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Abstract. We consider a two-sided assignment market with agent types and a stochastic
structure, similar to models used in empirical studies. We characterize the size of the core
in such markets. Each agent has a randomly drawn productivity with respect to each type
of agent on the other side. The value generated from amatch between a pair of agents is the
sum of the two productivity terms, each of which depends only on the type (but not the
identity) of one of the agents, and a third deterministic term driven by the pair of types.We
prove, under reasonable assumptions, that when the number of agent types is kept fixed,
the relative size of the core vanishes rapidly as the number of agents grows. Numerical
experiments confirm that the core is typically small. Our results provide justification for
the typical assumption of a unique core outcome in such markets, which is close to a limit
point. Further, our results suggest that, given the market composition, wages are almost
uniquely determined in equilibrium.
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1. Introduction
We study bilateral matchingmarkets, such asmarriage,
labor, and housing markets, where participants form
partnerships formutual benefit. The two classical mod-
els of matching markets are the non-transferable utility
(NTU) model of Gale and Shapley (1962), where pay-
ments are not allowed between the agents, and the
Shapley–Shubik–Becker transferable utility (TU) model
of Shapley and Shubik (1971) and Becker (1973), where
monetary transfers are allowed between arbitrary sets
of agents. For each of these models, a natural solution
concept is that of a stable outcome in which there is no
profitable pairwise deviation. In the TUmatching mar-
ket setting, it is well known that the notion of a stable
outcome coincides with that of a competitive equilib-
rium. Furthermore, a stable outcome is guaranteed to
exist in any two-sided market but is generically not
unique (Shapley and Shubik 1971). Therefore, a funda-
mental question arises: How big is the core (i.e., the set
of stable matchings) in a given market?1
The motivation for our study of core size in TU

matching markets is twofold. First, it is of interest to
know whether basic market primitives, such as the
number of agents and the values of possible matches,
are sufficient to determine the market outcome. As
an example, can a labor market support higher wages
for labor without adding jobs or improving productiv-
ity just by moving to a different equilibrium? To take

another example, matching platforms such as Upwork,
Airbnb, TaskRabbit, and others commonly have a “sug-
gested wage/rate” feature, which is in the nature of a
suggestion and not binding (Airbnb 2015). Does this
feature help the platform designer (or participants)
select between equilibria? A small core size would sug-
gest negative answers to these questions.2

Second, several empirical studies in matching mar-
kets require or assume a nearly unique stable outcome
to facilitate predictions, analyze comparative statics,
etc. For instance, Choo and Siow (2006) and Galichon
and Salanié (2010) make a continuum limit assump-
tion in TU markets, and in the continuum limit there
is a unique equilibrium. However, there is insufficient
theoretical basis to justify such an assumption on the
size of the core.3 We ask when such an assumption is
justified.

Our main contribution is to bound the size of the
core as a function of the market primitives. In par-
ticular, we characterize the rate at which the core
shrinks as a function of the size of the market. We
find that the size of the core in TU matching markets
is typically small. This suggests that online matching
platforms have limited ability to redistribute welfare
across agents, without changing the rules of the mar-
ket. In addition, our findings justify the continuum
limit assumption that is typically made in such mar-
kets. Under additional (mild) assumptions, we find
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that the core rapidly approaches the unique equilib-
rium in the continuum limit.
Model and Overview of Results. We consider the tradi-
tional assignment game model of Shapley and Shubik
(1971), consisting of “workers” and “firms,” who can
each match to at most one agent on the other side. To
model the different skills of the workers and the dif-
ferent requirements of the firms, we assume that there
are K types of workers and Q types of firms. Match-
ing worker i with firm j generates a value Φi j (this
can be divided between i and j in an arbitrary man-
ner since transfers are allowed), which we model as a
sum of two terms: a term u(·, ·) that depends only on
the types of i and j, and a term ψi , j that represents the
“idiosyncratic” contributions of worker i to firm j. In
our model, the u(·, ·) is assumed to be fixed, but the ψi j
is the sum of two random variables, the “productivity”
of worker i with respect to the type of firm j and, sym-
metrically, the “productivity” of firm j with respect to
the type of worker i. These productivities are assumed
to be independently drawn from a distribution (satisfy-
ing somemild assumptions) for each (agent, type) pair.
Such a generative model for the value of a match has
been used in empirical studies of marriage markets,
starting with Choo and Siow (2006) (see also Chiappori
et al. 2015, Galichon and Salanié 2010).
We study the size of the set of stable outcomes for

a random market constructed in this way. Shapley and
Shubik (1971) showed that the set of stable outcomes
(which is the same as the core) has a lattice struc-
ture, and thus has two extreme stable matchings: the
worker-optimal stable match, where each worker earns
the maximum possible and each firm the minimum
possible in any stable matching; and the firm-optimal
stable match, which is the symmetric counterpart.
Also, in all stable outcomes, the matching between
workers and firms must be such that social welfare
is maximized. Given these structural properties, our
metric for the relative size of the core is quite natural:
we consider the difference between the maximum and
minimum total utility of workers (equivalently, firms)
in the core, scaled by the (maximum) social welfare.
We show that if the number of types is fixed, then the
core is small and we provide bounds on the size of the
core under three different sets of assumptions.

First, we consider productivities drawn from a gen-
eral distribution satisfying mild conditions.4 Our first
main result (Theorem 1) establishes a small core under
some reasonable assumptions on market structure:
specifically, the expected core size is O∗(1/

√̀
n) in amar-

ket with n agents, and at most ` � max(K, Q) types of
agents on each side (with ` fixed).5 We show that this
bound is essentially tight by constructing a sequence
of markets such that the core size is6 Ω(1/

√̀
n). Thus,

the core shrinks with market size, and this shrink-
ing is faster when there are fewer types of agents.

Additionally, we obtain a tighter upper bound in the
special case of just one type of firm andmore firms than
workers (Theorem 2). Our upper bound in this case
improves sharply as the number of additional firms m
increases; we establish a bound of O∗(1/(n1/`m1−1/`)),
where ` is the number of worker types.

Second, we again consider a fixed set of types, but
assume that productivities are drawn from a distribu-
tion with unbounded support (Theorem 3), and obtain
stronger results. We show an O∗(1/n) bound on core
size in this case. We also establish that the core solu-
tions in the finite market converge to the unique equi-
librium in the continuum limit market, bounding the
distance between any core solution and the limit equi-
libriumby O∗(1/

√
n). In particular, this bounds the con-

vergence rate of the (scaled) number of matched pairs
belonging to each pair of types. We emphasize that this
is the empirically observed quantity in many settings
(transfers are often not observed, e.g., Choo and Siow
2006). This is also useful in bounding the error incurred
when match utilities in empirical studies are estimated
based on a continuum limit assumption. Both of our
bounds are again tight.

To supplement our theoretical findings, we conduct
computational experiments (Section 5). We run simu-
lations with a variety of distributions for the idiosyn-
cratic productivity terms and also go beyond our the-
oretical development by allowing the number of agent
types to grow. In a broad range of settings, we find
that the core is small, even in relatively small markets;
the only exception we find to a small core is the case
of productivities following a Pareto distribution, and
a large number of agent types. In summary, our theo-
retical results and computational experiments strongly
suggest that the core is small in practically relevant
settings. In addition, our experiments also show that
the (scaled) number of matched pairs belonging to any
pair of types rapidly converges to the appropriate lim-
iting value.

We conclude this overview with an observation that
we found helpful in reasoning about themodel and our
proof techniques. Our model has the following prop-
erty: there is a “price” associated with each (worker
type, firm type) pair, such that for every matched
pair of agents of these types, the utility of each agent
is her productivity (with respect to the type on the
other side) “corrected” additively on both sides of the
market (in opposite directions) by the price. Each of
our bounds on core size is proved by showing uni-
form bounds on variation in type-pair prices across
core allocations. A key component of our analysis
is to relate the combinatorial structure of the core
to order statistics of certain independent, identically
distributed (i.i.d.) random variables (RVs). These RVs
are one-dimensional projections of point processes in
(particular subregions of) the unit hypercube, where
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the point processes correspond to the market realiza-
tion. An analytical challenge that we face is that the
relevant projections as well as the relevant order statis-
tics are themselves a random function of the market
realization. We overcome this via appropriate union
bounds. In our proof of Theorem 3, we further use an
order-theoretic approach to control the set of candidate
core solutions (this also yields a limiting characteriza-
tion of core solutions as market size grows).

