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Abstract—We study a model of Bayesian agents in social
networks who learn from the actions of their neighbors.
Agents attempt to iteratively estimate an unknown ‘state
of the world’ s from initial private signals, and the past
actions of their neighbors in the network. We investigate
the computational problem the agents face in implementing
the (myopic) Bayesian decision rule. When private signals
are independent conditioned on s, and when the social
network graph is a tree, we provide a new ‘dynamic cavity
algorithm’ for the agents’ calculations, with computational
effort that is exponentially lower than a naive dynamic
program.

We use this algorithm to perform the first numerical
simulations of Bayesian agents on networks with hundreds
of nodes, and observe rapid learning of s in some settings.

I. INTRODUCTION

The importance of social learning in networks has
been demonstrated in a wide variety of settings, such
as the adoption of agricultural technology in Ghana [1],
and choice of contraceptives by European women [2].

Accordingly, developing and understanding models of
social learning has been a goal of theoretical economics
for the past few decades (cf., [3], [4] and references
therein). Typical models in this context assume a pure
information externality; agent payoffs depend only on
the action they choose and an underlying ‘state of
the world’, and not on the actions of others. Agents
observe the actions of their ‘neighbors’, but payoffs are
not observed (or observed with noise) ex interim. The
premise in such models is that “actions speak louder
than words” — agents learn by observing each others’
actions, and not by communicating directly.

We consider a model that features repeated bidirec-
tional interaction between fully Bayesian agents con-
nected by a social network. Our model is a specialization
of the model of Gale and Kariv [5]. We consider a
group of Bayesian agents, each with a private signal that
carries information on an unknown state of the world
s. The individuals form a social network, so that each
observes the actions of some subset of others, whom we
call her neighbors. The agents must repeatedly choose
between a set of possible actions, the relative merit of
which depends on the state of the world s. The agents
iteratively learn by observing their neighbors’ actions,
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and picking an action that is myopically optimal, given
their information. Gale and Kariv [5] showed that, in this
model, agents converge to the same action under some
conditions. Related work [6] sheds more light on the
phenomenon of agreement on actions and the conditions
in which it arises.

We are interested in the following questions in the
context of this model, which have not been previously
addressed:

(D What action do the agents converge to, e.g., what
is the distribution of this consensus action?
(I) What are the dynamics of such interactions, e.g.,
what is the rate of agreement/convergence?
(III) Are the computations required of Bayesian agents
feasible?

Even in the simple case of two states of the world,
binary private signals and two possible actions, the
required calculations appear to be very complicated.
A naive dynamic programming algorithm (cf. Proposi-
tion III.1) is exponential in the number of individuals.
Since at iteration ¢ one may consider only agents at
distance ¢, then in graphs of maximum degree d (on
which we focus) the number of individuals to consider
is O(min(n,d")), and the computational effort required
of each individual to compute their action at time ¢
is t20min(n.d"))  This grows very rapidly, restricting
previous simulations to networks of three nodes [5]

We describe a novel algorithm for the agents’ calcu-
lation in our model, when the social network graph is a
tree. This algorithm has running time that is exponen-
tially smaller than the naive dynamic program, reducing
the computational effort to 20 (min(n.td)),

Using our algorithm we are able to run numerical
simulations of the social learning process. This extends
the work of Gale and Kariv [5], who simulated the
process for three agents, to much larger networks'. We
use our algorithm to investigate questions (I) and (II):
We numerically evaluate the probability that the agents
learn the optimal action, and its progress with time. We
observe rapid learning of the optimal action in certain

'In our numerical analyses, agents receive information (directly or
indirectly) from hundreds of distinct nodes.



previously unexplored settings.

