1

s is decreasing in s and that µ ≥ 1. In

inequality (24), we integrate out s and make use of the de�nition of µ and z ≥ 1.

To bound P2, we set ξ =
eµ
s . As before, we state a series of inequalities and explain them

a�erward.

P2 ≤ n!

∫
A2

(eµ
s

)m(1−eµ)
exp(−ms + e(m − 1)µ)dx dy (25)

≤ n2

∫ µ

0

(eµ
s

)m(1−eµ)
exp(−ms + e(m − 1)µ)sm−1 dx dy (26)

≤ n2

∫ µ

0

exp(−(m + e)µ +m)µm−1 ds (27)

= [n2
exp(−µ)][exp(−(m + e − 1)µ)µm] exp(m) (28)

≤ 1

e
exp(−z) (29)

Equation (25) substitutes in ξ =
eµ
s to inequality (18) and uses the fact that

∑
1≤i,j≤m xi (1 −

yj ) ≤ s(m − 1). Inequality (26) again integrates out each yi and uses the change of variable

from x to s as in inequality (3.3) of [Pi�el, 1989]. Inequality (27) uses the fact that the function

f (s) = exp(−ms)semµ−1
is increasing in [0, µ]. Equation (28) simpli�es the formula and arrange

into groups, denoted by square brackets. Inequality 29 comes from bounding each group. We

bound the �rst group by exp(−z) using the formula for µ. We bound the second group using the

observation that the function f (µ) = exp(−(m + e − 1)µ)µm is maximized when µ = m
m+e−1

, so

f (µ) exp(m) ≤ ( m
m+e−1

)m = (1 − e−1

m+e−1
)m ≤ exp(− (e−1)m

m+e−1
) < exp(−1), sincem ≥ 8.

Combining inequalities (24) and (29), we have

P0 = P1 + P2 ≤ (e2 +
1

e
) exp(−z) < 8 exp(−z),

which completes the proof. �

Remark 3. �e above proof can be modi�ed to show the following statement. Consider a uniformly
random matching market withm men and n =m + d women, where 1 ≤ d ≤ (e − 1)m. For any z ≥ 2,
with probability at least 1 − 8 exp(−z), the average rank of men in any stable matching is no more
than

r̄ = e

(
log(n

d
) + log(m) + z

d
+ 1

)
.
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H OPTIMAL COMMUNICATION COST IN TIERED RANDOMMARKETS
�e targeted signaling protocol in Section 4.3 uses Θ(log

4(n)) bits of communication per agent. In

this section, we show that the best possible is Θ(log
2(n)).

Consider the protocol based on the generic algorithm for tiered markets in �eorem E.1, in which

in Step 1, if |I1 | ≤ |J1 |, we simulate the worker-proposing DA algorithm, and if |I1 | > |J1 | then we

simulate the �rm-proposing. Because we only allow private messages, each time an agent propose

to a partner, the agent does not know whether or not the partner is taken by agents from be�er tiers.

�is results in wasted proposals. Nevertheless, one can show as in [Knuth, 1976] that the number

of wasted proposals is not too high. In fact, one can show that with high probability, this protocol

terminates with a stable matching using Θ(n log(n)) proposals. �is shows that there exists a stable

matching protocol that only uses private messages and that succeed with high probability, using

communication cost Θ(log
2 n) per agent and preference learning cost of Θ(logn) per agent.

�e following shows that this bound on average communication cost is the best possible.

Theorem H.1 (Lower bound on communication cost with private messages). Consider a
uniformly random market with n − 1 workers and n �rms. In such a market, if a stable matching
protocol that only uses private messages succeeds with high probability, then the protocol requires at
least Ω(log

2 n) bits of communication per agent on average.

Proof of Theorem H.1. �e market in question is the same as that in [Ashlagi et al., 2016]. It

su�ces to prove the lower bound for any one worker, since all workers are ex ante the same. Some

features of this market that we know from [Ashlagi et al., 2016] are:

• In all stable matchings, the average rank of workers for their matched �rms is very close

to logn, and a vanishing fraction of workers (�rms) have multiple stable partners. (�e

average rank of workers for their matched �rms is at least 0.99n/logn.)