Related Literature. Most of the related literature fo-
cuses on the NTU model of Gale and Shapley (1962).
Building on that model, a number of papers establish
a small core under various assumptions such as short
preference lists or many unmatched agents (Immorlica
and Mahdian 2005, Kojima and Pathak 2009, Kojima
et al. 2013, Menzel 2015, Peski 2015), and strongly
correlated preferences (Holzman and Samet 2014,
Azevedo and Leshno 2016).7 In a recent paper, Ashlagi
et al. (2017) show that in a random NTU matching
market with long lists and uncorrelated preferences,
even a slight imbalance results in a significant advan-
tage for the short side of the market and that there
is approximately a unique stable matching.8 Further-
more, Ashlagi et al. (2017) find the near uniqueness
of the stable matching to be robust to varying correla-
tions in preferences and other features, suggesting that
a small core may be generic in NTUmatching markets.
There is an extensive literature on large assignment

games that extends the many structural properties
established by Shapley and Shubik for finite assign-
ment games to a setting in which the agents form a
continuum; see, for example, Gretsky et al. (1992, 1999).
Those papers also show convergence of large finite
markets to the continuum limit, including that the core
shrinks to a point. However, unlike in our model, they
model the productivity of each partnership as a deter-
ministic function of the pair of types, with the only ran-
domness being in the number of agents of each type.
The work on assignment games that is most closely
related to ourwork is a recent preprint ofHassidim and
Romm (2015): in their model, all workers (firms) are
a priori identical, and the value of matching worker i
to firm j is a random draw from a bounded distri-
bution, independently for every pair (i , j). For such
a model, they establish an approximate “law of one
price”—i.e., that workers are paid approximately iden-
tical salaries in any core allocation, and that the long
side gets almost none of the surplus in unbalanced
markets. By contrast, we work with multiple types of
workers and firms, where the value of amatch depends
on the types of each agent, and on random variables
that depend on the identity of one of the agents and the
type (but not the identity) of the other agent. We believe
that our model better captures features of real markets,
as it allows for correlations in preferences across types.

There has been recent work in the operations lit-
erature characterizing equilibria in matching markets.
Nguyen (2015) considers bargaining in a network en
route to formation of coalitions (a generalization of
matching) and characterizes the stationary equilibria
of the game. Alaei et al. (2016) generalize the Shapley–
Shubik model to the case of utilities that are not
necessarily quasilinear in payments. They characterize
equilibria and provide an algorithm for efficiently com-
puting the extreme equilibria, and their work leads to
a mechanism for ad auctions that has good properties
even when there is inconsistency in click-through rate
estimates. Overall, the goal of this line of work, includ-
ing the present paper, is to obtain a refined under-
standing of equilibria to enable the design of better
marketplaces for matching.

2. Model Formulation
2.1. The Standard Model
We consider a transferable utility matching market
(or simply matching market) with a set of workers
L and a set of firms E. To keep things concrete, we
cast the problem in terms of a labor market, but other
interpretations are possible. There are nL workers and
nE firms; we let n :� nL + nE denote the size of the
market—i.e., the total number of agents. Firm i employ-
ing worker j creates a benefit Φ(i , j) that can be freely
divided between i and j using monetary transfers, as
all workers and firms are assumed to have preferences
that are linear in money. We assume a one-to-one mar-
ket so that each firm can employ at most one worker
and each worker can work for at most one firm.

A matching M is a subset of L × E. If (i , j) ∈ M,
worker i is said to be matched to firm j in M; we some-
times abuse notation and say M(i)� j or M( j)� i when-
ever (i , j) ∈ M. If no element of M involves worker i,
then i is said to be unmatched; likewise for the firms. An
outcome for a matching market is a pair (M,γ), where
M is a matching and γ is a payoff vector such that
γi + γj � Φ(i , j) for each (i , j) ∈M, and γa � 0 for each
unmatched agent a. That is, the vector γ indicates how
the value of a match is divided between the agents
involved in the match.

In this paper, we shall be concerned with outcomes
that are in the core: in each such outcome, the division
of the benefit to the agents is such that no subset of
agents can produce a greater value among themselves
than the sum of their gammas. Thus, a core outcome
is one in which no coalition of agents has an incen-
tive to deviate. Shapley and Shubik (1971) show that
for this model, ruling out deviations by every worker–
firm pair is sufficient for an outcome to be in the core.
Such outcomes are said to be stable. That is, an outcome
is stable if no agent prefers not to participate in the
matching (because of a negative payoff), and if there
is no blocking pair of agents who can both do better
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by matching with each other (because the value they
generate by matching with each other exceeds the sum
of their current payoffs). Thus, the stability condition
can be mathematically described as γi + γj > Φ(i , j)
for all i ∈ L and j ∈ E, and γa > 0 for all a ∈ L ∪ E.
Furthermore, it is known that the matching M in any
stable outcome must maximize total benefit; that is,
M ∈ argmaxM′∈M

∑
(i , j)∈M′ Φ(i , j), where M is the set of

all possible matchings. For a given matching M, we
refer to ∑

(i , j)∈MΦ(i , j) as the weight of the matching.9

2.2. Our Model
We impose additional structure on the sets of work-
ers and firms, and on the match benefit. We assume
that the workers and firms are partitioned into “types,”
which are devices to group agents with similar charac-
teristics. As an example, consider a labor market con-
sisting of Ph.D. candidates (workers) and firms. Sup-
pose that the type of a worker is the university and
program she is graduating from, while the type of a
firm corresponds to the industry it belongs to (e.g.,
tech, consulting, finance).10 It is then natural to think
that some portion of Φ will be determined by just the
types of the matched agents alone: perhaps the core
curriculum at one program is more relevant to the tech
industry than to management consulting, while the
opposite might be true at another program. Thus, we
assume that matching two agents of a certain type will
yield some baseline value. Additionally, each worker
also has her own characteristics, whichmight make her
more or less suitable for a particular industry, relative
to other workers of the same type. Similarly, a particu-
lar firm’s characteristics may be more or less attractive
to workers of a given type, relative to other firms in
the same industry.11 These considerations lead us to
formulate the following model.
The workers are partitioned into K types, and the

firms are partitioned into Q types; the set of workers’
and firms’ types are denoted by TL and TE, respec-
tively. Let T � TL ×TE denote the set of pairs of types.
For a given type t ∈ TL ∪ TE, we denote by nt the
number of agents of type t. For each agent a ∈ L ∪E,
let τ(a) denote the type of agent a; given a type t and
an agent a, we say that a ∈ t if τ(a) � t. To capture
the correlation in preferences between agents of the
same type as well as individual variations, we model
the value Φ(i , j) of matching i and j as the sum of
two components: a type-type utility term u(τ(i), τ( j)),
and a match-specific term ψ

τ(i), τ( j)
i , j . The utility term

u(τ(i), τ( j)) depends only on the agents’ types and
allows us to express how well suited, in general, a
worker of type τ(i) is to work in a firm of type τ( j).
The match-specific term ψ

τ(i), τ( j)
i , j potentially depends

on both the identity of the agents and their types, and
captures how useful are i’s individual skills to perform
job j. We further assume that Φ(i , j) is additively sepa-
rable as follows.

Assumption (Separability). We assume Φ(i , j) � u(τ(i),
τ( j))+ ετ(i)j + η

τ( j)
i .

The separability assumption states that the match-
specific component, ψτ(i), τ( j)

i , j , is further additively sep-
arable into two terms, ετ(i)j and ητ( j)i ; each term depends
on the identity of one agent and only the type of the other
agent. In particular, for any fixed employer j and two
distinct workers i , i′ ∈L, we have ετ(i)j � ετ(i

′)
j whenever

τ(i) � τ(i′), as the term ε depends only on the type of
the agents in L. Analogously, the term η depends on
the individual worker i ∈ L but only on the type of the
firm j ∈ E.

To illustrate the rationale behind the separability
assumption, consider our previous example of a mar-
ket consisting of Ph.D. candidates and firms. Students
in a particular program have their own idiosyncratic
skills; these are captured by the term η

τ( j)
i , which indi-

cates how an individual student i is valued by a cer-
tain type of firm τ( j), relative to other students of
type τ(i). Note that all firms of type τ( j) value candi-
date i equally. Similarly, the productivity terms associ-
ated with firms (ετ(i)j ) capture how attractive that firm
is to students emerging from a given program, relative
to the other firms of type τ( j). Throughout the paper,
we refer to the term u(τ(i), τ( j)) as the type-type com-
patibility, and to the terms η and ε as the idiosyncratic
productivity terms.
Unless otherwise stated, we model the term

u(τ(i), τ( j)) as a fixed constant, whereas the ε and η
terms are modeled as random variables, independent
across agent type pairs. We assume that the distribu-
tions of ε and η terms are supported on an interval
(possibly unbounded), with density continuous and
positive everywhere in the support. The continuum
limit of such a model was first introduced by Choo and
Siow (2006) to empirically estimate certain structural
features of marriage markets. An attractive feature of
this model is that it allows for reasonable correla-
tion in agents’ preferences, and also heterogeneity and
idiosyncratic variation via the random productivities,
while still remaining tractable.12 The model has since
been employed in other contexts as well (Galichon and
Salanié 2010, Chiappori et al. 2015, Fox 2018).

2.3. Preliminaries
We now state some preliminary observations on the
structure of the core under the separability assump-
tion. For a matching M, let M(t) be the set of agents
who arematched to an agent of type t ∈TL∪TE, and let
U be the unmatched agents. Observe that the weight of
a matching depends only on the type of the partner that
each agent is matched to, and so the maximum-weight
matching is typically not unique. Nevertheless, as the
idiosyncratic productivities are randomly drawn from
non-atomic distributions, the following holds.
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Observation 1. With probability 1, the sets U and M(t)
for t ∈TL∪TE are the same under all maximum-weight
matchings. We call this the type-matching.

We take this as the definition of the sets M(t) and
U for our purposes, since in any stable outcome, the
matching is a maximum-weight matching; see End-
note 9. We next show that the payoffs can be expressed
more conveniently.