We conjecture that on regular trees, the error proba-
bility under Bayesian updates is no larger than the error
probability under a different ‘majority’ update rule, in
which agents adopt the opinion of the majority of their
neighbors in the previous round. Our numerical results
support this conjecture. We prove that for the majority
update rule, the number of iterations needed to estimate
s correctly with probability 1 — € is O(loglog(1/e)),
for regular trees of degree at least five. Assuming the
conjecture, the computational effort required of Bayesian
agents drops from quasi-polynomial in 1/e (using the
naive dynamic program) to polynomial in log(1/¢) (i.e.,
polylogarithmic in 1/€), making Bayesian learning com-
putationally tractable. Thus, our results shed new light
on question (III), suggesting a positive answer in the case
of trees.

The restriction of the discussion to tree or tree-like
social networks certainly excludes many natural set-
tings that tend to exhibit highly clustered social graphs.
However, in some cases artificially constructed networks
have no or few loops by design; these include highly
hierarchical organizations, as well as some physical
communication networks. Furthermore, the fact that this
non-trivial class of networks does not present a major
computational hurdle for fully Bayesian calculations is
in itself somewhat surprising.

See the full version of the paper [7] for a more detailed
discussion, literature survey and proof details.

Technical contributions. A key technique used in
this paper is the dynamic cavity method, introduced by
Kanoria and Montanari [8] in their study of ‘majority
updates’ on trees. This technique is a dynamical version
of the cavity method of statistical physics. Our algo-
rithmic and analytical approach leveraging the dynamic
cavity method should be applicable to a range of models
involving iterative updates on trees.

Our second main technical contribution is our proof,
using a dynamic cavity type approach, of doubly expo-
nentially fast convergence of majority dynamics on reg-
ular trees. This result should be of independent interest.

II. MODEL

The model we consider is a simplified version of
the model of social learning introduced by Gale and
Kariv [5].

Consider a directed graph G = (V| E), representing a
network of n = |V| agents, with V' being the set of
agents and E being the social ties between them. A
directed edge (i, 7) indicates that agent i observes agent
j. In most of this paper, we study the special case of
undirected graphs, where relationships between agents
are bidirectional.

Agents attempt to learn the true state of the world
s € S, where S is finite. The information available

to them are their private signals x;, where x; € X
and X is finite. We assume a general distribution of
(s,x1,...,Ty,), under the condition that private signals
are independent conditioned on s,i.e. P [s,x1,...,x,] =
Ps] [Ticy P lils].

In each discrete time period (or round) ¢t = 0,1,...,
agent i chooses action o;(t) € S, which we call a
‘vote’. Agents observe the votes cast by their neighbors
in G. Thus, at the time of voting in round ¢ > 1,
the information available to an agent consists of the
private signal she received initially, along with the votes
cast by her neighbors in rounds up to ¢ — 1. In each
round, each agent votes for the state of the world that
she currently believes is most likely, given the Bayesian
posterior distribution she computes.

Formally, let ¢! = (0;(0),0:(1),...,0:(t)) denote all
of agent i’s votes, up to and including time t. Let Oi
denote neighbors of agent ¢, not including i, i.e., i =
{7:(i,4) € E}. We write o}y, = {0} jecoi, i.e., o), are
the votes of ¢’s neighbors up to and including time t.
Then the agents’ votes o;(t) are given by

oi(t) = argmax P [s|z;, 05, '] ,
sES
where, if the maximum is attained by more than one
value, some deterministic tie breaking rule is used. We
denote o; = (0;(0),0:(1),...).

Note that o;(¢) is a deterministic function of x; and

ol . We denote this function g;(t) : X x |S|!19 — S:

oi(t) = giu(xi, 0, ")

For convenience, we also define the vector function gf
that returns the entire history of ¢’s votes up to time ¢,
gzt = (gi,07gi,17 cee agi,t)5 so that
t t t—1

0; = gi(fciagai )

The full version [7] motivates our model in the context
of rational agents, and also presents a detailed compari-
son with the model of Gale and Kariv [5].

III. MAIN RESULTS
A. Efficient computation

A fairly straightforward dynamic programming algo-
rithm can be used to compute the actions chosen by
agents in our model. The proposition below states the
computational complexity of this algorithm.