• Fix a worker i . Whp (with high probability), the worker has a unique stable partner.

Conditioned on the stable partner being unique, the distribution of worker i’s rank of her

stable partner is asympototically close to Geometric(1/logn). In particular, the conditional

probability that the unique stable partner is one of worker i’s top logn most preferred �rms

is p ∈ (1 − 1/e − 0.01, 1 − 1/e + 0.01) for large enough n.

• Run the worker proposing deferred acceptance algorithm with worker i excluded. Whp, all

but n0.99
�rms receive between 0.9 logn and 1.1 logn proposals from workers.

Our proof approach is as follows: we consider some worker i and an oracle who knows the

preferences of all other agents, and seek to �nd, whp, a stable partner of i . A slight complication

here is that workers may have multiple stable partners in these markets. We work around this

by de�ning a communication problem P1 as follows: �e correct answer is “Yes” if the unique

stable partner of i occurs in her top logn most preferred �rms, and the correct answer is “No” if

the unique stable partner of i does not occur in her top logn most preferred �rms. In the case that

i does not have a unique stable partner, either a “Yes” or a “No” is considered correct. Note that

given a candidate stable partner of i , one can output “Yes” if the stable partner is among i’s top

logn most preferred �rms, and a “No” if not. If the candidate stable partner is truly a stable partner,

the output is a correct answer. Hence, the problem of producing an output that is correct whp for

problem P1, is no harder than the problem of �nding an agent j who, whp, is a stable partner of i .
Call a �rm j “accessible” if it satis�es the following: Fix preferences of all agents except worker i .

Suppose worker i moves agent j to the top of her preference list, keeping the rest of her preferences

unchanged. �en worker i will be matched to agent j under the worker optimal stable matching.

Denote by Ja the set of �rms accessible to worker i . Note that whether j ∈ Ja or not does not depend
on the preferences of worker i . �is follows immediately from the fact that the worker optimal stable
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matching can be computed using the worker proposing deferred acceptance algorithm, cf. Section

2.1, and this algorithm makes no use of worker i’s preferences unless she is rejected by �rm j, in

which case we already know that j < Ja . Finally, note that when i has a unique stable partner, this

is his most preferred �rm in Ja .

We now control the size of set Ja , showing that its size is close to n/logn. We make use of an

analysis resembling that in [Ashlagi et al., 2016] (with revelation of preferences as needed) and

using the third bullet stated above. Consider the worker optimal stable matching with worker i
excluded. Let J ′ be the set of �rms that have each received between 0.9 logn and 1.1 logn proposals.

Using the third bullet, we have

|J − J ′ | ≤ n0.99

For each of these �rms, independently, the probability that they prefer i over their currently

matched worker is at least 1/(1 + 1.1 logn) ≥ 0.8/logn and at most 1/(1 + 0.9 logn) ≤ 1.2/logn.

Let J ′′ be the set of �rms in J ′ who prefer i over their currently matched worker. It follows using a

standard concentration bound that whp, we have

0.7n/logn ≤ |J ′′ | ≤ 1.3n/logn .

�e probability that a rejection chain starting at a �rm in J ′′, cf. [Ashlagi et al., 2016], will return

to the �rm with a proposal that the �rm prefers over worker i , before it terminates by going to the

unmatched �rm is at most 1/(2+ 0.9 logn) ≤ 1.2/logn. Call the set of �rms for which the rejection

chain returns Ĵ . �ese �rms may or may not be in J ′′. With high probability, using Markov’s

inequality, we have | Ĵ | ≤ fn |J ′′ |1.2/logn, for any fn = ω(1). Using fn =
√

logn we obtain a bound

of

| Ĵ | ≤
√
n1.3n/logn · 1.2/logn ≤ 2n/(logn)3/2 .

All �rms in J ′′\ Ĵ (here the rejection chain terminates without returning to the �rm) are for sure a

part of Ja . �us, we have, whp,

|Ja | ≥ |J ′′\ Ĵ | = |J ′′ | − | Ĵ | ≥ 0.7n/logn − 2n/(logn)3/2 ≥ 0.5n/logn .