Proposition 1. For each i ∈ L and each type q ∈ TE, let
η̃

q
i � u(τ(i), q)+ ηq

i . Any core outcome (M,γ) corresponds
to a vector α � {αkq} ∈ �K×Q′ such that

• γi � η̃
q
i − αkq for all i ∈ L such that τ(i) � k and

i ∈M(q).
• γj � εk

j + αkq for all j ∈ E such that τ( j) � q and
j ∈M(k).

• γi � 0 for all i ∈U.

Proposition 1 follows directly from stability and for-
malizes the existence of a single price for every type-pair
(k , q). In particular, if worker i and firm j of types k
and q, respectively, are matched, the worker payoff is
the type-type compatibility plus her own productivity
with a type q firm minus the price αkq ; on the other
hand, the firm’s payoff is its productivity with a type
k worker plus αkq . As a consequence, if firms j′ and j′′

are of the same type and are matched to the workers
of the same type, the difference in their utilities must
be equal to the difference in their productivities with
respect to that type of worker.
By Proposition 1, any core outcome can be thought

of in terms of the maximum-weight matching M and
the vector α. The following proposition states neces-
sary and sufficient conditions for (M,α) to be a core
outcome. (The maximum over an empty set is defined
as −∞.)

Proposition 2. The following conditions are necessary and
sufficient for (M,α) to be a core solution:
(ST) For every pair of types (k , q), (k′, q′) ∈ T :

min
i∈k′∩M(q′)

(η̃q′

i − η̃
q
i )+ min

j∈q∩M(k)
(εk

j − εk′
j )

> αk′q′ − αkq > max
i∈k∩M(q)

(η̃q′

i − η̃
q
i )+ max

j∈q′∩M(k′)
(εk

j − εk′
j ).

(IR) For every pair of types (k , q) ∈ T :

min
j∈q∩M(k)

εk
j > −αkq > max

j∈q∩U
εk

j , and

min
i∈k∩M(q)

η̃
q
i > αkq >max

i∈k∩U
η̃

q
i .

We refer the reader to proposition 1 of Chiappori
et al. (2015) for a proof. The first set of conditions (ST)
follow from reexpressing the condition imposing the
nonexistence of a blocking pair of matched agents; i.e.,
for every (i , j) ∈ M, we have γi + γj′ 6 Φ(i , j) for all

j′ ∈ E and γi′ + γj 6 Φ(i , j) for all i′ ∈ L. In particu-
lar, if the condition for pairs (k , q) and (k′, q′) fails to
hold, it means that we can find either (1) a worker i
of type k who is matched to a firm in q (i ∈ k ∩M(q))
and a firm j′ of type q′ matched to an agent in k′

such that i and j′ would rather be matched together,
or (2) a worker i′ of type k′ who is matched to a firm
in q′ and a firm j in q matched to an agent in k such
that i′ and j prefer to be matched together. By consid-
ering the difference between two prices, these condi-
tions state howmuch a type-pair price can vary relative
to another type-pair price; therefore, these conditions
impose bounds on the relative variation of prices.

The second set of conditions (IR) follow fromcombin-
ing two facts. The payoffs of matched agents are non-
negative, as otherwise they would rather be u-matched
(see Proposition 1); this implies the left inequalities. The
nonexistenceof ablockingpair involvinganunmatched
agent implies the right inequalities. In particular, note
that the right inequality for a type-pair price αkq is
meaningful only if an unmatched agent of type k or
q exists. The (IR) conditions constitute bounds on the
absolute variation of type-pair prices. Note that Proposi-
tion 2 highlights the lattice structure of the set of core
solutions (Shapley and Shubik 1971).

We conclude with a definition of the size of the core,
denoted by C. We define C as the difference between
the maximum and minimum total payoff of workers
(or firms) among core outcomes, scaled by the over-
all social welfare (the total weight of M) in any core
outcome. This can be equivalently stated in terms of
the vector α. For each pair of types (k , q) ∈ T , let αmax

kq
and αmin

kq be the maximum and minimum possible val-
ues of αkq in the core. Defining αmax � (αmax

kq )k∈TL , q∈TE ,
note that (M, αmax) is in the core and constitutes the
firm-optimal stable outcome. Similarly, (M, αmin) is the
worker-optimal stable outcome, where the definition
of αmin is analogous to that of αmax. The size of the core
is defined in terms of αmax and αmin as follows.

Definition 1 (Size of the Core). Let M be the unique
maximum-weight type-matching. For each pair of
types (k , q) ∈ T , let N(k , q) denote the number of
matches between agents of type k and agents of type q.
Then, the size of the core is denoted by C and is
defined as

C �

∑
k
∑

q N(k , q)|αmax
kq − αmin

kq |
weight(M) .

It is worth noting thatC is always between 0 and 1. This
is because weight (M) is the total surplus produced
by the match, while |αmax

kq − αmin
kq | captures how much

the surplus kept by one side can vary, which in turn
is scaled by the number of matches involving agents
of such a type-pair. The stability conditions imply that,
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for each match, the variation in surplus kept by each
side must always be less than the value of the match.
We conclude this section by noting that the results in

the paper can be further generalized.

Remark 1. All of our analysis and bounds extend to a
model with taxation of transfers (Jaffe and Kominers
2014), which captures commissions charged by match-
ing platforms. Think of the utility of each agent in a
matched pair (i , j) as arising from both the sum of a
base utility from participating in the match and the
amount received/paid in a transfer payment between
the matched partners. Suppose the base utility is
−c(τ(i), τ( j)) for the worker, whereas the remaining
match value (i.e., Φ(i , j) + c(τ(i), τ( j))) accrues as the
base utility to the firm (thus, all of the stochastic vari-
ation due to idiosyncratic productivities is in the base
utility that accrues to the firm; the base utility/cost of
the worker depends only on the pair of types). Sup-
pose that the matching platform collects a fraction λ ∈
[0, 1) of the transferred amount as taxes/commission.
Following Jaffe and Kominers (2014), we assume that
the base utility is (weakly) negative for workers—i.e.,
c(k , q) > 0 for all k ∈ TL , q ∈ TE, capturing the base cost
to a worker of type k of matching with a firm of type q.
This ensures that transfers are only from firms to work-
ers, making this a so-called “wage market.” Consider
any such marketMtax. There is a one-to-one correspon-
dence between the core solutions in Mtax and those in
a market M̃ with no taxes, the same set of agents, and
modified values from matching pairs of agents13

Φ̃(i , j)�Φ(i , j) −
λc(τ(i), τ( j))

1− λ ∀ i ∈L , j ∈ E.

The correspondence between core solutions of Mtax
and M̃ is as follows: the matching is identical in both
markets, firm payoffs are identical in bothmarkets, and
the payoffs of workers are a factor (1−λ) smaller inMtax
relative to M̃. It follows that the size of the core14 inMtax
is identical to that in M̃.

3. Results
We now turn our attention to the main objective of the
paper, which is to understand how the size of the core
scales as the market grows. Given the stochastic nature
of our model, the size of the core C is itself a random
variable. Therefore, the rest of this section is devoted to
studying how the expected/typical value ofC depends
on the characteristics of the market. Throughout this
section, we keep the number of agent types as well
as u(·, ·) fixed and allow the number of agents to grow.
In markets with a finite number of agents, there is

always a finite number of stability constraints. Thus, it
is generically possible to marginally modify some pay-
offs in a core solution without violating stability, and
therefore, the size of the core is strictly positive with

probability one (Shapley and Shubik 1971).15 However,
as the size of the market increases (while the number
of agent types stays the same), the number of stability
constraints also increases, limiting the possible pertur-
bations to the payoffs (cf. Proposition 2). Hence, one
would expect the set of core vectors α to shrink as the
market size increases. In this section, we characterize
the rate at which the size of the core shrinks as the
size of the market increases, as a function of the mar-
ket primitives. In Section 3.1, we present results for
the general case of productivities drawn independently
from any bounded or unbounded distribution satisfy-
ing mild conditions. In Section 3.2, we present stronger
results for distributions with (two-sided) unbounded
support, including convergence of the core to a partic-
ular limiting point. The appendices, which have com-
plete proofs of some results as well as some useful
examples, appear in an online companion to the paper.

3.1. Idiosyncratic Productivities with a
General Distribution

Throughout this subsection, we consider general dis-
tributions F for the idiosyncratic productivities, which
satisfy the condition that F is supported on an inter-
val of the form [Cl ,Cu] or (−∞,Cu] or [Cl ,∞) for some
finite Cl ,Cu , and its density f is continuous and posi-
tive everywhere in the support.

One Type on Each Side of the Market. We start by con-
sidering the simple case of markets with one type on
each side—that is, K � Q � 1. Given that there is only
one type of agent on each side, the deterministic type-
type utility term u � u(τ(i), τ( j)) will be the same for
all matches, regardless of the identity of the agents.
The value of a match between agents i ∈ L and j ∈ E
is Φ(i , j) � u + ηi + ε j , where one may think of ηi as
representing the quality of worker i and ε j as repre-
senting the quality of firm j. Suppose that u > 0 is a
fixed constant.

Definition. We write f (n) � O∗(g(n)) if there exists
r <∞ such that f (n) 6 r(log n)r g(n) for all n > 2.