Proposition IIL.1. On any graph G, there is a dynamic
programming (DP) based algorithm that allows agents
to compute their actions up to time t with computational
effort 20min(n.(d=1)) yhere d is the maximum degree
of the graph.

The algorithm and proof is included in the full version
[7] of this paper. This proposition provides the bench-
mark that we compare our other algorithmic results to.



In particular, we do not consider this algorithm a major
contribution of this work.

A key advantage of the DP algorithm is that it works
for any graph G. The disadvantage is that the computa-
tional effort required grows doubly exponentially in the
number of iterations ¢.

Our main result concerns the computational effort
needed when the graph G is a tree (i.e., a graph with no
loops). We show that computational effort exponentially
lower than that of the naive DP suffices in this case.

Theorem II1.2. In a tree graph G with maximum degree
d, each agent can calculate her actions up to time t with
computational effort t20(min(n.td)),

The algorithm we use employs a technique called
the dynamic cavity method [8], previously used only in
analytical contexts. Section IV contains a description of
the algorithm and analysis leading to Theorem III.2.

We would like to thank our anonymous referee for
pointing out that it may also be possible to prove
Theorem II1.2 using Bayesian Networks (BN). The proof
would involve constructing the appropriate BN and
showing that its tree-width is min(n, td).

An apparent issue is that the computational effort
required is exponential in ¢; typically, exponentially
growing effort is considered as large. However, in this
case, we expect the number of iterations ¢ to be typically
quite small, for two reasons: (1) In many settings, agents
appear to converge to the ‘right’ answer in a very small
number of iterations [5]. If € is the desired probability
of error, then assuming a reasonable conjecture (Con-
jecture I11.4), we show that computational effort only
polylog(1/e) is required on trees. Having obtained an
approximately correct estimate, the agents would have
little incentive to continue updating their beliefs. (2)
In many situations we would like to model, we might
expect only a small number (e.g., single digit) number
of iterative updates to occur, irrespective of network
size etc. For instance, voters may discuss an upcoming
election with each other over a short period of time,
ending on the election day when ballots are cast.

B. Convergence

Since an agent gains information at each round, and
since she is Bayesian, then the probability that she votes
correctly is non-decreasing in ¢, the number of rounds.
We say that the agent converges if this probability
converges to one, or equivalently if the probability that
the agent votes incorrectly converges to zero.

We say that there is doubly exponential convergence
to the state of the world s if the maximum single
node error probability max;cy P [0;(t) # s] decays with
round number ¢ as

maxP[o;(t) # 5] = exp (= Q1)) (1)

where b > 1 is some constant.
The following is an immediate corollary of Theorem
11.2.

Corollary IIL.3. Consider iterative Bayesian learning
on a tree of with maximum degree d. If we have doubly
exponential convergence to s, then computational effort
that is polynomial in log(1/€) (i.e., polylogarithmic in
1/e) suffices to achieve error probability P [o;(t) # s] <
eforallvinV.

Note that if weaken our assumption to doubly ex-
ponential convergence in only a subset V., C V of
nodes, i.e., max;ey, P[o;(t) # s] = exp ( — Q(b")), we
still obtain a similar result with nodes in V, efficiently
learning s.

We state below, and provide numerical evidence for, a
conjecture that implies doubly exponential convergence
of iterative Bayesian learning.

1) Bayesian vs. ‘majority’ updates: We conjecture
that on regular trees, iterative Bayesian learning leads
to lower error probabilities (in the weak sense) than
a very simple alternative update rule we call ‘majority
dynamics’[8]. Under this rule, the agents adopt the action
taken by the majority of their neighbors in the previous
iteration. Our conjecture seems natural since the iterative
Bayesian update rule chooses the vote in each round
that (myopically) minimizes the error probability. We use
0;(t) to denote votes under the majority dynamics.