On the other hand, we have Ja ⊆ J ′′ ∪ (J − J ′), leading to, whp,

|Ja | ≤ |J ′′ | + |J − J ′ | ≤ 1.3n/logn + n0.99 ≤ 1.5n/logn .

Let the set of the worker’s most preferred logn �rms be Jp . Now again consider the communica-

tion problem P1 and take any protocol that solves it. In cases where worker i has a unique stable

partner and the protocol �nds a correct answer, the answer is exactly I(Ja ∩ Jp , ϕ). Recalling

that whp, worker i has a unique stable partner, and since the output of the protocol matches

I(Ja ∩ Jp , ϕ) correctly whp in these cases, the protocol �nds I(Ja ∩ Jp , ϕ) correctly with high

probability overall.

We are now close to obtaining a lower bound on the expected number of bits needed for the

protocol using Proposition H.2. Suppose, we gave the worker i access to |Ja |. Recall that Ja is a

uniformly random subset of J and independent of Jp , conditioned on |Ja |. Let the lower bound in

Proposition H.2 be C(logn)2 (i.e., we just named the constant factor C). We prove our result by

contradiction. Suppose the protocol requires less than (C/2)(logn)2 bits in expectation. We found

that whp, we have

|Ja | ∈ (0.5n/logn, 1.5n/logn) .
(Notice that these are the same bounds that are needed in Proposition H.2.) Combining this fact

and Markov’s inequality on the expected number of bits used by the protocol conditioned on |Ja |,
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we deduce that with probability at least 1/3,
46

the protocol is faced with problem with |Ja | bounded

as required, and such that the expected number of bits the protocol uses for that ‘bad’ |Ja | is at

most 2(C/2)(logn)2 = C(logn)2 bits. For each such bad |Ja |, the protocol must output something

di�erent from I(Ja ∩ Jp , ϕ) with probability at least ϵ , using Proposition H.2. Since such bad

|Ja |’s occur with probability at least 1/3, the overall probability of outpu�ing something di�erent

than I(Ja ∩ Jp , ϕ) is at least ϵ/3. �is contradicts that the protocol �nds I(Ja ∩ Jp , ϕ) correctly

whp. �us, we have a contradiction. We conclude that any protocol solving problem P1 must use

at least (C/2)(logn)2 bits in expectation. Returning to the fact that problem P1 is at least as hard

as �nding j who is a stable partner of i with high probability, we conclude that the agent-speci�c

communication complexity for worker i has the same lower bound. Finally, using symmetry over

workers (all are in the same tier), we obtain the bound of Ω((logn)2) on the average agent-speci�c

communication complexity. �

H.1 Complexity Foundations
Consider a set N such that |N | = n.

47
Suppose there is a uniformly random subset A ⊂ N with

|A| = la known to agent a, and an independent uniformly random subset B ⊂ N with |B | = lb
known to agent b. Agents a and b are able to interactively communicate with each other and the

goal is to determine whether A and B have a non-trivial intersection or not. We are interested in

lower bounds for the communication complexity of determining the correct answer with probability

of error that vanishes as n grows, although the bounds below hold even for a constant positive

error independent of n. Note that the prior probability of intersection between the sets is bounded

away from 0 and 1 for any la and lb such that la , lb = o(n) and la · lb/n ∈ [0.1, 10].

Proposition H.2. �ere exists ϵ > 0 such that with la = logn and lb = cn/logn for some
c ∈ [1/2, 2], the communication complexity of �nding I(A ∩ B , ϕ) correctly with probability 1 − ϵ is
Ω((logn)2) bits, uniformly over c in the speci�ed range.

Proof. �e proposition can be deduced with some work using general results about the com-

munication complexity of disjointness [Braverman et al., 2013]. We include, a simpler direct

proof, inspired by the proof of [Babai et al., 1986] for the �rst part of the proposition. Since the

communication se�ing in the proposition is distributional (i.e. the inputs come from a speci�ed

distribution of inputs), it su�ces to consider deterministic protocols (since a randomized protocol

over a distribution of inputs can be converted into a deterministic one by �xing the random seed

that gives the lowest error over the inputs distribution.