Definition. A sequence of events En occurs with high
probability if limn→∞ Pr(En)� 1.

Remark 2. The size of the core depends on the number
of agents on each side of the market.

• In a balanced market (i.e., when nL � nE), the
core is large if F is supported on positive values. For
instance, if F is Uniform(0, 1), the above market has
C > u/(u + 2)with probability 1. In particular, we have
E[C]�Ω(1).

• In any unbalanced market (i.e., nL , nE), there
exists f (n) � O∗(1/n) such that, with high probability,
we have C 6 f (n). Also, E[C]�Ω(1/n).
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To see why, note that in a balanced market where F
is supported on positive values, all agents will be
matched in a stable solution. By Proposition 1, we can
describe the size of the core in terms of a single param-
eter α; by Proposition 2, the core consists of all α ∈
[−min j ε j , u +mini ηi]. In other words, the value u that
is part of Φ(i , j) for each (i , j) can be split in an arbi-
trary fashion between employers and workers. On the
other hand, in any unbalanced market (i.e., nL , nE),
the core is small and rapidly shrinks with market size.
It turns out that the short side of the market has a
significant advantage: if there are fewer workers than
firms, the price α is always negative in the core, and
is bounded as min j∈M ε j > −α >max j∈U ε j . This obser-
vation agrees with some of the existing results for the
non-transferable utility setting (Ashlagi et al. 2017).
Multiple Types on Both Sides of the Market. We now
consider the general case of K types of labor and Q
types of employers. The following condition general-
izes the imbalance condition to the case of multiple
types. The idea is to get rid of the cases that, for certain
values of deterministic type-type utilities u(·, ·), may
resemble a balanced problem.16

Assumption 1 (Generalized Imbalance). For every pair of
subsets of types S ⊆ TL and S′ ⊆ TE, we have ∑

t∈S nt ,∑
t∈S′ nt . In words, there is no subset of types for which the

induced submarket is balanced.

We highlight that in our setting with fixed K and Q
and growing n, “most”markets17 satisfyAssumption 1.

Throughout this section, we allow the number of
agents to grow, while keeping the number of types
fixed. We limit the way in which the market grows by
assuming that there is at least a linear number of agents
of each type.

Assumption 2. There exists C > 0 such that for all types
t ∈ TL ∪TE, we have nt > Cn.

Under Assumption 2, each type has a comparable
number of agents and no type vanishes as the market
increases. We now present our main theorem.

Theorem 1. Consider K > 1 types of labor, and Q > 1 types
of employers. Let the idiosyncratic productivities be drawn
i.i.d. from any fixed distribution F that is supported on
an interval of the form [Cl ,Cu] or (−∞,Cu] or [Cl ,∞)
or (−∞,∞) where Cl > −∞ and Cu <∞, and whose den-
sity f is strictly positive and continuous everywhere in the
support.18 ,19 Under Assumption 1 and Assumption 2, for a
market with n agents, we have that

• (Upper Bound) There exists f (n) � O∗(n−1/max(K,Q))
such that, with high probability, we have

max
(k , q)∈T

N(k , q)>0

|αmax
kq − αmin

kq | 6 f (n).

Also, we have E[C] 6 f (n).

• (Lower Bound) There exists a sequence of markets
with K types of labor and Q types of employers such that
E[C]�Ω(n−1/max(K,Q)).

In words, our main result says that under rea-
sonable conditions, with high probability, the varia-
tion in the type-pair prices is uniformly bounded by
O∗(n−1/max(K,Q)), which vanishes as n grows. The same
bound holds for E[C]. In addition, this bound is tight
in the worst case. Thus, the core size shrinks to zero as
the market grows larger, at a rate that is faster (in the
worst case) if there are fewer types of agents. The proof
of Theorem 1 is sketched in Section 4.1; the complete
proof is in Online Appendices C and D.

One implication of Theorem 1 is the following: as the
type-matching is the same across all core solutions, the
bound on the type-pair prices implies that the maxi-
mum difference between the utilities of any agent in
any two core solutions vanishes at a rate of n−1/max(K,Q),
as the size of the market increases. Therefore, the frac-
tion of welfare that can flexibly move from workers
to firms (and vice versa) in core solutions vanishes.
Hence, Theorem 1 shows that the vector of prices that
support a competitive equilibrium (a core solution) is
approximately unique, provided that the market is big
enough.20 As a result, the payoff of an agent is roughly
the same in all stable solutions.

The upper bound in Theorem 1 can be improved if
further constraints are imposed on the number of types
and the imbalance. As an illuminating example, we
show that for multiple worker types, a single employer
type, and a type with more employers than workers,
the size of the core can be bounded above by a function
that depends on both the size of the market and the
size of the imbalance in the market.

Theorem 2. Let idiosyncratic productivities be drawn i.i.d.
from any fixed distribution F that is supported on an inter-
val of the form [0,Cu] or [0,∞) where Cu <∞, and whose
density f is strictly positive and continuous everywhere in
the support.21 In addition, suppose that u(k , 1) > 0 for all
k ∈ TL . Consider the setting in which K > 2, Q �1, nE > nL ,
and let m � nE − nL . Under Assumption 2, we have, with
high probability, thatC 6O∗(n−1/K m−(K−1)/K). Also, E[C]6
O∗(n−1/K m−(K−1)/K).

For m � O∗(1), the bound in Theorem 2 matches
that in Theorem 1. However, the bound here becomes
tighter as the imbalance m grows. In fact, for m �Θ(n),
the core size is bounded as O∗(1/n). It is noteworthy
that, under a linear imbalance, the scaling behavior
does not depend on the number of worker types.

A formal proof of Theorem 2 can be found in Online
Appendix E. The idea behind the proof is to use the
unmatched agents and condition (IR) in Proposition 2
(for the employers) to control absolute variation in
one of the α’s, and this control improves as m grows.
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We separately control the relative variation of the α’s
in the core using condition (ST) in Proposition 2 under
Assumption 2. Combining these, we obtain the stated
bound on C.

3.2. Idiosyncratic Productivities with
Unbounded Support

For our second main result, we require the idiosyn-
cratic terms (i.e., ετ(i)j , η

τ( j)
i ) to be drawn independently

from a distribution having unbounded support, with
positive density everywhere (for instance, Gumbel and
Gaussian distributions will be covered by our analy-
sis here). While the distribution may depend on τ(i)
and τ( j), to ease the burden of notation, we assume
that all of these terms are drawn i.i.d. from a single
distribution whose density f : (−∞,∞) → �+ is posi-
tive everywhere and continuous.22 Let F: (−∞,∞) →
[0, 1] be the corresponding cumulative distribution.
Recall that N(k , q) is the number of agents of type k
matched to agents of type q, under the unique core
type-matching M.
In the following theorem, we fix the fraction of

agents of each type and scale the number of agents.23
We show that the core prices and the fraction of
matches corresponding to a type-pair each converge
to a unique limit, and we further provide a bound on
the rate of convergence. The second part of the the-
orem leverages these limit characterizations to bound
the size of the core.

Theorem 3. Fix K and Q and the distribution F. Also fix
the fraction ρt > 0 of each agent type t ∈ TL ∪ TE; that is,
t can be a type of worker or a type of employer. Consider
a market with n agents that includes nρt agents of each
type24 t, with idiosyncratic productivities drawn i.i.d. from
the distribution F. We obtain the following bounds as a func-
tion of n.

• Limit characterization of α. There exists α∗ � α∗(K,Q ,
ρ, F) and corresponding (ν∗kq)(k , q)∈T such that as n to∞, we
have that both αmax and αmin converge (in probability and
almost surely) to α∗, and N(k , q)/n→ ν∗kq for all (k , q) ∈ T .
In fact, with high probability, all core outcomes (M, α)
satisfy

‖α− α∗‖ 6 O∗(1/
√

n), (1)
|N(k , q)/n − ν∗kq | 6 O∗(1/

√
n), for all (k , q) ∈ T . (2)

• Size of the core. With high probability, the size of the
core is bounded as

C 6 O∗(1/n). (3)

See Online Appendix F for a statement of Theorem 3
with additional technical details and a proof. The first
part of our result (the limit characterization of α) is
analogous to the one obtained in Azevedo and Leshno
(2016) for NTU markets. Roughly, the limit point α∗ is

the unique price vector that clears the limit market, in
the sense that for each type-pair (k , q), the “demand”
of worker type k for employer type q is equal to the
“supply” of employer type q for worker type k (both
demand and supply take a value of ν∗kq). Our analysis
takes advantage of the fact that the limit market satis-
fies a strong gross substitutes condition on both sides
(leading to uniqueness of the equilibrium price, and
allowing it to be computed via tatonnement), whereas
the finite n market satisfies a weak gross substitutes
condition on both sides. We use an order-theoretic
approach along with convergence of the empirical dis-
tribution of (type, productivity vector) among agents
to the limiting distribution, to relate the finite n mar-
ket to the limit market. This connection leads to the
bounds that we obtain.

Theorem 3 has several noteworthy features:
1. The scaling of the bounds with n does not depend

on the number of types K and Q. The stronger assump-
tion of F having full support on (−∞,∞) yields a
stronger upper bound on core size than that in Theo-
rem 1, without the need for Assumption 1 (generalized
imbalance).25
2. The bound on core size (the second part of the the-

orem) is tight if F has a first moment, as demonstrated
by Example 1 (Online Appendix A). The idea is that
1/n is the typical (expected) gap between consecutive
order statistics of the idiosyncratic productivities.