Conjecture IIL.4. Consider binary s ~ Bernoulli(1/2),
and binary private signals that are independent identi-
cally distributed given s, with P [x; # s] = 1—6 for some
d € (0,1/2). Let the majority dynamics be initialized
with the private signals, i.e., 5;(0) = x; for all i € V.
Then on any infinite regular tree, for all t > 0, we have

Ploi(t) # 5] < P[6i(t) # ] . @)

Using a dynamic cavity approach, we show doubly ex-
ponential convergence for majority dynamics on regular
trees (the full version [7] contains a proof):

Theorem IIL5. Consider binary s ~ Bernoulli(1/2),
and binary initial votes ©;(0) that are independent iden-
tically distributed given s, with P [5;(0) # s] = 1—4 for
some § € (0,1/2). Let i be any node in an (undirected)
d regular tree for d > 5. Then, under the majority
dynamics,

P[5,(t) # s] = exp [f Q ((%(d - 2))t) ]

when § < (2e(d —1)/(d — 2))~ &4,

Thus, if Conjecture II1.4 holds:

o We have doubly exponential convergence for itera-
tive Bayesian learning on regular trees with d > 5,
implying that for any € > 0, an error probability €



can be achieved in O(loglog(1/e€)) iterations with
iterative Bayesian learning.

¢ Combining with Corollary III.3), we see that the
computational effort that is polylogarithmic in (1/¢)
suffices to achieve error probability 1/e.

This compares favorably with the quasi-poly(1/e)
(i.e., exp (polylog(1/e))) upper bound on computa-
tional effort that we can derive by combining Conjecture
[I1.4 and the naive dynamic program described. Indeed,
based on recent results on subexponential decay of error
probability with the number of private signals being
aggregated [9], it would be natural to conjecture that
the number of iterations 7" needed to obtain an error
probability of € obeys (d — 1)T > Clog(1/e) for any
C < oo, for € small enough. This would then imply
that the required computational effort using the naive
DP on a regular tree of degree d grows faster than any
polynomial in 1/e.

Since we are unable to prove our conjecture, we
instead provide numerical evidence for it (see the full
version of the paper), which is consistent with our
conjecture over different values of d and P[x; # s].
The full version also discusses difficulties in proving the
conjecture.

We would like to emphasize that several of the error
probability values could be feasibly computed only be-
cause of our new efficient approach to computing the
decision functions employed by the nodes. Our numeri-
cal results indicate very rapid decay of error probability
on regular trees (cf. questions (I) and (II) in Section I).

Figure 1 plots decay of error probabilities in regular
trees for iterative Bayesian learning with P [z; # s] =
0.3 Each of the curves (for different values of d) in
the plot of log(—logP [o;(t) # s]) vs. t appear to be
bounded below by straight lines with positive slope,
suggesting doubly exponential decay of error proba-
bilities with t. The empirical rapidity of convergence,
particularly for d = 5,7, is noteworthy. See the full
version [7] for more numerical results.

IV. THE DYNAMIC CAVITY ALGORITHM ON TREES

In this section we develop the dynamic cavity algo-
rithm leading to Theorem III.2. We present the core
construction and key technical lemmas in Section IV-A.
In Section IV-B, we show how this leads to an efficient
algorithm for the Bayesian computations on tree graphs,
and prove Theorem III.2.

Assume in this section that the graph G is a tree
with finite degree nodes. For j € 0i, let G;; =
(Vi=i, Ej—i) denote the connected component contain-
ing node j in the graph G with the edge (i, j) removed.
That is, Gj_; is j’s subtree when G is rooted at i.

A. The Dynamic Cavity Method

We consider a modified process where agent ¢ is
replaced by a zombie agent who takes a fixed sequence
of actions 7, = (7;(0),7:(1),...), and the true state of
the world is assumed to be some fixed s. Furthermore,
this ‘fixing’ goes unnoticed by the agents (except i,
who is a zombie anyway) who perform their calculations
assuming that ¢ is her regular Bayesian self. Formally:

(t) Tl(t) fOI'j = i,
o;(t) =
/ gj,t(xj,oggl) for j # 1.

We denote by Q [A]|7;, s] the probability of event A
in this modified process.