Let A and B denote the sets of inputs to Alice and Bob. �us |A| =
(n
la

)
and |B| =

(n
lb

)
. Assume

that there is a protocol π of communication cost d . �e randomized protocol π induces a partition

of A × B into at most 2
d

combinatorial rectangles, on each of which the output is either 0 or 1.

For all values of c , the probability that the output is 0 (i.e. that the sets are disjoint) is a constant,

and therefore, for a su�ciently small ϵ , a constant fraction of the mass is covered by 0-rectangles,

on each of which the error rate is < c1ϵ for an absolute constant c1 > 0. We will show that the

maximum possible mass of each such rectangle is at most 2
−Ω(log

2 n)
, and therefore there must be at

least 2
Ω(log

2 n)
such rectangles, and thus d = Ω(log

2 n).
Let R1 = A1 × B1 be a combinatorial rectangle in A × B such that at most a (c1ϵ)-fraction of

the elements of R are not disjoint (and thus the 0 output is wrong). We need to show that the size

of R is relatively small. LetA2 denote the elements inA1 that intersect at most a (2c1ϵ)-fraction of

46
We use 1/3 instead of 1/2 to accommodate that with small probability, | Ja | may not fall in the desired range.

47
We rede�ne n here. For the purposes of this section there are no workers or �rms.
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the elements in B1. Note that we must have |A2 | ≥ |A1 |/2. Let B2 := B1, and R2 := A2 × B2. It

su�ces to show that R2 has mass at most 2
−Ω(log

2 n)
.

Construct a sequence of elements S1, . . . , Sk of A2 with the following property: for each i ,
|Si \ ∪i−1

j=1
S j | ≥ la/2. We continue constructing this sequence incrementally until one of two things

happens: (1) we cannot add another element to the sequence; or (2) we have | ∪kj=1
S j | ≥

√
n. We

consider each of these cases separately:

Case (1): �ere are sets S1, . . . , Sk of A2, such that | ∪kj=1
S j | <

√
n, and each element S ∈ A2

satis�es |S \ ∪kj=1
S j | ≤ la/2. �en this gives the following uper bound on the size of A2:

|A2 | ≤
( √

n

la/2

)
·
(
n

la/2

)
< n−Ω(la ) ·

(
n

la

)
= 2
−Ω(log

2 n) ·
(
n

la

)
,

and thus A2 is small in this case, and we are done.

Case (2): �ere are sets S1, . . . , Sk of A2, such that

√
n ≤ | ∪kj=1

S j | ≤
√
n + la , and for each i ,

|Si \ ∪i−1

j=1
S j | ≥ la/2. Each of the Si ’s intersects at most a (2c1ϵ)-fraction of the elements in B2, and

thus at least half the elements in B2 intersect at most 4c2ϵk of these sets. Denote these elements

in B2 by B3. We have |B3 | ≥ |B2 |/2. Each element T in B3 can now be described as follows: �rst

specify the Si ’s which T intersects, there are at most k ·
( k
4c2ϵk

)
ways of doing this. Notice that

the union of the Si ’s which T does not intersect is at least (k − 4c2ϵk)la/2 > kla/3, since each set

contributes at least la/2 new elements to the union. �erefore, there are at most

(n−kla/3
lb

)
ways to

select the elements of T from the remaining elements. Pu�ing these together we get:

|B2 |(n
lb

) ≤ 2|B3 |(n
lb

) ≤ 2k ·
( k
4c2ϵk

)
·
(n−kla/3

lb

)(n
lb

) ≤ 2k ·
(

e

4c2ϵ

)
4c2ϵk

·
(
1 − kla

3n

) lb
≤1 2k · ek/12 · e−kla lb /3n ≤2 2k · ek/12 · e−k/6 = 2k · e−k/12 �3 2

−Ω(log
2 n).