3. The first part of the theorem states that the core
converges to a limit point (α∗ , ν∗), and provides a bound
of O∗(1/

√
n) on the rate of convergence. Again, Exam-

ple 1 (Online Appendix A) shows that this is tight. The
idea is that the actual fraction of agents of a partic-
ular type who satisfy some fixed conditions on their
idiosyncratic productivities has stochastic variations of
order 1/

√
n.

Past works that establish a small core and show con-
vergence to a limit point (e.g., Gretsky et al. 1999,
Kamecke 1992) are superficially similar. However, the
novel feature of (random) idiosyncratic productivity
terms in our model (as well as bounds on the rates
of convergence) makes Theorem 3 significantly more
powerful than previous results.

4. Theorem 3 provides a bound on the estimation
error in empirical studies of matching. Often in empir-
ical studies, only the N(k , q)’s are observed (cardinal
utilities or transfers are typically unobserved), and the
goal is to estimate type-type utilities (the u(k , q)’s)
under suitable assumptions on the idiosyncratic pro-
ductivities (e.g., that they follow a standard Gumbel
distribution). The estimation is typically performed
using a continuum limit assumption, as a result of
which there is a tractable one-to-one mapping between
observed quantities (N(k , q))(k , q)∈T , (ρt)t∈TL∪TE , and the
estimated quantities (u(k , q))(k , q)∈TL×TE ; cf. Choo and
Siow (2006, equation (11)). Moreover, this mapping is



Kanoria, Saban, and Sethuraman: Convergence of the Core in Assignment Markets
628 Operations Research, 2018, vol. 66, no. 3, pp. 620–636, ©2018 INFORMS

well behaved (e.g., it is Lipschitz continuous in both
directions at interior points), and so we can immedi-
ately use Equation (2) to obtain a bound of O∗(1/

√
n)

on the error in the estimate of (u(k , q))(k , q)∈T .

4. Overview of the Proof of Theorem 1
We now present an overview of our proof of Theo-
rem 1. We first discuss the key steps in establishing
the upper bound (the complete proof can be found
in Online Appendix C), and then sketch the proof of
the lower bound in Section 4.2 (completed in Online
Appendix D). Throughout this section, we assume that
there is a unique maximum-weight type-matching M
as per Observation 1—i.e., unique M(t) for all types
t ∈TL ∪TE and unique U. Recall that N(k , q) is defined
as the number of matches between agents of type k and
agents of type q in M.

We start by constructing a graph associated with
matching M as follows. Let G(M) be the bipartite graph
whose vertex sets are the types in L and E, and such
that there is an edge between types k ∈TL , q ∈TE if and
only if there is an agent of type k matched to an agent
of type q in M—i.e., N(k , q) > 0. We say that G(M) is
the type-adjacency graph associated with matching M.
The following lemma states a key fact regarding the
structure of G(M).
Lemma 1. Let G(M) be the associated type-adjacency
graph associated with matching M. Suppose that we mark
the vertex in G(M) corresponding to type t ∈ TL ∪ TE

if and only if at least one agent of type t is unmatched
under M. Then, under Assumption 1 (generalized imbal-
ance), every connected component in G(M) must contain a
marked vertex.

4.1. Overview of the Upper Bound Proof
The intuition behind the proof of the result is as fol-
lows. We start by bounding the type-pair prices asso-
ciated with types with at least one unmatched agent.
By applying the bounds given by the (IR) conditions
in Proposition 2, we show that the difference between
the maximum and minimum α(k , q) corresponding to a
type-pair price associated with at least one such type
(i.e., either k or q have at least one unmatched agent)
is small with high probability. Using these bounds, we
move on to bounding the prices associated with type-
pairs with all agents matched. We use the (ST) condi-
tions in Proposition 2, which bound the relative varia-
tion of a type-pair price with respect to other type-pair
prices. The fact that such relative variation is also small
with high probability, taken together with the abso-
lute variation on the typeswith unmatched agents, will
imply the result.
We first establish the result for the case where F is

Uniform[0, 1]. The two main challenges in the proof
of this case are as follows. First, we must express the

bounds in Proposition 2 as a function of the mar-
ket primitives—i.e., market size and number of types.
To do so, we reinterpret the stability conditions as
geometric conditions over appropriately defined ran-
dom regions in unit hypercubes, as explained in Sec-
tion 4.1.1. Second, we need to relate the bounds given
by the (IR) constraints to those given by the (ST) con-
straints, to obtain uniform absolute bounds on the vari-
ation of all type-pair prices. We address this issue in
Section 4.1.2, by exploiting the combinatorial structure
of the problem. Finally, we extend the proof to deal
with general distributions. We show that under appro-
priate scaling and translation, the bounds obtained for
the uniform case will also hold (within a constant fac-
tor) for any general distribution with positive density
in an interval. This is shown in Section 4.1.3.

We provide a detailed overview of the proof next.

4.1.1. Geometric Interpretation of the Stability Condi-
tions. We now briefly describe the geometric interpre-
tation of the (IR) and (ST) conditions. This will allow us
to reexpress the constraints in Proposition 2 as bounds
that depend on the market primitives.

The intuition is as follows. Once we focus on a sin-
gle type t ∈ TL ∪ TE, the random productivities of an
agent of type t can be described by a D(t)-dimensional
vector within the [0, 1]D(t)-hypercube, where D(t) is the
dimension of the productivity vector of agents of type t
(i.e., D(t) � K if t ∈ TE and D(t) � Q if t ∈ TL). Further-
more, the location of these points can be described by
a point process in [0, 1]D(t). Every such hypercube can
be partitioned into (at most) D(t)+ 1 random regions:
one region corresponding to agents matched to each
of the D(t) types on the other side, and one region
corresponding to unmatched agents. For every α vec-
tor in the core, the regions are separated by hyper-
planes as per the (ST) and (IR) conditions. Since there
is a unique type-matching with probability one (by
Observation 1), each agent (point) must fall into the
same region for all core α’s. Thus, the stability con-
ditions can be interpreted as geometric conditions in
the unitary hypercube that determine how far we can
move the boundaries of each random region without
changing the members of each region. Possible fluctu-
ations in the boundaries are bounded by the distance
between consecutive order statistics of the projections
of points distributed independently in (subregions of)
the hypercube. We show that the event where all such
distances are bounded by functions in O( f (n)) ( f (n) is
as described in the statement of Theorem 1) occurs
with high probability and thus achieves a bound that
depends only on the market primitives. Next, we for-
mally define some of the regions, random sets, and ran-
dom variables that will be useful in our analysis,26 and
we relate such definitions to the stability constraints as
defined in Proposition 2.
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To this end, consider a type t ∈ TE. For each
employer j with τ( j) � t, there is a vector of idiosyn-
cratic productivities ε j distributed uniformly in [0, 1]K
and independently across employers. In this subsec-
tion, we consider these productivities for a given t. We
suppress t in the definitions to simplify notation (i.e.,
n here corresponds to nt , and so on). Analogous defi-
nitions can be made for t ∈ TL .

Consider n i.i.d. points (ε j)nj�1, distributed uniformly
in the [0, 1]K-hypercube. Here, ε j � (ε1

j , ε
2
j , . . . , ε

K
j ). Let

TL � {1, 2, . . . ,K} denote the set of dimension indices.
Intuitively, for a fixed type t ∈ TE with unmatched
agents, one can bound αkt by using condition (IR) in
Proposition 2: min j∈t∩M(k) ε

k
j > −αkt > max j∈t∩U ε

k
j . To

apply this bound,we care just about the projection onto
the kth coordinate of the points ε j with j ∈M(k) ∪U.
The main analytical challenge we face is that these rele-
vant subregions (containing sets such as M(k) ∪U) are
themselves a random function of the market realiza-
tion, as both M(k) and U are themselves random sets.
We overcome this difficulty by appropriately defining
the region R̃

k(δ) :� R̃
k(t , δ) (throughout the rest of this

section, the type t is suppressed in the definition of
the associated regions, sets, and random variables27).
Specifically, for δ ∈ (0, 1/2] and k ∈K, define28

R̃
k(δ)� {x ∈ [0, 1]K : xk′ 6 δ ∀ k′ ∈K, k′ , k}. (4)

By choosing k and δ appropriately, we can guaran-
tee that R̃k(δ) contains only points corresponding to
agents in M(k)∪U. (Intuitively, we can choose δ so that
the other types are not attractive enough with such a
low productivity.) Once we have done that, it should
be easy to see that min j∈t∩M(k) ε

k
j −max j∈t∩U ε

k
j is upper-

bounded by the maximum distance between two con-
secutive points in R̃

k(δ), when they are projected onto
their kth coordinate (the corner cases of all points in
M(k), or in U, turn out to be easy to handle). This
becomes precise once we introduce the set Ṽ k(δ) and
the random variable Ṽ k(δ), defined as follows:

Ṽ
k(δ)�

{
x: x � εk

j for { j: ε j ∈ R̃
k(δ)}

}
, (5)

and Ṽ k(δ) � max
(
Difference between consecutive

values inṼ k(δ) ∪ {0, 1}
)
. (6)