This modified process is easier to analyze, as the
processes on each of the subtrees V;_,; for j € Ji are
independent: Recall that private signals are independent
conditioned on s, and the zombie agent ensures that
the subtrees stay independent of each other. This is
formalized in the following claim, which is immediate
to see:

Claim IV.1. For any v € V, s € § and any trajectory

T;, we have
Q [ohi||7.s] = T[] @loh]|7 3)
JjEODL
(Since o} is unaffected by 7;(t') for all t' > t, we

only need to specify 7/, and not the entire 7;.)

Now, it might so happen that for some number of
steps the ‘zombie’ agent behaves exactly as may be
expected of a rational player. More precisely, given agl L
it may be the case that 7} = g (z;,0}; ") for some ;.
This event provides the connection between the modified
process and the original process, and is the inspiration

for the following theorem.

Theorem IV.2.
trajectory T; and ag;
we have

Plog |s,w] 1 (7 = g; (xwoézl)) =
Qo [|7i,s] 1 (7 = g} (wi,05;)) - 4
Using Egs. (3) and (4), we can write the posterior

on s computed by node ¢ at time ¢, in terms of the
probabilities Q [-]|-]:

Consider any i € V, s € S, t € N,
L. For any x; such that P [z;]s] > 0

P [S|a:i,aaz ] oc]P’[s}IP [mi,a(g;”s]
P[s] P x| s] P [of; |, 2]
Pls]Plwils] [JQ [oh 7 Joi 8] (5)
jEOL

Recall that

oi(t) = gis(zi0h ') = argrr;ax]P’ [s|zs, 05, '] . (6)
s€
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We have therefore reduced the problem of calculating
o;(t) to calculating Q[-||-]. The following theorem is
the heart of the dynamic cavity method and allows us to
perform this calculation:

Theorem IV.3. Foranyi €V, j € 9i, s€ S, t € N,
7} and o, we have

Q[oj][ris] =

t—1 t—1 g

o1 %41

d—1
JIQlef ei "], (7)
=1

where neighbors of node j are 05 = {i,1,2,...,d—1}

The proof of this theorem is similar to the proof of
Lemma 2.1 in [8], where the dynamic cavity method is
introduced and applied to a different process.

B. The Agents’ Calculations

We now describe how to perform the agents’ cal-
culations. At time ¢ = 0 these calculations are trivial.
Assume then that up to time ¢ each agent has calculated
the following quantities:

D) Qot |77 5], forall s € S, for all i,j € V

such that j € 94, and for all Tf_l and a?‘l.

2) gt(w;,00; ") for all 4, z; and o} "
Note that these can be calculated without making any
observations — only knowledge of the graph G, PP [s]| and
P [z|s] is needed.

At time t 4 1 each agent makes the following calcu-

lations:

HQ [cr;-HTf,s] for all s,4,j,0%, 7/. These can be
calculated using Eq. (7), given the quantities from
the previous iteration.

2) gttt (zi, 0h;) for all 4, z; and o). These can be
calculated using Egs. (5) and (6) and the the newly
calculated Q [oj- ||7¢, 5].

Since agent j calculates g

particular, calculates g§+1

f“ for all 7, then she, in

. This allows her to choose

S Blails) 1ot = gt (. (o) ]

Error probability decay on regular trees for iterative Bayesian learning, with P [z; # s] = 0.3 .

the (myopic) Bayes optimal action in rounds up to
t + 1, based on her neighbors’ past actions. A simple
calculation yields the following lemma.

Lemma IVA4. In a tree graph G with maximum degree
d, the agents can calculate their actions up to time t
with computational effort n2°(4).

In fact, each agent does not need to perform calcu-
lations for the entire graph. It suffices for node 7 to
calculate quantities up to time ¢’ for nodes at distance
t — t’ from node 4 (there are at most (d — 1)*~* such
nodes). A short calculation yields an improved bound
on computational effort, stated in Theorem III.2. The
proof of Theorem III.2 is relatively straightforward and
is provided in the full version [7] of this paper.
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