Here ≤1 holds for a su�ciently small ϵ , since when 4c2ϵ < e−5
,

(
e

4c2ϵ

)
4c2ϵ
< e1/12

; ≤2 holds because

lalb ≥ n/2, and�3 holds because k >
√
n/la � log

2 n. �us B2 is very small in this case, and so is

R2, concluding the proof. �

I PROOFS OF INCENTIVE COMPATIBILITY PROPERTIES
Before proving that all the protocols in this paper are as incentive compatible as DA with high

probability (�eorem 5.2), we establish two lemmas. �is allows us to prove the desired properties

for all protocols simultaneously under one framework.

For either versions of CEDA, de�ne the subgraph of signalsG as the set of tuples (i, j) for which

worker i applies to �rm j at some point during the protocol, assuming that everyone complies to

the protocol. (�e subgraph G is deterministic given the preference realizations.) In the targeted

signaling protocol, de�ne the subgraph of signalsG as in Appendix F: the set of tuples (i, j) for which

either worker i signals to �rm j or vice versa during the signaling round. De�ne the worker-optimal

stable match restricted to subgraph G as the result of running the worker-proposing DA algorithm

using only preference information within pairs of agents in G (similar to in the matching round of

the targeted signaling protocol). Similarly de�ne the �rm-optimal stable match restricted to G.

Lemma I.1. Whenever CEDA or the targeted signaling protocol succeeds to �nd a stable matching:

(1) �e resultant match µ is the same as the worker-optimal stable match restricted to the subgraph
of signals G.
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(2) �e �rm-optimal stable match restricted to G is also a stable matching with respect to full
preferences.

Proof of Lemma I.1. �e �rst point follows immediately from the de�nition of the protocols.

�e second point holds in CEDA because the �rm-optimal stable match restricted to G is also

µ. (To see this, note that by de�nition of G, every �rm in µ gets their favorite partner in G.) �e

second point holds in the targeted signaling protocol because the protocol succeeding implies that

µ is full (matching min(m,n) pairs of agents), which implies that the �rm-optimal stable match

restricted to G is full. �e desired result follows from Lemma F.3 in Appendix F. �

We are now ready to prove �eorem 5.2 and 5.5.

Proof of Theorem 5.2. LetG be the subgraph of signals (which we de�ned for all three protocols

in question). Suppose that a certain agent can unilaterally deviate from the protocol and cause

the resultant matching to be µ ′, which gives the deviating agent someone than the agent’s best

stable partner (under complete, true preferences). By Lemma I.1, whenever the respective protocols

succeed, the agent obtains a be�er partner in µ ′ than what the agent gets in either the worker-

optimal or �rm-optimal stable match restricted to G (de�ned with respect to true preferences).

Note that regardless of the agent’s deviation, µ ′ must be individual rational for all agents. Applying

Lemma 3.5 (as known as the blocking lemma) in [Roth and Sotomayor, 1990], which is originally

due to [Gale and Sotomayor, 1985], we have that there must exist a worker i and a �rm j such that

(1) neither i or j are the same as the deviating agent, so are assumed to be complying to the

protocol;

(2) (i, j) ∈ G and (i, j) blocks µ ′ (under the true preferences of i and j).

Let the subgraph of signals that resulted from the agent’s deviant behavior be G ′ (this is well

de�ned as well at the end of each protocol). It must be that (i, j) < G ′, otherwise µ ′ would not be

stable restricted to G ′ since both i and j are reporting true preferences with respect to one another

regardless of what the deviant agent does. However, this is impossible in the targeted signaling

protocol since (i, j) ∈ G implies that (i, j) ∈ G ′, since the signaling happens simultaneously in the

�rst round of the protocol and the deviating agent cannot a�ect signals between other compliant

agents. �is proves that targeted signaling is as incentive compatible as DA for every agent

whenever the protocol succeeds under compliant behavior for everyone (which happens with high

probability by the �eorem 4.5).