Thus, Ṽ k(δ) ⊂ [0, 1] is the set of values of the kth coor-
dinate of the points lying in Rk(δ), and Ṽ k(δ) ∈ � is
themaximumdifference between consecutive values in
Ṽ

k(δ)∪{0, 1}. (As an example, if Ṽ k(δ)� {0.3, 0.4, 0.8},
the differences between consecutive values in Ṽ

k(δ) ∪
{0, 1} are 0.3, 0.1, 0.4, 0.2, resulting in Ṽ k(δ)� 0.4. Note
that Ṽ

k(δ) is a random and finite set, and Ṽ k(δ) is
a random variable.) Therefore, the variation in αkt is
bounded by Ṽ k(δ). One of our intermediate results

is to show that with high probability {maxk Ṽ k(δ) 6
f1(n ,K)}, for some f1(n ,K)� O∗(1/n1/K).
To complete the proof overview, note that once the

absolute variation of, say, αtt′ has been bounded, a
bound on the absolute variation of αtt′′ can be obtained
by bounding the relative variation in prices (i.e., the
variation in αtt′ − αtt′′) using the (ST) conditions; cf.
Section 4.1.2. Therefore, we need to define additional
regions, sets, and variables that will allow us to apply
the (ST) conditions. Such regions will be analogous
to those defined above. However, instead of being a
function of a single parameter k, they will be defined
as functions of two parameters k1 , k2; this difference
is due to the fact that, unlike the (IR) constraints that
focus on a single type-pair, the (ST) constraints bound
the variation between two type-pairs. Since the rela-
tionship between these random regions and the α’s is
more involved, their definition and analysis are rele-
gated to Online Appendix B. However, analogously to
the case explained above, we still care about the dif-
ference between (appropriately defined) consecutive
order statistics in these regions.
4.1.2. Using the Combinatorial Structure of the Prob-
lem to Relate the Bounds Given by (IR) and (ST) Con-
straints. We consider some suitably defined “typi-
cal” events as discussed in Section 4.1.1, which occur
with high probability in the markets being consid-
ered. When these events occur, the possible fluctua-
tions in the boundaries of the random regions (see Sec-
tion 4.1.1) are bounded by functions in O( f (n)), where
f (n) � O∗(1/n1/max(K,Q)), and f (n) agrees with that in
the statement of Theorem 1. Under these events, we
show that the variation in the type-pair prices is uni-
formly bounded as follows:

max
(k , q)∈T ,N(k , q)>0

|αmax
kq − αmin

kq | 6 f (n).

This bound on the type-pair prices, together with the
fact that the defined events occur with a high probabil-
ity, implies our result.

We divide the proof of the bound on the type-pair
prices into two steps. First, note that types with at
least one unmatched agent are “easier” to bound; we
use the (IR) conditions in Proposition 2 to bound the
absolute variation of prices α associated with such
types. In particular, for each type t with at least one
matched and one unmatched agent, we use the (IR)
conditions to show that maxt′: N(t , t′)>0(αmax

t , t′ − αmin
t , t′ ) 6

O∗(1/(n1/max(K,Q))). This is done in Lemma 2.
It remains to show that the bound holds for prices

between types such that all agents are matched. Unfor-
tunately, as the (IR) conditions in Proposition 2 can-
not be applied to such types, proving the result is not
straightforward. Only the (ST) conditions can be used,
which provide only relative bounds on the values of
the associated type-prices.
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To prove the bounds on the variations of the prices
associated with fully matched types, we use the graph
G(M) as defined above. Given a type t ∈ TL ∪ TE, let
the distance d(t) be defined as the minimum distance in
G(M) from t to any marked vertex. By Lemma 1, every
unmarked vertex t must be at a finite distance from
a marked one. Furthermore, maxt∈TL∪TE d(t) 6 K + Q,
regardless of the realization of the graph. Our argu-
ment to control the variation in the α’s is by induction
on d(t) starting with d(t) � 0. The induction base has
already been established, as we showed that the vari-
ation in all of the relevant α’s associated with marked
types (these types have distance zero) is bounded. Note
that these types are those with at least one matched
and one unmatched agent.
In the inductive step,weassume that theboundholds

for every α associated with a type whose distance is d
or less—i.e., for every (t , t′)∈T such thatmin(d(t),d(t′))
6d,wehaveαmax

t , t′ −αmin
t , t′ 6O∗(1/n1/max(K,Q)). Then, we use

the inductive hypothesis to show that the result must
also hold for all types whose distance is d + 1. By the
definition of distance, for every type t such that d(t) �
d + 1, there must exist a type t∗ such that d(t∗) � d and
N(t , t∗) > 0. Therefore, by our inductive hypothesis, we
must have αmax

t , t∗ − αmin
t , t∗ 6 O∗(1/n1/max(K,Q)). Separately,

we control the relative variation of the α’s associated
with type t in the core using the (ST) conditions—i.e.,
we show that αt , t1

− αt , t2
for types t1 , t2 with matches

with type t can vary only within a range bounded by
O∗(1/n1/max(K,Q)). Combining, we deduce the desired
bound on the variation in all α’s associated with type t.
This is formally achieved in Lemma 5.

4.1.3. Extension to General Distributions. So far we
have given an overview of the proof for the case in
which F is Uniform(0, 1). We now argue that the same
bounds can be obtained for any distribution satisfying
the conditions in Theorem 1, via appropriate scalings
and translations of productivities and base utilities.
We first show that in any core solution, each type-

pair price must lie in a bounded interval whose
extremes are independent of n.

Lemma 2. Fix K,Q, u’s, and F. Then, under Assump-
tion 2, there exists U � U(K,Q , (ukq)k , q , F) <∞ such that,
with high probability, any core outcome (M, α) satisfies

−U 6 αkq 6U, for all k , q. (7)

Lemma 2 is proved in Online Appendix G.
Recall that in our proof of Theorem 1 for the

Uniform(0, 1) case, wewere able to bound the variation
in type-pair prices by bounding the distances between
relevant consecutive order statistics of the productiv-
ities and their linear combinations. In particular, we
followed an inductive approach where we first focused
on agent types with an unmatched agent and bounded

all of the prices corresponding to that type, and then
we proceeded inductively to bound the prices corre-
sponding to types where all agents are matched. Note
that when F is an unbounded distribution, the distance
between consecutive order statistics might be larger
than any O∗(1/n1/max(K,Q)) function. However, using
Lemma 2, it follows that the relevant interval where
realized values matter is

I �


[max(Cl ,−U),min(Cu ,U)], for εk′

i s ,
[max(Cl ,−U +mink , q u(k , q)),

min(Cu ,U −maxk , q u(k , q))], for ηq′
j s .

(8)

In other words, if we fix a type t ∈ TE, then we care
about the consecutive order statistics of the ε’s that
occur in the IK-hypercube, and analogously for t ∈ TL .
Now, fmin � infx∈I f (x) > 0; by assumption, f is positive
and continuous, and I is a compact set. If we suitably
translate the productivity (achieved via an equal and
opposite change in u) and then scale utilities down
by |I |, we can map I to [0, 1], and the density in [0, 1]
is now lower-bounded by fmin |I |. Thus, if the produc-
tivities of type t ∈ TE are being considered, we apply
this translation to all k ∈ TL , and then scale all utili-
ties down by |I |. As a result, we obtain that the density
of the productivity vector (εk

i )k∈TL for τ(i) � t is lower-
bounded uniformly by ( fmin |I |)K everywhere in [0, 1]K ,
and that this is now the relevant region where real-
ized values matter. Hence, our uniform bounds on the
gaps between consecutive order statistics for the case
where F is Uniform(0, 1) suffice.29 The corresponding
bound on order statistics for the original problem is
simply |I | times (a constant factor) larger.

4.2. Proof of the Lower Bound
Our lower bound follows from the following proposi-
tion, proved in Online Appendix D.

Proposition 3. Consider a sequence of markets (indexed
by ñ) with |TL | � K types of labor, with ñ workers of each
type, and with a single type 1′ of employer, and (K − 1)ñ + 1
employers of this type. (Note that these markets satisfy
Assumptions 1 and 2.) All productivities are drawn from a
distribution with support in [0, 1]. Set u(k∗ , 1′)� 0 for some
k∗ ∈L, and u(k , 1′)� 3 for all k ∈L\k∗. For this market, we
have E[C]�Ω∗(1/n1/K).
The rough intuition for our construction in Proposi-

tion 3 is as follows. For our choice of u’s, it is not hard to
see that all workers of types different from k∗ are always
matched in the core. One employer j∗ is matched to a
worker of type k∗. Suppose that vector (αk)k∈TL is in the
core. Given that all types k , k∗ are a priori symmet-
ric, we would expect that the αk ’s for k , k∗ are close
to each other (we formalize using Lemma 4 that they
are typically no more than δ ∼ 1/

√
ñ apart). Assum-

ing this is the case, we can order employers based
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on X j � maxk,k∗ ε
k
j − ε

k∗
j , and j∗ should usually be the

employer with the smallest X j , since this employer has
the largest productivity with respect to k∗, relative to
the other types. Now, the X j’s are i.i.d., and a short
calculation establishes that the distance between the
first- and second-order statistics of (X j) j∈E isΘ(1/n1/K).
This “large” gap between the first two order statistics
allows (αk∗ , (αk + θ)k,k∗) to remain within the core for
a range of values of θ ∈ � that has an expected length
ofΘ(1/n1/2) for K � 2 andΘ(1/n1/K)−O(δ)�Θ(1/n1/K)
for K > 2, which leads to the stated lower bound on C.
We remark that the key quantity here—namely, the

gap between the first two order statistics of (X j) j∈E—
is determined by the tail behavior of the distribution
(both the left and right tails) of the ε’s, along with the
number of types K. See Section 6 for further discussion.
Note that the construction above can easily be

adapted to accommodate Q 6 K types of firms.30 If
Q > K, we simply swap the roles of workers and firms
in our construction, leading to E[C] �Ω∗(1/(n1/Q)), as
needed. Thus, the lower bound in Theorem 1 follows
from Proposition 3.

5. Numerical Experiments
In the previous sections, we provided asymptotic
bounds on the size of the core. The purpose of this
section is twofold. First, in Section 5.1, we provide
simulation results to illustrate our theoretical results,
and study the core behavior in markets with a small
number of agents. Second, in Section 5.2, we explore
what happens when the number of types is allowed
to grow. Our simulation results reveal that the core is
indeed small across a wide range of settings, includ-
ing relatively small markets, reinforcing our main
conclusion—namely, that typical assignment markets
are likely to have a small core.

5.1. Simulation of Theoretical Results
Our main results state that, if the number of types is
fixed and bounded by K, then the core becomes small
as the market size grows. In particular, the core size in
a market with n agents and at most K types on each
side is bounded as O∗(1/n1/K) (Theorem 1). In addition,
if the distribution of the idiosyncratic terms is sup-
ported on the interval (−∞,+∞), the size of the core is
bounded as 1/n, and the core solutions converge to a
limit point (Theorem 3). We now numerically investi-
gate finite markets, including relatively small markets.

5.1.1. Illustration of Theorem 1. In Theorem 1, we
show that our bound is tight in the worst case by care-
fully constructing a specific family of instances whose
expected core size is Ω∗(1/n1/K). However, such mar-
kets are unlikely to occur in practice. We are now inter-
ested in understanding the size of the core in more

“typical” settings. To that end, we define a typical mar-
ket with a distribution over the number of agents of
each type as follows.

Definition 2 (Typical Market).A typical market is a mar-
ket of random size defined by the quadruple (nL ,
nE , [p1 , . . . , pK], [r1 , . . . , rQ]), where [p1 , . . . , pK] (resp.
[r1 , . . . , rQ]) is a list of positive reals of length K (resp. Q)
such that ∑K

i�1 pi � 1 and ∑Q
i�1 ri � 1, and such that the

number of agents of type k ∈ K (resp. q ∈Q) is given by
an independent random draw from a Poisson distribu-
tionwithmean pk nL (resp. rq nE).

We highlight that the above definition of a typical
market is valid regardless of the distribution used to
determine the idiosyncratic productivities. If nL � nE,
we say that the market is balanced. Otherwise, we say
that themarket is unbalanced. Note that even a balanced
typical market is very unlikely to have exactly the same
number of agents on each side; the likelihood of exact
balance is O(1/

√
n), and such realizations have a neg-

ligible impact on our numerical results since we are
focusing on the median core size across realizations.

We tested the intuition provided by Theorem 1 by
simulating typical markets with a varying number of
agents, types, and type-type utilities.We consider three
types of distributions for the idiosyncratic productiv-
ities: uniform, exponential (right-unbounded with a
lighter tail), and Pareto (right-unbounded with a heav-
ier tail).31 For each set of parameters, we ran 100 trials
and reported the median core size over those markets.

To illustrate our findings, in Figure 1 we show the
median core size as a function of the number of agents
for balancedmarkets with a fixed number of types (two
and five types on each side), the same expected number
of agents of each type, and all type-type utilities equal
to zero. The idiosyncratic terms were drawn indepen-
dently from, respectively, a uniform(0,1) distribution,
an exponential distribution with mean 1, and a Pareto
distribution with shape parameter α � 2 (the choice
of scale parameter has no impact on core size). We
also added the functions 1/n and 1/

√
n to the graph,

and used logarithmic scales on both axes to facilitate
the comparison with polynomials of n. In the figure,
one observes that the dependence of decay rate on the
number of types is weak, and the decay rate appears to
be between 1/

√
n and 1/n.

We also simulated the effect of imbalance and
changing type-type utilities.32 In our experiments, the
core size tends to slightly decrease as the imbalance
increases (see Theorem 2). However, the difference in
the core size between balanced and unbalanced typi-
cal markets was not large, and the core size was found
to always decay at a rate of between 1/

√
n and 1/n.

Furthermore, consistent with our theoretical insights,
we find that the values of the type-type utilities do not
play a significant role in the size of the core.
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Figure 1. (Color online) (Left) Median core size as a function of number of agents, for balanced markets with two types of
agents on each side and both the type-type productivities and idiosyncratic terms drawn from uniform (U), exponential (E),
and Pareto (P) distributions, respectively. The graph uses logarithmic scales on both axes. The functions 1/n and 1/

√
n are

added for comparison. (Right) Core size as a function of number of agents, for balanced markets with five types of agents on
each side.
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5.1.2. Illustration of Theorem 3. We now numerically
illustrate our result in Theorem 3, using a standard
Gumbel as the distribution for the idiosyncratic pro-
ductivities. This case is particularly important: most
empirical studies using this model assume a fixed
number of types and idiosyncratic terms drawn from
a Gumbel distribution (see, e.g., Choo and Siow 2006).
For these experiments, we fixed the fraction ρt of
agents of each type t ∈ TL ∪TE and the type-type util-
ities, and increased the number of agents on each side
of the market. For each set of parameters, we ran 100
trials and reported the average distance to the limiting
type-type prices α∗, the average distance to the limit-
ing (scaled) number of matches of each type-pair ν∗,
and the median core size. As expected, the observed
decrease in the core size occurs at a rate of approxi-
mately 1/n, even when n is relatively small. We also
found that the average distances from the realized α’s
and ν’s to α∗ and ν∗, respectively, decrease at a rate of
1/
√

n, as predicted. Also, as predicted by Theorem 3,
we found that the values of the type-type utilities do
not alter the rate of convergence, and this holds even
for small markets.33

We consider markets with two and five types on
each side. Agents on each side are evenly distributed
across types, but there is an imbalance across sides (we
considered 1.2n workers and n firms). We also set the
type-type utilities to be equal to 3.0, for each type pair.
In this setting, all agents on each side are ex ante sym-
metric and thus, in the limit, the proportion of agents
of type k that are matched to agents of type q, ν∗kq , is the
same for all type-pairs. Similarly, the limiting prices α∗kq
are equal across all type-pairs. In Figure 2 we illustrate
this by plotting the median of Averagek , q(|αkq − α∗kq |),
the median of Averagek , q(|N(k , q)/n − ν∗kq |), and the

median size of the core as n increases. We observe that
our asymptotic bounds capture the behavior of the core
even in small markets.

5.2. Beyond Our Theory: Increasing the
Number of Types

Our theoretical results assume that the maximum
number of types (K) on each side remains fixed as the
number of agents (n) increases. To conclude this sec-
tion, we now numerically analyze what happens if we
allow the number of types to increase.

In particular, we fix the number of agents n, and
study the behavior of the core when the number of
types K increases. We again show results for the case
where the type-type utilities are drawn independently
from the same distribution as the idiosyncratic terms.
(We found that the core size is not sensitive to the distri-
bution of the type-type utility term.) Clearly, the size of
the core (see Definition 1) is bounded by 1. Therefore,
it should not be surprising that the core size as a func-
tion of the number of types eventually flattens out. The
question is, how much can the core grow if we allow
the number of types to grow, and how many types of
agents are needed before the core stops growing?

If the random productivities are drawn from a uni-
form distribution, then allowing the number of types
to increase as n increases does not have a significant
effect, and the core remains small. This is illustrated by
Figure 3, where we consider balanced typical markets
with 200 and 400 agents on each side, respectively, and
plot the median core size as a function of the number
of types for uniform, exponential, and Pareto distri-
butions. Observe that under both uniform and expo-
nential distributions, the curve flattens out when K is
approximately 30 in each case. On the other hand, the
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Figure 2. (Color online) (Left top) Median distance to α∗ as a function of the number of workers for markets with two and five
types of agents on each side, idiosyncratic terms drawn from standard Gumbel distribution, type-pair utilities set to zero, and
1.2 times as many workers as firms. for each simulation, we compute the distance to α∗ as Average(k , q) |αk , q − α∗ |. When K � 2,
We have α∗ � 0.132 and, when K � 5, α∗ � 1.026. (Right top) Median distance to ν∗, where for each simulation, we compute the
distance to ν∗ as Average(k , q) |N(k , q)/n − ν∗ |. When K � 2, we have ν∗ � 0.106 and, when k � 5, we have ν∗ � 0.018.
(Bottom) Median core size as a function of the number of workers. All graphs use logarithmic scales on both axes. The
functions 1/

√
n and 1/n are added respectively for comparison.
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effect of increasing the number of types for Pareto dis-
tributions is significant, and a “large” core may arise
as a result (with core size exceeding 0.1), albeit only
when there is a large number of types (e.g., more than
∼ 30 types with 200 agents on each side). As seen in
Figure 3, the size of the core does not flatten out even
with 100 types per side in this case.34 However, such a
large number of types would not be expected to occur
in practice, and we consider our findings here as a con-
firmation that the core is indeed small under plausible
values for n, K, and Q.