For either version of CEDA, suppose that (i, j) < G ′, but worker i and �rm j prefer one another

to their �nal matched partner in µ ′. Let the �nal utility obtained by �rm j in µ ′ be u∗j , and the �nal

quali�cation requirement be z∗j (allowing whatever behavior from the deviant agent). �e fact that

(i, j) < G ′ and worker i gets matched to a less preferred �rm in µ ′ means that worker i skipped

�rm j in his/her application decision, which implies that 1) �rm j must not have sent a preference

signal to i and 2) the quali�cation requirement z∗j at the end of the run of the protocol exceeds

aji . Whenever CEDA succeeds under compliant behavior from everyone, the �rst statement above

implies that ϵji < qj . Combining with the second statement, we get

z∗j > aji = uji − ϵji > u∗j − qj .
However, this never happens under the simple version of CEDA by de�nition of zj , and it happens

with vanishing probability at most O( 1

n ) under the modi�ed version of CEDA by the proof of

Claim C.7 (the key is to notice that the proof of Claim C.7 is a statistical argument, and does not

require compliant behavior by workers or other �rms.). �us, the simple version of CEDA is always

as incentive compatible as DA. For the modi�ed version of CEDA, for any �xed agent, the chance
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that the agent can deviate and obtain someone be�er than his/her best stable partner is at most

O( 1

n ).48 �

Proof of Theorem 5.5. By �eorem 5.2, it su�ces to show that under general imbalance and

when the number of agents of every tier is large, the probability that any given agent has multiple

stable partners is vanishing. By the decomposition result in �eorem E.1 in Appendix E, the

desired result follows from the following Lemma, which is based on techniques from [Ashlagi et al.,

2016]. �

Lemma I.2. �ere exists a non-increasing function δ : N → R such that δ (y) → 0 as y → ∞
with the following property. In a matching market with a single tier ofm workers and a single tier of
n ≥ m + 1 �rms, the probability that any given agent, conditional on being matched, has multiple
stable partners is upper-bounded by δ (n).

Proof of Lemma I.2. Consider two cases, suppose thatm ≥ n
2

, then by �eorem 3 ii) of [Ashlagi

et al., 2016], there existsm0 such that for allm > m0, with probability at least 1−exp(− log
0.4 n), the

number of workers with multiple stable partners is no more than
m

log
0.5 m

, and the same statement

holds for �rms. �is implies that for n ≥ 2m0, the probability that any given worker has multiple

stable partners is at most

exp(− log
0.4 n) + log

−0.5(n
2

).
Similarly, the probability that a �rm, conditional on being matched, has multiple stable partners is

also upper-bounded by this. De�ne function δ1 : N→ R has δ (n) = 1 for n < 2m0 and as the above

quantity when n ≥ 2m0. �en function δ1 satis�es the desired result in the region whenm ≥ n
2

.

Suppose now that m < n
2

, then we show that the probability that a given matched agent has

multiple stable partners is still small. Consider the outcome of the worker-proposing DA algorithm.

Consider any �rm that is matched in this worker-optimal stable match (WOSM). Let u = n−m ≥ n
2

.

As in [Ashlagi et al., 2016], suppose that the �rm has multiple stable partners, then the chain of

proposals triggered by the �rm rejecting its current partner must come back to this �rm before

going to the u unmatched �rms. �e chance that this happens is at most
1

u . Moreover, if the �rm

has more than two stable partners, then when the �rm rejects the second stable partner, the chain

of proposals triggered also needs to come back to the �rm rather than go to the u unmatched �rms.

So the number of stable partners of this �rm is stochastically dominated by Geometric( 2

n ). For

n ≥ 11, the expectation of this is less than
3

n . �us, the expected total number of worker-�rm pairs

that can be in a stable match and that is not already in the WOSM is at most
3m
n for any n ≥ 11. By

symmetry, for any agent, conditional on being matched, the chance the agent has multiple stable

partners is no more than
3

n when n ≥ 11. De�ne δ2 : N→ R to be δ (n) = 1 for n < 11 and δ (n) = 3

n ,

we have that δ2 satis�es the desired result in the region whenm < n
2

.

Finally, we note that δ = max(δ1,δ2) satis�es the desired property for any n ≥ m + 1. �

48
�is also uses the observation that the modi�ed CEDA succeeds under compliant behavior with probability at least

1 −O ( 1

n ).
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