6. Discussion
This paper quantifies the size of the core in matching
markets with transfers, as a function of market charac-
teristics. We considered a model of an assignment mar-
ket with a fixed number of types of workers and firms.
We modeled the value of a match between a pair of

agents as a sum of a deterministic term determined by
the pair of types, and a random component that is the
sum of two terms, each depending on the identity of
one of the agents and the type of the other. Assuming
a fixed number of types, we showed that the size of the
core is bounded as O∗(1/n1/`), where each side of the
market contains no more than ` types, when the ran-
dom terms are drawn from a distribution whose den-
sity is strictly positive and continuous everywhere in
the (possibly unbounded) support. This bound holds
in the worst case over the number of agents. These
results imply that the vector of prices that support a
competitive equilibrium (a core solution) is approxi-
mately uniquely determined, and thus the payoff of an
agent is roughly the same in all stable solutions.

We provide additional results for the practically
relevant case of distributions with support (−∞,∞)
(including Gumbel and normal): we show a tighter
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Figure 3. (Color online) (Left) Median core size as a function of number of types, for balanced typical markets with 200
agents on each side and idiosyncratic terms drawn from a uniform distribution (U), an exponential distribution (E), and a
Pareto distribution (P) with shape parameter α � 2. The graph uses logarithmic scales on both axes. (Right) Median core size
as a function of number of types, for typical markets with 400 agents on each side.
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bound of O∗(1/n) on the size of the core, as well as con-
vergence to a unique limit of both the core prices and
the fraction of matches of each type-pair, and bounds
of O∗(1/

√
n) on these rates of convergence.

Using numerical experiments, we show that our
small core finding holds across a range of practically
relevant situations.

As future work, it would be interesting to extend
our results to many-to-one markets, where employ-
ers can each have more than one opening. We expect
that our results regarding the core (also our proofs)
extend to the case where each employer’s capacity is
bounded by a constant, and each employer’s utility
is additive across matches. Another interesting direc-
tion would be to investigate the role of a market-
place operator (e.g., Airbnb, Upwork) in determining
the wage/price levels in a decentralized market. Our
work suggests that price recommendations alone may
not be a good tool to control prices, since prices are
uniquely determined in equilibrium. However, there
are nontrivial search costs in many such marketplaces.
Hence, search engine design and other aspects of the
search/recommendation environment provided by a
platform can play a role in modulating prices.
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Endnotes
1A small core has been found in special cases of the TU setting
as in Gretsky et al. (1992, 1999) and Hassidim and Romm (2015),
which we discuss below. In the NTU setting, real markets have
almost always been found to contain a nearly unique stable out-
come; see, e.g., Roth and Peranson (1999). A body of theory explains
this phenomenon (Immorlica andMahdian 2005, Kojima and Pathak
2009, Ashlagi et al. 2017, Holzman and Samet 2014, Azevedo and
Leshno 2016).
2Our results extend to the case where transfers are taxed by the
platform; cf. Remark 1.
3The core size and other features of real NTUmarkets can be readily
studied as the data on ordinal preferences is often available. In TU
matching markets, this becomes a harder task given that preferences
(i.e., the value generated by a pair/match) are difficult to observe.
4Namely, we require the support of the distribution to be a (possibly
unbounded) interval, and the density to be continuous and posi-
tive everywhere in the support. These requirements are satisfied by
the normal, Gumbel, uniform, and exponential distributions, among
others.
5We write f (n) � O∗(g(n)) if there exists r < ∞ such that f (n) 6
r(log n)r g(n) for all n > 2. In words, this corresponds to the big-O
notation where poly-logarithmic factors are also suppressed.
6Similarly, we write f (n) � Ω(g(n)) if limsupn→∞ | f (n)/g(n)| > 0.
This corresponds to the standard big-O notation.
7Azevedo and Leshno (2016) consider a fixed number of schools and
a growing number of students. One can think of each school as being
replaced with a linearly growing number of agents (equal to the
number of seats in the school) having identical preferences (identical
to those of the school), without the core being affected. Hence, we
see Azevedo and Leshno (2016) as implicitly considering preferences
that are strongly correlated in a particular way.
8Our results on a small core in TU markets also hold under a similar
“generalized imbalanced” requirement, which is generically satis-
fied; cf. Section 3.
9 These results are formalized by Shapley and Shubik (1971). They
show that the set of stable outcome utilities is the set of optima of
the dual to themaximum-weightmatching linear program, implying
in particular that the matching M in a stable outcome must be a
maximum-weight matching.
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10More generally, several other relevant characteristics, such as loca-
tion and experience, may be included to define a type.
11An alternative way of thinking about types is in the context of
an empirical model. There, types represent the observable charac-
teristics of the agents (age, sex, location, education level). In addi-
tion, agents also have some unobservable characteristics, captured
by allowing for idiosyncratic variations.
12These features have also been important in facilitating identifica-
tion (Choo and Siow 2006, Chiappori et al. 2015). A researcher is
typically able to observe only the cross-section marriage/matching
distribution—namely, the number of type t agents matched to type t′

agents on the other side of the market.
13The modification can be absorbed in the u(τ(i), τ( j)) term, leaving
the idiosyncratic productivities unaffected.
14Onemay define the size of the core inMtax as the difference between
the maximum and minimum total payoff of firms in core outcomes
(this difference exceeds the corresponding difference for workers),
divided by the weight of M (all stable matchings once again live on
M, and weight (M) is again the total payoff of workers, employers,
and platform combined).
15 In the continuum limit markets as used in the empirical studies
(e.g., Choo and Siow 2006, whose model is very similar to ours),
there is a unique core solution. Real-world markets, on the other
hand, are finite and thus always have multiple core solutions. There-
fore, bounding the size of the core as a function of the market size
and other market primitives may provide some justification for the
continuum market assumption.
16Whenever Assumption 1 is not satisfied, one can construct a mar-
ket for which E[C] � Ω(1), by extending the reasoning leading to
Remark 2.
17Consider possible vectors N � {(nt)t∈TL∪TE : ∑

t nt � n} describing
the number of agents of each type. Then, a fraction O(1/n) of these
vectors violate Assumption 1.
18Thus, allowed distributions include typical continuous distribu-
tions such as Gumbel, Gaussian, Pareto, and uniform.
19We remark that we in fact only need a weaker condition on f—
namely, that it is bounded below by a function that is positive and
continuous everywhere in the support, and is non-atomic. Also, F
can be different for different type-pairs.
20This is similar in spirit to the result obtained by Hassidim and
Romm (2015), albeit in a different model where a single marketwide
price emerges.
21A positive lower limit in the support of F can be absorbed into the
u(·, ·)’s, and hence this case is covered.
22 In fact, it is enough for f to be bounded below by a function that
is positive everywhere and continuous.
23This scaling is a bit stronger than the one in Assumption 2, as we
require the fraction to remain constant throughout. Note that this is
necessary to ensure convergence to a limit point.
24 In fact, it is sufficient that the fraction of agents of type t converge
to ρt as nto∞. If we have maxt∈TL∪TE |ρt − (# agents of type t)/n | 6 δn

for some δn � o(1), then we obtain bounds of O∗(max(1/
√

n , δn)) in
the first part of the theorem, while Equation (3) remains unchanged.
25The generalized imbalance assumption guarantees that at least one
agent is unmatched, which is necessary for a small core to arise.
Here, as F is unbounded on both sides, some agents will remain
unmatched with high probability for a big enough market.
26The remaining definitions can be found in Online Appendix B.
27While for our purposes we consider the hypercube associated with
a given type t, the results in this section are intended more generally
as results for random point processes in a hypercube. Thus, types are
omitted from the definitions.

28 In our setting,K is equal to TL . However, as previously explained,
the results in this section are intended more generally as results for
random point processes in a hypercube. Thus, we decided to use a
more general notation.
29Formally, we divide realized productivity vectors into those that
are considered and those that are not. The density of considered
realizations is ( fmin |I |)K in [0, 1]K , and 0 elsewhere; overall, a fraction
( fmin |I |)K > 0 of realizations are considered and hence, w.h.p., Ω(n)
workers of type k are considered.
30Let each worker type q , 1 have ñ agents each and u(·, q) � −2.
These workers are always unmatched, leaving the core unaffected.
31The Pareto distribution has two parameters: the shape parameter α
and the minimum point in the support xmin. Given those parameters,
the CDF at x > xmin is given by 1− (xmin/x)α .
32These results are not explicitly reported for the sake of brevity.
33Results for different type-type utilities are not reported for the sake
of brevity.
34Our intuition for the underlying reason for a large core is as fol-
lows: When the number of types exceeds

√
n, then most of the

matched pairs consist of agents who are especially well suited to
each other in terms of their productivities for each other’s type. This
leaves significant leeway for each pair of agents to negotiate the divi-
sion of the surplus they generate, even while keeping other agents’
payoffs fixed and retaining stability.
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